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Abstract. We introduce the first dense neural non-rigid structure from
motion (N-NRSfM) approach, which can be trained end-to-end in an
unsupervised manner from 2D point tracks. Compared to the compet-
ing methods, our combination of loss functions is fully-differentiable and
can be readily integrated into deep-learning systems. We formulate the
deformation model by an auto-decoder and impose subspace constraints
on the recovered latent space function in a frequency domain. Thanks to
the state recurrence cue, we classify the reconstructed non-rigid surfaces
based on their similarity and recover the period of the input sequence.
Our N-NRSfM approach achieves competitive accuracy on widely-used
benchmark sequences and high visual quality on various real videos.
Apart from being a standalone technique, our method enables multiple
applications including shape compression, completion and interpolation,
among others. Combined with an encoder trained directly on 2D images,
we perform scenario-specific monocular 3D shape reconstruction at in-
teractive frame rates. To facilitate the reproducibility of the results and
boost the new research direction, we open-source our code and provide
trained models for research purposes1.

Keywords: Neural non-rigid structure from motion, sequence period
detection, latent space constraints, deformation auto-decoder.

1 Introduction

Non-Rigid Structure from Motion (NRSfM) reconstructs non-rigid surfaces and
camera poses from monocular image sequences using multi-frame 2D correspon-
dences calculated across the input views. It relies on motion and deformation
cues as well as weak prior assumptions, and is object-class-independent in con-
trast to monocular 3D reconstruction methods which make use of parametric
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Fig. 1: Neural non-rigid structure from motion (N-NRSfM). Our approach
reconstructs monocular image sequences in 3D from dense flow fields (shown using the
Middlebury optical flow scheme [9]). In contrast to all other methods, we represent the
deformation model with a neural auto-decoder fθ which decodes latent variables zt
into 3D shapes (a/). This brings a higher expressivity and flexibility which results in
state-of-the-art results and new applications such as shape completion, denoising and
interpolation, as well as direct monocular non-rigid 3D reconstruction (b/).

models [59]. Dense NRSfM has achieved remarkable progress during the last
several years [1,8,19,37,51]. While the accuracy of dense NRSfM has been re-
cently only marginally improved, learning-based direct methods for monocular
rigid and non-rigid 3D reconstruction have become an active research area in
computer vision [13,33,47,54,66].

Motivated by these advances, we make the first step towards learning-based
dense NRSfM, as it can be seen in Fig. 1. At the same time, we remain in the
classical NRSfM setting without strong priors (which restrict to object-specific
scenarios) or assuming the availability of training data with 3D geometry. We
find that among several algorithmic design choices, replacing an explicit defor-
mation model by an implicit one, i.e., a neural network with latent variables for
each shape, brings multiple advantages and enables new applications compared
to the previous work such as temporal state segmentation, shape completion,
interpolation and direct monocular non-rigid 3D reconstruction (see Fig. 1-b/
for some examples).

By varying the number of parameters in our neural component, we can ex-
press our assumption on the complexity of the observed deformations. We ob-
serve that most real-world deformations evince state recurrence which can serve
as an additional reconstruction constraint. By imposing constraints on the latent
space, we can thus detect a period of the sequence, denoted by τ , i.e., the dura-
tion in frames after which the underlying non-rigid 3D states repeat, and classify
the recovered 3D states based on their similarity. Next, by attaching an image
encoder to the learnt neural deformation model (deformation auto-decoder), we
can perform in testing direct monocular non-rigid 3D reconstruction at inter-
active frame rates. Moreover, an auto-decoder represents non-rigid states in a
compressed form due to its compactness.

Note that the vast majority of the energy functions proposed in the literature
so far is not fully differentiable or cannot be easily used in learning-based systems
due to computational or memory requirements [1,8,19,37]. We combine a data
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loss, along with constraints in the metric and trajectory spaces, a temporal
smoothness loss as well as latent space constraints into single energy — with
the non-rigid shape parametrised by an auto-decoder — and optimise it with
the back-propagation algorithm [49]. The experimental evaluation indicates that
the proposed N-NRSfM approach obtains competitive solutions in terms of 3D
reconstruction, and outperforms competing methods on several sequences, but
also represents a useful tool for non-rigid shape analysis and processing.

