

3D VISION SUMMER SCHOOL

May 26 - June 1, 2024 - IIIT Bangalore, India (In Person)

Promptable Game Models Talk at 3DVSS 2024 (31.05.2024)

Vladislav Golyanik

golyanik@mpi-inf.mpg.de

4D and Quantum (Solution Group)

Visual Computing and AI Department

Horizon Zero Down Prototypes

Elden Ring 3D Model Showcase

Video sources: https://www.youtube.com/watch?v=h9tLcD1r-6w; https://www.youtube.com/watch?v=WoqDjsiRmyA

Example: TopSpin 2k25

 $Video\ sources:\ https://www.youtube.com/watch?v=tS51M70HnKM;\ https://www.youtube.com/watch?v=jKXJ6QpPgGQ$

Example: TopSpin 2k25 (2024)

Marker-based Motion Capture (Roger Federer)

 $Video\ sources:\ https://www.youtube.com/watch?v=tS51M70HnKM;\ https://www.youtube.com/watch?v=jKXJ6QpPgGQ$

Screenshots of Top Spin 2K25 (2024)

...is extremely expensive (1-10M€ cost range)

• Software licenses (1k-10k€/year)

4D and Quantum

Vision Group

- Professional multi-camera systems (1k-10k€ per camera)
- HPC system with TBs of storage (>>10k€)
- Professional actors or players (10-100€/h)

Examples (leading and award-winning games):

- Battlefield 2042: €2B
- Elden Ring: €190M
- Horizon Zero Down: 100M€
- Marvel's Spider Man: €95M

Image source: https://www.gamereactor.de/top-spin-2k25-1303003/

Neural Video Game Simulation

Image: https://kevurugames.com/blog/best-game-engines-2022-pros-cons-and-toppicks-for-different-types-of-games/

- Vast software ecosystems
- Extensible and reusable software
- Organised into multiple components
 - Rendering engine
 - Resource manager
 - Animation manager
 - Gameplay foundation system (game rules and Al/logic)

Classical Game Engines

4D and Quantum (Sision Group) ($\langle \mathcal{A} | \psi
angle$

References (left): Gregory, 2018, Müller et al., 2020.

Neural Video Game Simulation

- Vast software ecosystems
- Extensible and reusable software
- Organised into multiple components
 - Rendering engine
 - Resource manager

4D and Ouantum

Vision Group

- Animation manager
- Gameplay foundation system (game rules and Al/logic)

Classical Game Engines

- New Research Trend: Video game simulation using NN
- Objective: To train NN to synthesise videos based on prompts
- Games as an evolution of an environment driven by the actions of its agents
- Current SotA with discrete actions:
 - Learning discrete action representation [Menapace et al., 2022]
 - Actions as a learned set of geometric transformations [Huang et al., 2022]
 - Separating actions into a global shift and a discrete action components [Davtyan and Favaro 2022]

Neural Game Simulation

Menapace et al, 2022.

Player Control

Camera Control

Style Control

4D and Quantum Vision Group $\langle \boldsymbol{\boldsymbol{\omega}} | \psi
angle$

Menapace et al, 2022.

 I_{t} i_{t+1} I_{t+1

The Synthesis Module

Playable Environments

Pros

- Can generate novel views
- Does not require action label in the data
- Represents complex 3D scenes (NeRF renderer)

Playable Environments

Pros

4D and Quantum

Vision Group

- Can generate novel views
- Does not require action label in the data
- **Represents complex 3D scenes (NeRF renderer)**

Cons

- Learns discrete action representation (no semantic control)
 - Auto-regressive generation conditioned on labels: Does not ٠ support prompts for constraint- or goal-driven generation
- Adversarially trained LSTM animation module
 - Comparably low image resolution/checkerboard artifacts
- Does not support small objects / human details
- **Compositional NeRF is not efficient** ٠

Enabling Fine-grained Control

Limitation: Discrete action representation does not allow semantic control.

Motivation: We are interested in fine-grained constraint and goal-driven generation!

Enabling Fine-grained Control

Limitation: Discrete action representation does not allow semantic control.

Motivation: We are interested in fine-grained constraint and goal-driven generation!

A possible way to enable it: Game models augmented with prompts specified as a set of natural language actions and desired stated.

