Meta-Complexity Theorems for Bottom-up Logic Programs

Harald Ganzinger
Max-Planck-Institut für Informatik
David McAllester
ATT Bell-Labs Research

Introduction

- logic programming of efficient algorithms
- complexity analysis through general meta-complexity theorems
- guaranteed execution time
- logical aspects of fundamental algorithmic paradigms (dynamic programming, union-find, congruence closure, priority queues)
- application to program analysis:
type inference system $=$ algorithm
- recent papers:

McAllester [SAS99], Ganzinger/McAllester [IJCAR01]

- related work: efficient fixpoint iteration by Nielson/Seidl [2001]
- logic programming of efficient algorithms
- complexity analysis through general meta-complexity theorems
- guaranteed execution time
- logical aspects of fundamental algorithmic paradigms (dynamic programming, union-find, congruence closure, priority queues)
- application to program analysis:
type inference system $=$ algorithm
- recent papers:

McAllester [SAS99], Ganzinger/McAllester [IJCAR01]

- related work: efficient fixpoint iteration by Nielson/Seidl [2001]

Introduction

- logic programming of efficient algorithms
- complexity analysis through general meta-complexity theorems
- guaranteed execution time
- logical aspects of fundamental algorithmic paradigms (dynamic programming, union-find, congruence closure, priority queues)
- application to program analysis:
type inference system $=$ algorithm
- recent papers:

McAllester [SAS99], Ganzinger/McAllester [IJCAR01]

- related work: efficient fixpoint iteration by Nielson/Seidl [2001]
- logic programming of efficient algorithms
- complexity analysis through general meta-complexity theorems
- guaranteed execution time
- logical aspects of fundamental algorithmic paradigms (dynamic programming, union-find, congruence closure, priority queues)
- application to program analysis:
type inference system $=$ algorithm
- recent papers:

McAllester [SAS99], Ganzinger/McAllester [IJCAR01]

- related work: efficient fixpoint iteration by Nielson/Seidl [2001]
- logic programming of efficient algorithms
- complexity analysis through general meta-complexity theorems
- guaranteed execution time
- logical aspects of fundamental algorithmic paradigms (dynamic programming, union-find, congruence closure, priority queues)
- application to program analysis: type inference system $=$ algorithm
- recent papers:

McAllester [SAS99], Ganzinger/McAllester [IJCAR01]

- related work: efficient fixpoint iteration by Nielson/Seidl [2001]
- logic programming of efficient algorithms
- complexity analysis through general meta-complexity theorems
- guaranteed execution time
- logical aspects of fundamental algorithmic paradigms (dynamic programming, union-find, congruence closure, priority queues)
- application to program analysis:
type inference system = algorithm
- recent papers:

McAllester [SAS99], Ganzinger/McAllester [IJCAR01]

- related work: efficient fixpoint iteration by Nielson/Seidl [2001]
- logic programming of efficient algorithms
- complexity analysis through general meta-complexity theorems
- guaranteed execution time
- logical aspects of fundamental algorithmic paradigms (dynamic programming, union-find, congruence closure, priority queues)
- application to program analysis:
type inference system $=$ algorithm
- recent papers:

McAllester [SAS99], Ganzinger/McAllester [IJCAR01]

- related work: efficient fixpoint iteration by Nielson/Seidl [2001]

1st meta-complexity theorem
Language: bottom-up logic programs
Algorithmic ingredients: dynamic programming, indexing
Examples: (interprocedural) reachability
2nd meta-complexity theorem
Language: logic programs with deletion and priorities
Logical basis: saturation up to redundancy
Examples: union-find, congruence closure, Henglein's subtype analysis

3rd meta-complexity theorem
Language: logic programs with deletion and instance priorities
Algorithmic ingredients: priority queues
Examples: shortest paths, minimal spanning trees

1st meta-complexity theorem
Language: bottom-up logic programs
Algorithmic ingredients: dynamic programming, indexing
Examples: (interprocedural) reachability
2nd meta-complexity theorem
Language: logic programs with deletion and priorities
Logical basis: saturation up to redundancy
Examples: union-find, congruence closure, Henglein's subtype analysis

3rd meta-complexity theorem
Language: logic programs with deletion and instance priorities
Algorithmic ingredients: priority queues
Examples: shortest paths, minimal spanning trees

1st meta-complexity theorem

Language: bottom-up logic programs
Algorithmic ingredients: dynamic programming, indexing
Examples: (interprocedural) reachability
2nd meta-complexity theorem
Language: logic programs with deletion and priorities
Logical basis: saturation up to redundancy
Examples: union-find, congruence closure, Henglein's subtype analysis

3rd meta-complexity theorem
Language: logic programs with deletion and instance priorities
Algorithmic ingredients: priority queues
Examples: shortest paths, minimal spanning trees

this talk

Reachability in Graphs

Database:

$$
D=\{e(u, v) \mid(u, v) \in E\} \cup\{s(u) \mid u \text { a source node }\}
$$

Reachability in Graphs

Database:

$$
D=\{e(u, v) \mid(u, v) \in E\} \cup\{s(u) \mid u \text { a source node }\}
$$

Inference system:

$$
\begin{array}{cc}
& r(u) \\
\frac{s(u)}{r(u)} & \frac{e(u, v)}{r(v)}
\end{array}
$$

Reachability in Graphs

Database:

$$
D=\{e(u, v) \mid(u, v) \in E\} \cup\{s(u) \mid u \text { a source node }\}
$$

Inference system:

$$
\begin{array}{cc}
& r(u) \\
\frac{s(u)}{r(u)} & \frac{e(u, v)}{r(v)}
\end{array}
$$