Contributions. In summary, the primary contributions of this work are:

? The first, to the best of our belief, fully differentiable dense neural NRSfM
approach with a novel auto-decoder-based deformation model (Secs. 3, 4);

? Subspace constraints on the latent space imposed in the Fourier domain.
They enhance the reconstruction accuracy and enable temporal classification
of the recovered non-rigid 3D states with period detection (Sec. 4.2);

? Several applications of the deformation model including shape compression,
interpolation and completion, as well as fast direct non-rigid 3D reconstruc-
tion from monocular image sequences (Sec. 4.4);

? An extensive experimental evaluation of the core N-NRSfM technique and
its applications with state-of-the-art results (Sec. 5).

2 Related Work

Recovering a non-rigid 3D shape from a single monocular camera has been an
active research area in the past two decades. In the literature, two main classes
of approaches have proved most effective so far: template-based formulations
and NRSfM. On the one hand, template-based approaches relied on establishing
correspondences with a reference image in which the 3D shape is already known
in advance [42,53]. To avoid ambiguities, additional constraints were included
in the optimisation, such as the inextensibility [42,65], as rigid as possible pri-
ors [68], providing very robust solutions but limiting its applicability to almost
inelastic surfaces. While the results provided by template-based approaches are
promising, knowing a 3D template in advance can become a hard requirement.
In order to avoid that, NRSfM approaches have reduced these requirements,
making their applicability easier. In this context, NRSfM has been addressed in
the literature by means of model-based approaches, and more recently, by the
use of deep-learning-based methods. We next review the most related work to
solve this problem by considering both perspectives.

Non-Rigid Structure from Motion. NRSfM has been proposed to solve the
problem from 2D tracking data in a monocular video (in the literature, 2D tra-
jectories are collected in a measurement matrix). The most standard approach
to address the inherent ambiguity of the NRSfM problem is by assuming the
underlying 3D shape is low-rank. In order to estimate such low-rank model,
both factorisation- [11] and optimisation-based approaches [43,61] have been
proposed, considering single low-dimensional shape spaces [16,19], or a union
of temporal [69] or spatio-temporal subspaces [3]. Low-rank models were also
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extended to the other domains, by exploiting pre-defined trajectory basis [7],
the combination of shape-trajectory vectors [28,29], and the force space that
induces the deformations [5]. On top of these models, additional spatial [38]
or temporal [2,10,39] smoothness constraints, as well as shape priors [12,21,35]
have also been considered. However, in contrast to their rigid counterparts,
NRSfM methods are typically sparse, limiting their application to a small set
of salient points. Whereas several methods are adaptations of sparse techniques
to dense data [22,51], other techniques were explicitly designed for the dense
setting [1,19,37] relying on sophisticated optimisation strategies.
Neural Monocular Non-Rigid 3D Reconstruction. Another possibility
to perform monocular non-rigid 3D reconstruction is to use learning-based ap-
proaches. Recently, many works have been presented for rigid [13,18,30,40,66]
and non-rigid [27,47,54,62] shape reconstruction. These methods exploited a
large and annotated dataset to learn the solution space, limiting their appli-
cability to the type of shapes that are observed in the dataset. Unfortunately,
this supervision is a hard task to be handled in real applications, where the
acquisition of 3D data to train a neural network is not trivial.

While there has been work at the intersection of NRSfM and deep learn-
ing, the methods require large training datasets [34,41,52] and address only the
sparse case [34,41]. C3DPO [41] learns basis shapes from 2D observations and
does not require 3D supervision, similar to our approach. Neural methods for
monocular non-rigid reconstruction have to be trained for every new object class
or shape configuration within the class. In contrast to the latter methods — and
similar to the classical NRSfM — we solely rely on motion and deformation cues.
Our approach is unsupervised and requires only dense 2D point tracks for the
recovery of non-rigid shapes. Thus, we combine the best of both worlds, i.e., the
expressivity of neural representations for deformation models and improvements
upon weak prior assumptions elaborated in previous works on dense NRSfM.
We leverage the latter in the way so that we find an energy function which is
fully differentiable and can be optimised with modern machine-learning tools.

