Relating Semantic and Proof-Theoretic Concepts for Polynomial Time Decidability of Uniform Word Problems

> Harald Ganzinger Max-Planck-Institut für Informatik

- PTIME decidable uniform word problems for quasi-varieties
- CS applications: type inference systems, program analysis, decision procedures in ATP
- fundamental effective methods for establishing PTIME upper bounds
- local theories (Givan, McAllester 92) capture PTIME
- algebraic criteria by Skolem (1920), Evans (1951), and Burris (1995)
- relation between these criteria

- PTIME decidable uniform word problems for quasi-varieties
- CS applications: type inference systems, program analysis, decision procedures in ATP
- fundamental effective methods for establishing PTIME upper bounds
- local theories (Givan, McAllester 92) capture PTIME
- algebraic criteria by Skolem (1920), Evans (1951), and Burris (1995)
- relation between these criteria

- PTIME decidable uniform word problems for quasi-varieties
- CS applications: type inference systems, program analysis, decision procedures in ATP
- fundamental effective methods for establishing PTIME upper bounds
- local theories (Givan, McAllester 92) capture PTIME
- algebraic criteria by Skolem (1920), Evans (1951), and Burris (1995)
- relation between these criteria

- PTIME decidable uniform word problems for quasi-varieties
- CS applications: type inference systems, program analysis, decision procedures in ATP
- fundamental effective methods for establishing PTIME upper bounds
- local theories (Givan, McAllester 92) capture PTIME
- algebraic criteria by Skolem (1920), Evans (1951), and Burris (1995)
- relation between these criteria

- PTIME decidable uniform word problems for quasi-varieties
- CS applications: type inference systems, program analysis, decision procedures in ATP
- fundamental effective methods for establishing PTIME upper bounds
- local theories (Givan, McAllester 92) capture PTIME
- algebraic criteria by Skolem (1920), Evans (1951), and Burris (1995)
- relation between these criteria

- PTIME decidable uniform word problems for quasi-varieties
- CS applications: type inference systems, program analysis, decision procedures in ATP
- fundamental effective methods for establishing PTIME upper bounds
- local theories (Givan, McAllester 92) capture PTIME
- algebraic criteria by Skolem (1920), Evans (1951), and Burris (1995)
- relation between these criteria

Natural numbers with inequality

$$s(n) \doteq s(m) \rightarrow n \doteq m$$

$$\rightarrow (0 < s(n)) \doteq \top$$

$$(s(n) < 0) \doteq \top \rightarrow$$

$$(n < m) \doteq \top \rightarrow (s(n) < s(m)) \doteq \top$$

$$(s(n) < s(m)) \doteq \top \rightarrow (n < m) \doteq \top$$

Lists

- \rightarrow car(cons(x, y)) \doteq x
- $\rightarrow \quad \mathsf{cdr}(\mathsf{cons}(x,y)) \,\dot{=}\, y$
- \rightarrow length(nil) $\doteq 0$
- $\rightarrow \ \mathsf{length}(\mathsf{cons}(x,y)) \,\dot{=}\, s(\mathsf{length}(y))$

logic	algebra
universal Horn theory \mathcal{K}	quasi-variety \mathcal{K} -alg
entailment problem $\mathcal{K} \models C$ for universal/ground Horn clauses C	uniform word problem
query $C = \Gamma \rightarrow s \doteq t$	defining relations Γ , and word problem $s \doteq t$
$var(C) $ (= Skolem constants of $\neg C$)	generators

• flatten clauses by term abstraction $C[t] \Rightarrow x \neq t \lor C[x]$

- flatten clauses by term abstraction $C[t] \Rightarrow x \neq t \lor C[x]$
- replace functions f by relations r_f

- flatten clauses by term abstraction $C[t] \Rightarrow x \neq t \lor C[x]$
- replace functions f by relations r_f
- replace equations $y \doteq f(\vec{x})$ by atoms $r_f(\vec{x}, y)$

- flatten clauses by term abstraction $C[t] \Rightarrow x \neq t \lor C[x]$
- replace functions f by relations r_f
- replace equations $y \doteq f(\vec{x})$ by atoms $r_f(\vec{x}, y)$
- require relations to be unambiguous by adding clauses $r_f(\vec{x}, y), r_f(\vec{x}, z) \to y \doteq z$

