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* Quantum-enhanced Computer Vision (QeCV)
* Foundations of Quantum Computing
* Gate-based Quantum Computers
* Quantum Annealers
e QeCV Methods
* Multi-Model Fitting (CVPR 2023) |
* Mesh Alignment (ICCV 2021) nembedding
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Quantum-enhanced Computer Vision (QeCV)
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Reasons for Quantum Computers

©www.cpu-world.com

NPU

CPU (1971) FPU (1980s)

VPU...

F 1 i) R

GPU (1999) NVIDIA DGX A100 (2020) QPU (2020)

4D and Quantum s w https://www.x86-guide.net/en/cpu/Intel-4004-CerDIP-cpu-no3575.html htt];s://www.nvidia.com/de-deédata-(l:enter/dgx-a100/ X X Hof 4
L. . _ 956~ Tichy. Is quantum computing for real?: an interview with Catherine McGeoch of D-Wave Systems. 2017.
Vision Group A https://www.techpowerup.com/gpu-specs/geforce-256-sdr.c731. y-1sq puting Yy
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Quantum-enhanced Computer Vision
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The goal of quantum-enhanced computer vision is the development of innovative computer vision
techniques (improved or fundamentally new ones) leveraging quantum computational
paradigms and surpassing classical methods in terms of processing speed, required resources,
accuracy or the ability to learn patterns from complex visual data.

4D and Quantum B ¢ Images: https://quantumcomputing.stackexchange.com/questions/4693/how-is-the-polarization-of-a-photon-able-to-hold-quantum-information 5
Vision Group Z I medium.com/@quantum_wa/quantum-annealing-cdb129e96601; Rathi et al., BMVC 2023
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Quantum Computing Paradigms
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Quantum Machine Learning
QUBO Formulations for Computer Vision (QML) for Computer Vision

* QUBO formulations (predominantly for quantum annealers)
* Quantum Machine Learning (QML) techniques (for gate-based QCs)

4D and Qua'nmm ) Images: Birdal et al., CVPR 2021, Seelbach Benkner et al., ICLR 2023, Bhatia et al., CVPR 6
Vision Group A 2023, Farina et al., CVPT 2023; Rathi et al., BMVC 2023; pennylane.ai/gml/whatisgmi/



Expected Advantages of Quantum-enhanced """BPML..
Methods w.r.t. Classical Techniques
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e
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cost

H(t) = (1 — ;) H; + ; Hp Solution Schematic QML architecture for classification
Methods relying on Quantum Annealing: Quantum Machine Learning (QML) models:
* Solutions without relaxations/approximations * Faster training/convergence
* More accurate solutions w.r.t. classical methods * Smaller number of parameters
* Sampling of possible solutions (incl. sub-optimal) * Better generalisation
* Method characteristics of a new kind * Model characteristics of a new kind

4D and Quantum / ~ ¢ vi
Vision GI‘OLIP A Images: medium.com/@quantum_wa/quantum-annealing-cdb129e96601; pennylane.ai/gml/whatisgml/
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Quantum-enhanced CV Methods
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Robust Model Fitting [5] Transformation Estimation [6] Constrained Optimisation [7]

[5] Farina et al. Quantum Multi-Model Fitting. CVPR, 2023.
[6] Meli et al. An Iterative Quantum Approach for Transformation Estimation From Point Sets. CVPR, 2022.
[7] Yurtsever et al. Q-FW: A Hybrid Classical-Quantum Frank-Wolfe for Quadratic Binary Optimization. ECCV, 2022.

Li and Ghosh. Quantum-Soft QUBO Suppression for Accurate Object Detection. ECCV, 2020.

Zaech et al. Adiabatic Quantum Computing for Multi Object Tracking. CVPR, 2022.

Arrigoni et al. Quantum Motion Segmentation. ECCV, 2022.

