
Meta-Complexity Theorems for Bottom-up
Logic Programs

Harald Ganzinger

Max-Planck-Institut für Informatik

David McAllester

ATT Bell-Labs Research

Introduction 2

• logic programming of efficient algorithms

• complexity analysis through general meta-complexity

theorems

• guaranteed execution time

• logical aspects of fundamental algorithmic paradigms

(dynamic programming, union-find, congruence closure,

priority queues)

• application to program analysis:

type inference system = algorithm

• recent papers:

McAllester [SAS99], Ganzinger/McAllester [IJCAR01]

• related work: efficient fixpoint iteration by Nielson/Seidl

[2001]

Introduction 2

• logic programming of efficient algorithms

• complexity analysis through general meta-complexity

theorems

• guaranteed execution time

• logical aspects of fundamental algorithmic paradigms

(dynamic programming, union-find, congruence closure,

priority queues)

• application to program analysis:

type inference system = algorithm

• recent papers:

McAllester [SAS99], Ganzinger/McAllester [IJCAR01]

• related work: efficient fixpoint iteration by Nielson/Seidl

[2001]

Introduction 2

• logic programming of efficient algorithms

• complexity analysis through general meta-complexity

theorems

• guaranteed execution time

• logical aspects of fundamental algorithmic paradigms

(dynamic programming, union-find, congruence closure,

priority queues)

• application to program analysis:

type inference system = algorithm

• recent papers:

McAllester [SAS99], Ganzinger/McAllester [IJCAR01]

• related work: efficient fixpoint iteration by Nielson/Seidl

[2001]

Introduction 2

• logic programming of efficient algorithms

• complexity analysis through general meta-complexity

theorems

• guaranteed execution time

• logical aspects of fundamental algorithmic paradigms

(dynamic programming, union-find, congruence closure,

priority queues)

• application to program analysis:

type inference system = algorithm

• recent papers:

McAllester [SAS99], Ganzinger/McAllester [IJCAR01]

• related work: efficient fixpoint iteration by Nielson/Seidl

[2001]

Introduction 2

• logic programming of efficient algorithms

• complexity analysis through general meta-complexity

theorems

• guaranteed execution time

• logical aspects of fundamental algorithmic paradigms

(dynamic programming, union-find, congruence closure,

priority queues)

• application to program analysis:

type inference system = algorithm

• recent papers:

McAllester [SAS99], Ganzinger/McAllester [IJCAR01]

• related work: efficient fixpoint iteration by Nielson/Seidl

[2001]

Introduction 2

• logic programming of efficient algorithms

• complexity analysis through general meta-complexity

theorems

• guaranteed execution time

• logical aspects of fundamental algorithmic paradigms

(dynamic programming, union-find, congruence closure,

priority queues)

• application to program analysis:

type inference system = algorithm

• recent papers:

McAllester [SAS99], Ganzinger/McAllester [IJCAR01]

• related work: efficient fixpoint iteration by Nielson/Seidl

[2001]

Introduction 2

• logic programming of efficient algorithms

• complexity analysis through general meta-complexity

theorems

• guaranteed execution time

• logical aspects of fundamental algorithmic paradigms

(dynamic programming, union-find, congruence closure,

priority queues)

• application to program analysis:

type inference system = algorithm

• recent papers:

McAllester [SAS99], Ganzinger/McAllester [IJCAR01]

• related work: efficient fixpoint iteration by Nielson/Seidl

[2001]

Contents 3

1st meta-complexity theorem

Language: bottom-up logic programs

Algorithmic ingredients: dynamic programming, indexing

Examples: (interprocedural) reachability

2nd meta-complexity theorem

Language: logic programs with deletion and priorities

Logical basis: saturation up to redundancy

Examples: union-find, congruence closure, Henglein’s subtype

analysis

3rd meta-complexity theorem

Language: logic programs with deletion and instance

priorities

Algorithmic ingredients: priority queues

Examples: shortest paths, minimal spanning trees

Contents 3

1st meta-complexity theorem

Language: bottom-up logic programs

Algorithmic ingredients: dynamic programming, indexing

Examples: (interprocedural) reachability

2nd meta-complexity theorem

Language: logic programs with deletion and priorities

Logical basis: saturation up to redundancy

Examples: union-find, congruence closure, Henglein’s subtype

analysis

3rd meta-complexity theorem

Language: logic programs with deletion and instance

priorities

Algorithmic ingredients: priority queues

Examples: shortest paths, minimal spanning trees

Contents 3

1st meta-complexity theorem

Language: bottom-up logic programs

Algorithmic ingredients: dynamic programming, indexing

Examples: (interprocedural) reachability

2nd meta-complexity theorem

Language: logic programs with deletion and priorities

Logical basis: saturation up to redundancy

Examples: union-find, congruence closure, Henglein’s subtype

analysis

3rd meta-complexity theorem

Language: logic programs with deletion and instance

priorities

Algorithmic ingredients: priority queues

Examples: shortest paths, minimal spanning trees

Paradigm 4

PSfrag replacements

database of facts D

inference system R

closure R∗(D)

this talk

Paradigm 4

PSfrag replacements

input

pre-processor

database of facts D

inference system R

closure R∗(D)

post-processor

output

this talk

Paradigm 4

PSfrag replacements

input

pre-processor

database of facts D

inference system R

closure R∗(D)

post-processor

output

⇐= Paige, Yang 1997

Reachability in Graphs 5

Database:

D = {e(u, v) | (u, v) ∈ E} ∪ {s(u) | u a source node}

Inference system:

s(u)

r(u)

r(u)

e(u, v)

r(v)