Clause notation: $s(u) \supset r(u) \quad r(u), e(u, v) \supset r(v)$

Reachability in Graphs

Database:

$$
D=\{e(u, v) \mid(u, v) \in E\} \cup\{s(u) \mid u \text { a source node }\}
$$

Inference system:

$$
\begin{gathered}
\\
\frac{s(u)}{r(u)}
\end{gathered} \begin{gathered}
r(u) \\
\\
\frac{e(u, v)}{r(v)}
\end{gathered}
$$

Clause notation: $s(u) \supset r(u) \quad r(u), e(u, v) \supset r(v)$
Closure:

$$
R^{*}(D)=D \cup\{r(u) \mid u \text { reachable from a source }\}
$$

Example

Database
$s(1), e(1,3), e(1,4), e(2,3), e(3,4), e(4,3)$

Database
$s(1), e(1,3), e(1,4), e(2,3), e(3,4), e(4,3), r(1)$

Database
$s(1), e(1,3), e(1,4), e(2,3), e(3,4), e(4,3), r(1), r(3)$

Database
$s(1), e(1,3), e(1,4), e(2,3), e(3,4), e(4,3), r(1), r(3), r(4)$

Database
$s(1), e(1,3), e(1,4), e(2,3), e(3,4), e(4,3), r(1), r(3), r(4)$
\Rightarrow saturated.

First Meta-Complexity Theorem

Bottom-up computation: match prefixes of antecedents against database and fire conclusions

First Meta-Complexity Theorem

Bottom-up computation: match prefixes of antecedents against database and fire conclusions
prefix firings:

$$
\begin{gathered}
\pi_{R}(D)=\mid\left\{(r \sigma, i) \mid r=A_{1} \wedge \ldots \wedge A_{i} \wedge \ldots \wedge A_{n} \supset A_{0} \in R\right. \\
\left.A_{j} \sigma \in D, \text { for } 1 \leq j \leq i\right\} \mid
\end{gathered}
$$

Bottom-up computation: match prefixes of antecedents against database and fire conclusions
prefix firings:

$$
\begin{gathered}
\pi_{R}(D)=\mid\left\{(r \sigma, i) \mid r=A_{1} \wedge \ldots \wedge A_{i} \wedge \ldots \wedge A_{n} \supset A_{0} \in R\right. \\
\left.A_{j} \sigma \in D, \text { for } 1 \leq j \leq i\right\} \mid
\end{gathered}
$$

Theorem [McAllester 1999] Let R be an inference system such that $R^{*}(D)$ is finite. Then $R^{*}(D)$ can be computed in time $O\left(\|D\|+\pi_{R}\left(R^{*}(D)\right)\right)$.

Bottom-up computation: match prefixes of antecedents against database and fire conclusions
prefix firings:

$$
\begin{gathered}
\pi_{R}(D)=\mid\left\{(r \sigma, i) \mid r=A_{1} \wedge \ldots \wedge A_{i} \wedge \ldots \wedge A_{n} \supset A_{0} \in R\right. \\
\left.A_{j} \sigma \in D, \text { for } 1 \leq j \leq i\right\} \mid
\end{gathered}
$$

Theorem [McAllester 1999] Let R be an inference system such that $R^{*}(D)$ is finite. Then $R^{*}(D)$ can be computed in time $O\left(\|D\|+\pi_{R}\left(R^{*}(D)\right)\right)$.

Corollary [Dowling, Gallier 1984] If R is ground, $R^{*}(D)$ can be computed in time $O(\|D\|+\|R\|)$.

Bottom-up computation: match prefixes of antecedents against database and fire conclusions
prefix firings:

$$
\begin{gathered}
\pi_{R}(D)=\mid\left\{(r \sigma, i) \mid r=A_{1} \wedge \ldots \wedge A_{i} \wedge \ldots \wedge A_{n} \supset A_{0} \in R\right. \\
\left.A_{j} \sigma \in D, \text { for } 1 \leq j \leq i\right\} \mid
\end{gathered}
$$

Theorem [McAllester 1999] Let R be an inference system such that $R^{*}(D)$ is finite. Then $R^{*}(D)$ can be computed in time $O\left(\|D\|+\pi_{R}\left(R^{*}(D)\right)\right)$.

Corollary [Dowling, Gallier 1984] If R is ground, $R^{*}(D)$ can be computed in time $O(\|D\|+\|R\|)$.

Extension: constraints for which each solution can be computed in time $O(1)$

Reachability in Graphs

$$
\begin{array}{cc}
s(u) \\
r(u) & \frac{e(u)}{r(v)}
\end{array}
$$

Reachability in Graphs

$$
\begin{array}{ccc}
\frac{s(u)}{r(u)} O(|V|) & O(|V|) \\
\frac{e(u, v)}{r(v)}
\end{array}
$$

Reachability in Graphs

$$
\begin{aligned}
& \\
& \frac{s(u)}{r(u)} O(|V|)
\end{aligned} \begin{array}{cr}
r(u) & O(|V|) \\
& \frac{e(u, v)}{r(v)} \\
+O(|E|)
\end{array}
$$

Theorem Reachability can be decided in linear time.

