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In this supplementary document, we provide more details on the evaluation
with noisy point tracks (Sec. 1), comparison to FML [8] (Sec. 2), comparisons on
the Kinect sequences [9] (Sec. 3), applications of the trained auto-decoder (Sec. 4)
as well as an overview of the parameters used in our experiments (Sec. 5).

1 Evaluation with Noisy Point Tracks

We also evaluate the accuracy of our method in the presence of noisy point
tracks on the actor mocap sequence [4]. We follow the methodology described
in [6], i.e., we add Gaussian noise with 0 mean and standard deviation σn =
rmax |Ws| with r varying depending on the level of noise being added. We find
that compared to the initial point tracks without added noise, e3D grows by
26% for r = 0.01 and 31% for r = 0.02. We observe that the shapes degrade
gradually. Next, we also find that after adding uniform noise with σ = 3 pixels,
the period of the composite sequence reconstructed in Sec. 5.2 of the main matter
is correctly detected, and the result is similar to those shown in Fig. 3 of the
main paper. This experiment indicates that our method is robust to noisy point
tracks also in the period detection task.

2 Alignment of FML Shapes to the 3D Ground Truth

We compare our N-NRSfM to FML [8] on the actor mocap sequence [4] which
provides ground truth rendered images, ground truth 3D shapes and ground
truth dense point tracks. Since FML [8] is an image-based monocular 3D recon-
struction technique based on a 3D morphable face model [2], its reconstructions
have a different number of points (∼6, 000) compared to the ground truth of the
actor mocap (∼3, 000). FML [8] covers a larger head area, including the neck
and ears. Hence, to calculate e3D for the FML [8] on the actor mocap sequence,
we have to align the FML [8] reconstructions with the ground truth meshes.

We follow a multi-stage alignment approach for partially-overlapping shapes.
We first re-scale and rotate the FML [8] reconstructions so that they roughly
match the scale and orientation of the ground truth. Second, we apply orthogonal
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Procrustes alignment in the local coordinate system (i.e., the shapes are regis-
tered to the origin of the coordinate system) and register FML [8] meshes and
ground truth using several manually selected prior landmarks, these landmarks
can be seen in Fig 1.

Fig. 1. Landmarks used to align the ground truth meshes of the actor mocap sequence
(left column) and the FML reconstructions (right column). The top row shows the
landmarks for the initial Procrustes alignment step, and the bottom row shows the
landmarks for the final orthogonal Procrustes alignment and translation resolution.

Finally, we resolve the translation using the same set of landmarks. After the
alignment, we establish point correspondences between the FML [8] reconstruc-
tions and ground truth shapes using a nearest-neighbour rule with the help of
a k-d tree and compute e3D. Note that this computation favors FML [8] since
e3D of N-NRSfM is computed using fixed ground truth correspondences instead
of nearest neighbours. Some selected final alignments can be seen in Fig. 2.

3 Evaluation with the Kinect Sequences [9]

We follow the evaluation methodology for the Kinect sequences [9] proposed
in [6]. We crop the colour images using the rectangular bounding boxes defined by
four points with the coordinates {[253 132]T, [253 363]T, [508 363]T, [508 132]T}
across 193 frames of the paper sequence and four points with the coordinates
{[203 112]T, [203 403]T, [468 403]T, [468 112]T} across 313 frames of the t-shirt se-
quence. The lower-left corner of the images is the origin of the coordinate system.
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Fig. 2. Selected final alignments of the FML reconstructions with the ground truth
meshes of the actor mocap sequence. The green points represent the FML reconstruc-
tions; the points in yellow represent the vertices of the ground truth meshes.

The same bounding boxes are used to crop the reference depth measurements
from the depth maps for the evaluation. Furthermore, while computing e3D, we
filter outliers in the Kinect data by removing points which exceed a predefined
distance from their positions in the reference frame. These distances are set to
15 and 30 Kinect depth units for the paper and t-shirt sequences, respectively.

4 Additional Applications of Trained Auto-Decoders

We present here additional applications of a trained auto-decoder. We first use
an auto-decoder pre-trained on the synthetic faces sequence [3] with traj. A to
reconstruct shapes from the synthetic faces observed under traj. B. We keep
the weights of the auto-decoder fixed and optimise only for the camera poses
and latent codes. See Fig. 3 for the selected reconstructions. Some of the facial
expressions are recovered correctly, whereas the remaining ones are more dissim-
ilar to ground truth. This preliminary experiment opens up a new direction of
learning a category-specific shape auto-decoder instead of training for on each
new sequence. This policy also saves training time. In the considered scenario,
updating only the latent codes and camera poses is ∼four times faster compared
to the training from scratch.

Second, we recover 3D shapes for point tracks of single frames. We optimise
the latent code and the camera pose using Edata only and an auto-decoder pre-
trained on a shorter version of several sequences. The 3D shape recovery takes
6, 9 and 59 seconds for the back [7] (20, 000 points), actor mocap [4] (35, 000
points) and barn owl [5] (203, 000 points) sequences, respectively.

5 Reproducibility of the Quantitative Results

The hyperparameters used to obtain the best results on the quantitative se-
quences are summarised in Table 1. The weight of the data term Edata is kept
fixed at 102, the spatial smoothness term Espat consists of the Laplacian term
with the weight γ and the depth control term with the combined weight γλ.
Since none of the quantitative sequences is periodic, we set ω = 0 for these ex-
periments. Since the camera in the Kinect sequences is not moving, we use this
as a prior and keep the camera poses fixed during the optimisation. On repeating
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Fig. 3. Experiment with the category-specific shape decoder. We use a shape auto-
decoder trained on the synthetic face with traj. A to reconstruct shapes observed under
traj. B. The top row contains reconstructions on traj. B using the auto-decoder trained
on traj. A, the middle row contains the reconstructions using an auto-decoder trained
for traj. B, and the bottom row shows the ground truth shapes for traj. B. Note the
difference in the reconstruction accuracy of facial expressions.

the experiments, the obtained e3D is within 3 · 10−3 of the values reported in
Table 1. In the experiments involving the periodicity prior, we set ω = 1 and
disable the trajectory term.

Table 1. Hyperparameters leading to the lowest e3D on the quantitative sequences.

dataset B γ γλ η(K) β

actor mocap [4] 32 10−6 0 0 (NA) 1

traj. A [3] 10 10−4 0 10 (30) 1

traj. B [3] 32 10−4 10−7 1 (40) 1

expressions [1] 32 10−5 0 1 (7) 1

Kinect paper [9] 32 10−5 10−7 1 (7) 1

Kinect t-shirt [9] 32 10−5 10−7 1 (7) 1
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