Bhatia et al. CCuantuMM: Cycle-Consistent Quantum-Hybrid Matching of Multiple Shapes. CVPR, 2023.
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Foundations of Quantum Computing



Preface: Terminology and the Definitions
) quantum notion classical counterpart
qubit bit

: Hamiltonian energy function

e —— eigenstate an energy state

! 0 ground state globally optimal energy state
o=l w=1}
Exemplary definitions:

In graph theory, an undirected graph H is
called a minor of the graph G if H can be
formed from G by deleting edges, vertices
and by contracting edges.

Graph minor

ml wl U Minor Embedding Embedding a graph minor to another
N =i graph (checking if H can be a minor of G).
Ve B . Compact notation for linear algebra and
. Bra—Ket (Dirac) linear operations used in quantum
notation mechanics.
4D and Quantum
Vision Group <2 | w > 10
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Preface: Secrets of Learning QeCV

Quantum mechanics isn’t weird,
we’re just to big.

I think | can safely say that nobody really
understands quantum mechanics.

If [quantum theory] is correct, it
signifies the end of physics as a science.

A. Einstein R. Feynman P Ball
Due to the impossibility to decompose the system into Can you do it* with a new kind of computer — a quantum computer?”
individual elements, the state of a quantum automata can be * simulate quantum-mechanical effects

seen as multiple states of different virtual classical automata

simultaneously.
Y. Manin R. Feynman

e #1: Be familiar with the QeCV notations!
* In many cases, they express familiar mathematical notions and operators!

* #2: Do not try to deeply interpret (e.g. geometrically or intuitively) what
happens, as no satisfactory interpretation can be found.

htps: leifiphysik quantenmech. uche/schroedingers-kat gedankenexperimen

4D and Quantum / ~
Vision Group <A | w > 11


https://www.leifiphysik.de/atomphysik/quantenmech-atommodell/versuche/schroedingers-katze-ein-gedankenexperiment
https://www.leifiphysik.de/atomphysik/quantenmech-atommodell/versuche/schroedingers-katze-ein-gedankenexperiment
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Timeline of Quantum Computing

10y, —{ &} . . .
10y, —{E#}—| —_— A Quantum Adiabatic Evolution
: R Algorithm Applied to Random
Sim“laﬁngm}:}ll'gﬂfixmfomp“ters ‘0>4Uf(a, » Instances of an NP-Complete
’ 10, Problem
. gl et
o,
>
1980/1981: Idea of quantum computing 2019: IBM Q System One; 53-qubit system (IBM);
1992: Deutsch—Jozsa algorithm Google’s Sycamore (53 qubits)
1994: Shor’s algorithm 2015: 1k-qubit Quantum Annealer (D-Wave)
1996: Grover’s algorithm 2014: Quantum Approximate Optimisation Algorithm
1997: Bernstein—Vazirani algorithm 2008: The HHL algorithm for solving systems of
, , linear equations
1998: First 2- and 3-qubits computers
1999: Superconducting circuit as qubit
2001: Quantum adiabatic evolution algorithm
:l/]i)SIa::\dGQr:z_;;h]ln <£| ¢> Images: https://prefetch.eu/know/concept/shors-algorithm/; https://quantumai.google/hardware; D-Wave 12


https://prefetch.eu/know/concept/shors-algorithm/
https://quantumai.google/hardware

Qubits and Their Properties / Bra-Kets

31] flux qubit

complex numbers

Born’s rule:

|a|2 to obtain |0)

‘18|2 to obtain |1)

Qubit measurement Image of Advantage sys. 1.1
(a qubit and a QPU); D-Wave Systems

4D and Quantum / ~ w o . ' . ' 13
Vision Group a https://www.leifiphysik.de/atomphysik/quantenmech-atommodell/versuche/schroedingers-katze-ein-gedankenexperiment


https://www.leifiphysik.de/atomphysik/quantenmech-atommodell/versuche/schroedingers-katze-ein-gedankenexperiment

Qubit Measurement

4D and Quantum
Vision Group

(&)

Measurement (Born’s rule):
|sz|2 to obtain |0)

‘8‘2 to obtain |1)