Interprocedural Reachability: Database

program

```
procedure main
begin
    declare x: int
    read(x)
    call p(x)
end
procedure p(a:int)
begin
    if a>0 then
        read(g)
        a:=a-g
        call p(a)
        print(a)
    fi
15 end
```

facts
$\operatorname{proc}($ main $, 2,6)$
$\operatorname{next}($ main $, 2,5)$
$\operatorname{call(main}, p, 5,6)$
$\operatorname{proc}(\mathrm{p}, 8,15)$
next ($\mathrm{p}, 8,12$)
call (p, p, 12, 13)
next ($p, 13,15$)
next ($\mathrm{p}, 8,15$)

Read " $P \Rightarrow L$ " as "in procedure P label L can be reached".

$$
\frac{\operatorname{proc}\left(P, B_{P}, E_{P}\right)}{P \Rightarrow B_{P}}
$$

	$\operatorname{call}\left(Q, P, L_{c}, R_{r}\right)$
	$\operatorname{proc}\left(P, B_{P}, E_{P}\right)$
$n \operatorname{next}\left(Q, L, L^{\prime}\right)$	$P \Rightarrow E_{P}$
$Q \Rightarrow L$	$Q \Rightarrow L_{c}$
$Q \Rightarrow L^{\prime}$	

Interprocedural Reachability: Rules

Read " $P \Rightarrow L$ " as "in procedure P label L can be reached".

$$
\frac{\operatorname{proc}\left(P, B_{P}, E_{P}\right) \quad O(n)}{P \Rightarrow B_{P}}
$$

	$\operatorname{call}\left(Q, P, L_{c}, R_{r}\right)$
	$\operatorname{proc}\left(P, B_{P}, E_{P}\right)$
$n \operatorname{next}\left(Q, L, L^{\prime}\right)$	$P \Rightarrow E_{P}$
$Q \Rightarrow L$	$Q \Rightarrow L_{c}$
$Q \Rightarrow L^{\prime}$	$Q \Rightarrow L_{r}$

Interprocedural Reachability: Rules

Read " $P \Rightarrow L$ " as "in procedure P label L can be reached".

$$
\frac{\operatorname{proc}\left(P, B_{P}, E_{P}\right) \quad O(n)}{P \Rightarrow B_{P}}
$$

| | $\operatorname{call}\left(Q, P, L_{c}, R_{r}\right)$ |
| :--- | :--- | :--- |
| | $\operatorname{proc}\left(P, B_{P}, E_{P}\right)$ |
| $n \operatorname{next}\left(Q, L, L^{\prime}\right) \quad O(n)$ | |
| $Q \Rightarrow L$ | $P \Rightarrow E_{P}$ |
| $Q \Rightarrow L^{\prime}$ | $Q \Rightarrow L_{c}$ |

Interprocedural Reachability: Rules

Read " $P \Rightarrow L$ " as "in procedure P label L can be reached".

$$
\frac{\operatorname{proc}\left(P, B_{P}, E_{P}\right) \quad O(n)}{P \Rightarrow B_{P}}
$$

		$\operatorname{call}\left(Q, P, L_{c}, R_{r}\right)$
		$\operatorname{proc}\left(P, B_{P}, E_{P}\right)$
$n \operatorname{ext}\left(Q, L, L^{\prime}\right)$	$O(n)$	$P \Rightarrow E_{P}$
$Q \Rightarrow L$	* $O(1)$	$Q \Rightarrow L_{c}$
$Q \Rightarrow L^{\prime}$		$Q \Rightarrow L_{r}$

Interprocedural Reachability: Rules

Read " $P \Rightarrow L$ " as "in procedure P label L can be reached".

$$
\frac{\operatorname{proc}\left(P, B_{P}, E_{P}\right) \quad O(n)}{P \Rightarrow B_{P}}
$$

Interprocedural Reachability: Rules

Read " $P \Rightarrow L$ " as "in procedure P label L can be reached".

$$
\frac{\operatorname{proc}\left(P, B_{P}, E_{P}\right) \quad O(n)}{P \Rightarrow B_{P}}
$$

		$\begin{aligned} & \operatorname{call}\left(Q, P, L_{c}, R_{r}\right) \\ & \operatorname{proc}\left(P, B_{P}, E_{P}\right) \end{aligned}$	$\begin{aligned} & O(n) \\ & * O(1) \end{aligned}$
$n \operatorname{ext}\left(Q, L, L^{\prime}\right)$	$O(n)$	$P \Rightarrow E_{P}$	
$Q \Rightarrow L$	* $O(1)$	$Q \Rightarrow L_{c}$	
$Q \Rightarrow L^{\prime}$		$Q \Rightarrow L_{r}$	

Interprocedural Reachability: Rules

Read " $P \Rightarrow L$ " as "in procedure P label L can be reached".

$$
\frac{\operatorname{proc}\left(P, B_{P}, E_{P}\right) \quad O(n)}{P \Rightarrow B_{P}}
$$

$$
\begin{array}{ll}
\operatorname{next}\left(Q, L, L^{\prime}\right) & O(n) \\
Q \Rightarrow L & * O(1) \\
& Q \Rightarrow L^{\prime}
\end{array}
$$

\[

\]

Interprocedural Reachability: Rules

Read " $P \Rightarrow L$ " as "in procedure P label L can be reached".

$$
\frac{\operatorname{proc}\left(P, B_{P}, E_{P}\right) \quad O(n)}{P \Rightarrow B_{P}}
$$

		$\operatorname{call}\left(Q, P, L_{c}, R_{r}\right)$	$O(n)$
		$\operatorname{proc}\left(P, B_{P}, E_{P}\right)$	* $O(1)$
$n \operatorname{ext}\left(Q, L, L^{\prime}\right)$	$O(n)$	$P \Rightarrow E_{P}$	* $O(1)$
$Q \Rightarrow L$	* $O(1)$	$Q \Rightarrow L_{c}$	* $O(1)$
$Q \Rightarrow L^{\prime}$		$Q \Rightarrow L_{r}$	

Theorem $I P R^{*}(D)$ can be computed in time $O(n)$, with $n=\|D\|$.

