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Abstract. In this paper, we consider the minimum biclique cover and
minimum biclique partition problems on bipartite graphs. In the min-
imum biclique cover problem, we are given an input bipartite graph
G = (V,E), and our goal is to compute the minimum number of complete
bipartite subgraphs that cover all edges of G. This problem, besides its
correspondence to a well-studied notion of bipartite dimension in graph
theory, has applications in many other research areas such as artificial
intelligence, computer security, automata theory, and biology. Since it is
NP-hard, past research has focused on approximation algorithms, fixed
parameter tractability, and special graph classes that admit polynomial
time exact algorithms. For the minimum biclique partition problem, we
are interested in a biclique cover that covers each edge exactly once.
We revisit the problems from approximation algorithms’ perspectives
and give nearly tight lower and upper bound results. We first show that
both problems are NP-hard to approximate to within a factor of n1−ε

(where n is the number of vertices in the input graph). Using a stronger
complexity assumption, the hardness becomes Ω̃(n), where Ω̃(·) hides
lower order terms. Then we show that approximation factors of the form
n/(logn)γ for some γ > 0 can be obtained.
Our hardness results have many consequences: (i) Ω̃(n) hardnesses for
computing the Boolean rank and non-negative integer rank of an n-by-
n matrix (ii) Ω̃(n) hardness for minimizing the number of states in a
deterministic finite automaton (DFA), given an n-state DFA as input,
and (iii) Ω̃(

√
n) hardness for computing minimum NFA from a truth

table of size n. These results settle some of the most basic problems in
the area of regular language optimization.

1 Introduction

We study the problem of covering the edges of a graph by bipartite complete sub-
graphs (or bicliques). In this problem, we are given a graph G = (V,E), and our
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objective is to compute a collection of complete bipartite subgraphs of G that to-
gether cover all edges of G, while minimizing the number of such subgraphs. The
problem is referred to as the minimum biclique cover problem (BicliqueCover)
in the optimization literature and has many applications, as well as connections,
to other areas of computer science, such as automata and language theory [15],
computer security [8], bioinformatics [24], graph drawing [9], and artificial in-
telligence. Besides these applications, computing a biclique cover of a graph is
equivalent to other important notions in mathematics: Given an m-by-n matrix
M over a Boolean algebra. The Boolean rank of M is the minimum k for which
there exist two matrices (A)m×k and (B)k×n such that M = AB. It has been
shown that computing Boolean rank of a matrix is equivalent to computing the
bipartite dimension of a bipartite graph (see [14]).

In most applications, one may assume that graph G is bipartite. This prob-
lem has received a large amount of attention from a number of research groups.
Since the problem is NP-hard, various approaches have been used in study-
ing the problem: approximation algorithms [28,15], heuristics [8], fixed param-
eter tractability [25], and investigation of special graph classes that admit fast,
polynomial-time algorithms [3,4,22,23].

Orlin showed that the problem is NP-hard, even on bipartite graphs [26].
Later Simon showed that the problem is also NP-hard to approximate [28].
Gruber and Holzer used the construction in [28] to show that the problem is
n1/3−ε and m1/5−ε hard to approximate respectively. On an upper bound side,
no non-trivial approximation algorithm has been proposed. The problem can
be, however, solved efficiently in many cases. For instance, the fixed-parameter
tractability result is known [25], implying that the problem can be solved in time
f(k)poly(n) provided that the biclique cover of size k exists. Also, the problem
is polynomial time solvable in several graph classes, such as domino-free graphs,
C4-free graphs, and bipartite permutation graphs (see [3] and references therein).

A problem closely related to BicliqueCover (but perhaps receives less at-
tention from researchers) is called BicliquePartition where our goal is to find
a cover in which each edge is covered by exactly one biclique. In contrast to
BicliqueCover, only APX-hardness result has been shown for this problem.
This result relies on the equivalence of BicliquePartition and the normal set
basis problem shown to be NP-hard by [18], and a reduction from vertex cover.