"hit the ball with a backhand and send it to the right service box" "the [other] player does not catch the ball"

Enabling Fine-grained Control

Limitation: Discrete action representation does not allow semantic control.

Motivation: We are interested in fine-grained constraint and goal-driven generation!

A possible way to enable it: Game models augmented with prompts specified as a set of natural language actions and desired stated.

4D and Ouantum

Vision Group

"hit the ball with a backhand and send it to the right service box" "the [other] player does not catch the ball"

Play the game \rightarrow

Improved Rendering

Limitations of PE related to the rendering scene quality:

Low image resolution, checkerboard artefacts, low quality for small objects and details, slow/inefficient compositional NeRF.

[Tretschk et al., 2021]

4D and Quantum

Vision Group

[Fridovich-Keil et al., 2022]

[Weng et al., 2022]

Vladislav Golyanik

PE: Menapace et al, 2022.

Related Works

[Holden et al., 2020]

A person walks forward, then bends down.

[Dabral et al., 2023]

[Starke et al., 2019]

[Zhang et al., 2024]

Learned Character Animation / Text-driven Generation

Related Works

[Holden et al., 2020]

A person walks forward, then bends down.

[Dabral et al., 2023]

[Starke et al., 2019]

[Zhang et al., 2024]

[Ghosh et al., 2023]

Learned Character Animation / Text-driven Generation

Promptable Game Models (PGMs): Text-guided Game Simulation via Masked Diffusion Models

Promptable Game Model

Overview: PGM as a State Machine

Vision Group

15

max planck institut informatik

1) models the game dynamics: player actions and interactions in the space of the environment states (evolution of the environment in time)

2) generates an image given the an environment state (image renderer)

Overview: PGM as a State Machine

17

R

0

Velocity

1) models the game dynamics: player actions and interactions in the space of the environment states (evolution of the environment in time)

2) generates an image given the an environment state (image renderer)

4D and Quantum Vision Group $\langle \mathcal{A} | \psi$

Overview: Control and Training

4D and Quantum

Vision Group

Two ways of controlling through prompts:

- Explicit manipulation or
- High-level text-based editing.

Example: Change 🔗 of the tennis ball

Example: "The player takes several steps to the right and hits the ball with a backhand"

High-level, yet fine-grained control over the evolution of the environment.

Training: A dataset of camera-calibrated videos with per-frame annotations (s and a).

PGMs: Fine-grained Control

Different predicted sequences starting from the same initial state and altering the text conditioning. The model supports fine-grained control over the various tennis shots using technical terms (e.g., "forehand", "backhand", "volley").

4D and Quantum Vision Group

PGMs: Fine-grained Control

Different predicted sequences starting from the same initial state and altering the text conditioning. The model supports fine-grained control over the various tennis shots using technical terms (e.g., "forehand", "backhand", "volley").

4D and Quantum Vision Group

$\mathbf{A}|\psi\rangle$

conditioning values: $\mathbf{s}^{c} \in \mathbb{S}^{T}$ text $\mathbf{a}^{c} \in \mathbb{L}^{A \times T}$ $\mathbf{m}^{s} \in \{0, 1\}^{P \times T}$ $\mathbf{m}^{a} \in \{0, 1\}^{A \times T}$

Temporal model based on non-autoregressive transformer

pre-trained LM in a text encoder to model action conditioning information

 $\mathbf{a}^{\text{emb}} = \mathcal{T}(\mathbf{a}^c) \in \mathbb{R}^{A \times T \times N_t}$

[Raffel et al., 2022]

4D and Quantum

Vision Group

Diffusion Loss

.....

strategies emulating desired inference tasks

4D and Quantum

Vision Group

of unknown states \mathbf{s}_{k}^{p} : $\boldsymbol{\epsilon}_{k}^{p} = \mathcal{A}(\mathbf{s}_{k}^{p}|\mathbf{s}^{c}, \mathbf{a}^{\mathrm{emb}}, \mathbf{m}^{s}, \mathbf{m}^{a}, k)$.

strategies emulating desired inference tasks

4D and Quantum $\mathbf{A}|\psi\rangle$

Vision Group

4D and Quantum

Vision Group

$$\boldsymbol{\epsilon}_{k}^{p} = \mathcal{A}(\mathbf{s}_{k}^{p}|\mathbf{s}^{c}, \mathbf{a}^{\text{emb}}, \mathbf{m}^{s}, \mathbf{m}^{a}, k)$$

