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1. Datasets
1.1. Our Test Dataset

In this section, we introduce the data collection process
for our test dataset. All personal data in our test dataset is
collected with an IRB approval. In order to estimate accu-
rate egocentric camera poses and further obtain the ground
truth human body poses under the egocentric camera per-
spective, we mount a calibration board on the head, rigidly
attach it to the egocentric camera, and estimate the pose of
the egocentric camera with a multi-view capturing system,
as shown in Fig. 1.

Before the data collection process, we first estimate
the transformation matrix Mhead2ego between the calibra-
tion board and the fisheye camera with hand-eye calibra-
tion [12]. We place a second calibration board on the scene
in a place where it can be seen by both the egocentric cam-
era and the studio cameras. We then estimate the relative
pose Mego2calib between the egocentric camera and the ex-
ternal calibration board, the relative pose between the stu-
dio cameras and the external calibration board Mext2calib,
and the relative pose between the studio cameras and the
head-mounted calibration board Mext2head. We can obtain
the transformation matrix Mhead2ego with:

Mhead2ego = M−1
ext2headMext2calibM

−1
ego2calib (1)

During the data collection process, we estimate the pose
of the calibration board from each single view and obtain
the averaged calibration board poses Mext2head (see Fig. 1).
The egocentric camera pose Mext2ego can be obtained with:

Mext2ego = Mext2headMhead2ego (2)

With the egocentric camera pose, we can transform the
ground truth pose under the studio camera coordinate sys-
tem Pext to the egocentric camera coordinate system Pego:

Pego = PextMext2ego (3)

Figure 1. Visualization of the data collection process for our test
dataset. We detect the pose of the head-mounted calibration board
rigidly attached to the egocentric camera from multiple views in
the studio.

1.2. EgoGTA Dataset

Based on the GTA-IM dataset [2], we generate the syn-
thetic EgoGTA dataset with ground truth labels of human
body segmentation masks, scene depth maps, and human
body poses. We first register the SMPL-X model on the 3D
poses from GTA-IM following HULC [11]. Then, we use
the TSDF fusion [3] to reconstruct the mesh of the scene
from the depth map sequences in GTA-IM. Finally, we ren-
der the images, semantic labels, and depth maps of the scene
with and without the human body using Blender [1]. We
show more examples of the EgoGTA dataset in Fig. 2

1.3. EgoPW-Scene Dataset

We generate the EgoPW-Scene dataset by rendering the
scene depth map for each image in the EgoPW dataset [13].
Since the scan of the background scene is not available for
the EgoPW dataset, we generate the mesh of the scene from
the EgoPW image sequences with SfM. In Fig. 3 we show
more examples of the EgoPW-Scene dataset.

2. Implementation Details
In this section, we describe the implementation details

of our scene-aware egocentric pose estimation framework,
including the network architectures and training proce-
dure. Details of the scene depth estimator is shown in
Sec. 2.1, which includes a human body segmentation net-
work (Sec. 2.1.2), a depth estimation network (Sec. 2.1.1)
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Figure 2. Example of our EgoGTA dataset.
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Figure 3. Example of our EgoPW-Scene dataset.

and a depth inpainting network (Sec. 2.1.3). The details
of the scene-aware egocentric pose estimator are shown in
Sec. 2.2.

2.1. Scene Depth Estimator

2.1.1 Depth Estimation Network with Human Body

We use the same network architecture from Hu et al.’s
work [5] as our depth estimation network D. The network
D is trained on the NYU-Depth V2 dataset [8] following
the training procedure from [5]. Next, the network is fine-
tuned on the EgoGTA dataset using the Adam optimizer [6]
for 40K iterations with the learning rate set to 1 � 10−4, the
weight decay set to 1 � 10−4, the image size as 256 � 256,
and the batch size as 16.

2.1.2 Human Body Segmentation Network

We adopt the HRNetV2-W48 network from Yuan et al.’s
work [15] as our human body segmentation network S. The
network S is trained on the LIP dataset [4] following the
procedure from [15]. Next, we finetune the network on the

EgoGTA dataset for 2000 steps with the weight decay as
1 � 10−3, the image size as 473 � 473, and the batch size
as 32. During the finetuning step, we use the Adadelta [16]
optimizer and set the learning rate of the first 3 stages in
HRNet to 1 � 10−6 and the learning rate of the fourth stage
to 0.001.

2.1.3 Depth Inpainting Network

The depth inpainting network G takes the segmented depth
map D̂M with shape 256 � 256 and the human body seg-
mentation mask Ŝ with shape 256 � 256 as the input and
predicts the scene depth map without human body D̂S . We
adopt the UNet [9] for the depth inpainting task. The en-
coder of the UNet contains one input convolutional layer
with 64 output channels and 4 downsampling layers, each
with 128, 256, 512, 512 output channels. Each downsam-
pling layer consists of one 2D-maxpooling layer (kernel
size 2) and two convolutional blocks. The decoder con-
tains 4 upsampling layers, each with 256, 128, 64, 64 output
channels, and one output convolutional layer with 1 out-
put channel. Each upsampling layer consists of one 2D-
bilinear interpolation layer and two convolutional blocks.
Each aforementioned convolutional block contains one 2D
convolutional layer (kernel size 3, stride 1, and padding 1),
one batch norm layer, and one relu layer. The 1st, 2nd, 3rd
and 4th input of the downsampling layers is also fed into the
4th, 3rd, 2nd and 1st input of the upsampling layer to form
the skip connections in UNet.

We train the depth inpainting network on the EgoGTA
and the EgoPW-Scene datasets simultaneously using the
Adam optimizer [6] for 28K iterations with the learning rate
as 1 � 10−4, the weight decay as 1 � 10−4 and batch size as
16.

2.2. V2V Network

The V2V network has the same architecture as the net-
work in Moon et al.’s work [7]. During training, the input
image is converted to 2D body pose features and further
projected into a 3D volumetric space Vbody with 32 chan-
nels. We concatenate the volumetric body feature, the volu-
metric representation of ground truth scene geometry Vscene,
and their intersection Vinter and feed them to the V2V net-
work. We train the network using the Adam optimizer for
24K iterations with the learning rate as 1�10−3 and the batch
size as 64.

3. Fisheye Camera Model

In this section, we describe the fisheye camera model
used in our method. The projection function P of a 3D
point [x, y, z]T into a 2D point [u, v]T on fisheye images
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