A further related problem, called maximum edge biclique problem
(MaxBiclique), receives a lot of attention from approximation algorithms com-
munity. Dawande, Keskinocak and Tayur [21] showed that the weighted version
of the MaxBiclique in bipartite graphs is NP -complete, but they were not able
to show that the unweighted version is hard also. This was later accomplished by
Peeters [27] who proved that MaxBiclique in bipartite graphs is NP -complete.
In terms of approximation hardness, Feige [10] shows that the problem is hard
to within a factor of nε assuming average-case complexity hypothesis. Ambühl
et al. prove the same result under a more standard assumption [1].
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1.1 Our Contributions

Our main result is informally summarized in the following theorem.

Theorem 1 (Informal). BicliqueCover and BicliquePartition on bipar-
tite graphs are (almost) as hard to approximate as graph coloring.

Combining this theorem with the hardness results for graph coloring [12,20,29]
implies that these problems do not admit n1−ε and m1/2−ε approximation al-
gorithm unless P = NP. With a stronger complexity assumption of NP 6⊆
BPTIME(2poly logn), this gives a stronger hardness result of n

2log
7/8+ε n

and
√
m

2log
7/8+ε m

for any ε > 0. (For the purpose of deriving our corollaries, it is important to
state the bounds in terms of both m and n).

We immediately obtain the hardness of approximating the rank of a matrix
through the connections shown in [14]. Also, Amilhastre et al. and Gruber and
Holzer [2,15] discovered (nearly tight) connections between BicliqueCover,
BicliquePartition, and several minimization problems for regular languages.
Combining our result with theirs yields new hardness results (proofs will appear
in the full version). We summarize the consequences of our theorem below.

Corollary 1. Unless NP has bounded-error randomized quasi-polynomial time
algorithm, for all ε > 0, it is hard to:

– Approximate the Boolean rank and non-negative integer rank of an n-by-n
matrix to within a factor of n

2log
7/8+ε n

.

– Approximate the number of states of minimum NFA accepting a language L,

specified by an input truth table of size N , to within a factor of
√
N

2log
7/8+ε N

.

– Approximate the minimum number of states of the minimum DFA accepting
a language L, specified by an input n-state DFA of size n, to within a factor
of n

2log
7/8+ε n

.

All these results are essentially tight. These problems are some of the most
basic problems in regular language minimization (see the survey by Holzer and
Kutrib and references therein [17]). Prior to our results, similar hardness results
require (much stronger) cryptographic assumptions [13]. We remark another
interesting aspect of our results: It is noted in [17] that the lower bounds provided
by biclique edge cover technique “ ... are not always tight and can be arbitrarily
worse ...” Our results show that biclique cover techniques can in fact provide
tight lower bounds for many problems listed in the survey, hence providing an
evidence that biclique cover and partition capture the computational complexity
of regular language minimization problems.

Our proof follows the framework of graph product techniques, as introduced
and used succesfully by Chalermsook et al. [5,7,6]. Roughly speaking, this frame-
work reduces the task of proving hardness of approximation to that of proving
graph product inequalities. In our case, this amounts to bounding the quantity
bc(B[G ·H]), by some slowly growing function of bc(B[H]) and bc(B[G]) where
bc(H) denotes the size of minimum biclique cover of H, “·” is the lexicographic
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product of graphs, and B[·] is the bipartite double cover transformation respec-
tively. The main idea of the proof is to use an optimal vertex coloring of Ḡ
together with biclique covering of B[H] to suggest the biclique cover of B[G ·H].
We note that, while we give lower bound results, the flavor of our proofs is
rather algorithmic: It illustrates how one can algorithmically utilize the coloring
of graph Ḡ in minimizing the biclique covers in B[Gk].

Our hardness results rule out approximation ratios nδ for any δ ∈ (0, 1), so
it is natural to aim at mildly sub-linear approximation factors, e.g., n

(logn)γ for

some γ > 0. We investigate this direction and obtain the following results.

Theorem 2. There is an approximation algorithm for BicliqueCover that
achieves an approximation ratio of

O
(

min
{
n/
√

log(n),m(log logm)2/(log3m)
})

.

We remark that the upper and lower bounds match up to lower-order fac-
tors (in terms of n). The second result relies on the idea that one can reduce
BicliqueCover to MaxClique on the complement of the conflict graph.