Clause notation: s(u) ⊃ r(u) r(u), e(u, v) ⊃ r(v)

Closure:

R∗(D) = D ∪ {r(u) | u reachable from a source}

Reachability in Graphs 5

Database:

D = {e(u, v) | (u, v) ∈ E} ∪ {s(u) | u a source node}

Inference system:

s(u)

r(u)

r(u)

e(u, v)

r(v)

Clause notation: s(u) ⊃ r(u) r(u), e(u, v) ⊃ r(v)

Closure:

R∗(D) = D ∪ {r(u) | u reachable from a source}

Reachability in Graphs 5

Database:

D = {e(u, v) | (u, v) ∈ E} ∪ {s(u) | u a source node}

Inference system:

s(u)

r(u)

r(u)

e(u, v)

r(v)

Clause notation: s(u) ⊃ r(u) r(u), e(u, v) ⊃ r(v)

Closure:

R∗(D) = D ∪ {r(u) | u reachable from a source}

Reachability in Graphs 5

Database:

D = {e(u, v) | (u, v) ∈ E} ∪ {s(u) | u a source node}

Inference system:

s(u)

r(u)

r(u)

e(u, v)

r(v)

Clause notation: s(u) ⊃ r(u) r(u), e(u, v) ⊃ r(v)

Closure:

R∗(D) = D ∪ {r(u) | u reachable from a source}

Example 6

PSfrag replacements
1

2

3

4

Example 6

PSfrag replacements
1

2

3

4

Database

s(1), e(1, 3), e(1, 4), e(2, 3), e(3, 4), e(4, 3)

Example 6

PSfrag replacements
1

2

3

4

Database

s(1), e(1, 3), e(1, 4), e(2, 3), e(3, 4), e(4, 3), r(1)

Example 6

PSfrag replacements
1

2

3

4

Database

s(1), e(1, 3), e(1, 4), e(2, 3), e(3, 4), e(4, 3), r(1), r(3)

Example 6

PSfrag replacements
1

2

3

4

Database

s(1), e(1, 3), e(1, 4), e(2, 3), e(3, 4), e(4, 3), r(1), r(3), r(4)

Example 6

PSfrag replacements
1

2

3

4

Database

s(1), e(1, 3), e(1, 4), e(2, 3), e(3, 4), e(4, 3), r(1), r(3), r(4)

⇒ saturated.

First Meta-Complexity Theorem 7

Bottom-up computation: match prefixes of antecedents against

database and fire conclusions

First Meta-Complexity Theorem 7

Bottom-up computation: match prefixes of antecedents against

database and fire conclusions

prefix firings:

πR(D) = | {(rσ, i) | r = A1 ∧ . . . ∧Ai ∧ . . . ∧An ⊃ A0 ∈ R
Ajσ ∈ D, for 1 ≤ j ≤ i} |

First Meta-Complexity Theorem 7

Bottom-up computation: match prefixes of antecedents against

database and fire conclusions

prefix firings:

πR(D) = | {(rσ, i) | r = A1 ∧ . . . ∧Ai ∧ . . . ∧An ⊃ A0 ∈ R
Ajσ ∈ D, for 1 ≤ j ≤ i} |

Theorem [McAllester 1999] Let R be an inference system such

that R∗(D) is finite. Then R∗(D) can be computed in time

O(||D||+ πR(R∗(D))).

First Meta-Complexity Theorem 7

Bottom-up computation: match prefixes of antecedents against

database and fire conclusions

prefix firings:

πR(D) = | {(rσ, i) | r = A1 ∧ . . . ∧Ai ∧ . . . ∧An ⊃ A0 ∈ R
Ajσ ∈ D, for 1 ≤ j ≤ i} |

Theorem [McAllester 1999] Let R be an inference system such

that R∗(D) is finite. Then R∗(D) can be computed in time

O(||D||+ πR(R∗(D))).

Corollary [Dowling, Gallier 1984] If R is ground, R∗(D) can

be computed in time O(||D||+ ||R||).

First Meta-Complexity Theorem 7

Bottom-up computation: match prefixes of antecedents against

database and fire conclusions

prefix firings:

πR(D) = | {(rσ, i) | r = A1 ∧ . . . ∧Ai ∧ . . . ∧An ⊃ A0 ∈ R
Ajσ ∈ D, for 1 ≤ j ≤ i} |

Theorem [McAllester 1999] Let R be an inference system such

that R∗(D) is finite. Then R∗(D) can be computed in time

O(||D||+ πR(R∗(D))).

Corollary [Dowling, Gallier 1984] If R is ground, R∗(D) can

be computed in time O(||D||+ ||R||).
Extension: constraints for which each solution can be computed

in time O(1)

Reachability in Graphs 8

r(u)

s(u) e(u, v)

r(u) r(v)

Reachability in Graphs 8

r(u) O(|V |)
s(u) O(|V |) e(u, v)

r(u) r(v)

Reachability in Graphs 8

r(u) O(|V |)
s(u) O(|V |) e(u, v) +O(|E|)
r(u) r(v)

Theorem Reachability can be decided in linear time.