Minimising the DDPM training objective [Ho *et al.*, 2020]:

$$\mathbb{E}_{k \sim \mathcal{U}(1,K), \epsilon \sim \mathcal{N}(0,I)} || \boldsymbol{\epsilon}_{k}^{p} - \boldsymbol{\epsilon}_{k} ||$$

Training details:

- ADAM optimiser [Kingma and Ba, 2015]
- LR of 10e-4
- Cosine schedule
- 10k warm-up steps
- 2.5M training steps in total
- batch size of 32
- T = 16
- K = 1000
- Linear noise schedule

• Coarsely follows Playable Environments [Menapace et al., 2022]

4D and Quantum Vision Group

composition of independent objects
 (parametrised with voxel grids) + fully-opaque planes
[Fridovich-Keil et al., 2022]

4D and Quantum

Vision Group

• Coarsely follows Playable Environments [Menapace et al., 2022]

• Coarsely follows Playable Environments [Menapace et al., 2022]

4D and Quantum

Vision Group

SM: Object-specific Rendering

4D and Quantum

Vision Group

Tennis scenes with and without inserted rackets.

Imposed on samples image patches:

• L2 reconstruction loss

4D and Quantum

Vision Group

• Perceptual loss [Johnson et al. 2016]

Training details:

- ADAM optimiser [Kingma and Ba, 2015]
- LR of 10e-4, exponential decrease to 10e-5
- 10k warm-up steps
- 300k training steps in total
- Videos of 1024x576px resolution
- 180x180px patch resolution

Applications

Unconditional Sequence Generation

23 max planck institut informatik

The player moves to the left corner waiting for the serve

The player serves the ball to the left corner of the field

Application: Opponent Modelling

response by running to the right (top)

24

max planck institut informatik

Action-conditioned Sequence Generation

The player serves to the right service box

The player jumps forward and waits for the ball

The player serves to the right service box

The player jumps forward and waits for the ball

Initial State

Prompt-based Sequence Modification

While in the original sequence the bottom player aims its response to the center of the field where the opponent is waiting, the model now successfully generates a winning set of moves for the bottom player that sends the ball along the left sideline, too far for the top player to be reached.

Vladislav Golyanik

26

max planck institut informatik

Emirates Emirates 國窖 1573 FLY PETTER N in in MELBOURNE

the player makes two steps backwards while waiting for the response

original video = bottom player loses

Example 1

Vladislav Golyanik

27

The player rushes diagonally to the upper right and hits the ball with a forehand to the net

1/2 original video + t*ext prompt* = bottom player wins

Example 1

Vladislav Golyanik

original video = bottom player loses

Example 2

Vladislav Golyanik

1/2 original video + t*ext prompt* = bottom player wins

Example 2

4D and Quantum

Vision Group

Vladislav Golyanik

Style Swap

4D and Quantum (Sision Group) Vision Group

Tennis and Minecraft Datasets

Tennis and Minecraft Dataset

2000 1500 -

1000 -500

8000

6000

S 4000

2000

in the Minecraft dataset.

Video duration (s) (a) Distribution of video durations in the Tennis dataset.

20 40 60

10

Caption words count (c) Distribution of words per caption in the Tennis dataset

(d) Distribution of words per caption in the Minecraft dataset

Caption words count

Tennis dataset (broadcast tennis matches):

- 7.1k video sequences (1920x1080px at 25 fps)
- 15.5h
- 1.12M fully-annotated frames
- 25.5k unique captions and 915 unique words

Tennis and Minecraft Dataset

2000 1500 -

1000 -500

8000

6000

S 4000

2000

(a) Distribution of video durations in the Tennis dataset.

20

10

(c) Distribution of words per caption in the Tennis dataset

(b) Distribution of video durations in the Minecraft dataset.