Using a standard reduction, we furthermore obtain the following result.

Corollary 2. There is no poly-time algorithm to approximate MaxWeight-
edBiclique within factors of n1−ε and m1/2−ε, respectively, for all ε > 0

unless P = NP , or within a factor of O
(

min{n,
√
m}

2log
7/8+ε n

)
for any ε > 0 unless

NP ⊆ BPTIME(2poly logn). This holds even when edge-weights are in {0, 1}.

2 Preliminaries

We start by a formal treatment of our problem. A biclique is denoted by Ka,b

which is a complete bipartite graph (A,B, F ) such that |A| = a and |B| = b.
Given a graph G = (V,E), we say that S ⊆ V is a biclique subgraph of G if and
only if the induced subgraph G[S] is a biclique Ka,b for some a, b.

A biclique cover of G is a collection of vertices S1, . . . , Sk such that each Si
is a biclique subgraph of G and each edge e ∈ E(G) appears at least once in
some G[Si]. In such case, we say that a biclique cover of size k exists for G. Let
bc(G) denote the minimum number k for which a biclique cover of size k exists
for G. In BicliqueCover, our goal is to compute bc(G) on an input graph G. A
biclique partition of G is a biclique cover such that, each edge is covered exactly
once. It follows from the definition that bc(G) ≤ bp(G) for any graph G.

A clique partition of G is a partition of vertices V (G) into V (G) = V1 ∪
V2 ∪ . . . ∪ Vk such that each induced subgraph G[Vi] is a clique. The clique
partition number of G, denoted by cp(G), is the minimum number k such that a
clique partition of V (G) into k components exist. The clique partition problem
(PartitionIntoCliques) asks for computing the value of cp(G).

Given a graph G, let χ(G) be the chromatic number of G which is the min-
imum number of colors c such that there exists a proper c-coloring of G. Let



Approximability Results for Biclique Cover and Partition 5

IG be the set of all independent sets in G. A valid fractional c-coloring of G is
an assignment ψ : IG → [0, 1] with the guarantees: (i)

∑
S:v∈S ψ(S) ≥ 1 for all

v and (ii)
∑
S∈IG ψ(S) ≤ c. A fractional chromatic number of G, χf (G), is the

minimum c such that there exists a valid fractional c-coloring for G.
Notice that for any graph G, we have χ(G) = cp(Ḡ). Similarly to the notion

of fractional chromatic number, we may define fractional clique partition number

cpf (G) as χf (Ḡ). This implies that cp(G)
log |V (G)| ≤ cpf (G) ≤ cp(G).

Feige and Kilian [12] proved the NP-hardness of approximating χ(G). Since
χ(G) = cp(Ḡ), the same hardness result holds for PartitionIntoCliques.
Their result can be summarized formally below.

Theorem 3 ([12,29]). Let ε > 0 be a constant. Given a graph G = (V,E), it
is NP-hard to approximate cp(G) to within a factor of |V (G)|1−ε.

Assuming a stronger (but still standard) complexity theoretic assumption,
Khot and Ponnuswami proved the following result [20].

Theorem 4. Let ε > 0 be a constant. It is hard to approximate cp(G) for a graph

G = (V,E) to within a factor of |V (G)|
2log

3/4+ε |V (G)|
unless NP ⊆ BPTIME(2poly logn).

3 Hardness of Approximation

In this section, we prove our hardness results. We start by explaining graph
product terminologies and tools in the next subsection.

3.1 Graph Products

Let G and H be any graphs. The lexicographic product of G and H, i.e. G ·H, is
defined as follows. The vertex set ofG·H is V (G·H) = V (G)×V (H) and the edge
set is E(G ·H) = {(u, a)(v, b) : uv ∈ E(G)}∪

⋃
u∈V (G) {(u, a)(u, b) : ab ∈ E(H)}.

For an integer k, the term Gk denotes a k-fold lexicographic product of G, i.e.
Gk = G ·G . . . ·G (k times). The following inequality is a standard fact.

Lemma 1. For any graphs G and H, χf (G)χ(H) ≤ χ(G ·H) ≤ χ(G)χ(H)

We show that the clique partition number satisfies similar properties with
respect to lexicographic products. The proof will appear in the full version.