- flatten clauses by term abstraction $C[t] \Rightarrow x \neq t \lor C[x]$
- replace functions f by relations r_f
- replace equations $y \doteq f(\vec{x})$ by atoms $r_f(\vec{x}, y)$
- require relations to be unambiguous by adding clauses $r_f(\vec{x}, y), r_f(\vec{x}, z) \to y \doteq z$
- add the congruence axioms for \doteq

- flatten clauses by term abstraction $C[t] \Rightarrow x \neq t \lor C[x]$
- replace functions f by relations r_f
- replace equations $y \doteq f(\vec{x})$ by atoms $r_f(\vec{x}, y)$
- require relations to be unambiguous by adding clauses $r_f(\vec{x}, y), r_f(\vec{x}, z) \to y \doteq z$
- add the congruence axioms for \doteq
- soundness: $\mathcal{K}^* \models C^*$ implies $\mathcal{K} \models C$

- flatten clauses by term abstraction $C[t] \Rightarrow x \neq t \lor C[x]$
- replace functions f by relations r_f
- replace equations $y \doteq f(\vec{x})$ by atoms $r_f(\vec{x}, y)$
- require relations to be unambiguous by adding clauses $r_f(\vec{x}, y), r_f(\vec{x}, z) \to y \doteq z$
- add the congruence axioms for \doteq
- soundness: $\mathcal{K}^* \models C^*$ implies $\mathcal{K} \models C$
- completeness (I): $\mathcal{K}^* \not\models C^*$ implies the existence of a finite \mathcal{K}^* -structure in which C^* is false

- flatten clauses by term abstraction $C[t] \Rightarrow x \neq t \lor C[x]$
- replace functions f by relations r_f
- replace equations $y \doteq f(\vec{x})$ by atoms $r_f(\vec{x}, y)$
- require relations to be unambiguous by adding clauses $r_f(\vec{x}, y), r_f(\vec{x}, z) \to y \doteq z$
- add the congruence axioms for \doteq
- soundness: $\mathcal{K}^* \models C^*$ implies $\mathcal{K} \models C$
- completeness (I): $\mathcal{K}^* \not\models C^*$ implies the existence of a finite \mathcal{K}^* -structure in which C^* is false
- completeness (II): if every finite \mathcal{K}^* -structure can be embedded into a \mathcal{K}^* -structure in which all relations are total, then $\mathcal{K}^* \not\models C^*$ implies $\mathcal{K} \not\models C$

THEOREM [Evans 51, Burris 95] Let \mathcal{K} be a finite set of Horn clauses. If every finite partial \mathcal{K} -algebra weakly embeds into \mathcal{K} , then the uniform word problem for \mathcal{K} is decidable in polynomial time.

Examples [Skolem 1920]: lattices, fragments of geometry

Note: embeddability is a property of a presentation, not of a quasi-variety

• functions may be partial

- functions may be partial
- weak homomorphisms $h: A \to B$:
 - if $f_A(\vec{a})$ defined then $f_B(h(\vec{a}))$ defined (but not vice-versa)

- functions may be partial
- weak homomorphisms $h : A \to B$: if $f_A(\vec{a})$ defined then $f_B(h(\vec{a}))$ defined (but not vice-versa)
- Evans' definition of (strong) truth:

$$A, \beta \models s_1 \doteq t_1, \dots, s_k \doteq t_k \rightarrow s \doteq t,$$

if whenever the β(s_i) and β(t_i) are defined and equal, then
(i) if β(s) and β(t) are defined then they are equal
(ii) if s = f(u₁,..., u_n), and if the β(u_i) and β(t) are
defined, then β(s) is also defined.

- functions may be partial
- weak homomorphisms $h : A \to B$: if $f_A(\vec{a})$ defined then $f_B(h(\vec{a}))$ defined (but not vice-versa)
- Evans' definition of (strong) truth:

$$A, \beta \models s_1 \doteq t_1, \dots, s_k \doteq t_k \rightarrow s \doteq t,$$

if whenever the β(s_i) and β(t_i) are defined and equal, then
(i) if β(s) and β(t) are defined then they are equal
(ii) if s = f(u₁,..., u_n), and if the β(u_i) and β(t) are
defined, then β(s) is also defined.