3 Revisiting NRSfM

We next review the NRSfM formulation that will be used later to describe our
neural approach. Let us consider a set of P points densely tracked across T
frames. Let spt = [xpt , y

p
t , z

p
t ]> be the 3D coordinates of the p-th point in image t,

and ŵp
t = [upt , v

p
t ]> its 2D position according to an orthographic projection. In

order to simplify subsequent formulation, the camera translation tt =
∑
p ŵp

t /P
can be subtracted from the 2D projections, considering centred measurements
as wp

t = ŵp
t − tt. We can then build a linear system to map the 3D-to-2D point

coordinates as: w1
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1
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. . .
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︸ ︷︷ ︸

R

s11 . . . s
P
1

...
. . .

...
s1T . . . s

P
T


︸ ︷︷ ︸
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Fig. 2: Overview of our N-NRSfM approach to factorise a measurement
input matrix W into motion R and shape S factors. To enable an end-to-
end learning, we formulate a fully-differentiable neural energy function, where each St

is mapped by means of a deformation auto-decoder fθ from a latent space zt, plus a
mean shape S̄. After obtaining optimal network parameters θ, the latent space becomes
structured allowing the scene deformation pattern analysis.

where W is a 2T ×P measurement matrix with the 2D measurements arranged
in columns, R is a 2T × 3T block diagonal matrix made of T truncated 2 × 3

camera rotations Rt ≡ ΠGt with the full rotation matrix Gt and Π =

[
100
010

]
;

and S is a 3T × P matrix with the non-rigid 3D shapes. Every Gt lies in the
SO(3) group, that we enforce using an axis-angle representation encoding the
rotation by a vector αt = (αxt , α

y
t , α

z
t ), that can be related to Gt by the Ro-

drigues’ rotation formula. On balance, the problem consists in estimating the
time-varying 3D shape St as well as the camera motion Gt with t = {1, . . . , T},
from 2D trajectories W.

4 Deformation Model with Shape Auto-Decoder

In the case of dynamic objects, the 3D shape changes as a function of time.
Usually, this function is unknown, and many efforts have been made to model
it. The type of deformation model largely determines which observed non-rigid
states can be accurately reconstructed, i.e., the goal is to find a simple model
with large expressibility. In this context, perhaps the most used model in the
literature consists in enforcing the deformation shape to lie in a linear subspace
[11]. While this model has been proved to be effective, the form in which the
shape bases are estimated can be decisive. For example, it is well known that
some constraints cannot be effectively imposed in factorisation methods [11,67],
forcing the proposal of more sophisticated optimisation approaches [3,16,69]. In
this paper, we propose to depart from the traditional formulations based on
linear subspace models and embrace a different formulation that can regress the
deformation modes in a unsupervised manner during a neural network training,
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see Fig. 2 for a method overview. By controlling the architecture and composition
of the layers, we can express our assumptions about the complexity and type of
the observed deformations. We will use the name of Neural Non-Rigid Structure
from Motion (N-NRSfM) to denote our approach.

4.1 Modelling Deformation with Neural Networks

We propose to implement our non-rigid model network as a deformation auto-
decoder fθ, as it was done for rigid shape categories [44], where θ denotes the
learned network parameters. Specifically, we construct fθ as a series of nine fully-
connected layers with small hidden dimensions (2, 8, 8, 8, 16, 32, 32, B, |St|), and
exponential linear unit (ELU) activations [14] (except after the penultimate and
final layers). B — set to 32 by default — can be interpreted as an analogue to
the number of basis shapes in linear subspace models. fθ is a function of the
latent space zt, that is related to the shape space St by means of:

St = S̄ + fθ(zt), (2)

where S̄ is a 3 × P mean shape matrix. We can also obtain the time-varying
shape S in Eq. (1) by S = (1T ⊗ S̄) + fθ(z), with 1T a T-dimensional vector of
ones and ⊗ a Kronecker product. The fully-connected layers of fθ are initialised
using He initialisation [31], and the bias value of the last layer is set to a rigid
shape estimate S̄, which is kept fixed during optimisation. Both S̄ and Rt with
t = {1, . . . , T} are initialised by rigid factorisation [60] from W. Note that
we estimate displacements (coded by fθ(zt)) from S̄ instead of absolute point
positions. Considering that, the weight matrix of the final fully-connected layer
of fθ can be interpreted as a low-rank linear subspace where every vector denotes
a 3D displacement from the mean shape. This contributes to the compactness
of the recovered space and serves as an additional constraint, similar to the
common practice of the principal component analysis [46].