Interprocedural Reachability: Database 9

program facts

1 procedure main

2 begin

3 declare x: int

4 read(x)

5 call p(x)

6 end

7 procedure p(a:int)

8 begin

9 if a>0 then

10 read(g)

11 a:=a-g

12 call p(a)

13 print(a)

14 fi

15 end

proc(main,2,6)

next(main,2,5)

call(main,p,5,6)

proc(p,8,15)

next(p,8,12)

call(p,p,12,13)

next(p,13,15)

next(p,8,15)

Interprocedural Reachability: Rules 10

Read “P ⇒ L” as “in procedure P label L can be reached”.

proc(P,BP , EP)

P ⇒ BP

next(Q,L,L′)

Q⇒ L

Q⇒ L′

call(Q,P, Lc, Rr)

proc(P,BP , EP)

P ⇒ EP

Q⇒ Lc

Q⇒ Lr

Theorem IPR∗(D) can be computed in time O(n), with

n = ||D||.

Interprocedural Reachability: Rules 10

Read “P ⇒ L” as “in procedure P label L can be reached”.

proc(P,BP , EP) O(n)

P ⇒ BP

next(Q,L,L′)

Q⇒ L

Q⇒ L′

call(Q,P, Lc, Rr)

proc(P,BP , EP)

P ⇒ EP

Q⇒ Lc

Q⇒ Lr

Theorem IPR∗(D) can be computed in time O(n), with

n = ||D||.

Interprocedural Reachability: Rules 10

Read “P ⇒ L” as “in procedure P label L can be reached”.

proc(P,BP , EP) O(n)

P ⇒ BP

next(Q,L,L′) O(n)

Q⇒ L

Q⇒ L′

call(Q,P, Lc, Rr)

proc(P,BP , EP)

P ⇒ EP

Q⇒ Lc

Q⇒ Lr

Theorem IPR∗(D) can be computed in time O(n), with

n = ||D||.

Interprocedural Reachability: Rules 10

Read “P ⇒ L” as “in procedure P label L can be reached”.

proc(P,BP , EP) O(n)

P ⇒ BP

next(Q,L,L′) O(n)

Q⇒ L ∗O(1)

Q⇒ L′

call(Q,P, Lc, Rr)

proc(P,BP , EP)

P ⇒ EP

Q⇒ Lc

Q⇒ Lr

Theorem IPR∗(D) can be computed in time O(n), with

n = ||D||.

Interprocedural Reachability: Rules 10

Read “P ⇒ L” as “in procedure P label L can be reached”.

proc(P,BP , EP) O(n)

P ⇒ BP

next(Q,L,L′) O(n)

Q⇒ L ∗O(1)

Q⇒ L′

call(Q,P, Lc, Rr) O(n)

proc(P,BP , EP)

P ⇒ EP

Q⇒ Lc

Q⇒ Lr

Theorem IPR∗(D) can be computed in time O(n), with

n = ||D||.

Interprocedural Reachability: Rules 10

Read “P ⇒ L” as “in procedure P label L can be reached”.

proc(P,BP , EP) O(n)

P ⇒ BP

next(Q,L,L′) O(n)

Q⇒ L ∗O(1)

Q⇒ L′

call(Q,P, Lc, Rr) O(n)

proc(P,BP , EP) ∗O(1)

P ⇒ EP

Q⇒ Lc

Q⇒ Lr

Theorem IPR∗(D) can be computed in time O(n), with

n = ||D||.

Interprocedural Reachability: Rules 10

Read “P ⇒ L” as “in procedure P label L can be reached”.

proc(P,BP , EP) O(n)

P ⇒ BP

next(Q,L,L′) O(n)

Q⇒ L ∗O(1)

Q⇒ L′

call(Q,P, Lc, Rr) O(n)

proc(P,BP , EP) ∗O(1)

P ⇒ EP ∗O(1)

Q⇒ Lc ∗O(1)

Q⇒ Lr

Theorem IPR∗(D) can be computed in time O(n), with

n = ||D||.

Interprocedural Reachability: Rules 10

Read “P ⇒ L” as “in procedure P label L can be reached”.

proc(P,BP , EP) O(n)

P ⇒ BP

next(Q,L,L′) O(n)

Q⇒ L ∗O(1)

Q⇒ L′

call(Q,P, Lc, Rr) O(n)

proc(P,BP , EP) ∗O(1)

P ⇒ EP ∗O(1)

Q⇒ Lc ∗O(1)

Q⇒ Lr

Theorem IPR∗(D) can be computed in time O(n), with

n = ||D||.

Proof of the Meta-Complexity Theorem I 11

Assumption: all terms in fully shared form

Proof of the Meta-Complexity Theorem I 11

Assumption: all terms in fully shared form

Matching: in O(1) (for atoms in rules against atoms in D)

Proof of the Meta-Complexity Theorem I 11

Assumption: all terms in fully shared form

Matching: in O(1) (for atoms in rules against atoms in D)

Unary Rules A ⊃ B: matching of A against each atom in R(D),

plus construction of B, costs total time O(|R(D)|)

Proof of the Meta-Complexity Theorem I 11

Assumption: all terms in fully shared form

Matching: in O(1) (for atoms in rules against atoms in D)

Unary Rules A ⊃ B: matching of A against each atom in R(D),

plus construction of B, costs total time O(|R(D)|)
Note: programs not cons-free

Proof of the Meta-Complexity Theorem I 11

Assumption: all terms in fully shared form

Matching: in O(1) (for atoms in rules against atoms in D)

Unary Rules A ⊃ B: matching of A against each atom in R(D),

plus construction of B, costs total time O(|R(D)|)
Note: programs not cons-free

Problem: avoiding O(|R(D)|k) for rules of length k

Proof of the Meta-Complexity Theorem II 12

Data structure for rules ρ of the form p(X,Y) ∧ q(Y, Z) ⊃ r(X, Y,Z)