• in the relational encoding (i) is automatic, (ii) can be enforced Ad (i)

$$C = y \doteq a \rightarrow f(x, y) \doteq g(f(y, x), y)$$

becomes

$$C^* = r_a(z), y \doteq z, r_f(x, y, xy), r_f(y, x, yx), r_g(yx, y, u) \rightarrow xy \doteq u$$

Therefore, $A \models_{(i)} C$ iff $A^* \models C^*$.

Ad (i)

$$C = y \doteq a \rightarrow f(x, y) \doteq g(f(y, x), y)$$

becomes

$$C^* = r_a(z), y \doteq z, r_f(x, y, xy), r_f(y, x, yx), r_g(yx, y, u) \rightarrow xy \doteq u$$

Therefore, $A \models_{(i)} C$ iff $A^* \models C^*$.

Ad (ii) this can be expressed in Datalog by adding $r_a(z), y \doteq z, r_f(x, y, xy), r_f(y, x, yx) \rightarrow r_g(yx, y, xy)$ $r_a(z), y \doteq z, r_f(y, x, yx), r_g(yx, y, u) \rightarrow r_f(x, y, u)$ Ad (i)

$$C = y \doteq a \rightarrow f(x, y) \doteq g(f(y, x), y)$$

becomes

$$C^* = r_a(z), y \doteq z, r_f(x, y, xy), r_f(y, x, yx), r_g(yx, y, u) \rightarrow xy \doteq u$$

Therefore,
$$A \models_{(i)} C$$
 iff $A^* \models C^*$.

Ad (ii) this can be expressed in Datalog by adding $r_a(z), y \doteq z, r_f(x, y, xy), r_f(y, x, yx) \rightarrow r_g(yx, y, xy)$ $r_a(z), y \doteq z, r_f(y, x, yx), r_g(yx, y, u) \rightarrow r_f(x, y, u)$

Conclusion: Evans' "strong truth" is the canonical concept of truth from the Datalog point of view.

$$\mathcal{K} \models C \quad \text{iff} \quad \mathcal{K}_{\mathsf{st}(C)} \models C,$$

where $\mathcal{K}_{\mathsf{st}(C)}$ the set of ground instances of \mathcal{K} were each term is a subterm of C.

$$\mathcal{K} \models C \quad \text{iff} \quad \mathcal{K}_{\mathsf{st}(C)} \models C,$$

where $\mathcal{K}_{\mathsf{st}(C)}$ the set of ground instances of \mathcal{K} were each term is a subterm of C.

Results: - locality captures PTIME

- co-recursively enumerable but undecidable
- related to saturation by ordered resolution

$$\mathcal{K} \models C \quad \text{iff} \quad \mathcal{K}_{\mathsf{st}(C)} \models C,$$

where $\mathcal{K}_{\mathsf{st}(C)}$ the set of ground instances of \mathcal{K} were each term is a subterm of C.

Results: - locality captures PTIME

- co-recursively enumerable but undecidable
- related to saturation by ordered resolution

Examples: congruence closure, lattices, atomic set constraints, embeddability of terms, joinability in ground rewrite systems

$$\mathcal{K} \models C \quad \text{iff} \quad \mathcal{K}_{\mathsf{st}(C)} \models C,$$

where $\mathcal{K}_{\mathsf{st}(C)}$ the set of ground instances of \mathcal{K} were each term is a subterm of C.

Results: - locality captures PTIME

- co-recursively enumerable but undecidable
- related to saturation by ordered resolution

Examples: congruence closure, lattices, atomic set constraints, embeddability of terms, joinability in ground rewrite systems

Previously: only non-equational case considered

Definition: same (work with equational logic)

Specifics of Local Equational Theories

Definition: same (work with equational logic)

Results: basically the same

Specifics of Local Equational Theories

Definition: same (work with equational logic)
Results: basically the same
Example:

$$p(x) \doteq y \quad \rightarrow \quad s(y) \doteq x$$
$$s(x) \doteq y \quad \rightarrow \quad p(y) \doteq x$$
$$p(x) \doteq p(y) \quad \rightarrow \quad x \doteq y$$
$$s(x) \doteq s(y) \quad \rightarrow \quad x \doteq y$$