Image: https://quantumcomputing.stackexchange.com/questions/4693/how-is-

the-polarization-of-a-photon-able-to-hold-quantum-information
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Two-Qubit Systems

5B
52,
o8

Hilbert spaces (2" -dimensional vector spaces):

0 1 0 0
1 0 1 0 M) = a |00) + B|01) +
e ==l ] =5 0=|5 0= 2tay=|o T
+ n|10) + ¢ [11)
10 0] 0 1
Qubit entanglement:
00) + |11 ) _
‘(I)_'_):' >\/§| > 1 1 0 0 0
qo — H I 1 01 0 0
H — = = =
Bell state /2 (1 _1) CNOT =CX 00 0 1
q1 0 0 1 0
GHZ) 000) + |111) - -
— * acts on a single qubit * acts on two qubits
gz —_ \/5
A three-qubit GHZ state
4D and Quan Greenberger, Horne, Zeilinger. Going Beyong Bell’s Theorem. Fundamental Theories of Physics, 1989.
Yision Grouptunl <£ | w > https://qiskit.org/documentation/tutorials/circuits/01_circuit_basics.html 1 5


https://qiskit.org/documentation/tutorials/circuits/01_circuit_basics.html

Data Encoding in Quantum-enhanced CV

data processing device
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Quantum ML for CV (gate-based QC)
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Solution
Approaches to combine quantum Quantum-enhanced CV (QA paradigm)

computing and machine learning [1]

4DandQuantum<2|¢>

Vision Group

Encoding (basis, angular, amplitude,
higher-order) encodes the data;

The algorithm is expressed in the
converged Parametrised Quantum
Circuits (PQCs) after training.

Ising form encodes the problem
and the data;

The algorithm/meta-heuristic is the
same (quantum annealing).

Data encoding schemes
and models/algorithms

16

Images: [1] Schuld and Petruccione, 2021; https://medium.com/@quantum_wa/quantum-annealing-cdb129€96601; https://pennylane.ai/qml/whatisqml/


https://medium.com/@quantum_wa/quantum-annealing-cdb129e96601
https://pennylane.ai/qml/whatisqml/

Gate-based Paradigm

17



Quantum Machine Learning
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Rathi et al. 3D-QAE. BMVC, 2023. 18



3D-QAE (Fully Quantum Auto-Encoding)
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Rathi et al., BMVC 2023.

Scheme of the 3D-QAE approach for 3D point cloud auto-encoding.

max planck institut
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3D-QAE (Fully Quantum Auto-Encoding)

Classical [,
3D Input ®:I> Amphtude' A " Quantum Encoder (E)
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Scheme of the 3D-QAE approach for 3D point cloud auto-encoding.
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Amplitude encoding of a single 3D point.

Rathi et al., BMVC 2023.
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Quantum Annealing Paradigm
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Adiabatic Quantum Computation

Quantum annealing in the transverse Ising model

Tadashi Kadowaki and Hidetoshi Nishimori
Department of Physics, Tokyo Institute of Technology, Oh-okayama, Meguro-ku, Tokyo 152-8551, Japan
(Received 30 April 1998)

We introduce quantum fluctuations into the simulated annealing process of optimization problems, aiming at
faster convergence to the optimal state. Quantum fluctuations cause transitions between states and thus play the
same role as thermal fluctuations in the conventional approach. The idea is tested by the transverse lsing
model, in which the transverse field is a function of time similar to the temperature in the conventional method.
The goal is to find the ground state of the diagonal part of the Hamiltonian with high accuracy as quickly as
possible. We have solved the time-dependent Schrodinger equation numerically for small size systems with
various exchange interactions. Comparison with the results of the corresponding classical (thermal) method
reveals that the quantum annealing leads to the ground state with much larger probability in almost all cases if
we use the same annealing schedule. [S1063-651X(98)02910-9]

Kadowaki and Nishimori, 1998 (Phys. Rev. E 58, 5355)

* Introduces quantum annealing

* Quantum fluctuations instead of thermal fluctuation
* Application: Finding ground states of the Ising model
* Quantum tunnelling to escape local minima