To learn θ, and update it during training, we require gradients with respect
to a full energy E that we will propose later, such that:

∂E

∂θ
=

T∑
t=1

∂E

∂St

∂St
∂θ

, (3)

connecting fθ into a fully-differentiable loss function, in which St, t = {1, . . . , T}
are optimised as free variables via gradients. We next describe our novel energy
function E, which is compatible with fθ and supports gradient back-propagation.

4.2 Differentiable Energy Function

To solve the NRSfM problem as it was defined in Section 3, we propose to
minimise a differentiable energy function with respect to motion parameters R
and shape ones (coded by θ and z) as:

E = Edata(θ, z,R) + βEtemp(θ, z) + γEspat(θ, z) + ηEtraj(θ, z) + ωElatent(z), (4)
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where Edata is a data term, and {Etemp,Espat,Etraj,Elatent} encode the priors
that we consider. β, γ, η and ω are weight coefficients to balance the influence
of every term. We now describe each of these terms in detail.

The data term Edata is derived from the projection equation (1), and it is to
penalise the image re-projection errors as:

Edata(θ, z,R) =
∥∥W −R ((1T ⊗ S̄) + fθ(z))

∥∥
ε
, (5)

where ‖·‖ε denotes the Huber loss of a matrix.
The temporal smoothness term Etemp enforces temporal-preserving regular-

isation of the 3D shape via its latent space as:

Etemp(θ, z) =

T−1∑
t=1

‖fθ(zt+1)− fθ(zt)‖ε . (6)

Thanks to this soft-constraint prior, our algorithm can generate clean surfaces
that also stabilise the camera motion estimation.

The spatial smoothness term Espat imposes spatial-preserving regularisation
for a neighbourhood. This is especially relevant for dense observations, where
most of the points in a local neighbourhood can follow a similar motion pattern.
To define this constraint, let N (p) be a 1-ring neighbourhood of p ∈ St, that
will be used to define a Laplacian term (widely used in computer graphics [55]).
For robustness, we complete the spatial smoothness with a depth penalty term.
Combining both ideas, we define this term as:

Espat(θ, z) =

T−1∑
t=0

∑
p∈St

∥∥∥∥∥∥p− 1

|N (p)|
∑

q∈N (p)

q

∥∥∥∥∥∥
1︸ ︷︷ ︸

Laplacian smoothing

−λ
T∑
t=1

‖Pz(GtSt)‖2︸ ︷︷ ︸
depth control

, (7)

where Pz denotes an operator to extract z-coordinates, ‖·‖1 and ‖·‖2 are the
l1- and l2-norm, respectively, and λ > 0 is a weight coefficient. Thanks to the
depth term, our N-NRSfM approach automatically achieves more supervision
over the z-coordinate of the 3D shapes, since it can lead to an increase in the
shape extent along the z-axis.

The point trajectory term Etraj imposes a subspace constraint on point tra-
jectories throughout the whole sequence, as it was exploited by [6,7]. To this end,
the 3D point trajectories are coded by a linear combination of K fixed trajectory
vectors by a T × K matrix Φ together with a 3K × P matrix A of unknown
coefficients. The penalty term can be then written as:

Etraj(θ, z) =
∥∥(1T ⊗ S̄) + fθ(z)− (Φ⊗ I3)A

∥∥
ε
, Φ =

φ1,1 . . . φ1,K...
. . .

...
φT,1 . . . φT,K

 , (8)

where φt,k = σk√
2

cos
(
π
2T (2t − 1)(k − 1)

)
, with σk = 1 for k = 1, and σk =

√
2,

otherwise. I3 is a 3× 3 identity matrix. We experimentally find that this term is
not redundant with the rest of terms, and it provides a soft regularisation of fθ.
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Finally, the latent term Elatent imposes sparsity constraints over the latent
vector z. This type of regularisation is enabled by the new form to express the
deformation model with an auto-decoder fθ, and it can be expressed as:

Elatent(z) = ‖F(z)‖1 , (9)

where F(·) denotes the Fourier transform (FT) operator. Thanks to this penalty
term, we can impose several effects which were previously not possible. First,
Elatent imposes structure on the latent space by encouraging the sparsity of the
Fourier series and removing less relevant frequency components. In other words,
this can be interpreted as subspace constraints on the trajectory of the latent
space variable, where the basis trajectories are periodic functions. Second, by
analysing the structured latent space, we can extract the period of a periodic
sequence and temporally segment the shapes according to their similarity. Our
motivation for Elatent is manifold and partially comes from the observation that
many real-world scenes evince recurrence, i.e., they repeat their non-rigid states
either in periodic or non-periodic manner.