Definition: same (work with equational logic)
Results: basically the same
Example:

$$p(x) \doteq y \quad \rightarrow \quad s(y) \doteq x$$
$$s(x) \doteq y \quad \rightarrow \quad p(y) \doteq x$$
$$p(x) \doteq p(y) \quad \rightarrow \quad x \doteq y$$
$$s(x) \doteq s(y) \quad \rightarrow \quad x \doteq y$$

Counterexample:

$$s(p(x)) \doteq x$$
 $p(s(x)) \doteq x$

Definition: same (work with equational logic)
Results: basically the same

Example:

$$p(x) \doteq y \quad \rightarrow \quad s(y) \doteq x$$
$$s(x) \doteq y \quad \rightarrow \quad p(y) \doteq x$$
$$p(x) \doteq p(y) \quad \rightarrow \quad x \doteq y$$
$$s(x) \doteq s(y) \quad \rightarrow \quad x \doteq y$$

Counterexample:

$$s(p(x)) \doteq x$$
 $p(s(x)) \doteq x$

Observation: irredundant local theories have flat clauses only

THEOREM \mathcal{K} is local in equational logic iff $\mathcal{K} \cup EQ$ is local in non-equational logic. **THEOREM** \mathcal{K} is local in equational logic iff $\mathcal{K} \cup EQ$ is local in non-equational logic.

So what? better complexity if equality is internal

THEOREM K is local in equational logic iff K ∪ EQ is local in non-equational logic.
So what? better complexity if equality is internal
Stable locality: allow theory variables to be instantiated by arbitrary query subterms THEOREM K is local in equational logic iff K ∪ EQ is local in non-equational logic.
So what? better complexity if equality is internal
Stable locality: allow theory variables to be instantiated by arbitrary query subterms

Example:

$$s(p(x)) \doteq x$$
 $p(s(x)) \doteq x$

THEOREM K is local in equational logic iff K ∪ EQ is local in non-equational logic.
So what? better complexity if equality is internal
Stable locality: allow theory variables to be instantiated by arbitrary query subterms

Example:

$$s(p(x)) \doteq x$$
 $p(s(x)) \doteq x$

Locality vs stable locality: \mathcal{K} local $\Rightarrow \mathcal{K}$ stably local $\Rightarrow \mathcal{K}'$ local $(\mathcal{K}' \text{ obtained from massaging } \mathcal{K})$

THEOREM \mathcal{K} is local $\Rightarrow \mathcal{K}$ weakly embeds $\Rightarrow \mathcal{K}$ is stably local

THEOREM \mathcal{K} is local $\Rightarrow \mathcal{K}$ weakly embeds $\Rightarrow \mathcal{K}$ is stably local **Proof ideas**:

- consider the subterms of queries C as the elements of a partial \mathcal{K} -algebra F
- if C is entailed, but not locally entailed, then F cannot be weakly embedded into $\mathcal K$

THEOREM \mathcal{K} is local $\Rightarrow \mathcal{K}$ weakly embeds $\Rightarrow \mathcal{K}$ is stably local **Proof ideas**:

- consider the subterms of queries C as the elements of a partial \mathcal{K} -algebra F
- if C is entailed, but not locally entailed, then F cannot be weakly embedded into $\mathcal K$
- Conversely if some F cannot be embedded, the function table of F gives us the defining relations of a word problem that is solvable, but not locally entailed

THEOREM \mathcal{K} is local $\Rightarrow \mathcal{K}$ weakly embeds $\Rightarrow \mathcal{K}$ is stably local **Proof ideas**:

- consider the subterms of queries C as the elements of a partial \mathcal{K} -algebra F
- if C is entailed, but not locally entailed, then F cannot be weakly embedded into $\mathcal K$
- Conversely if some F cannot be embedded, the function table of F gives us the defining relations of a word problem that is solvable, but not locally entailed
- Technicalities are a bit messy, hence the two notions of locality

Full substructures of K are denoted by S(K).

Full substructures of K are denoted by S(K).

Arbitrary substructures of K are denoted by $\overline{S}(K)$.