(d) Distribution of words per cap-

tion in the Minecraft dataset

Minecraft dataset (from the video game):

- 61 videos (1024x576px at 20fps)
- 1.21h
- 68.5k fully-annotated frames
- 1.24k unique captions with 117 unique words

Tennis and Minecraft Dataset

the player serves and sends the ball to the right service box

The player moves to the right and hits the ball with a forehand to the no man's land

The player sprints and jumps on the first block of the second area

Annotation and Training Costs

	Tennis	Minecraft
Sequences:	7112	61
train	5690	51
validation	711	5
test	711	5
Duration:	15.5h	1.21h
train	12.4h	0.952h
validation	1.59h	0.16h
test	1.52h	0.101
Annotated frames:	1.12M	68.5k
train	1.05M	64.5k
validation	135k	11.2k
test	130k	7.06k
Resolution	1920x1080px	1024x576px
Framerate	25fps	20fps
Captions	84.1k	818k
of which unique	25.5k	1.24k
Unique words	915	117
Avg. words	13.8	5.85
Avg. span	1.32s	0.500s
Parts of sentence:		
Nouns	32.3%	36.2%
Verbs	11.9%	17.4%
Adjectives	3.08%	6.48%
Adverbs	2.70%	11.7%
Pronouns	0.18%	0.00%
Articles	26.4%	8.03%
Prepositions	7.89%	6.98%
Numerals	0.11%	0.03%
Particles	9.28%	1.50%
Punctuation	1.76%	1.12%
Others	0.00%	0.00%

dataset statistics

4D and Ouantum

Vision Group

Tennis dataset:

- Professional labelling team (833\$/h)
- Initial annotation: 13.5k\$ in total
- Comparable amount for remaining annotation and training (development)

Full model:

- Eight A100 (40GB Global Memory)
- Tennis dataset: Four days (844\$)
- Minecraft dataset: Two days (422\$)

Reduced model:

- Four A100 (40GB Global Memory)
- Tennis dataset: Three days (317\$)
- Minecraft dataset: Two days (211\$)

Experimental Results

Quantitative Results (AM and SM)

Tannia	Po	Position		Root angle		Joints 3D	
Iennis	L2↓	FD↓	L2↓	FD↓	L2↓	FD↓	
PE	3.291	229.112	1.126	15.953	0.303	53.242	
Rec. LSTM	1.597	7.253	0.907	7.051	0.193	16.735	
Rec. Transf.	1.074	4.402	0.767	6.838	0.175	14.845	
Ours Small	1.380	1.443	1.014	0.560	0.148	1.253	
Ours	1.099	0.929	0.844	0.356	0.129	0.836	
M:0	Po	sition	Root angle		Joints 3D		
Minograft				0	5		
Minecraft	L2↓	FD↓	L2↓	FD↓	L2↓	FD↓	
Minecraft PE	L2↓ 2.739	FD↓ 105.973	L2↓ 1.620	FD↓ 31.232	L2↓ 0.311	FD↓ 39.572	
Minecraft PE Rec. LSTM	L2↓ 2.739 2.292	FD↓ 105.973 47.296	L2↓ 1.620 1.702	FD↓ 31.232 49.971	L2↓ 0.311 0.489	FD↓ 39.572 99.843	
PE Rec. LSTM Rec. Transf.	L2↓ 2.739 2.292 2.154	FD↓ 105.973 47.296 53.198	L2↓ 1.620 1.702 1.430	FD↓ 31.232 49.971 36.123	L2↓ 0.311 0.489 0.385	FD↓ 39.572 99.843 69.977	
PE Rec. LSTM Rec. Transf. Ours Small	L2↓ 2.739 2.292 2.154 1.084	FD↓ 105.973 47.296 53.198 4.461	L2↓ 1.620 1.702 1.430 1.077	FD↓ 31.232 49.971 36.123 6.016	L2↓ 0.311 0.489 0.385 0.140	FD↓ 39.572 99.843 69.977 3.590	

* results averaged over all tasks

Animation Module

Reconstruction tasks for AM evaluation:

- Video prediction conditioned on actions
- Unconditioned video prediction

Tennis	LPIPS↓	FID↓	FVD↓	ADD↓	MDR↓
PE [†] [Menapace et al. 2022]	0.188	11.5	349	3.74	0.200
PE+ [Menapace et al. 2022]	0.232	40.4	2432	132.3	49.7
w/o enhancer \mathcal{F}	0.167	15.6	570	3.02	0.0728
w/o explicit deformation in \mathcal{D}	0.156	13.3	524	3.10	0.0587
w/o planes in \mathcal{C}	0.241	30.4	1064	2.94	0.0611
w/o voxels in \mathcal{C}	0.170	17.1	757	3.03	0.0399
w/o our encoder \mathcal{E}	0.174	15.0	600	3.18	0.0564
Ours Small	0.156	13.4	523	2.88	0.0470
Ours	0.152	12.8	516	2.88	0.0423
Minecraft	LPIPS↓	FID↓	FVD↓	ADD↓	MDR↓
PE [†] [Menapace et al. 2022]	0.0235	13.9	21.5	5.77	0.0412
PE+ [Menapace et al. 2022]	0.0238	15.5	51.7	120.6	0.939
Ours Small	0.00996	3.56	8.83	2.02	0.0529
Ours	0.00814	2.81	7.08	1.98	0.0508

Synthesis Module

- Opponent modeling
- Sequence completion

Comparison to PE and Ablation Study

PGM generates sharper players and static scene elements. PE and PE+ produce checkerboard artifacts

Vladislav Golyanik

37

max planck institut

Quantitative Results (SM and AM)

The model uses the first-frame object properties and all actions as conditioning.

4D and Quantum Vision Group

Vladislav Golyanik

ours

Evaluation Breakdown and Other Tests

t=7

- Robustness to prompt variations
- AM (Inference Tasks)
- AM Masking Strategies Ablation
- AM Dataset Size Ablation
- Alternative Samplers

4D and Quantum

Vision Group

t=15

	Position		Root angle		Joints 3D	
	L2↓	FD↓	L2↓	FD↓	L2↓	FD↓
	Action conditioned video prediction					
PE	3.117	87.688	1.182	12.627	0.277	30.711
Rec. LSTM	1.753	7.413	1.100	8.416	0.234	18.455
Rec. Transf.	1.183	2.996	0.913	7.566	0.212	15.976
Ours Small	1.244	1.071	1.187	0.601	0.178	1.570
Ours	1.064	0.846	0.961	0.421	0.153	1.049
		Uncon	ditional	video pred	iction	
PE	3.973	146.019	1.604	30.448	0.437	78.835
Rec. LSTM	2.064	11.283	1.224	14.860	0.264	28.736
Rec. Transf.	1.649	10.514	1.123	15.648	0.251	27.258
Ours Small	2.352	2.271	1.455	0.781	0.213	1.827
Ours	1.925	1.377	1.277	0.518	0.192	1.261
		(Opponent	modeling		
PE	4.353	641.976	0.903	13.955	0.251	62.981
Rec. LSTM	1.581	5.507	0.697	2.517	0.143	10.443
Rec. Transf.	1.169	3.735	0.631	2.514	0.138	10.519
Ours Small	1.578	2.243	0.832	0.560	0.114	0.851
Ours	1.153	1.349	0.703	0.288	0.101	0.558
		5	equence	completior	1	
PE	1.720	40.766	0.814	6.783	0.246	40.441
Rec. LSTM	0.990	4.809	0.606	2.411	0.132	9.305
Rec. Transf.	0.294	0.364	0.403	1.623	0.100	5.628
Ours Small	0.344	0.187	0.581	0.301	0.088	0.765
Ours	0.252	0.143	0.437	0.198	0.069	0.478
	Average					
PE	3.291	229.112	1.126	15.953	0.303	53.242
Rec. LSTM	1.597	7.253	0.907	7.051	0.193	16.735
Rec. Transf.	1.074	4.402	0.767	6.838	0.175	14.845
Ours Small	1.380	1.443	1.014	0.560	0.148	1.253
Ours	1.099	0.929	0.844	0.356	0.129	0.836

Implausible Actions

"The player sidesteps to the right and performs a forehand that sends the ball to the right side of no man's land"

"The player rushes to the left and hits with another forehand to the left side of no man's land" the left movement command is ignored

"The player jumps on the oak pillar"

Camera Manipulation

Limitations

Novel scene views

Foot sliding, slight jitter

- No AM conditioning on scene geometry
- Tennis scenario: Overfitting with less than 60% of the data
- Foot sliding artefacts

4D and Quantum

Vision Group

- No explicit physics modelling (everything is learnt from data)
- Not real-time (AM: 1.08fps)

