
Efficient Deductive Methods for Program Analysis

Harald Ganzinger

Max-Planck-Institut für Informatik

Introduction 2

• program analysis from high-level inference rules
• complexity analysis through general meta-complexity theorems
• logical aspects of fundamental algorithmic paradigms (dynamic

programming, union-find, congruence closure)
• treatment of transitive relations: implication, equivalence,

congruence, quasi-orderings
• avoiding the cubic-time bottleneck
• variable-free specializations of fundamental first-order methods:

resolution, Knuth/Bendix-completion, ordered chaining
• closely related to McAllester’s SAS’99 talk and paper

Contents 3

Linear-time analyses

Example: interprocedural reachability
Logic background: linear-time bottom-up deduction

Analyses for type congruences

Examples:

Steensgaard’s pointer analysis (O(n log n))
Henglein’s subtype analysis (O(n2))

Logic background: congruence closure for Horn clauses
Dynamic transitive closure

Example: Andersen’s pointer analysis via atomic set contraints
Logic background: ordered chaining

I. Linear-Time Analyses

Paradigm 5

source program

pre-processor

database of facts D

(type) inference system R

closure R(D)

post-processor

result of analysis

this talk

Example 6

program facts

1 procedure main

2 begin

3 declare x: int

4 read(x)

5 call p(x)

6 end

7 procedure p(a:int)

8 begin

9 if a>0 then

10 read(g)

11 a:=a-g

12 call p(a)

13 print(a)

14 fi

15 end

proc(main,2,6)

next(main,2,5)

call(main,p,5,6)

proc(p,8,15)

next(p,8,12)

call(p,p,12,13)

next(p,13,15)

next(p,8,15)

Interprocedural Reachability IPR 7

Read “L⇒ L′ in P” as “L′ can be reached from L in procedure P”.

next(Q,L,L′)

X ⇒ L in Q

X ⇒ L′ in Q

call(Q,P, Lc, Lr)

proc(P, L0, Lf)

L0 ⇒ Lf in P

X ⇒ Lc in Q

X ⇒ Lr in Q

proc(P, L0, Lf)

L0 ⇒ L0 in P

Theorem 1.1 IPR(D) can be computed in time O(|D|).

[|D| = size of D = number of nodes in tree representation]

First Meta-Complexity Theorem 8

Theorem 1.2 (McAllester 1999) Let R be an inference system
such that R(D) is finite. Then R(D) can be computed in time
O(|R(D)|+ pfR(R(D))).

pfR(R(D)) is the number of prefix firings of R on R(D):

pfR(D) = | {(r, i, σ) | r = A1 ∧ . . . ∧Ai ∧ . . . ∧An ⊃ A0 ∈ R
Ajσ ∈ D, for 1 ≤ j ≤ i} |

Corollary 1.3 (Dowling, Gallier 1984) If R is ground, R(D)
can be computed in time O(|D|+ |R|).

Prefix Firings in IPR 9

Let n = |D|.
proc(P, L0, Lf)

L0 ⇒ L0 in P

has O(n) (prefix) firings.a

next(Q,L,L′) O(n) ∗
X ⇒ L in Q O(1)

X ⇒ L′ in Q

call(Q,P, Lc, Rr) O(n) ∗
proc(P, L0, Lf) O(1) ∗
L0 ⇒ Lf in P O(1) ∗
X ⇒ Lc in Q O(1)

X ⇒ Lr in Q

Theorem 1.4 IPR(D) can be computed in time O(|D|).

Beweis. Both |IPR(D)| and pfIPR(IPR(D)) are in O(|D|). 2

aOnly facts X ⇒ Y in P where X is the start label in P can be derived.

Proof of the Meta-Complexity Theorem 10

Data structure for rules ρ of the form p(X,Y) ∧ q(Y, Z) ⊃ r(X, Y,Z)

ρ[Y]

p(a,t)

p(b,t)

p(c,t)

p(d,t)

p(e,t)

q(t,u)

q(t,v)

q(t,w)

q(t,s)

p-list of ρ[t] q-list of ρ[t]

Upon adding a fact p(e, t), fire all r(e, t, z), for z on the q-list of A[t].

The inference system can be transformed (maintaining pf) so that it

contains unary rules and binary rules of the form ρ.

Problems 11

• if R(D) infinite, consider R(D) ∩ atoms(subterms(D))
⇒ concept of local inferences (Givan, McAllester 1993)

• in the presence of transitive relations, complexity is in Ω(n3)

II. Equivalence and Congruence

Steensgaard’s (1996) Pointer Analysis 13

program

a = &x

b = &y

if ... then

y = &x;

else

y = &z

fi

c = &y

shape graph

a

b

c

x

y

z

identified

Theorem 2.5 (Steensgaard 1996) Shape graphs can be computed
in time O(nα(n, n)).