A Quantum Adiabatic Evolution
Algorithm Applied to Random
Instances of an NP-Complete

Problem

Edward Farhi,'* Jeffrey Goldstone,’ Sam Gutmann,?
Joshua Lapan,® Andrew Lundgren,® Daniel Preda®

A quantum system will stay near its instantaneous ground state if the Ham-

iltonian that governs its evolution varies slowly enough. This quantum adiabatic

behavior is the basis of a new class of algorithms for quantum computing. We

tested one such algorithm by applying it to randomly generated hard instances
of an NP-complete problem. For the small examples that we could simulate, the
quantum adiabatic algorithm worked well, providing evidence that quantum
computers (if large ones can be built) may be able to outperform ordinary
computers on hard sets of instances of NP-complete problems.

Although a large quantum computer has yet
to be built, the rules for programming such a
device, which are derived from the laws of

quantum mechanics, are well established. It is
already known that quantum computers could
solve problems believed to be intractable on

max planck institut

informatik

classical (i.e., nonquantum) computers. An
intractable problem is one that necessarily
takes too long to solve when the input gets
too big. More precisely, a classically intrac-
table problem is one that cannot be solved
using any classical algorithm whose running
time grows only polynomially as a function
of the length of the input. For example, all
known classical factoring algorithms require
a time that grows faster than any polynomial
as a function of the number of digits in the
integer to be factored. Shor’s quantum algo-
rithm for the factoring problem (/) can factor
an integer in a time that grows (roughly) as
the square of the number of digits. This raises
the question of whether quantum computers
could solve other classically difficult prob-

ICenter for Theoretical Physics, Massachusetts Insti-
tute of Technology, Cambridge, MA 02139, USA. *De-
partment of Mathematics, Northeastern University,
Boston, MA 02115, USA. 3Massachusetts Institute of
Technology, Cambridge, MA 02139, USA.

*To whom correspondence should be addressed. E-
mail: farhi@mit.edu

Farhi et al., 2001 (arXiv:0104129)

* Introduces adiabatic quantum computation (universal model)
* Relies on the adiabatic theorem of quantum mechanics
* Application: Combinatorial optimisation problems (NP-hard)

Adiabatic means that no heat is transferred to or from the system. Possibilities:
1) Process takes place in an insulated container; 2) Process happens very quickly.

4D and Quantum / ~ w
Vision Group |

22
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Simulated Annealing vs Quantum Annealing =z~
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Quantum fluctuations (physical phenomenon)
Simulated Thermal Fluctuations
Main Parameter: Transverse magnetic field
Main Parameter: Temperature Quantum-mechanical effects: Tunnelling; qubit
superposition and entanglement
4D aIId Qllallm /\ Kirkpatrick et aI:Optimiz ation by Simulated Annealin, g Science, 1983.
ViSiOl‘l Group <A | ¢> ]S_fjizsenn'j:te;[,a:;esrlt":)j?;a::Squ [tgri rl1t ali gi dw Sglee; re‘g;\t/edl hc‘()tl fhm:i S/ilwtwr\:];' :P[ gcyomiiippptl /t38520XII and Quantum Information Science and Technology, 2015. 23



Transition between Hamiltonians

i H(t) — A(t)Hinit + B(t)Hﬁnal
Transition >
(simplified): gradual transformation (convex combination)

|winit> |wﬁnal>

known and easy obtainable unknown

qubit couplings qubit biases
(interaction weights) (individual weights)

s'Js+b's

min
se{—1,1}m

Y (t = 0)) ®f 0) + [1))

Initial state

Ising/QUBO problem

Adiabatic theorem of quantum mechanics:

[Born and Fock, 1928]: A physical system remains in its
instantaneous eigenstate if a given perturbation is acting on it slowly
enough and if there is a gap between the eigenvalue and the rest of
the Hamiltonian’s spectrum.