Lemma 2 (Multiplicativity of cp). cpf (G)cp(H) ≤ cp(G ·H) ≤ cp(G)cp(H)

3.2 Proof of the Hardness Result

We prove the following connection between PartitionIntoCliques and Bi-
cliqueCover, which will be used in deriving our hardness results.
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Theorem 5. Let G be any graph and k be an integer. There is an algorithm that
runs in time |V (G)|O(k) and constructs a bipartite graph H such that |V (H)| =
Θ(|V (G)|k) and(

cp(G)

log |V (G)|

)k
≤ bc(H) ≤ bp(H) ≤ cp(G)k|V (G)|3

Before proving this theorem, we show how to use it to derive our hardness results.

Corollary 3. Let ε > 0. It is NP-hard to approximate BicliqueCover and
BicliquePartition within factors of n1−ε and m1/2−ε. Moreover, there are no
polynomial time approximation algorithms for both problems with a guarantee in

n

2log
7/8+ε n

or
√
m

2log
7/8+ε n

unless NP ⊆ BPTIME(2poly logn).

Proof. Our reduction combines the reduction that gives hardness result Parti-
tionIntoCliques with Thm. 5. Let Aclique be the algorithm (i.e. reduction)
that takes a SAT instance ϕ and produces graph G, with the following properties:

– (Yes-Instance:) If ϕ is satisfiable, then cp(G) ≤ c
– (No-Instance:) If ϕ is not satisfiable, then cp(G) ≥ s.

Let g = s/c be the gap (hardness factor) given by the reduction Aclique.
For instance, Thm. 3 gives such a reduction with c = |V (G)|ε, s = |V (G)|1−ε,
g = |V (G)|1−2ε, and |V (G)| = |ϕ|O(1). Our reduction Akbiclique first runs the
algorithm Aclique to get the instance G and then apply Thm. 5 on graph G. The
theorem outputs graph H with N = |V (H)| = Θ(|V (G)|k).

Now analyze the gap given by our reduction Akbiclique. Applying the lower

bound of Thm. 5, for the No-Instance, we get bc(H), bp(H) ≥ sk

(log |V (G)|)k . For

the Yes-Instance, we would get bc(H), bp(H) ≤ ck|V (G)|3. So the gap between
Yes-Instance and No-Instance of reduction Akbiclique is

g′ =
(s
c

)k 1

|V (G)|3(log |V (G)|)k
=

gk

|V (G)|3(log |V (G)|)k

This gap holds for both BicliquePartition and BicliqueCover. Roughly
speaking the gap between our Yes-Instance and No-Instance is g′ ≈ gk.
Now we plug in the appropriate values to obtain the desired hardness results.

If we start from Thm. 3, we have the starting hardness gap g = |V (G)|1−2ε.
By choosing k = d1/εe, we obtain a gap of g′ ≥ |V (G)|(1−2ε)k/|V (G)|4 ≥
|V (G)|(1−6ε)k. Since N = |V (H)| = |V (G)|k, this gives us the hardness factor
N1−6ε, thus proving the first part of the theorem. This reduction runs in time
|V (G)|O(1/ε) = |ϕ|O(1) for constant ε > 0 (since Feige-Kilian reduction runs
in polynomial time), thus implying that the hardness result here holds under
assumption P 6= NP.

Similarly, if we start from Thm. 4, we have g = n

2log
3/4+ε n

where n = |V (G)|.
We plug in the value of g into g′ = gk/n3(log n)k. By choosing k = log n,
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we have g′ ≥ gk/nΘ(log logn) ≥
(

n

2log
3/4+2ε n

)k
= N

2k log3/4+2ε n
. Since k = log n,

we have logN = O(k log n) = O(log2 n). We obtain the hardness factor g′ ≥
N

2log
7/8+O(ε) N

. The reduction here runs in time |V (G)|O(k) = |V (G)|O(log |V (G)|).

Khot-Ponnuswami reduction has |V (G)| = 2poly log |ϕ|, and it is randomized with
possibly two-sided error. This implies that the running time of the reduction
overall is 2poly log |ϕ|. Therefore, this hardness result holds under the assumption
that NP does not admit randomized quasi-polynomial time algorithm.