Proof of the Meta-Complexity Theorem I

Assumption: all terms in fully shared form

Proof of the Meta-Complexity Theorem I

Assumption: all terms in fully shared form

Matching: in $O(1)$ (for atoms in rules against atoms in D)

Assumption: all terms in fully shared form

Matching: in $O(1)$ (for atoms in rules against atoms in D)

Unary Rules $A \supset B$: matching of A against each atom in $R(D)$, plus construction of B, costs total time $O(|R(D)|)$

Assumption: all terms in fully shared form

Matching: in $O(1)$ (for atoms in rules against atoms in D)
Unary Rules $A \supset B$: matching of A against each atom in $R(D)$, plus construction of B, costs total time $O(|R(D)|)$

Note: programs not cons-free

Assumption: all terms in fully shared form

Matching: in $O(1)$ (for atoms in rules against atoms in D)
Unary Rules $A \supset B$: matching of A against each atom in $R(D)$, plus construction of B, costs total time $O(|R(D)|)$

Note: programs not cons-free
Problem: avoiding $O\left(|R(D)|^{k}\right)$ for rules of length k

Proof of the Meta-Complexity Theorem II

Data structure for rules ρ of the form $p(X, Y) \wedge q(Y, Z) \supset r(X, Y, Z)$

Data structure for rules ρ of the form $p(X, Y) \wedge q(Y, Z) \supset r(X, Y, Z)$

Proof of the Meta-Complexity Theorem II

Data structure for rules ρ of the form $p(X, Y) \wedge q(Y, Z) \supset r(X, Y, Z)$

Upon adding a fact $p(e, t)$, fire all $r(e, t, z)$, for z on the q-list of $A[t]$.

Data structure for rules ρ of the form $p(X, Y) \wedge q(Y, Z) \supset r(X, Y, Z)$

Upon adding a fact $p(e, t)$, fire all $r(e, t, z)$, for z on the q-list of $A[t]$. The inference system can be transformed (maintaining π) so that it contains only unary rules and binary rules of the form ρ.

- memory consumption often much smaller
- memory consumption often much smaller
- if $R^{*}(D)$ infinite, consider $R^{*}(D) \cap \operatorname{atoms}(\operatorname{subterms}(D))$
\Rightarrow concept of local inference systems (Givan, McAllester 1993)
- memory consumption often much smaller
- if $R^{*}(D)$ infinite, consider $R^{*}(D) \cap$ atoms(subterms $\left.(D)\right)$ \Rightarrow concept of local inference systems (Givan, McAllester 1993)
- in the presence of transitivity laws, complexity is in $\Omega\left(n^{3}\right)$

II. Redundancy, Deletion, and Priorities

- redundant information causes inefficiency

$$
\begin{aligned}
& \quad D=\left\{\ldots, \operatorname{dist}(x) \leq d, \operatorname{dist}(x) \leq d^{\prime}, d^{\prime}<d, \ldots\right\} \\
& \Rightarrow \text { delete } \operatorname{dist}(x) \leq d
\end{aligned}
$$

- redundant information causes inefficiency

$$
\begin{aligned}
& \quad D=\left\{\ldots, \operatorname{dist}(x) \leq d, \operatorname{dist}(x) \leq d^{\prime}, d^{\prime}<d, \ldots\right\} \\
& \Rightarrow \text { delete } \operatorname{dist}(x) \leq d
\end{aligned}
$$

- Notation: antecedents to be deleted in parenthesis [...]

$$
\ldots,[A], \ldots, A^{\prime}, \ldots,\left[A^{\prime \prime}\right], \ldots \supset B
$$

- redundant information causes inefficiency

$$
\begin{aligned}
& \quad D=\left\{\ldots, \operatorname{dist}(x) \leq d, \operatorname{dist}(x) \leq d^{\prime}, d^{\prime}<d, \ldots\right\} \\
& \Rightarrow \text { delete } \operatorname{dist}(x) \leq d
\end{aligned}
$$

- Notation: antecedents to be deleted in parenthesis [...]

- in the presence of deletion, computations are nondeterministic:

$$
P \supset Q \quad[Q] \supset S \quad[Q] \supset W
$$

\Rightarrow either S or W can be derived, but not both

- redundant information causes inefficiency

$$
\begin{aligned}
& \quad D=\left\{\ldots, \operatorname{dist}(x) \leq d, \operatorname{dist}(x) \leq d^{\prime}, d^{\prime}<d, \ldots\right\} \\
& \Rightarrow \text { delete } \operatorname{dist}(x) \leq d
\end{aligned}
$$

- Notation: antecedents to be deleted in parenthesis [...]

$$
\ldots,[A], \ldots, A^{\prime}, \ldots,\left[A^{\prime \prime}\right], \ldots \supset B
$$

- in the presence of deletion, computations are nondeterministic:

$$
P \supset Q \quad[Q] \supset S \quad[Q] \supset W
$$

\Rightarrow either S or W can be derived, but not both

- non-determinism don't-care and/or restricted by priorities
- rules can have antecedents to be deleted after firing
- rules can have antecedents to be deleted after firing
- priorities assigned to rule schemes
- rules can have antecedents to be deleted after firing
- priorities assigned to rule schemes
- computation states S contain positive and negative (deleted) atoms
- rules can have antecedents to be deleted after firing
- priorities assigned to rule schemes
- computation states S contain positive and negative (deleted) atoms
- A visible in S if $A \in S$ and $\neg A \notin S$ (deletions are permanent)
- rules can have antecedents to be deleted after firing
- priorities assigned to rule schemes
- computation states S contain positive and negative (deleted) atoms
- A visible in S if $A \in S$ and $\neg A \notin S$ (deletions are permanent)
- $\Gamma \supset B$ applicable in S if
- each atom in Γ is visible in S, and
- rule application changes S (by adding B or some $\neg A$)
- rules can have antecedents to be deleted after firing
- priorities assigned to rule schemes
- computation states S contain positive and negative (deleted) atoms
- A visible in S if $A \in S$ and $\neg A \notin S$ (deletions are permanent)
- $\Gamma \supset B$ applicable in S if
- each atom in Γ is visible in S, and
- rule application changes S (by adding B or some $\neg A$)
- S visible to a rule if no higher-priority rule is applicable in S
- rules can have antecedents to be deleted after firing
- priorities assigned to rule schemes
- computation states S contain positive and negative (deleted) atoms
- A visible in S if $A \in S$ and $\neg A \notin S$ (deletions are permanent)
- Γ ○ B applicable in S if
- each atom in Γ is visible in S, and
- rule application changes S (by adding B or some $\neg A$)
- S visible to a rule if no higher-priority rule is applicable in S
- computations are maximal sequences of applications of visible rules
- rules can have antecedents to be deleted after firing
- priorities assigned to rule schemes
- computation states S contain positive and negative (deleted) atoms
- A visible in S if $A \in S$ and $\neg A \notin S$ (deletions are permanent)
- Γ ○ B applicable in S if
- each atom in Γ is visible in S, and
- rule application changes S (by adding B or some $\neg A$)
- S visible to a rule if no higher-priority rule is applicable in S
- computations are maximal sequences of applications of visible rules
- the final state of a computation starting with D is called an (R-) saturation of D

Second Meta-Complexity Theorem

Let $\mathcal{C}=S_{0}, S_{1}, \ldots, S_{T}$ be a computation.
Prefix firing in \mathcal{C} : pair $(r \sigma, i)$ such that for some $0 \leq t<T$:
$-r=A_{1} \wedge \ldots \wedge A_{i} \wedge \ldots \wedge A_{n} \supset A_{0} \in R$

- S_{t} visible to r
- $A_{j} \sigma$ visible in S_{t}, for $1 \leq j \leq i$

Second Meta-Complexity Theorem

Let $\mathcal{C}=S_{0}, S_{1}, \ldots, S_{T}$ be a computation.
Prefix firing in \mathcal{C} : pair $(r \sigma, i)$ such that for some $0 \leq t<T$:
$-r=A_{1} \wedge \ldots \wedge A_{i} \wedge \ldots \wedge A_{n} \supset A_{0} \in R$

- S_{t} visible to r
$-A_{j} \sigma$ visible in S_{t}, for $1 \leq j \leq i$
Prefix count: $\pi_{R}(D)=\max \{\mid$ p.f. $(\mathcal{C})| | \mathcal{C}$ a computation from $D\}$

Let $\mathcal{C}=S_{0}, S_{1}, \ldots, S_{T}$ be a computation.
Prefix firing in \mathcal{C} : pair $(r \sigma, i)$ such that for some $0 \leq t<T$:
$-r=A_{1} \wedge \ldots \wedge A_{i} \wedge \ldots \wedge A_{n} \supset A_{0} \in R$

- S_{t} visible to r
- $A_{j} \sigma$ visible in S_{t}, for $1 \leq j \leq i$

Prefix count: $\pi_{R}(D)=\max \{\mid$ p.f. $(\mathcal{C})| | \mathcal{C}$ a computation from $D\}$
Theorem [Ganzinger/McAllester 2001] Let R be an inference system such that $R(D)$ is finite. Then some $R(D)$ can be computed in time $O\left(\|D\|+\pi_{R}(D)\right)$.

Let $\mathcal{C}=S_{0}, S_{1}, \ldots, S_{T}$ be a computation.
Prefix firing in \mathcal{C} : pair (r σ, i) such that for some $0 \leq t<T$:
$-r=A_{1} \wedge \ldots \wedge A_{i} \wedge \ldots \wedge A_{n} \supset A_{0} \in R$

- S_{t} visible to r
$-A_{j} \sigma$ visible in S_{t}, for $1 \leq j \leq i$
Prefix count: $\pi_{R}(D)=\max \{\mid$ p.f. $(\mathcal{C})| | \mathcal{C}$ a computation from $D\}$
Theorem [Ganzinger/McAllester 2001] Let R be an inference system such that $R(D)$ is finite. Then some $R(D)$ can be computed in time $O\left(\|D\|+\pi_{R}(D)\right)$.

Proof as before, but also using constant-length priority queues

Let $\mathcal{C}=S_{0}, S_{1}, \ldots, S_{T}$ be a computation.
Prefix firing in \mathcal{C} : pair $(r \sigma, i)$ such that for some $0 \leq t<T$:
$-r=A_{1} \wedge \ldots \wedge A_{i} \wedge \ldots \wedge A_{n} \supset A_{0} \in R$

- S_{t} visible to r
$-A_{j} \sigma$ visible in S_{t}, for $1 \leq j \leq i$
Prefix count: $\pi_{R}(D)=\max \{\mid$ p.f. $(\mathcal{C})| | \mathcal{C}$ a computation from $D\}$
Theorem [Ganzinger/McAllester 2001] Let R be an inference system such that $R(D)$ is finite. Then some $R(D)$ can be computed in time $O\left(\|D\|+\pi_{R}(D)\right)$.