4D and Quantum / ~ w
Vision Group |

max planck institut
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Images: Willsch et al. GPU-accelerated simulations of quantum annealing and the
quantum approximate optimization algorithm. C mp uter Physics Communications, 24
2022; https://docs.dwavesys.com/docs/latest/c_gs_2.html
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Adiabatic Quantum Annealing

Energy
A
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s | e 1o ©
o

B t t
Solution H(t) = (1 N ;) Hy+ - Hp Solution

» Adiabatic quantum computation (AQC): Encodes solution to a computational problem into ground state
of a time-dependent Hamiltonian (this paradigm is equivalent to the gate-based model)

* Quantum annealing (QA): Quantum evolution towards the ground states of final Hamiltonians (no
adiabaticity, no universality or equivalency to the gate-based model)

4D and Quantum A w 75
. o 4! Image: https://medium.com/@quantum_wa/quantum-annealing-cdb129e96601
Vision Group



. . . . inl I
From Ising Problem to Ising Hamiltonian

ZQHQ:H—ZQHLE% Henp = Zha —I—ZJMJZ Z. where

1<J 1<j
e Qs invariant under symmetrisation o = JT®]I... i o I o I
* The weight is added if both binary variables ¢ \ 8 ~ 8 / ©o. & u ’
are equal to 1 i—1 many times n—i many times
1 — s B I 0 (1 0
T L; = 9 832233‘2—]_ P — (0 1 , aIld I— 0 1 .
h; s; + E Ji i 8iS;
Z 1 : 1] J e Hgnal is a diagonal 2™ X 2™ matrix
1<J

* Diagonal entries of [, are obtained through
Ising Problem enumeration of all costs obtained via g7 Jg 4+ s'p

. Hﬁnal is often irreducible

4D and Quantum / ~
Vision Group <A | ¢ > 26



Quantum Annealers as Samplers

(

Time

Solution

H(t) = A(t)Hinit + B(t) Hfinal

>

gradual transformation (convex combination)
|winit> |¢ﬁnal>

known and easy obtainable unknown

* QA always finds the ground state

Perfect adiabatic evolution

informatik

Probability of exp T
being in state O

Partition function

max planck institut

(normalisation
over all states): -

* QA samples obey approximations to Boltzmann
distributions (that are difficult to model)

* Low-energy states are more probable

Practical case (thermal excitations)

References: Denil and de Freitas. Toward the Implementation of a Quantum RBM. 2011. Korenkevych et

4DandQuantum<2|¢>

Vision Group

al., Benchmarking quantum hardware for training of fully visible Boltzmann machines (2016).

27



D-Wave Quantum Annealers

* 2048 qubits (16x16x8)

* Nominal length 4 (internal couplers)
* Degree 6 (+2 external qubits)

* Internal and external couplers

2000Q (2017)

4D and Quantum
Vision Group

(&)

5640 qubits (~16x16x24)

Nominal length 12 (internal couplers)
Degree 15 (+3 external qubits)
Internal, external and odd couplers

Advantage (2020)

Images: D-Wave Systems

max planck institut
informatik

7440 qubits (~15x15x32)

Nominal length 16 (internal couplers)
Degree 20 (+4 external qubits)
Internal, external and odd couplers

Advantage 2 (2024)

28



Minor Embedding (Form of Transpiling)
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Fully connected graph

with 36 logical qubits Minor embedding Successful minor embedding (2000Q)

An undirected graph H is called a minor of the
graph G if H can be formed from G by deleting

Graph minor:
edges, vertices and by contracting edges.

argmin x ' Qx

. . Embedding a graph minor to another graph
xeB Minor Embedding: cing a sraph mit srap
(checking if H can be a minor of G).
4D and Quantum > Image (left): S. Zbinden et al. ISC High Performance 2020. 29
Vision Group A Image (right): Birdal and Golyanik et al. CVPR, 2021.



Six Steps of a QeCV Method (for QA)

Initial problem
(e.g., syncronisation of —» Formulation
permutations)

Six steps of every QeCV algorithm:
1) QUBO preparation
2) Minor embedding
3) Quantum annealing (sampling)
4) Unembedding
5) Bitstring selection
6) Solution interpretation

Birdal and Golyanik et al. CVPR, 2021.