Conclusion and Take-home Messages

- Textual action representation is **crucial for unlocking fine-grained control** over the generation
- PGMs outperforms previous PE approach in the rendering quality, generation of state sequences and obeying the conditioning signals (thanks to recent advances in ML and neural rendering)
 - DM in the animation module learns the multimodal distribution well
- PGMs enable **compelling constraint-and goal-driven generation** applications (such as opponent modelling, state inpainting, game analysis)
- There are many possible **future extensions**

4D and Quantum

Vision Group

Project page: snap-research.github.io/promptable-game-models/

max planck institut informatik

Today's Talk

Menapace et al., arXiv:2303.13472

Intern at 4DQV/MPI-INF, 2021-2022

4D and Ouantum

Vision Group

With <u>Willi Menapace</u> (University of Trento), Aliaksandr Siarohin (Snap Inc.), Stéphane Lathuilière (LTCI, Télécom Paris, Institut Polytechnique de Paris), Panos Achlioptas (Snap Inc.), Sergey Tulyakov (Snao Inc.) and Elisa Ricci (University of Trento).

Project page: snap-research.github.io/promptable-game-models/

Diffusion Models in Visual Computing

State of the Art on Diffusion Models for Visual Computing

R. Po^{1*} W. Yifan^{1*} V. Golyanik^{2*} K. Aberman³ J. T. Barron⁴ A. Bermano⁵ E. Chan¹ T. Dekel⁶ A. Holynski^{4,7} A. Kanazawa⁷ C. K. Liu¹ L. Liu⁸ B. Mildenhall⁴ M. Nießner⁹ B. Ommer¹⁰ C. Theobalt² P. Wonka¹¹ G. Wetzstein¹

¹Stanford University ²MPI for Informatics and VIA Center ³Snap Inc. ⁴Google Research ⁵Tel Aviv University ⁶Weizmann Institute of Science ⁷UC Berkley ⁸University of Pennsylvania ⁹TU Munich ¹⁰LMU Munich ¹¹KAUST *Equal contribution

Figure 1: This state-of-the-art report discusses the theory and practice of diffusion models for visual computing. These models have recently become the de-facto standard for image, video, 3D, and 4D generation and editing. Images adapted from [PJBM22, DMGT23, SSP*33b, MSP*33.BT0AF*22.HTF231.dp32.PW231.dp32.PW2733.Arp331.00231EEE.

Abstract

4D and Ouantum

Vision Group

The field of visual computing is rapidly advancing due to the emergence of generative artificial intelligence (AI), which unlocks unprecedented capabilities for the generation, editing, and reconstruction of images, videos, and 3D scenes. In these domains, diffusion models are the generative AI architecture of choice. Within the last year alone, the literature on diffusion-based tools and applications has seen exponential growth and relevant papers are published across the computer graphicz, compater vision, and AI communities with new works appearing daily on arXiv. This rapid growth of the field makes it difficult to keep up with all recent developments. The goal of this state-of-the-art report (STAR) is to introduce the basic mathematical concepts of diffusion models, implementation details and design choices of the popular Stable Diffusion model, as well as overview important aspects of these generative AI tools, including personalization, conditioning, inversion, anong others. Moreover, we give a comprehensive overview of the rapidly growing literature on diffusion-based generation and editing, categorized by the type of generated medium, including 2D images, videos, 3D objects, locomotion, and 4D scenes. Finally, we discuss available datasets, metrics, open challenges, and social implications. This STAR provides an intuitive starting point to explore this exciting topic for researchers, arists, and practitioners alike.

CCS Concepts • Computing methodologies → Computer graphics; Neural networks;

Sec. 3 Fundamentals of Diffusion Models Sec. 7 Towards 4D Spatio-temporal Diffusion 7.3 4D Scene Generation and Editing

Po, Wang, Golyanik et al. EUROGRAPHICS, 2024.

4DQV: Research Interests

3D Human Pose Estimation

3D/4D Reconstruction and Neural Rendering

EE3D

4D Generative Models

Quantum CV

Egocentric Event Stream

Images: Kappel et al., 2024, Shimada et al., 2023, Millerdurai et al., 2024, Shimada et al., 2024, Dabral et al., 2023, Seelbach Benkner et al., 2023, Bhatia et al., 2023.

Thanks! Questions?