Period Detection and Sequence Segmentation. The period of the sequence
can be recovered from the estimated F(z), by extracting the dominant frequency
in terms of energy within the frequency spectrum. If a dominant frequency ωd
is identified, its period can be directly computed as τ = T

ωd
. Unfortunately, in

some real scenarios, the frequency spectrum that we obtain may not be unimodal
(two or more relevant peaks can be observed in the spectrum), and therefore we
obtain τ = T . Irrespective whether a sequence is periodic or not, the latent space
is temporally segmented so that similar values are decoded into similar shapes.
This enables applications such as shape interpolation, completing and denoising.

4.3 Implementation Details

The proposed energy in Eq. (4) and the deformation auto-decoder fθ are fully-
differentiable by construction, and therefore the gradients that flow into St can
be further back-propagated into θ. Our deformation model is trained to simul-
taneously recover the motion parameters R, the latent space z to encode shape
deformations, and the model parameters θ. Additionally, the trajectory coeffi-
cients in A are also learned in this manner (see Eq. (8)). For initialisation, we
use rigid factorisation to obtain R and S̄, random values in the interval [−1, 1]
for z, and a null matrix for A. The weights β, γ, η, ω, λ are determined empiri-
cally and selected from the determined ranges in most experiments we describe
in Sec. 5, unless mentioned otherwise. The values we set are 102 for Edata, β = 1,
γ ∈ [10−6; 10−4], η ∈ [1; 10], ω = 1, λ ∈ [0; 10−3] and B = 32 in fθ. In addition,
we use K = 7 as default value to define our low-rank trajectory model in Eq. (8).

Our N-NRSfM approach is implemented in pytorch [45]. As all the training
data are available at the same time, we use the RProp optimiser [48] with a learn-
ing rate of 0.0001, and train for 60, 000 epochs. All experiments are performed
on NVIDIA Tesla V100 and K80 GPUs with a Debian 9 Operating System. De-
pending on the size of the dataset, training takes between three (e.g., the back
sequence [50]) and twelve (the barn-owl sequence [26]) hours on our hardware.
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4.4 Applications of the Deformation Auto-Decoder fθ

Our deformation auto-decoder fθ can be used for several applications which were
not easily possible in the context of NRSfM before, including shape denoising,
shape completion and interpolation as well as correspondence-free monocular 3D
reconstruction of non-rigid surfaces with reoccurring deformations.

Shape Compression, Interpolation, Denoising and Completion. The
trained fθ combined with S̄ represents a compressed version of a 4D reconstruc-
tion and requires much less memory compared to the uncompressed shapes in
the explicit representation St with t = {1, . . . , T}. The number of parameters
required to capture all 3D deformations accurately depends on the complexity
of the observed deformations, and not on the length of a sequence. Thus, the
longer a sequence with repetitive states is, the higher is the compression ratio c.
Next, let us suppose we are given a partial and noisy shape S̃, and we would like
to obtain a complete and smooth version of it Sθ upon the learned deformation
model prior. We use our pre-trained auto-decoder and optimise for the latent
code z, using the per-vertex error as the loss. In the case of a partial shape,
the unknown vertices are assumed to have some dummy values. Moreover, since
the learned latent space is smooth and statistically assigns similar variables to
similar shapes (displacements), we can interpolate the latent variables which will
result in the smooth interpolation of the shapes (displacements).

Direct Monocular Non-Rigid 3D Reconstruction with Occlusion Han-
dling. Pre-trained fθ can also be combined with other machine-learning com-
ponents. We are interested in direct monocular non-rigid 3D reconstruction for
endoscopic scenarios (though N-NRSfM is not restricted to those). Therefore,
we train an image encoder which relates images to the resulting latent space of
shapes (after the N-NRSfM training). Such image-to-mesh encoder-decoder is
also robust against moderate partial scene occlusions — which frequently occur
is endoscopic scenarios — as the deformations model fθ can also rely on partial
observations. We build the image encoder based on ResNet-50 [32] pre-trained
on the ImageNet [17] dataset.