4DandQuantum<2|¢> 30

Vision Group



Iterative QeCV Algorithms

Precomputed Minor Embedding

Initial
Logical
Problem

Updated Problem , Final
Solution

i i

Quantum Annealing

Intermediate Solution

¥ - Iterate (CPU/GPU) |

4D and Quantum / ~
Vision Group <A | w > 31
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Further Important Topics

Standard 20-us annealing schedule

a - SPin-up’ o, Ulag;

? 5 . . import dwave.inspector
o"’f%’ % dwave_sampler = FixedEmbeddingComposite(DWaveSampler (solver={’qpu’: True}),
~— embedding)
% 0 bgm = dimod.BinaryQuadraticModel.from_qubo(Q, offset=offset)
D 25 sampleset = dwave_sampler.sample(bgm, num_reads=1000)
dwave.inspector.show(sampleset)
\
ind o
Qe 1 irculall .
Sph-donniay 20-ps anneal with 100-ps pause at s =0.5
,; 5 T T T T
T ﬁ '
<) | | |
Josephson = - - - - :
junction mn 0 ; : . ; ;
b 0 20 40 60 80 100 120 140
u
4 Programming the D-Wave QPU: Parameters for Beginners
20-us anneal with 2-us quench at s =0.5
~5 . . : . .
S
- :
Figure 1 | Superconducting flux qubit. a, Simplified schematic of a m0 . . '

superconducting flux qubit acting as a quantum mechanical spin. Circulating 0 2 4 6 8 10 12
current in the qubit loop gives rise to a flux inside, encoding two distinct spin

states that can exist in a superposition. b, Double-well potential energy diagram

and the lowest quantum energy levels corresponding to the qubit. States |T)

and || ) are the lowest two levels, respectively. The intra-well energy spacing is A

(O The measure'ment detect?‘ n"Lagnetiz'ation, and does not distil’lguish between, j i ( t ) p— (t ) I i in it _|_ B ( t ) j i ﬁ nal
say, | 1) and excited states within the right-hand well. In practice, these

excitations are exceedingly improbable at the time the state is measured.

Johnson et al., Nature, 2011. docs.dwavesys.com/docs/latest/c_qpu_annealing.html dwavesys.com/media/qvbjrzgg/guide-2.pdf

qubit technology custom annealing schedules QA programming

4D and Quantum / ~
Vision Group <A | w > 32



QeCV Methods
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Multi-Model Fitting

Kandinsky, 1923.

34



M“lti'MOdel Fitting ez planck mstitut

models

wall models

X C R3,© = planes

4D and Quantum P Image credits: ICPR 2020 tutorial on Multiple Parametric Model Fitting
Vision Group A (organised by A. Fusiello, L. Magri and others). 35



Multi-Model Fitting

o e ° o ¥ o
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input data
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e ®° . ° °
° ® ° °
o . ° °
d °
d °
[ ] ® °
e o 0o o
ooo..ooo o« %o
.. . . o.o ° .o.
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example: multi-class multiple instance

Goal: To extract from @ “best” models that describe X . Models are obtained by
randomly selecting the minimum number of points to constrain model parameters:

e Two points for a line (2D)

e Eight points for a fundamental matrix
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]
Random Sample Consensus (RANSAC)

Input: X data, € inlier threshold, k;,,x max iteration

©
o® g :
° e 00w g .’. Output: 0* model estimate
o ..S‘ ® o o° o J* = —o0,k = 0;
* . s B repeat
. & «c ® o° ®e Select randomly a minimal sample set S C X;
- ® e o, o Estimate parameters O on S;
® o o0 Qo -
e o 2 ' 4.9 Evaluate J(8) = ) fe(r(x,0));
" o. o ¢ F A
e % o o . . ® if J(0) > J* then
: L m e 6 = 6;
L ce " o° J* =](6);
* o%¢ N ~o' s end
o0 _ :
..:fo.g.o°.. . ® k=k+1;
¢ °® until kK > K.
Optimize 0* on its inliers.
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Preference-Consensus Matrix

residual of point X7 w.r.t. model 9]’