Proof as before, but also using constant-length priority queues
Note: again prefix firings count only once; priorities are for free

Union-Find

$x \Rightarrow y$
$x \Rightarrow z$
(Comm)
union (y, z)

Union-Find

$$
\begin{gathered}
\begin{array}{c}
x \Rightarrow!y \\
y \Rightarrow z
\end{array} \\
\text { (N) } \begin{array}{l}
x \Rightarrow!z
\end{array}
\end{gathered}
$$

$$
x \Rightarrow y
$$

$x \Rightarrow z$
(Comm)
$(\mathrm{Comm}) \overline{\operatorname{union}(y, z)}$

$$
\begin{aligned}
& \operatorname{union}(x, y) \\
& x \Rightarrow!z_{1} \\
& y \Rightarrow!z_{2}
\end{aligned}
$$

union (x, y)
(Init)

find (y)

We are interested in $x \doteq y$ defined as $\exists z(x \Rightarrow!z \wedge y \Rightarrow!z)$

Union-Find

$$
\begin{aligned}
x & \Rightarrow!y \quad O\left(n^{2}\right) \\
y & \Rightarrow z \quad * O(n) \\
(\mathrm{N}) & \\
x & \Rightarrow!z
\end{aligned}
$$

$$
x \Rightarrow y \quad O\left(n^{2}\right)
$$

$$
x \Rightarrow z \quad * O(n)
$$

(Comm)

$$
\operatorname{union}(y, z)
$$

$\operatorname{union}(x, y)$
(Init)
find (x),

find (y)

Naive Knuth/Bendix completion

Union-Find

$$
\begin{gathered}
\llbracket x \Rightarrow!y \rrbracket \quad O\left(n^{2}\right) \\
y \Rightarrow z \quad * O(1) \\
(\mathrm{N}) \longrightarrow \\
x \Rightarrow!z
\end{gathered}
$$

$$
\begin{aligned}
& \text { (Comm) } \\
& x \Rightarrow z \\
& \text { * } O(1) \\
& \text { (Comm) } \\
& \operatorname{union}(y, z) \\
& x \Rightarrow y \quad O(n) \\
& x \Rightarrow z \quad * O(1) \\
& \text { union }(y, z)
\end{aligned}
$$

union (x, y)	$\begin{aligned} & \llbracket \operatorname{union}(x, y) \rrbracket \\ & x \Rightarrow!z \\ & y \Rightarrow!z \end{aligned}$	$\begin{aligned} & \llbracket \operatorname{union}(x, y) \rrbracket \\ & x \Rightarrow!z_{1} \\ & y \Rightarrow!z_{2} \end{aligned}$
(Init)	(Triv)	(Orient)
$\begin{aligned} & \operatorname{find}(x), \\ & \operatorname{find}(y) \end{aligned}$	T	$z_{1} \Rightarrow z_{2}$

Naive Knuth/Bendix completion + normalization (eager path compression)

Union-Find

$$
\operatorname{find}(x)
$$

$$
\begin{array}{cl}
\llbracket x \Rightarrow!y \rrbracket & O(n \log n) \\
y \Rightarrow z & * O(1) \\
(\mathrm{N}) \xrightarrow{\llbracket} \Rightarrow!z &
\end{array}
$$

$$
\begin{gathered}
x \Rightarrow y \\
(\text { Comm }) \\
\begin{array}{l}
x \Rightarrow z
\end{array} \\
\text { union }(y, z)
\end{gathered}
$$

+ symmetric variant of (Orient)
Naive Knuth/Bendix completion + normalization (eager path compression) + logarithmic merge

Congruence Closure for Ground Horn Clauses

Extension to congruence closure: 7 more rules, guaranteed optimal complexity $O(m+n \log n)$, where $m=\mid$ union assertions $|, n=|($ sub $)$ terms \mid

Congruence Closure for Ground Horn Clauses

Extension to congruence closure: 7 more rules, guaranteed

```
optimal complexity }O(m+n\operatorname{log}n)\mathrm{ , where
m= |union assertions },n=|(sub)terms
```

Extension to ground Horn clauses with equality: 13 more rules

Congruence Closure for Ground Horn Clauses

Extension to congruence closure: 7 more rules, guaranteed

 optimal complexity $O(m+n \log n)$, where $m=\mid$ union assertions $|, n=|$ (sub)terms \mid
Extension to ground Horn clauses with equality: 13 more rules

Theorem [Ganzinger/McAllester 01] Satisfiability of a set D of ground Horn clauses with equality can be decided in time $O\left(\|D\|+n \log n+\min \left(m \log n, n^{2}\right)\right)$ where m is the number of antecedents and input clauses and n is the number of terms. This is optimal $(=O(\|D\|))$ whenever m is in $\Omega\left(n^{2}\right)$.

Congruence Closure for Ground Horn Clauses

Extension to congruence closure: 7 more rules, guaranteed optimal complexity $O(m+n \log n)$, where $m=\mid$ union assertions $|, n=|($ sub $)$ terms \mid

Extension to ground Horn clauses with equality: 13 more rules
THEOREM [Ganzinger/McAllester 01] Satisfiability of a set D of ground Horn clauses with equality can be decided in time $O\left(\|D\|+n \log n+\min \left(m \log n, n^{2}\right)\right)$ where m is the number of antecedents and input clauses and n is the number of terms. This is optimal $(=O(\|D\|))$ whenever m is in $\Omega\left(n^{2}\right)$.
Logic View: We can (partly) deal with logic programs with equality

Congruence Closure for Ground Horn Clauses

Extension to congruence closure: 7 more rules, guaranteed optimal complexity $O(m+n \log n)$, where $m=\mid$ union assertions $|, n=|($ sub $)$ terms \mid

Extension to ground Horn clauses with equality: 13 more rules
TheOrem [Ganzinger/McAllester 01] Satisfiability of a set D of ground Horn clauses with equality can be decided in time $O\left(\|D\|+n \log n+\min \left(m \log n, n^{2}\right)\right)$ where m is the number of antecedents and input clauses and n is the number of terms. This is optimal $(=O(\|D\|))$ whenever m is in $\Omega\left(n^{2}\right)$.
Logic View: We can (partly) deal with logic programs with equality

Applications: several program analysis algorithms (Steensgaard, Henglein)

Let \succ a well-founded ordering on ground atoms.
Definition A is redundant in S (denoted $A \in \operatorname{Red}(S)$) whenever $A_{1}, \ldots, A_{n} \models_{R} A$, with A_{i} in S such that $A_{i} \prec A$.

