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Abstract. We present a simple grid structure to use in a fault-tolerant
clock propagation method and study it by means of simulation experi-
ments. A key question is how well neighboring grid nodes are synchronized,
even without faults. Our statistical approach provides substantial evi-
dence that this system performs surprisingly well. In a grid of height H,
the standard deviation of the delay seems to be O(H1/4) (≈ 2.7 link delay
uncertainties for H = 2000) and the standard deviation of the skew to
be o(log logH) (≈ 0.77 link delay uncertainties for H = 2000).

1 Introduction

Traditionally, clocking of synchronous systems is performed by clock trees or
other structures that cannot sustain faulty components [12]. This imposes limits
on scalability on the physical size of clock domains. To the best of our knowledge,
work on fault-tolerant clocking schemes started in earnest in the last decade, with
an upsurge of interest in single event upsets of the clocking subsystem [1, 2, 8, 10].
Larger systems and smaller components require going beyond these techniques.

There is a significant body of work on fault-tolerant synchronization from the
area of distributed systems considering Byzantine faults [9, 11]. A line of works
culminating in [6] additionally consider self-stabilization, the ability of a system
to recover from an unbounded number of transient faults. These highly desirable
properties come at a high price, usually in the form of high connectivity [4].

A suitable relaxation of requirements is proposed in [3], requiring that By-
zantine faults are distributed across the system not in a worst-case fashion, but
more “spread out”. Distributing a clock signal through a grid-like network called
HEX is proposed, which tolerates one out of each node’s four in-neighbors being
faulty. Unfortunately, HEX has poor synchronization performance: a crashed
node causes a “detour” resulting in a clock skew between neighbors of at least
one maximum node-to-node communication delay d. This is much larger than the
uncertainty u in the node-to-node delay, which is engineered to be small (u� d).

We propose a novel clock distribution topology that overcomes the above
shortcoming of HEX, in particular the high skew between neighboring nodes.
Similar to HEX, the clock signal is propagated through layers, but for each node,
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Fig. 1: Zoom-in on a part of a larger
TRIX grid with one crashing node. Ob-
serve that the fault causes no significant
additional skew.
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0ď

1ď

2ď

3ď

Fig. 2: Worst-case assignment of wire de-
lays causing large skew for TRIX. Squig-
gly lines indicate slow wires, straight li-
nes indicate fast wires. ď ..= d− u.

all of its three in-neighbors are on the preceding layer. If at most one in-neighbor
is faulty, each node still has two correct in-neighbors on the preceding layer, as
demonstrated in Figure 1. Hence, we can now focus on fault-free executions,
because single isolated faults only introduce an additional uncertainty of at most
u � d. Predictions in the fault-free model are therefore still meaningful for
systems with rare and non-malicious faults.

The TRIX topology is acyclic, which conveniently means that self-stabilization
is trivial to achieve, as any incorrect state is “flushed out” from the system.

Despite its apparent attractiveness and even greater simplicity, we note that
this choice of topology should not be obvious. The fact that nodes do not check
in with their neighbors on the same layer implies that the worst-case clock skew
between neighbors grows as uH, where H is the number of layers and (for the
sake of simplicity) we assume that the skew on the first layer (which can be
seen as the “clock input”) is 0, see Figure 2. However, reaching the skew of d
between neighbors on the same layer, which is necessary to give purpose to any
link between them, takes many layers, at least d/u� 1 many. This is in contrast
to HEX, where the worst-case skew is bounded, but more easily attained.

While the worst-case behavior is easy to understand, it originates from a very
unlikely configuration, where one side of the grid is entirely slow and the other
is fast, see Figure 2. In contrast, correlated but gradual changes will also result
in spreading out clock skews. Any change that affects an entire region in the
same way will not affect local timing differences at all. This motivates to study
the extreme case of independent noise on each link in the TRIX grid. Moreover,
we assume “perfect” input, i.e., each node on the initial layer signals a clock
pulse at time 0, and that the grid is infinitely wide. We argue that this simplistic
abstraction captures the essence of (independent) noise on the channels.

We provide evidence that TRIX behaves better than conventional concentra-
tion bounds might suggest. The full version [7] argues in-depth that these results
are not just artifacts of the simulation, the model, or due to various biases.

We point out the open problem of analyzing the stochastic process we use
as an abstraction for TRIX. Understanding of the underlying cause would allow
making qualitative and quantitative predictions beyond the considered setting.



2 Model

The network topology is a grid of height H and width W . To simplify, we choose
W = ∞, because we aim to focus on the behavior in large systems. We refer
to the grid nodes by integer coordinates (x, y), where x ∈ Z and y ∈ N0. Layer
0 ≤ ` ≤ H consists of the nodes (x, `), x ∈ Z.