Full substructures of K are denoted by S(K).

Arbitrary substructures of K are denoted by $\overline{S}(K)$.

Observe:

 $\overline{S}(\mathcal{K}^*) = \{ P^* \mid P \text{ weakly embeds into an algebra } A \in \mathcal{K} \}.$

Full substructures of K are denoted by S(K).

Arbitrary substructures of K are denoted by $\overline{S}(K)$.

Observe:

 $\overline{S}(\mathcal{K}^*) = \{ P^* \mid P \text{ weakly embeds into an algebra } A \in \mathcal{K} \}.$

THEOREM (Burris 95) Let \mathcal{K} be a quasi-variety over Σ such that there is a finite set of Horn clauses H over Σ^* with $S(\mathcal{K}^*) \subseteq H \subseteq \overline{S}(\mathcal{K}^*)$. Then the uniform word problem for \mathcal{K} is decidable in polynomial time.

Full substructures of K are denoted by S(K).

Arbitrary substructures of K are denoted by $\overline{S}(K)$.

Observe:

 $\overline{S}(\mathcal{K}^*) = \{ P^* \mid P \text{ weakly embeds into an algebra } A \in \mathcal{K} \}.$

THEOREM (Burris 95) Let \mathcal{K} be a quasi-variety over Σ such that there is a finite set of Horn clauses H over Σ^* with $S(\mathcal{K}^*) \subseteq H \subseteq \overline{S}(\mathcal{K}^*)$. Then the uniform word problem for \mathcal{K} is decidable in polynomial time.

(Call \mathcal{K} (finitely) relationally axiomatizable in this case.)

THEOREM

- \mathcal{K} is local
- \Rightarrow ${\cal K}$ has presentation with the embedda bility property
- $\Rightarrow \mathcal{K}$ relationally axiomatizable
- \Rightarrow ${\cal K}$ has a stably local presentation

THEOREM

- \mathcal{K} is local
- \Rightarrow ${\cal K}$ has presentation with the embedda bility property
- $\Rightarrow \mathcal{K}$ relationally axiomatizable
- $\Rightarrow \mathcal{K}$ has a stably local presentation

Proof ideas:

- obtain a relational axiomatization from a local presentation by its relational approximation
- construct a local presentation from any relational axiomatization by turning relations back into functions

- seemingly different criteria are essentially equivalent
- work about locality has more to say about how to find local representations
- subterm property (+ Horn case) essential for PTIME
- elimination of the congruence axioms $x \doteq y \to f(x) \doteq f(y)$ by flattening
- finite partial algebras from relational approximation
- potential applications: combination results by amalgamation

- seemingly different criteria are essentially equivalent
- work about locality has more to say about how to find local representations
- subterm property (+ Horn case) essential for PTIME
- elimination of the congruence axioms $x \doteq y \to f(x) \doteq f(y)$ by flattening
- finite partial algebras from relational approximation
- potential applications: combination results by amalgamation

- seemingly different criteria are essentially equivalent
- work about locality has more to say about how to find local representations
- subterm property (+ Horn case) essential for PTIME
- elimination of the congruence axioms $x \doteq y \to f(x) \doteq f(y)$ by flattening
- finite partial algebras from relational approximation
- potential applications: combination results by amalgamation

- seemingly different criteria are essentially equivalent
- work about locality has more to say about how to find local representations
- subterm property (+ Horn case) essential for PTIME
- elimination of the congruence axioms $x \doteq y \to f(x) \doteq f(y)$ by flattening
- finite partial algebras from relational approximation
- potential applications: combination results by amalgamation

- seemingly different criteria are essentially equivalent
- work about locality has more to say about how to find local representations
- subterm property (+ Horn case) essential for PTIME
- elimination of the congruence axioms $x \doteq y \to f(x) \doteq f(y)$ by flattening
- finite partial algebras from relational approximation
- potential applications: combination results by amalgamation

- seemingly different criteria are essentially equivalent
- work about locality has more to say about how to find local representations
- subterm property (+ Horn case) essential for PTIME
- elimination of the congruence axioms $x \doteq y \to f(x) \doteq f(y)$ by flattening
- finite partial algebras from relational approximation
- potential applications: combination results by amalgamation