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Example: Theories of Data Structures 3

Natural numbers with inequality

s(n)
.
= s(m) → n

.
=m

→ (0 < s(n))
.
=>

(s(n) < 0)
.
=> →

(n < m)
.
=> → (s(n) < s(m))

.
=>

(s(n) < s(m))
.
=> → (n < m)

.
=>

Lists

→ car(cons(x, y))
.
= x

→ cdr(cons(x, y))
.
= y

→ length(nil)
.
= 0

→ length(cons(x, y))
.
= s(length(y))



Terminology 4

logic algebra

universal Horn theory K quasi-variety K−alg

entailment problem K |= C uniform word problem
for universal/ground Horn clauses C

query C = Γ→ s
.
= t defining relations Γ, and

word problem s
.
= t

var(C) generators
(= Skolem constants of ¬C)



Skolem and Datalog (1920) 5

Given K
?

|= C, consider the relational approximation K∗
?

|= C∗:

• flatten clauses by term abstraction C[t] ⇒ x 6 .= t ∨ C[x]

• replace functions f by relations rf

• replace equations y
.
= f(~x) by atoms rf (~x, y)

• require relations to be unambiguous by adding clauses

rf (~x, y), rf (~x, z)→ y
.
= z

• add the congruence axioms for
.
=

• soundness: K∗ |= C∗ implies K |= C

• completeness (I): K∗ 6|= C∗ implies the existence of a finite

K∗-structure in which C∗ is false

• completeness (II): if every finite K∗-structure can be

embedded into a K∗-structure in which all relations are

total, then K∗ 6|= C∗ implies K 6|= C
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Evans’ Embeddability Criterion 6

Theorem [Evans 51, Burris 95] Let K be a finite set of Horn

clauses. If every finite partial K-algebra weakly embeds into K,

then the uniform word problem for K is decidable in polynomial

time.

Examples [Skolem 1920]: lattices, fragments of geometry

Note: embeddability is a property of a presentation, not of a

quasi-variety



Partial Algebras from Relational Structures 7

• functions may be partial

• weak homomorphisms h : A→ B:

if fA(~a) defined then fB(h(~a)) defined (but not vice-versa)

• Evans’ definition of (strong) truth:

A, β |= s1
.
= t1, . . . , sk

.
= tk → s

.
= t,

if whenever the β(si) and β(ti) are defined and equal, then

(i) if β(s) and β(t) are defined then they are equal

(ii) if s = f(u1, . . . , un), and if the β(ui) and β(t) are

defined, then β(s) is also defined.
• in the relational encoding (i) is automatic, (ii) can be

enforced
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Example 8

Ad (i)

C = y
.
= a → f(x, y)

.
= g(f(y, x), y)

becomes

C∗ = ra(z), y
.
= z, rf (x, y, xy), rf (y, x, yx), rg(yx, y, u) → xy

.
=u

Therefore, A |=(i) C iff A∗ |= C∗.

Ad (ii) this can be expressed in Datalog by adding

ra(z), y
.
= z, rf (x, y, xy), rf (y, x, yx)→ rg(yx, y, xy)

ra(z), y
.
= z, rf (y, x, yx), rg(yx, y, u)→ rf (x, y, u)

Conclusion: Evans’ “strong truth” is the canonical concept of

truth from the Datalog point of view.
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Local Theories [Givan, McAllester 92] 9

Definition: K is local, if for ground Horn clauses C

K |= C iff Kst(C) |= C,

where Kst(C) the set of ground instances of K were each term

is a subterm of C.

Results: - locality captures PTIME

- co-recursively enumerable but undecidable

- related to saturation by ordered resolution

Examples: congruence closure, lattices, atomic set constraints,

embeddability of terms, joinability in ground rewrite systems

Previously: only non-equational case considered
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Specifics of Local Equational Theories 10

Definition: same (work with equational logic)

Results: basically the same

Example:

p(x)
.
= y → s(y)

.
= x

s(x)
.
= y → p(y)

.
= x

p(x)
.
= p(y) → x

.
= y

s(x)
.
= s(y) → x

.
= y

Counterexample:

s(p(x))
.
=x p(s(x))

.
= x

Observation: irredundant local theories have flat clauses only
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Specifics of Local Equational Theories (II) 11

Theorem K is local in equational logic

iff K ∪ EQ is local in non-equational logic.

So what? better complexity if equality is internal

Stable locality: allow theory variables to be instantiated by

arbitrary query subterms

Example:

s(p(x))
.
=x p(s(x))

.
= x

Locality vs stable locality: K local ⇒ K stably local ⇒ K′ local

(K′ obtained from massaging K)
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Embeddability vs Locality 12

Theorem K is local ⇒ K weakly embeds ⇒ K is stably local

Proof ideas:

- consider the subterms of queries C as the elements of a

partial K-algebra F

- if C is entailed, but not locally entailed, then F cannot be

weakly embedded into K
Conversely if some F cannot be embedded, the function table of

F gives us the defining relations of a word problem that is

solvable, but not locally entailed

Technicalities are a bit messy, hence the two notions of locality
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Burris’ Axiomatizability Criterion 13

Let K be a class of relational structures.

Full substructures of K are denoted by S(K).

Arbitrary substructures of K are denoted by S(K).

Observe:

S(K∗) = {P ∗ | P weakly embeds into an algebra A ∈ K}.
Theorem (Burris 95) Let K be a quasi-variety over Σ such that

there is a finite set of Horn clauses H over Σ∗ with

S(K∗) ⊆ H ⊆ S(K∗). Then the uniform word problem for K
is decidable in polynomial time.

(Call K (finitely) relationally axiomatizable in this case.)
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