Proof of the Meta-Complexity Theorem II 12

Data structure for rules ρ of the form p(X,Y)∧ q(Y, Z) ⊃ r(X, Y,Z)

PSfrag replacements

ρ[Y]

p(a,t)

p(b,t)

p(c,t)

p(d,t)

p(e,t)

q(t,u)

q(t,v)

q(t,w)

q(t,s)

p-list of ρ[t] q-list of ρ[t]

Proof of the Meta-Complexity Theorem II 12

Data structure for rules ρ of the form p(X,Y) ∧ q(Y,Z) ⊃ r(X,Y, Z)

PSfrag replacements

ρ[Y]

p(a,t)

p(b,t)

p(c,t)

p(d,t)

p(e,t)

q(t,u)

q(t,v)

q(t,w)

q(t,s)

p-list of ρ[t] q-list of ρ[t]

Upon adding a fact p(e, t), fire all r(e, t, z), for z on the q-list of A[t].

Proof of the Meta-Complexity Theorem II 12

Data structure for rules ρ of the form p(X,Y) ∧ q(Y,Z) ⊃ r(X,Y, Z)

PSfrag replacements

ρ[Y]

p(a,t)

p(b,t)

p(c,t)

p(d,t)

p(e,t)

q(t,u)

q(t,v)

q(t,w)

q(t,s)

p-list of ρ[t] q-list of ρ[t]

Upon adding a fact p(e, t), fire all r(e, t, z), for z on the q-list of A[t].

The inference system can be transformed (maintaining π) so that it

contains only unary rules and binary rules of the form ρ.

Remarks 13

• memory consumption often much smaller

Remarks 13

• memory consumption often much smaller

• if R∗(D) infinite, consider R∗(D) ∩ atoms(subterms(D))

⇒ concept of local inference systems (Givan, McAllester

1993)

Remarks 13

• memory consumption often much smaller

• if R∗(D) infinite, consider R∗(D) ∩ atoms(subterms(D))

⇒ concept of local inference systems (Givan, McAllester

1993)

• in the presence of transitivity laws, complexity is in Ω(n3)

II. Redundancy, Deletion, and Priorities

Removal of Redundant Information 15

• redundant information causes inefficiency

D = {. . . , dist(x) ≤ d, dist(x) ≤ d′, d′ < d, . . .}

⇒ delete dist(x) ≤ d
• Notation: antecedents to be deleted in parenthesis [. . .]

. . . , [A], . . . , A′, . . . , [A′′], . . . ⊃ B

• in the presence of deletion, computations are

nondeterministic:

P ⊃ Q [Q] ⊃ S [Q] ⊃ W

⇒ either S or W can be derived, but not both

• non-determinism don’t-care and/or restricted by priorities

Removal of Redundant Information 15

• redundant information causes inefficiency

D = {. . . , dist(x) ≤ d, dist(x) ≤ d′, d′ < d, . . .}

⇒ delete dist(x) ≤ d
• Notation: antecedents to be deleted in parenthesis [. . .]

. . . , [A], . . . , A′, . . . , [A′′], . . . ⊃ B

• in the presence of deletion, computations are

nondeterministic:

P ⊃ Q [Q] ⊃ S [Q] ⊃ W

⇒ either S or W can be derived, but not both

• non-determinism don’t-care and/or restricted by priorities

Removal of Redundant Information 15

• redundant information causes inefficiency

D = {. . . , dist(x) ≤ d, dist(x) ≤ d′, d′ < d, . . .}

⇒ delete dist(x) ≤ d
• Notation: antecedents to be deleted in parenthesis [. . .]

. . . , [A], . . . , A′, . . . , [A′′], . . . ⊃ B

• in the presence of deletion, computations are

nondeterministic:

P ⊃ Q [Q] ⊃ S [Q] ⊃ W

⇒ either S or W can be derived, but not both

• non-determinism don’t-care and/or restricted by priorities

Removal of Redundant Information 15

• redundant information causes inefficiency

D = {. . . , dist(x) ≤ d, dist(x) ≤ d′, d′ < d, . . .}

⇒ delete dist(x) ≤ d
• Notation: antecedents to be deleted in parenthesis [. . .]

. . . , [A], . . . , A′, . . . , [A′′], . . . ⊃ B

• in the presence of deletion, computations are

nondeterministic:

P ⊃ Q [Q] ⊃ S [Q] ⊃ W

⇒ either S or W can be derived, but not both

• non-determinism don’t-care and/or restricted by priorities

Logic Programs with Priorities and Deletion 16

• rules can have antecedents to be deleted after firing

• priorities assigned to rule schemes

• computation states S contain positive and negative (deleted)

atoms

• A visible in S if A ∈ S and ¬A 6∈ S (deletions are permanent)

• Γ ⊃ B applicable in S if

– each atom in Γ is visible in S, and

– rule application changes S (by adding B or some ¬A)

• S visible to a rule if no higher-priority rule is applicable in S

• computations are maximal sequences of applications of

visible rules

• the final state of a computation starting with D is called an

(R-) saturation of D

Logic Programs with Priorities and Deletion 16

• rules can have antecedents to be deleted after firing

• priorities assigned to rule schemes

• computation states S contain positive and negative (deleted)

atoms

• A visible in S if A ∈ S and ¬A 6∈ S (deletions are permanent)

• Γ ⊃ B applicable in S if

– each atom in Γ is visible in S, and

– rule application changes S (by adding B or some ¬A)