P[i. j] 1f‘error T;, 0 ‘
1,71 =
J 0 otherwise

l inlier threshold to assign a
Preference-consensus point to a model

matrix (of sizen X m)

Data:

X =A{x1,..., 2}

Models:

O =1{6,....0,,)
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Preference-Consensus Matrix

residual of point L7 w.r.t. model Gj

1f‘error x;, 0 4.
O otherwise

inlier threshold to assign a
point to a model

}j[iﬂj] —

'

Preference-consensus
matrix (of sizen X m)

01 02 O3
Data: P1 ( 1 0 0 )
_ Po| O 0
X =A{x1,..., 2} ol 1 0 o
Models: : Pa|_ _i_ --§~" Q_I
= {01,...,0,,} ‘EZ“‘o“‘o -----
\. J
preference set consensus set
(per point) of a model
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e o o 8 1B
From Set Cover to Disjoint Set Cover

informatik

Select the minimum number of columns of P * The true n.umber of
explaining all the rows: models k is known
e Qutlier-free data
. T * Disjoint model
min 1.z s.t. Pz>1, UL

zcB™ integer linear
/ \ l program (NP-hard)

model selection indication : T _
min 1. z s.t. Pz=1
(binary vector) zcB™ m S.t n

a vector of ones

Set cover: Minimise the number of selected
models while ensuring that each point is
explained by at least one of them.

Disjoint set cover: Ensure that each point is

explained by exactly one model (the consensus sets
of the selected models are disjoint).
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From Disjoint Set Cover to a QUBO

Disjoint set cover:

min 1! z

m
zeRB™m
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s =1,,

s.t. Pz =1,

>
>

l convert to a QUBO

—22\P'1,,
CA=P b=1,

Rectified QUBO:

miny' Qy +s'y + \|Ay — b||3

yeBd

min y Qy -+ S y
yeBd

Q=Q+\ATA,

S=s—2\A"b
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From Disjoint Set Cover to a QUBO

Disjoint set cover: Rectified QUBO:

. T T 2
min 1"z st Pz = 1, miny Qy +s'y + Al[Ady — bl
zeBm " yel

_ T ~ T

l convert to a QUBO min y Qy TSYy
yeBd
O=\P'P, s=1,,—2\P"1, Q=Q+)TA, §=5-2\ATb
@=0 s=1,, A=P, b=1,

min A\z' (P'P)z + (1,, — 2AP"1,,) 'z

the final QUBO of the QMMEF approach

logical problem minor embedding
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il
Iterative Decomposed Set Cover (DeQuMF5

Ji
Algorithm 1 DEQUMF —

Require: P, s
while | P. columns | > s do
subproblems = ColumnPartition(P, s)
1< 0
while ¢ < |subproblems| do
Ji < models in the -th subproblem
P7. <« P retaining only the 7; columns
= QUMF(PJE')
remove from P columns P7,[:,1 — z;] Step t+1
te—1+1
end while
end while
z «— QUME(P)
return P[:,z]

Step t

z; =[100010]"

Illustration of the iterative pruning technique
applied to P in DeQuMF over consecutive iterations.
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Quantum Multi-Model Fitting