At test time, we can reconstruct a surface from a single image, assuming state
recurrence. Since the latent space is structured, we are modelling in-between
states obtained by interpolation of the observed surfaces. This contrasts to the
DSPR method [25], which de facto allows only state re-identification. Next, with
the gradual degradation of the views, the accuracy of our image-to-surface recon-
structor degrades gracefully. We can feed images with occlusions or a constant
camera pose bias — such as those observed by changing from the left to the
right camera in stereo recordings — and still expect accurate reconstructions.

5 Experiments

In this section, we describe the experimental results. We first compare our N-
NRSfM approach to competing approaches on several widely-used benchmarks
and real datasets following the established evaluation methodology for NRSfM
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(Sec. 5.1). We next evaluate how accurately our method detects the periods and
how well it segments sequences with non-periodic state recurrence (Sec. 5.2).
For the sequences with 3D ground truth geometry SGT, we report the 3D
error e3D — after shape-wise orthogonal Procrustes alignment — defined as

e3D = 1
T

∑
t

‖SGT
t −St‖F
‖SGT

t ‖F
, where ‖·‖F denoted Frobenius norm. Note that e3D

also implicitly evaluates the accuracy of Rt because of the mutual dependence
between Rt and St. Finally, for periodic sequences, we compare the estimated
pulse τ with the known one τGT.

5.1 Quantitative Comparisons

We use three benchmark datasets in the quantitative comparison: synthetic faces
(two sequences with 99 frames and two different camera trajectories denoted by
traj. A and traj. B, with 28, 000 points per frame) [19], expressions (384 frames
with 997 points per frame) [4], and Kinect t-shirt (313 frames with 77, 000 points)
and paper (193 frames with 58, 000 points) sequences taken from [64]. In the case
if 3D ground truth shapes are available, ground truth dense point tracks are
obtained by a virtual orthographic camera. Otherwise, dense correspondences
are calculated by multi-frame optical flow [20,57].

Synthetic Faces. e3D for the synthetic faces are reported in Table 1. We com-
pare our N-NRSfM to Metric Projections (MP) [43], Trajectory Basis (TB) ap-
proach [7], Variational Approach (VA) [19], Dense Spatio-Temporal Approach
(DSTA) [15], Coherent Depth Fields (CDF) [23], Consolidating Monocular Dy-
namic Reconstruction (CMDR) [24,25], Grassmannian Manifold (GM) [37], Jum-
ping Manifolds (JM) [36], Scalable Monocular Surface Reconstruction (SMSR)
[8], Expectation-Maximisation Finite Element Method (EM-FEM) [1] and Prob-
abilistic Point Trajectory Approach (PPTA) [6]. Our N-NRSfM comes close to
the most accurate methods on traj. A and comes in the middle on traj. B among
all methods. Note that GM and JM use Procrustes alignment with scaling, which
results in the comparison having slightly differing metrics. Still, we include these
methods for completeness. Traj. B is reportedly more challenging compared to
traj. A for all tested methods which we also confirm in our runs. We observed
that without the depth control term in Eq. (7), the e3D on traj. B was higher by
∼30%. Fig. 4-(a) displays the effect of Eq. (7) on the 3D reconstructions from
real images, when the dense point tracks and initialisations can be noisy.

Expressions. The usage of expressions allows us to compare N-NRSfM to even
more methods from the literature including Expectation-Maximisation Linear
Dynamical System (EM-LDS) [61], Column Space Fitting, version 2 (CSF2)
[29], Kernel Shape Trajectory Approach (KSTA) [28] and Global Model with
Local Interpretation (GMLI) [4]. The results are summarised in Table 2. We
achieve e3D = 0.026 on par with GMLI, i.e., currently the best method on this
sequence. The complexity of facial deformations in the expressions is similar to
those of the synthetic faces [19]. This experiment shows that our novel neural
model for NRSfM with constraints in metric and trajectory space is superior to
multiple older NRSfM methods.
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Table 1: e3D for the 99 frames long synthetic face sequence [19] (traj. A and traj. B).
∗ denotes methods which use Procrustes analysis for shape alignment, whereas most
methods use orthogonal Procrustes. † indicates sequential method. Compared to the
default settings, the lowest e3D of N-NRSfM is obtained with B = 10, K = 30, λ = 0
and η = 10 for traj. A (denoted by “[”) and K = 40 for traj. B (denoted by “\”).