• S visible to a rule if no higher-priority rule is applicable in S

• computations are maximal sequences of applications of

visible rules

• the final state of a computation starting with D is called an

(R-) saturation of D

Logic Programs with Priorities and Deletion 16

• rules can have antecedents to be deleted after firing

• priorities assigned to rule schemes

• computation states S contain positive and negative (deleted)

atoms

• A visible in S if A ∈ S and ¬A 6∈ S (deletions are permanent)

• Γ ⊃ B applicable in S if

– each atom in Γ is visible in S, and

– rule application changes S (by adding B or some ¬A)

• S visible to a rule if no higher-priority rule is applicable in S

• computations are maximal sequences of applications of

visible rules

• the final state of a computation starting with D is called an

(R-) saturation of D

Logic Programs with Priorities and Deletion 16

• rules can have antecedents to be deleted after firing

• priorities assigned to rule schemes

• computation states S contain positive and negative (deleted)

atoms

• A visible in S if A ∈ S and ¬A 6∈ S (deletions are permanent)

• Γ ⊃ B applicable in S if

– each atom in Γ is visible in S, and

– rule application changes S (by adding B or some ¬A)

• S visible to a rule if no higher-priority rule is applicable in S

• computations are maximal sequences of applications of

visible rules

• the final state of a computation starting with D is called an

(R-) saturation of D

Logic Programs with Priorities and Deletion 16

• rules can have antecedents to be deleted after firing

• priorities assigned to rule schemes

• computation states S contain positive and negative (deleted)

atoms

• A visible in S if A ∈ S and ¬A 6∈ S (deletions are permanent)

• Γ ⊃ B applicable in S if

– each atom in Γ is visible in S, and

– rule application changes S (by adding B or some ¬A)

• S visible to a rule if no higher-priority rule is applicable in S

• computations are maximal sequences of applications of

visible rules

• the final state of a computation starting with D is called an

(R-) saturation of D

Logic Programs with Priorities and Deletion 16

• rules can have antecedents to be deleted after firing

• priorities assigned to rule schemes

• computation states S contain positive and negative (deleted)

atoms

• A visible in S if A ∈ S and ¬A 6∈ S (deletions are permanent)

• Γ ⊃ B applicable in S if

– each atom in Γ is visible in S, and

– rule application changes S (by adding B or some ¬A)

• S visible to a rule if no higher-priority rule is applicable in S

• computations are maximal sequences of applications of

visible rules

• the final state of a computation starting with D is called an

(R-) saturation of D

Logic Programs with Priorities and Deletion 16

• rules can have antecedents to be deleted after firing

• priorities assigned to rule schemes

• computation states S contain positive and negative (deleted)

atoms

• A visible in S if A ∈ S and ¬A 6∈ S (deletions are permanent)

• Γ ⊃ B applicable in S if

– each atom in Γ is visible in S, and

– rule application changes S (by adding B or some ¬A)

• S visible to a rule if no higher-priority rule is applicable in S

• computations are maximal sequences of applications of

visible rules

• the final state of a computation starting with D is called an

(R-) saturation of D

Logic Programs with Priorities and Deletion 16

• rules can have antecedents to be deleted after firing

• priorities assigned to rule schemes

• computation states S contain positive and negative (deleted)

atoms

• A visible in S if A ∈ S and ¬A 6∈ S (deletions are permanent)

• Γ ⊃ B applicable in S if

– each atom in Γ is visible in S, and

– rule application changes S (by adding B or some ¬A)

• S visible to a rule if no higher-priority rule is applicable in S

• computations are maximal sequences of applications of

visible rules

• the final state of a computation starting with D is called an

(R-) saturation of D

Second Meta-Complexity Theorem 17

Let C = S0, S1, . . ., ST be a computation.

Prefix firing in C: pair (rσ, i) such that for some 0 ≤ t < T :

– r = A1 ∧ . . . ∧Ai ∧ . . . ∧An ⊃ A0 ∈ R
– St visible to r

– Ajσ visible in St, for 1 ≤ j ≤ i

Second Meta-Complexity Theorem 17

Let C = S0, S1, . . ., ST be a computation.

Prefix firing in C: pair (rσ, i) such that for some 0 ≤ t < T :

– r = A1 ∧ . . . ∧Ai ∧ . . . ∧An ⊃ A0 ∈ R
– St visible to r

– Ajσ visible in St, for 1 ≤ j ≤ i
Prefix count: πR(D) = max{|p.f.(C)| | C a computation from D}

Second Meta-Complexity Theorem 17

Let C = S0, S1, . . ., ST be a computation.

Prefix firing in C: pair (rσ, i) such that for some 0 ≤ t < T :

– r = A1 ∧ . . . ∧Ai ∧ . . . ∧An ⊃ A0 ∈ R
– St visible to r

– Ajσ visible in St, for 1 ≤ j ≤ i
Prefix count: πR(D) = max{|p.f.(C)| | C a computation from D}
Theorem [Ganzinger/McAllester 2001] Let R be an inference

system such that R(D) is finite. Then some R(D) can be

computed in time O(||D||+ πR(D)).

Second Meta-Complexity Theorem 17

Let C = S0, S1, . . ., ST be a computation.

Prefix firing in C: pair (rσ, i) such that for some 0 ≤ t < T :

– r = A1 ∧ . . . ∧Ai ∧ . . . ∧An ⊃ A0 ∈ R
– St visible to r

– Ajσ visible in St, for 1 ≤ j ≤ i
Prefix count: πR(D) = max{|p.f.(C)| | C a computation from D}
Theorem [Ganzinger/McAllester 2001] Let R be an inference

system such that R(D) is finite. Then some R(D) can be

computed in time O(||D||+ πR(D)).