max planck institut

informatik
Outlier ratio
RANSACoOV [29]  QUMF (SA)  DEQUMF  DEQUMEF (SA) Algorithm 10%  20%  Full sequences
mean 9.79 3.85 16.22 0.77 QUMF (SA) 7.22 11.34 13.23
median 7.97 3.54 11.0 0.18 DEQUMF 2.41 10.53 16.17
DEQUMEF (SA) 6.26 8.28 10.83
Table 2. Misclassification Error [%] for several methods on the 15 HQC-RF [17] 371 370 45.84
multi-model sequences of the AdelaideRMF dataset [49].
Table 3. Misclassification Error [%] for quantum methods on the
single-model sequences of the AdelaideRMF dataset [49].
20% Algorithm lzz:f Algorithm L
18% —e— RANSACOV °° —o— QUMF (SA) o—0—0—0—0—0—0 300 /
s P Do o
B 1ge QUMF Lg o e é 250 ./
S 12% 8 so% 2 200 -
8 10% g € 0w g T
T 8% a 8 150 -~
0 oL S 30% F { )
LTV 2 = o
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= 4% S e L e T P +
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Figure 3. Misclassification Error for several methods on the Srar5
dataset [44]. The number of points n is fixed to n = 30, the num-
ber of ground-truth structures is fixed to K = 5, and the number of
sampled models m is arranged on the x-axis.
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Figure 5. Misclassification Error for several methods on the Star5
]. The number of points n is fixed to n = 250, the num-
ber of ground-truth structures is fixed to £ = 5, and the number of
sampled models m (corresponding to the dimension of the search
space) is arranged on the x-axis.

dataset [

Farina et al., CVPR 2023 (arXiv:2303.15444)

Logical Qubits

Figure 4. Relationship between physical qubits and logical qubits
in embeddings produced with small-scale preference matrices
from the Star5 dataset [44].
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Quantum Multi-Model Fitting

(a) DEQUMEF outcome, misclassification error = 1.7%. =47.9%.

(b) DEQUMEF (SA) outcome, misclassification error = 0%.

(c) Ground-truth segmentation. (c) Ground-truth segmentation. (c) Ground-truth segmentation.
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Extension for Outlier Robustness (WiP)

() QuMF Er

e . » X — - % x.x <

X

(¢c) RQuUMF, E,,;s = 2.9% (d) De-RQuME, E,,,;s = 0.53%
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Extension for Outlier Robustness (

a .

QuUME, E, ;s = 80.27% DeQuMF, E,,,;s = 27.40%
,. : LY i : X P -~ -Jr','-_"«'ﬁ' i LY T

i

RQUME, E,pis = 35.67%
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Robust Multi-model Fitting (3D Example)

.

B %@

>
Point cloud obtained by image- The point cloud segmented with
based 3D reconstruction. Robust Multi-Model Fitting Approach.

4D and Quantum / ~
Vision Group A Point cloud data: Magri and Fusiello, CVPR 2019. 48



Kang Sung Hoon, Wind Lion-1, 2015

Mesh Alignment
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Mesh Alignment as a Quadratic
Assignment Problem

Generic shape matching can

* The solution space is exponential in n
be formulated as QAP: p p

* NP-hard problem; finding global optima for

min E(X) = x Wx large inputs is unfeasible
X€Pn * Allows quadratic costs for matching point pairs
X = VGC(X) and regards point neighbourhoods |

P c {0,1}x" * Existing methods either do not guarantee
’ globally-optimal solutions or have prohibitive

W e R» xn” runtime complexity

e Use a QPU to solve QAP without relaxations, while providing theoretical global optimality guarantees

50
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Mesh Alignment

Given: 3D shapes M and IV, both discretised with 70 vertices.
W’c‘?-n—l-k',j-n—l—l — ‘d?w(’&,j) o d?\f(kaz)‘

Geometric meaning of 9 (a, b) influences the structure of QAP
Find: optimal P

Pn — {X € {Oﬁl}nxn ‘ ZgXﬁj — 17 Zinj = 1 Vi;j}- M N

4D and Quantum / ~
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Mesh Alignment

max a
n

Wi-n—l—k,j-n—l-l — ‘d?w(zaj) _ d?\f(k:l)‘

Find: optimal P

Given: 3D shapes M and IV, both discretised with 70 vertices.

Geometric meaning of 9 (a’ b) influences the structure of QAP

k-cycles: Disjoint permutations commute:
1 > 4 —» 6 1 > 2 6
! ' oy BT
7 <« 3 <« 8 3 « 4 7
six-cycle four-cycle  fixed point two-cycle
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M N

Any X can be written as
N :
X — 