TB [7] MP [43] VA [19] DSTA [15] CDF [23] CMDR [24]

traj. A 0.1252 0.0611 0.0346 0.0374 0.0886 0.0324
traj. B 0.1348 0.0762 0.0379 0.0428 0.0905 0.0369

GM∗ [37] JM∗ [36] SMSR [8] PPTA [6] EM-FEM [1]† N-NRSfM
(ours)

traj. A 0.0294 0.0280 0.0304 0.0309 0.0389 0.045 / 0.032[

traj. B 0.0309 0.0327 0.0319 0.0572 0.0304 0.049 / 0.0389\

Table 2: Qualitative comparison on the expressions dataset [4].

EM-LDS [61] PTA [7] CSF2 [29] KSTA [28] GMLI [4] N-NRSfM
(ours)

Expr. 0.044 0.048 0.03 0.035 0.026 0.026

Table 3: Quantitative comparison on the Kinect paper and t-shirt sequences [64].

TB [7] MP [43] DSTA [15] GM [37] JM [36] N-NRSfM
(ours)

paper 0.0918 0.0827 0.0612 0.0394 0.0338 0.0332
t-shirt 0.0712 0.0741 0.0636 0.0362 0.0386 0.0309

Kinect Sequences. For a fair evaluation, we pre-process the Kinect t-shirt and
paper sequences along with their respective reference depth measurements as
described in Kumar et al. [37]. As it is suggested there, we run multi-frame optical
flow [20] with default parameters to obtain dense correspondences. e3D for the
Kinect sequences are listed in Table 3. Visualisations of selected reconstructions
of Kinect sequences can be found in Fig. 6-(top row). On Kinect paper and t-shirt
sequences, we outperform all competing methods, including the current state of
the art by significant margins of 1% and 20%, respectively. These sequences
evince larger deformations compared to the face sequence, and, on the other
hand, a simpler camera trajectory.

5.2 Period Detection and Sequence Segmentation

We evaluate the capability of our N-NRSfM method in period detection and
sequence segmentation on the actor mocap sequence (100 frames with 3.5 · 104

points per frame) [25,63]. It has highly deformed facial expressions with ground
truth shapes, ground truth dense flow fields and rendered images under ortho-
graphic projection. We duplicate the sequence and run N-NRSfM on the obtained
point tracks. Our approach reconstructs the entire sequence and returns the fre-
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Fig. 3: Visualisations of the latent space during the training of N-NRSfM on
actor mocap [25]. We show which effect our latent space constraints have on the latent
space function. Left: The evolution of the latent space function from initialisation until
convergence. Right: Frequency spectrum for the case with 100 and 200 frames.
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Fig. 4: a): 3D reconstructions of the real face with and without Espat. b): Input images
of the actor mocap sequence; and 3D reconstructions by FML [58] and our approach.

quency equal to 2, as can be seen in the Fourier spectrum. Given 200 input
frames, it implies a period of 100. The latent space function for this experiment
and the evolution of the latent space function are shown in Fig. 3. Note that for
the same shapes, the resulting latent variables are also similar. This confirms
that our N-NRSfM segments the sequence based on the shape similarity.

Next, we confirm that the period detection works well on real heart by-
pass surgery sequence [56] with 201 frames and 68, 000 point per frame (see
Fig. 6-(bottom right) for the exemplary frames and our reconstructions). This
sequence evinces natural periodicity, and the flow fields are computed individ-
ually for every frame without duplication. We emphasise that images do not
repeat as — even though the states are recurrent — they are observed under
varying illumination and different occlusions. We recover the dominant frequency
of 7.035, whereas the observed number of heartbeats amounts to ∼7.2. Knowing
that the video was recorded at 24 frames per second, we obtain the pulse τ of
τ = 7.035 beats · 24 fps

201 frames = 0.84 beats per second or ∼50 beats per minute
— which is in the expected pulse range of a human during bypass surgery.
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5.3 Qualitative Results and Applications

Fig. 5: Shape interpolation and
completion. Top. A shape interpo-
lation over the actor sequence is per-
formed. Bottom. A series of three
shapes are displayed, i.e., input data,
our estimation after completion, and
the corresponding ground truth (GT).