Let \succ a well-founded ordering on ground atoms.
Definition A is redundant in S (denoted $A \in \operatorname{Red}(S))$ whenever $A_{1}, \ldots, A_{n} \neq{ }_{R} A$, with A_{i} in S such that $A_{i} \prec A$.

Properties stable under enrichments and under deletion of redundant atoms

Let \succ a well-founded ordering on ground atoms.
Definition A is redundant in S (denoted $A \in \operatorname{Red}(S)$) whenever $A_{1}, \ldots, A_{n} \models_{R} A$, with A_{i} in S such that $A_{i} \prec A$.

Properties stable under enrichments and under deletion of redundant atoms

Definition S is saturated up to redundancy wrt R if $R(S \backslash \operatorname{Red}(S)) \subseteq S \cup \operatorname{Red}(S)$.

Let \succ a well-founded ordering on ground atoms.
Definition A is redundant in S (denoted $A \in \operatorname{Red}(S)$) whenever $A_{1}, \ldots, A_{n} \models_{R} A$, with A_{i} in S such that $A_{i} \prec A$.

Properties stable under enrichments and under deletion of redundant atoms

Definition S is saturated up to redundancy wrt R if $R(S \backslash \operatorname{Red}(S)) \subseteq S \cup \operatorname{Red}(S)$.

Theorem If deletion is based on redundancy then the result of every computation is saturated wrt R up to redundancy.

Let \succ a well-founded ordering on ground atoms.
Definition A is redundant in S (denoted $A \in \operatorname{Red}(S)$) whenever $A_{1}, \ldots, A_{n} \models_{R} A$, with A_{i} in S such that $A_{i} \prec A$.

Properties stable under enrichments and under deletion of redundant atoms

Definition S is saturated up to redundancy wrt R if $R(S \backslash \operatorname{Red}(S)) \subseteq S \cup \operatorname{Red}(S)$.

Theorem If deletion is based on redundancy then the result of every computation is saturated wrt R up to redundancy.

Corollary Priorities are irrelevant logically $\quad \Rightarrow \quad$ choose them so as to minimize prefix firings

Deletions based on Redundancy

Criterion: If

$$
r=\left[A_{1}\right], \ldots,\left[A_{k}\right], B_{1}, \ldots, B_{m} \supset B
$$

and if $S \cup\left\{A_{1} \sigma, \ldots, A_{k} \sigma, B_{1} \sigma, \ldots, B_{m} \sigma\right\}$ is visible to r then

$$
A_{i} \sigma \in \operatorname{Red}\left(S \cup\left\{B_{1} \sigma, \ldots, B_{m} \sigma, B \sigma\right\}\right)
$$

Deletions based on Redundancy

Criterion: If

$$
\begin{gathered}
r=\left[A_{1}\right], \ldots,\left[A_{k}\right], B_{1}, \ldots, B_{m} \supset B \\
\text { and if } S \cup\left\{A_{1} \sigma, \ldots, A_{k} \sigma, B_{1} \sigma, \ldots, B_{m} \sigma\right\} \text { is visible to } r \text { then } \\
A_{i} \sigma \in \operatorname{Red}\left(S \cup\left\{B_{1} \sigma, \ldots, B_{m} \sigma, B \sigma\right\}\right) .
\end{gathered}
$$

Union-find example: not so easy to check, need proof orderings à la Bachmair and Dershowitz

Deletions based on Redundancy

Criterion: If

$$
\begin{gathered}
r=\left[A_{1}\right], \ldots,\left[A_{k}\right], B_{1}, \ldots, B_{m} \supset B \\
\text { and if } S \cup\left\{A_{1} \sigma, \ldots, A_{k} \sigma, B_{1} \sigma, \ldots, B_{m} \sigma\right\} \text { is visible to } r \text { then } \\
A_{i} \sigma \in \operatorname{Red}\left(S \cup\left\{B_{1} \sigma, \ldots, B_{m} \sigma, B \sigma\right\}\right) .
\end{gathered}
$$

Union-find example: not so easy to check, need proof orderings à la Bachmair and Dershowitz

Note: redundancy should also be efficiently decidable
III. Instance-based Priorities

Shortest Paths

Shortest Paths

Correctness: obvious; deletion is based on redundancy

Correctness: obvious; deletion is based on redundancy
Priorities (Dijkstra): always choose an instance of (Add) where d is minimal \Rightarrow allow for instance-based rule priorities

$$
(\text { Init })>(\mathrm{Upd})>(\operatorname{Add})[n / d]>(\operatorname{Add})[m / d], \text { for } m>n
$$

Correctness: obvious; deletion is based on redundancy
Priorities (Dijkstra): always choose an instance of (Add) where d is minimal \Rightarrow allow for instance-based rule priorities $($ Init $)>($ Upd $)>(\operatorname{Add})[n / d]>($ Add $)[m / d]$, for $m>n$

Prefix firing count: $O(|E|)$, but Dijkstra's algorithm runs in time $O(|E|+|V| \log |V|) \quad \Rightarrow \quad$ one cannot expect a linear-time meta-complexity theorem for instance-based priorities

Minimum Spanning Tree

Basis: Union-find module

Basis: Union-find module

$$
\begin{array}{lr}
\llbracket x \stackrel{c}{\leftrightarrow} y \rrbracket \\
x \Rightarrow!z \\
y \Rightarrow!z
\end{array} \quad \text { (Add) } \begin{aligned}
& \llbracket x \stackrel{c}{\leftrightarrow} y \rrbracket \\
& \hline T
\end{aligned} \quad \begin{aligned}
& \operatorname{mst}(x, c, y) \\
& \text { (De1) union }(x, y)
\end{aligned}
$$