Proof as before, but also using constant-length priority queues

Second Meta-Complexity Theorem 17

Let C = S0, S1, . . ., ST be a computation.

Prefix firing in C: pair (rσ, i) such that for some 0 ≤ t < T :

– r = A1 ∧ . . . ∧Ai ∧ . . . ∧An ⊃ A0 ∈ R
– St visible to r

– Ajσ visible in St, for 1 ≤ j ≤ i
Prefix count: πR(D) = max{|p.f.(C)| | C a computation from D}
Theorem [Ganzinger/McAllester 2001] Let R be an inference

system such that R(D) is finite. Then some R(D) can be

computed in time O(||D||+ πR(D)).

Proof as before, but also using constant-length priority queues

Note: again prefix firings count only once; priorities are for free

Union-Find 18

find(x)

(Refl)

x⇒! x

x⇒! y

y ⇒ z

(N)

x⇒! z

x⇒ y

x⇒ z

(Comm)

union(y, z)

Union-Find 18

find(x)

(Refl)

x⇒! x

x⇒! y

y ⇒ z

(N)

x⇒! z

x⇒ y

x⇒ z

(Comm)

union(y, z)

union(x, y)

(Init)

find(x),

find(y)

union(x, y)

x⇒! z1
y ⇒! z2

(Orient)

z1 ⇒ z2

We are interested in x
.
= y defined as ∃z(x⇒! z ∧ y ⇒! z)

Union-Find 18

find(x)

(Refl)

x⇒! x

x⇒! y O(n2)

y ⇒ z ∗O(n)

(N)

x⇒! z

x⇒ y O(n2)

x⇒ z ∗O(n)

(Comm)

union(y, z)

union(x, y)

(Init)

find(x),

find(y)

union(x, y)

x⇒! z1
y ⇒! z2

(Orient)

z1 ⇒ z2

Naive Knuth/Bendix completion

Union-Find 18

find(x)

(Refl)

x⇒! x

[[x⇒! y]] O(n2)

y ⇒ z ∗O(1)

(N)

x⇒! z

x⇒ y O(n)

x⇒ z ∗O(1)

(Comm)

union(y, z)

union(x, y)

(Init)

find(x),

find(y)

[[union(x, y)]]

x⇒! z

y ⇒! z

(Triv)

>

[[union(x, y)]]

x⇒! z1
y ⇒! z2

(Orient)

z1 ⇒ z2

Naive Knuth/Bendix completion
+ normalization (eager path compression)

Union-Find 18

find(x)

(Refl)

x⇒! x

weight(x, 1)

[[x⇒! y]] O(n log n)

y ⇒ z ∗O(1)

(N)

x⇒! z

x⇒ y

x⇒ z

(Comm)

union(y, z)

union(x, y)

(Init)

find(x),

find(y)

[[union(x, y)]]

x⇒! z

y ⇒! z

(Triv)

>

[[union(x, y)]]

x⇒! z1, weight(z1, w1)

y ⇒! z2, [[weight(z2, w2)]]

w1 ≤ w2

(Orient)

z1 ⇒ z2
weight(z2, w1 + w2)

+ symmetric variant of (Orient)

Naive Knuth/Bendix completion
+ normalization (eager path compression) + logarithmic merge

Congruence Closure for Ground Horn Clauses 19

Extension to congruence closure: 7 more rules, guaranteed

optimal complexity O(m+ n log n), where

m = |union assertions|, n = |(sub)terms|

Congruence Closure for Ground Horn Clauses 19

Extension to congruence closure: 7 more rules, guaranteed

optimal complexity O(m+ n log n), where

m = |union assertions|, n = |(sub)terms|
Extension to ground Horn clauses with equality: 13 more rules

Congruence Closure for Ground Horn Clauses 19

Extension to congruence closure: 7 more rules, guaranteed

optimal complexity O(m+ n log n), where

m = |union assertions|, n = |(sub)terms|
Extension to ground Horn clauses with equality: 13 more rules

Theorem [Ganzinger/McAllester 01] Satisfiability of a set D of

ground Horn clauses with equality can be decided in time

O(||D||+ n log n+ min(m log n, n2)) where m is the number

of antecedents and input clauses and n is the number of

terms. This is optimal (= O(||D||)) whenever m is in Ω(n2).

Congruence Closure for Ground Horn Clauses 19

Extension to congruence closure: 7 more rules, guaranteed

optimal complexity O(m+ n log n), where

m = |union assertions|, n = |(sub)terms|
Extension to ground Horn clauses with equality: 13 more rules

Theorem [Ganzinger/McAllester 01] Satisfiability of a set D of

ground Horn clauses with equality can be decided in time

O(||D||+ n log n+ min(m log n, n2)) where m is the number

of antecedents and input clauses and n is the number of

terms. This is optimal (= O(||D||)) whenever m is in Ω(n2).

Logic View: We can (partly) deal with logic programs with

equality

Congruence Closure for Ground Horn Clauses 19

Extension to congruence closure: 7 more rules, guaranteed

optimal complexity O(m+ n log n), where

m = |union assertions|, n = |(sub)terms|
Extension to ground Horn clauses with equality: 13 more rules

Theorem [Ganzinger/McAllester 01] Satisfiability of a set D of

ground Horn clauses with equality can be decided in time

O(||D||+ n log n+ min(m log n, n2)) where m is the number

of antecedents and input clauses and n is the number of

terms. This is optimal (= O(||D||)) whenever m is in Ω(n2).