The actor mocap sequence allows us
to qualitatively compare N-NRSfM to a
state-of-the-art method for monocular 3D
face reconstruction. Thus, we run the
Face Model Learning (FML) approach of
Tewari et al. [58] on it and show qualita-
tive results in Fig. 4-(b). We observe that
it is difficult to recognise the person in
the FML 3D estimates (e3D = 0.092 after
Procrustes alignment of the ground truth
shapes and FML reconstructions with re-
scaling of the latter). Since FML runs per-
frame, its 3D shapes evince variation go-
ing beyond changing facial expressions,
i.e., it changes the identity. In contrast, N-
NRSfM produces recognizable and consis-
tent shapes at the cost of accurate dense
correspondences across an image batch
(e3D = 0.0181, ∼5 times lower compared
to e3D = 0.092 of FML).

Our auto-decoder fθ is a flexible building block which can be used in multiple
applications which were not easily possible with classical NRSfM methods. Those
include shape completion, denoising, compression and interpolation, fast direct
monocular non-rigid 3D reconstruction as well as sequence segmentation.

Shape Interpolation and Completion. To obtain shape interpolations, we
can linearly interpolate the latent variables, see Fig. 5-(top row) for an example
with the actor mocap reconstructions. Note that the interpolation result depends
on the shape order in the latent space. For shape with significantly differing latent
variables, it is possible that the resulting interpolations will not be equivalent
to linear interpolations between the shapes and include non-linear point trajec-
tories. Results of shape denoising and completion are shown in Fig. 5-(bottom
rows). We feed point clouds with missing areas (mouth and the upper head area)
and obtain surfaces completed upon our learned fθ prior.

Direct Monocular Non-Rigid 3D Reconstruction. We attach an image
encoder to fθ — as described in Sec. 4.4 — and test it in the endoscopic scenario
with the heart sequence. Our reconstructions follow the cardiac cycle outside of
the image sub-sequence, which has been used for the training. Please, see our
supplemental material for extra visualisations.

Real Image Sequences. Finally, we reconstruct several real image sequence,
i.e., barn owl [26], back [50] (see Fig. 6) and real face [19] (see Fig. 4-(a) which
also highlights the influence of the spatial smoothness term). All our recon-
structions are of high visual quality and match state of the art. Please, see our
supplementary video for time-varying visualisations.
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Fig. 6: Qualitative results on real sequences. In all cases, from left to right.
Top: T-shirt and paper sequences [64]. Bottom: Barn owl [26], back [50] and heart
[56] sequences. On both Kinect sequences, we achieve the lowest e3D among all tested
methods. The heart sequence is also used in the experiment with direct monocular non-
rigid 3D reconstruction. For the visualisation of the real face sequence, see Fig. 4-(a).

6 Concluding Remarks

This paper introduces the first end-to-end trainable neural dense NRSfM method
with a deformation model auto-decoder and learnable latent space function. Our
approach operates on dense 2D point tracks without 3D supervision. Structuring
the latent space to detect and exploit periodicity is a promising first step towards
new regularisation techniques for NRSfM. Period detection and temporal seg-
mentation of the reconstructed sequences, automatically learned deformation
model, shape compression, completion and interpolation — all that is obtained
with a single neural component in our formulation. Experiments have shown
that the new model results in smooth and accurate surfaces while achieving low
3D reconstruction errors in a variety of scenarios. One of the limitations of N-
NRSfM is the sensitivity to inaccurate points tracks and the dependence on the
mean shape obtained by rigid initialisation. We also found that our method does
not cope well with large and sudden changes, even though the mean shape is
plausible. Another limitation is the handling of articulated motions.

We believe that our work opens a new perspective on dense NRSfM. In
future research, more sophisticated neural components for deformation models
can be tested to support stronger non-linear deformations and composite scenes.
Moreover, we plan to generalise our model to sequential NRSfM scenarios.

Supplementary Material. Our supplementary material contains more exper-
imental results (e.g., with noisy point tracks), details of the experimental evalu-
ations (e.g., alignment of the FML reconstructions to the ground truth shapes)
as well as two application examples of pre-trained shape auto-decoders.
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