Nodes in layer 0 represent the clock source. Note that for the purposes of
this paper, we assume that the problem of fault-tolerant clock signal generation
has already been sufficiently addressed (e.g. using [5]), but the signal still needs
to be distributed. All other nodes (x, `) for ` > 0 are TRIX nodes. Each TRIX
node propagates the clock signal to the three nodes “above” it, i.e., the vertices
(x+ c, y+ 1), c ∈ {−1, 0,+1}. Each of the wire delays is modeled as i.i.d. random
variables wx,yc (or wc for short) that are fair coin flips, i.e., attain the values 0
or 1 with probability 1/2 each. This reflects that any absolute delay does not
matter, as the number of wires is the same for any path from layer 0 (the clock
generation layer) to layer ` > 0; also, this normalizes the uncertainty from u to 1.

Let d(x, y) be the time at which node (x, y) fires. Clock generation provides
us with d(x, 0) = 0. Each TRIX node fires when receiving the second signal from
its predecessors: Define tc ..= d(x − c, y) + wx−c,yc as the time at which node
(x, y+ 1) receives each clock pulse. Then node (x, y+ 1) fires a clock pulse at the
median time t ..= median{t−1, t0, t+1}.

We concentrate on two important metrics to analyze this system: absolute
delay and relative skew. Our main interests are the random variables d(H) ..=
d(0, H), i.e. the total delay at the top, and s(H) ..= d(1, H) − d(0, H), i.e. the
relative skew between neighboring nodes.

3 Delay is Tightly Concentrated

We examine d(2000), the delay at layer 2000. The estimated probability mass
function of d(2000) looks like a binomial distribution. The empiric standard
deviation is only 2.741, i.e. less than three delay uncertainties. The full version [7]
explains the statistic methods in detail, contains more figures, and proves all
following lemmas. The peak of the probability mass function falls in the middle
of the support [0, H]:

Lemma 1. E[d(H)] = H/2.

The behavior at H = 2000 is similar for other heights and changes slowly
with increasing H.

The empiric standard deviation for various values of H can be seen in the
data plotted in Figure 3 as a log-log plot. This suggests a polynomial relationship
between standard deviation σ and grid height H. The slope of the line is close
to 1/4, which suggests σ ∼ Hβ with β ≈ 1/4. This is a quadratic improvement
over standard concentration bounds, which would predict β ≈ 1/2.
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Fig. 3: Log-log plot of the empiric stan-
dard deviation of d(H).

Fig. 4: Estimated probability mass func-
tion for s(2000) with logarithmic Y-axis.
Error bounds are only visible at fringes.

4 Skew is Tightly Concentrated

We examine s(2000), the skew at layer 2000 between neighboring nodes. As
expected, we see a high concentration around 0 in Figure 4, with roughly half of
the probability mass at 0.

Observe that the skew does not follow a normal distribution at all: The
probability mass seems to drop off exponentially like e−λ|x| for λ ≈ 2.9 (where x

is the skew), and not quadratic-exponentially like e−x
2/(2σ2), as it would happen

in the normal distribution. The probability mass for 0 is a notable exception, not
matching this behavior.

We observe that the skew seems to be symmetric with mean 0.

Corollary 1. s(H) is symmetric with E[s(H)] = 0.

Furthermore, the worst-case skew on layer H is indeed H, c.f. Figure 2.

Lemma 2. There is an assignment for all cw such that s(H) = H.

We conjecture that the probability mass of high-skew assignments is very low.
Again, the behavior at H = 2000 is similar for other heights and changes

extremely slowly with increasing H. Figure 5 shows that the skew remains small
even for large values of H. Note that the X-axis is doubly logarithmic. This
suggests that the standard-deviation of s(H) grows strongly sub-logarithmi-
cally, possibly even converges to a finite value. In fact, the plot suggests that
s(H) ∈ O(log logH).

Note that if we pretended that adjacent nodes exhibit independent delays,
the skew would have the same concentration as the delay. In contrast, we see
that adjacent nodes are tightly synchronized; this is ideal for clock propagation.

So far, we have limited our attention to the skew between neighboring nodes.
In the other extreme end, at horizontal distances δ ≥ 2H, node delays are
independent, as they do not share any wires on any path to any clock generator.
In Figure 6, we see that the skew grows steadily with increasing δ � 2H. The
plot suggests that the standard deviation increases roughly proportional to δγ

for γ ≈ 1/3. This is noticeably less steep than the naive guess γ ≈ 1/2 for small
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Fig. 5: Empiric standard deviation
of s(H) as a function of H, as a loglog-
lin plot.
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Fig. 6: Empiric standard deviation of
d(δ, 500) − d(0, 500) as a function of
horizontal distance δ in a log-log plot.

δ. It is not surprising that the slope falls off towards larger values, as it must
become constant for δ ≥ 2H = 1000.
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