Logic View: We can (partly) deal with logic programs with

equality

Applications: several program analysis algorithms (Steensgaard,

Henglein)

Formal Notion of Redundancy 20

Let � a well-founded ordering on ground atoms.

Definition A is redundant in S (denoted A ∈ Red(S)) whenever

A1, . . . , An |=R A, with Ai in S such that Ai ≺ A.

Formal Notion of Redundancy 20

Let � a well-founded ordering on ground atoms.

Definition A is redundant in S (denoted A ∈ Red(S)) whenever

A1, . . . , An |=R A, with Ai in S such that Ai ≺ A.

Properties stable under enrichments and under deletion of

redundant atoms

Formal Notion of Redundancy 20

Let � a well-founded ordering on ground atoms.

Definition A is redundant in S (denoted A ∈ Red(S)) whenever

A1, . . . , An |=R A, with Ai in S such that Ai ≺ A.

Properties stable under enrichments and under deletion of

redundant atoms

Definition S is saturated up to redundancy wrt R if

R(S \Red(S)) ⊆ S ∪Red(S).

Formal Notion of Redundancy 20

Let � a well-founded ordering on ground atoms.

Definition A is redundant in S (denoted A ∈ Red(S)) whenever

A1, . . . , An |=R A, with Ai in S such that Ai ≺ A.

Properties stable under enrichments and under deletion of

redundant atoms

Definition S is saturated up to redundancy wrt R if

R(S \Red(S)) ⊆ S ∪Red(S).

Theorem If deletion is based on redundancy then the result of

every computation is saturated wrt R up to redundancy.

Formal Notion of Redundancy 20

Let � a well-founded ordering on ground atoms.

Definition A is redundant in S (denoted A ∈ Red(S)) whenever

A1, . . . , An |=R A, with Ai in S such that Ai ≺ A.

Properties stable under enrichments and under deletion of

redundant atoms

Definition S is saturated up to redundancy wrt R if

R(S \Red(S)) ⊆ S ∪Red(S).

Theorem If deletion is based on redundancy then the result of

every computation is saturated wrt R up to redundancy.

Corollary Priorities are irrelevant logically ⇒ choose them

so as to minimize prefix firings

Deletions based on Redundancy 21

Criterion: If

r = [A1], . . . , [Ak], B1, . . . , Bm ⊃ B

and if S ∪ {A1σ, . . . , Akσ,B1σ, . . . , Bmσ} is visible to r then

Aiσ ∈ Red(S ∪ {B1σ, . . . , Bmσ,Bσ}).

Deletions based on Redundancy 21

Criterion: If

r = [A1], . . . , [Ak], B1, . . . , Bm ⊃ B

and if S ∪ {A1σ, . . . , Akσ,B1σ, . . . , Bmσ} is visible to r then

Aiσ ∈ Red(S ∪ {B1σ, . . . , Bmσ,Bσ}).

Union-find example: not so easy to check, need proof orderings à

la Bachmair and Dershowitz

Deletions based on Redundancy 21

Criterion: If

r = [A1], . . . , [Ak], B1, . . . , Bm ⊃ B

and if S ∪ {A1σ, . . . , Akσ,B1σ, . . . , Bmσ} is visible to r then

Aiσ ∈ Red(S ∪ {B1σ, . . . , Bmσ,Bσ}).

Union-find example: not so easy to check, need proof orderings à

la Bachmair and Dershowitz

Note: redundancy should also be efficiently decidable

III. Instance-based Priorities

Shortest Paths 23

(Init)

dist(src) ≤ 0

[[dist(x) ≤ d]]

dist(x) ≤ d′
d′ < d

(Upd)

>

dist(x) ≤ d
x
c→ y

(Add)

dist(y) ≤ c+ d

Shortest Paths 23

(Init)

dist(src) ≤ 0

[[dist(x) ≤ d]]

dist(x) ≤ d′
d′ < d

(Upd)

>

dist(x) ≤ d
x
c→ y

(Add)

dist(y) ≤ c+ d

Correctness: obvious; deletion is based on redundancy

Shortest Paths 23

(Init)

dist(src) ≤ 0

[[dist(x) ≤ d]]

dist(x) ≤ d′
d′ < d

(Upd)

>

dist(x) ≤ d
x
c→ y

(Add)

dist(y) ≤ c+ d

Correctness: obvious; deletion is based on redundancy

Priorities (Dijkstra): always choose an instance of (Add) where d

is minimal ⇒ allow for instance-based rule priorities

(Init) > (Upd) > (Add)[n/d] > (Add)[m/d], for m > n

Shortest Paths 23

(Init)

dist(src) ≤ 0

[[dist(x) ≤ d]]

dist(x) ≤ d′
d′ < d

(Upd)

>

dist(x) ≤ d
x
c→ y

(Add)

dist(y) ≤ c+ d

Correctness: obvious; deletion is based on redundancy

Priorities (Dijkstra): always choose an instance of (Add) where d

is minimal ⇒ allow for instance-based rule priorities

(Init) > (Upd) > (Add)[n/d] > (Add)[m/d], for m > n

Prefix firing count: O(|E|), but Dijkstra’s algorithm runs in time

O(|E|+ |V | log |V |) ⇒ one cannot expect a linear-time

meta-complexity theorem for instance-based priorities

Minimum Spanning Tree 24

Basis: Union-find module

Minimum Spanning Tree 24

Basis: Union-find module

[[x
c↔ y]]

x⇒! z

y ⇒! z

(Del)