Minimum Spanning Tree

Basis: Union-find module

$$
\begin{array}{lr}
\begin{array}{l}
\llbracket x \stackrel{c}{\hookrightarrow} y \rrbracket \\
x \Rightarrow!z
\end{array} & \text { (Add) } \begin{array}{l}
\llbracket x \stackrel{c}{\leftrightarrow} y \rrbracket \\
y \Rightarrow!z
\end{array} \\
\begin{array}{ll}
T & \text { (Del) } \\
\hline T & \text { mst }(x, c, y) \\
\text { union }(x, y)
\end{array}
\end{array}
$$

Priorities: (here needed for correctness)

$$
\text { union }- \text { find }>(\operatorname{Del})>(\operatorname{Add})[n / c]>(\operatorname{Add})[m / c] \text {, for } m>n
$$

Minimum Spanning Tree

Basis: Union-find module

$$
\begin{aligned}
& \llbracket x \stackrel{c}{\hookrightarrow} y \rrbracket \\
& x \Rightarrow!z \\
& y \Rightarrow!z \\
& \text { (Del) } \\
& T \\
& \llbracket x \stackrel{c}{\hookrightarrow} y \rrbracket \\
& \text { (Add) } \\
& \operatorname{mst}(x, c, y) \\
& \text { union }(x, y)
\end{aligned}
$$

Priorities: (here needed for correctness)

$$
\text { union }- \text { find }>(\operatorname{Del})>(\operatorname{Add})[n / c]>(\operatorname{Add})[m / c], \text { for } m>n
$$

Prefix firing count: $O(|E|+|V| \log |V|)$

Programs: as before but priorities of rule instances depend on first atom in antecedent and can be computed from the atom in constant time

Programs: as before but priorities of rule instances depend on first atom in antecedent and can be computed from the atom in constant time

Theorem [in preparation] Let R be an inference system such that $R^{*}(D)$ is finite. Then some $R(D)$ can be computed in time $O\left(\|D\|+\pi_{R}(D) \log p\right)$ where p is the number of different priorities assigned to atoms in $R^{*}(D)$.

3rd Meta-Complexity Theorem

Programs: as before but priorities of rule instances depend on first atom in antecedent and can be computed from the atom in constant time

Theorem [in preparation] Let R be an inference system such that $R^{*}(D)$ is finite. Then some $R(D)$ can be computed in time $O\left(\|D\|+\pi_{R}(D) \log p\right)$ where p is the number of different priorities assigned to atoms in $R^{*}(D)$.

Corollary 2nd meta-complexity theorem is a special case

3rd Meta-Complexity Theorem

Programs: as before but priorities of rule instances depend on first atom in antecedent and can be computed from the atom in constant time

Theorem [in preparation] Let R be an inference system such that $R^{*}(D)$ is finite. Then some $R(D)$ can be computed in time $O\left(\|D\|+\pi_{R}(D) \log p\right)$ where p is the number of different priorities assigned to atoms in $R^{*}(D)$.

Corollapy 2nd meta-complexity theorem is a special case
Proof technically involved; uses priority queues with log time operations; memory usage worse

- a concept for modules needed (cf. IJCAR paper)
- deletion not always based on redundancy
- "real equality" (on the meta-level)
- how far do we get?
- is deduction without deletion inherently less efficient?
- implementation of instance-based priorities with schematic priorities?
- bounds for memory consumption
- improved meta-complexity theorems
- a concept for modules needed (cf. IJCAR paper)
- deletion not always based on redundancy
- "real equality" (on the meta-level)
- how far do we get?
- is deduction without deletion inherently less efficient?
- implementation of instance-based priorities with schematic priorities?
- bounds for memory consumption
- improved meta-complexity theorems
- a concept for modules needed (cf. IJCAR paper)
- deletion not always based on redundancy
- "real equality" (on the meta-level)
- how far do we get?
- is deduction without deletion inherently less efficient?
- implementation of instance-based priorities with schematic priorities?
- bounds for memory consumption
- improved meta-complexity theorems

Further Issues and Questions

- a concept for modules needed (cf. IJCAR paper)
- deletion not always based on redundancy
- "real equality" (on the meta-level)
- how far do we get?
- is deduction without deletion inherently less efficient?
- implementation of instance-based priorities with schematic priorities?
- bounds for memory consumption
- improved meta-complexity theorems
- a concept for modules needed (cf. IJCAR paper)
- deletion not always based on redundancy
- "real equality" (on the meta-level)
- how far do we get?
- is deduction without deletion inherently less efficient?
- implementation of instance-based priorities with schematic priorities?
- bounds for memory consumption
- improved meta-complexity theorems
- a concept for modules needed (cf. IJCAR paper)
- deletion not always based on redundancy
- "real equality" (on the meta-level)
- how far do we get?
- is deduction without deletion inherently less efficient?
- implementation of instance-based priorities with schematic priorities?
- bounds for memory consumption
- improved meta-complexity theorems
- a concept for modules needed (cf. IJCAR paper)
- deletion not always based on redundancy
- "real equality" (on the meta-level)
- how far do we get?
- is deduction without deletion inherently less efficient?
- implementation of instance-based priorities with schematic priorities?
- bounds for memory consumption
- improved meta-complexity theorems
- a concept for modules needed (cf. IJCAR paper)
- deletion not always based on redundancy
- "real equality" (on the meta-level)
- how far do we get?
- is deduction without deletion inherently less efficient?
- implementation of instance-based priorities with schematic priorities?
- bounds for memory consumption
- improved meta-complexity theorems