Formalization: Inference System SPA 14

assignments

input(X = &Y)

X : ref(Tx)

Y : Ty

Tx
.
= Ty

input(X = Y)

X : ref(Tx)

Y : ref(Ty)

Ty ≤ Tx
subtyping rules

⊥ ≤ T
ref(T) ≤ T ′

ref(T)
.
= T ′

ref(T)
.
= ref(T ′)

T
.
= T ′

type equality

T
.
= T

T
.
= T ′ T

.
= T ′′

T ′′
.
= T ′

T
.
= T ′ T ′ ≤ T ′′ T ′′

.
= T ′′′

T ≤ T ′′′

In the Example 15

facts from the program

a : ref(τa) b : ref(τb) c : ref(τc)

x : ref(τx) y : ref(τy) z : ref(τz)

derived equations from the assignments

τa
.= ref(τx) τb

.= ref(τy) τy
.= ref(τz)

τy
.= ref(τx) τc

.= ref(τy)

additionally, after computing the closure

ref(τz)
.= ref(τx) τz

.= τx

Meta-Complexity Theorem for Horn Clauses with Equality16

Theorem 2.6 (Downey, Sethi, Tarjan 1980) Let E be a set of
ground equations over terms in T . Then T /E is computable in time
O(n+m logm), with n = |E| and m = |T |.

Theorem 2.7 (G, McAllester 2001) Let E be a set of ground
Horn clauses with equalitya over terms in T . Then T /E is computable
in time O(n+ min(n logm,m2)), with n = |E| and m = |T |.

Corollary 2.8 SPA(D) can be computed in time O(|D|2).

With some more work we can get it down to O(n log n).
aequivalences with some/all compatibility axioms

Henglein’s (1996) Quadratic Subtype Analysis 17

Language with record types

σ = [l1 : σ1; . . . ; ln : σn]

and subtyping σ ≤ τ .

Main requirement to check: if σ ≤ τ and τ accepts l, then σ accepts l.

Data base contains facts
• accepts(σ, l) giving the field labels
• equations σ.li

.= σi for describing component types
• subtype facts of the form σ ≤ τ

Formalization: Inference System STA 18

Typing rules:

σ v σ

σ ≤ τ
τ v ρ
σ v ρ

accepts(σ, l) accepts(τ, l)
σ v τ
σ.l

.= τ.l

Type equality is an equivalence, plus compatibility axioms:

σ
.= τ

σ.l
.= τ.l

σ
.= σ′ σ′ v τ ′ τ ′

.= τ

σ v τ

Theorem 2.9 (Henglein 1997) Subtype constraints can be checked
in quadratic time.

Beweis. STA(D) can be computed in time O(|D|2). 2

Proof of 2nd Meta-Complexity Theorem 19

• extend the Downey, Sethi, Tarjan (1980) algorithm
• alternatively,
• extend the first meta-complexity theorem to inference systems

with priorities and deletion
Theorem 2.10 (G, McAllester 2001) Let R be an
inference system with priorities and deletion such that all
closures R(D) are finite. Then one closure R(D) can be
computed in time O(|R(D)|+ pfR(R(D))).
• define conditional congruence closure by inferences with

priorities and deletion based on ideas by (Bachmair, Tiwari
2000)

Union-Find as Inferences with Priorities and Deletion 20

Inference system UF (priorities from left to right; premises in [. . .] are
deleted after the rule has fired)a:

[x .= x]
>

[x→ y]
y → z

x→ z

[x .= y]
x→ z

x
.= z

[x .= y]
[weight(x,w1)]
weight(y,w2)
w1 ≥ w2

(y → x) ∧ weight(x,w1 + w2)

Theorem 2.11 Let E be a set of ground equations over terms in T .
Then pfUF (UF (E)) is in O(n logm), with n = |E| and m = |T |.

With a slightly more sophisticated system we obtain O(n+m logm).
aWe also need the symmetric variants of the last two rules, and we assume that

initial data bases initialize weight by 1.