T

[[x
c↔ y]]

(Add)

mst(x, c, y)

union(x, y)

Minimum Spanning Tree 24

Basis: Union-find module

[[x
c↔ y]]

x⇒! z

y ⇒! z

(Del)

T

[[x
c↔ y]]

(Add)

mst(x, c, y)

union(x, y)

Priorities: (here needed for correctness)

union−find > (Del) > (Add)[n/c] > (Add)[m/c], for m > n

Minimum Spanning Tree 24

Basis: Union-find module

[[x
c↔ y]]

x⇒! z

y ⇒! z

(Del)

T

[[x
c↔ y]]

(Add)

mst(x, c, y)

union(x, y)

Priorities: (here needed for correctness)

union−find > (Del) > (Add)[n/c] > (Add)[m/c], for m > n

Prefix firing count: O(|E|+ |V | log |V |)

3rd Meta-Complexity Theorem 25

Programs: as before but priorities of rule instances depend on

first atom in antecedent and can be computed from the atom

in constant time

Theorem [in preparation] Let R be an inference system such

that R∗(D) is finite. Then some R(D) can be computed in

time O(||D||+ πR(D) log p) where p is the number of different

priorities assigned to atoms in R∗(D).

Corollary 2nd meta-complexity theorem is a special case

Proof technically involved; uses priority queues with log time

operations; memory usage worse

3rd Meta-Complexity Theorem 25

Programs: as before but priorities of rule instances depend on

first atom in antecedent and can be computed from the atom

in constant time

Theorem [in preparation] Let R be an inference system such

that R∗(D) is finite. Then some R(D) can be computed in

time O(||D||+ πR(D) log p) where p is the number of different

priorities assigned to atoms in R∗(D).

Corollary 2nd meta-complexity theorem is a special case

Proof technically involved; uses priority queues with log time

operations; memory usage worse

3rd Meta-Complexity Theorem 25

Programs: as before but priorities of rule instances depend on

first atom in antecedent and can be computed from the atom

in constant time

Theorem [in preparation] Let R be an inference system such

that R∗(D) is finite. Then some R(D) can be computed in

time O(||D||+ πR(D) log p) where p is the number of different

priorities assigned to atoms in R∗(D).

Corollary 2nd meta-complexity theorem is a special case

Proof technically involved; uses priority queues with log time

operations; memory usage worse

3rd Meta-Complexity Theorem 25

Programs: as before but priorities of rule instances depend on

first atom in antecedent and can be computed from the atom

in constant time

Theorem [in preparation] Let R be an inference system such

that R∗(D) is finite. Then some R(D) can be computed in

time O(||D||+ πR(D) log p) where p is the number of different

priorities assigned to atoms in R∗(D).

Corollary 2nd meta-complexity theorem is a special case

Proof technically involved; uses priority queues with log time

operations; memory usage worse

Further Issues and Questions 26

• a concept for modules needed (cf. IJCAR paper)

• deletion not always based on redundancy

• “real equality” (on the meta-level)

• how far do we get?

• is deduction without deletion inherently less efficient?

• implementation of instance-based priorities with schematic

priorities?

• bounds for memory consumption

• improved meta-complexity theorems

Further Issues and Questions 26

• a concept for modules needed (cf. IJCAR paper)

• deletion not always based on redundancy

• “real equality” (on the meta-level)

• how far do we get?

• is deduction without deletion inherently less efficient?

• implementation of instance-based priorities with schematic

priorities?

• bounds for memory consumption

• improved meta-complexity theorems

Further Issues and Questions 26

• a concept for modules needed (cf. IJCAR paper)

• deletion not always based on redundancy

• “real equality” (on the meta-level)

• how far do we get?

• is deduction without deletion inherently less efficient?

• implementation of instance-based priorities with schematic

priorities?

• bounds for memory consumption

• improved meta-complexity theorems

Further Issues and Questions 26

• a concept for modules needed (cf. IJCAR paper)

• deletion not always based on redundancy

• “real equality” (on the meta-level)

• how far do we get?

• is deduction without deletion inherently less efficient?

• implementation of instance-based priorities with schematic

priorities?

• bounds for memory consumption

• improved meta-complexity theorems

Further Issues and Questions 26

• a concept for modules needed (cf. IJCAR paper)

• deletion not always based on redundancy

• “real equality” (on the meta-level)

• how far do we get?

• is deduction without deletion inherently less efficient?

• implementation of instance-based priorities with schematic

priorities?

• bounds for memory consumption

• improved meta-complexity theorems

Further Issues and Questions 26

• a concept for modules needed (cf. IJCAR paper)

• deletion not always based on redundancy

• “real equality” (on the meta-level)

• how far do we get?

• is deduction without deletion inherently less efficient?

• implementation of instance-based priorities with schematic

priorities?

• bounds for memory consumption

• improved meta-complexity theorems

Further Issues and Questions 26

• a concept for modules needed (cf. IJCAR paper)

• deletion not always based on redundancy

• “real equality” (on the meta-level)

• how far do we get?

• is deduction without deletion inherently less efficient?

• implementation of instance-based priorities with schematic

priorities?

• bounds for memory consumption

• improved meta-complexity theorems

Further Issues and Questions 26

• a concept for modules needed (cf. IJCAR paper)

• deletion not always based on redundancy

• “real equality” (on the meta-level)

• how far do we get?

• is deduction without deletion inherently less efficient?

• implementation of instance-based priorities with schematic

priorities?

• bounds for memory consumption

• improved meta-complexity theorems