III. Dynamic Transitive Closure

Quasi-Orderings with Monotone Functions 22

Basic axioms QO

x⇒x

x⇒ x′ x′⇒x′′

x⇒ x′′
x⇒x′

f(x)⇒ f(x′)
for certain f

optionally exploiting the induced congruence
x⇒ y y⇒x

x
.= y

additionally, for atomic set constraints (Melski, Reps 1997):
f(x)⇒ f(y)

x⇒ y

additionally, from pointer analysis:

input(X = Y) X : ref(T) Y : ref(T ′)
T ′⇒T

Ground Monadic Reachability 23

Decision problem:

QO |= (s1⇒ t1) ∧ . . . ∧ (sn⇒ tn) ⊃ (s0⇒ t0) (si, ti ground)

Example:

(start⇒ fa)∧(a⇒ gb)∧(b⇒ c)∧(gc⇒ d)∧(fd⇒ fin) ⊃ (start⇒ fin)

Graphically:

a g g d

start f f fin

b c

Results about Ground Monadic Reachability 24

• GMR is 2NPDA-complete (Neal 1989)a

• 2NPDA acceptance is in O(n3) (Aho, Hopcroft, Ullman 1968)
• no subcubic algorithm known
• QO (also non-monadic) is a local theory, that is,
QO |= C iff QO[subterms in C] |= C,
thus in O(n3) by (Dowling, Gallier 1980)

start⇒ fa

a⇒ gb

b⇒ c
gb⇒ gc gc⇒ d

gb⇒ d

a⇒ d
fa⇒ fd

start⇒ fd fd⇒ fin

start⇒ fin

aThis holds for flat terms already.

Many Data Flow Problems are Equivalent with GMR 25

• atomic set constraints (Melski, Reps 1997)
• interprocedural reachability for higher-order languages (Heintze,

McAllester 1997)
• Amadio/Cardelli typability (Heintze, McAllester 1997)
• Andersen’s (1994) pointer analysis (Aiken et al 1998)

Ordered Chaining 26

Issue: better balancing of forward and backward computation
History: • Bledsoe, Kunen, Shostak (1985), Hines (1992):

limes theorems, set theory
• Levy, Agust́ı (1993): bi-rewriting for distributive lattices
• Bachmair, G (1996): ordered chaining for binary relations

Assumption: ground terms are ordered by � (total, well-founded, . . .)
Ordered Chaining OC:

y⇒x u[x]⇒ v

u[y]⇒ v
if x � y and u � v

(Ground) reachability through rewrite proofs: a

QO |= D ⊃ (s⇒ t) iff s
∨⇒ t in OC(D), that is,

s⇒
�
. . .⇒

�
w ⇒
≺
. . .⇒

≺
t

afor flat terms decidable in O(|D|2) since |OC(D)| is in O(|D|2).

Chaining Diagram (Terms Ordered by Number) 27

1

2

7

10

12

13

16

19

11

18 17

8

given ⇒-facts

Adding Peak Facts 28

1

2

7

10

12

13

16

19

11

18 17

8

Reachability Through Rewrite Proofs 29

1

2

7

10

12

13

16

19

11

18 17

8

Adding Equality and Set Constraints 30

Deriving equations from inequations is optional. Using them for
simplification collapses cycles. Premises in parenthesis become
redundant and can be deleted.

[x ∨⇒ y] [y ∨⇒ x]
x
.= y

(whenever you like)
x
.= y [A(x)]
A(y)

(if x � y)

Negative inequations in inference rules have to be replaced by rewrite
provability, e.g., for set constraints we may add:

f(x) ∨⇒ f(y)
x⇒ y

Theoretical Results and Open Questions 31

• completeness
• worst-case complexity not better than O(n3)
• for which classes of data bases quadratic?
• how to choose a good ordering?

Practical Results 32

Encouraging results by Aiken, Fähndrich, Foster, Su (1998, 2000) for
Andersen’s pointer analysis via atomic set constraints:
• flat inequations X ⇒Y, ref(X)⇒Y, and X ⇒ ref(Y)
• ref(X) minimal in �, therefore, O(1) test for injectivity
• if � on set variables is random, then relatively few

variable-variable edges are added
• partial cycle elimination according to

x⇒
�
. . .⇒

�
y y ⇒

≺
x

x
.= y

• analytical model: O(1) for partial cycle test; ordered chaining
adds only 40% of the transitive edges
• transformation to delay peak computation that eventually collapse

Very long programs can be analysed in reasonable time

Conclusions 33

Fundamental problem: efficient deduction for transitive relations in
algebraic structures

Logical view: clarifies the issues and provides general efficient methods
Advice to the PL community: adopt that view and obtain almost

optimal complexity results and prototype implementations for free
Advice to the ATP community: • make first-order provers work well

on these near-propositional cases
• find more meta-complexity theorems for the general case
• implement the algorithms behind the meta-complexity

theorems
• analytical models for ordered chaining: when is GMR

sub-cubic?