The statements w.r.t. the number of edges follow since |E(H)| ≤ N2. ut

The rest of this section is devoted to proving Thm. 5. We use a bipartite
double cover transformation, which transforms any graph G into a bipartite
graph B[G] as follows. The nodes of B[G] are V (B[G]) =

⋃
v∈V (G) {(v, 1), (v, 2)},

i.e. we make two copies of each vertex v ∈ V (G). The edges of B[G] are
E(B[G]) = {(u, 1)(v, 2) : uv ∈ E(G)} ∪ {(u, 1)(u, 2) : u ∈ V (G)}. Our algorithm
simply outputs H = B[Gk]. Notice that |V (H)| = 2|V (G)|k.

First let us show the lower bound, which is relatively straightforward to see.

Lemma 3. For any graph G, cp(G) ≤ bc(B[G])

Proof. Let S1, . . . , S` ⊆ V (B[G]) be the biclique subgraphs that cover B[G]. It
is sufficient to show how to use these bicliques to define the partition of G into
` cliques. We name the biclique Hj = G[Sj ]. For each j, we define the vertex
set Vj ⊆ V (G) by Vj = {v : (v, 1)(v, 2) ∈ E(Hj)}. First we argue that G[Vj ] is
a clique in G: Consider u, v ∈ Vj for some u 6= v. Since (u, 1)(u, 2), (v, 1)(v, 2) ∈
E(Hj), it must be the case that (u, 1)(v, 2) ∈ E(Hj), implying that uv ∈ E(G).
Moreover, the collection of cliques V1, . . . , V` together cover graph G: For each
vertex v ∈ V (G), an edge (v, 1)(v, 2) must appear in some Hj′ (due to the fact
that S1, . . . , S` are biclique cover). This means that v ∈ Vj′ . From a collection of
cliques V1, . . . , V`, one can easily modify them into disjoint sets V ′1 , . . . , V

′
` . ut

It is easy to see that this inequality implies the lower bound: consider H =

B[Gk], so we have bc(H) ≥ cp(Gk) ≥ (cpf (G))k ≥
(

cp(G)
log |V (G)|

)k
.

Now we need to prove the upper bound that bp(H) ≤ cp(G)k|V (G)|3. We
present here a “light” version of our proof, showing a weaker statement that
bc(H) ≤ cp(G)k|V (G)|3. This proof captures most of the key ideas we need. The
proof of the stronger statement will be contained in the full version.

Lemma 4. For any graphs G and G′, bc(B[G ·G′]) ≤ 2|E(G)|+ cp(G)bc(B[G′])

Now we can apply Lem. 4 iteratively to get the following, which completes
the proof of Thm. 5.

Lemma 5. For any graph G and integer k, bc(B[Gk]) ≤ k|V (G)|2cp(Gk).

Proof. We will argue by induction on r that bc(B[Gr]) ≤ r|V (G)|2cp(Gr). Notice
that this is true for the base case when r = 1, i.e. bc(B[G]) ≤ |V (G)|2cp(G),
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because the biclique cover number of any graph is at most the number of edges
in it. Now assume that the hypothesis holds for all integers up to r. By unfolding
the term Gr+1 as G ·Gr, we can write bc(B[Gr+1]) as bc(B[Gr+1]) ≤ 2|E(G)|+
cp(G)bc(B[Gr]). Applying the induction hypothesis to the second term, we get

bc(B[Gr+1]) ≤ 2|E(G)|+ cp(G)r|V (G)|2cp(G)r

≤ |V (G)|2 + r · cp(G)r+1|V (G)|2

≤ (r + 1)cp(G)r+1|V (G)|2

This implies the proof of the statement. ut

3.3 Proof of Lemma 4

Recall the statement of the lemma, that bc(B[G·G′]) ≤ 2|E(G)|+cp(G)bc(B[G′]).
Let S1, . . . , Sh ⊆ V (B[G′]) be the biclique cover of B[G′]. For each Sj , we use
G′j to denote the induced subgraph of Sj in B[G′] (so G′j is a clique). We will
use these graphs to “suggest” the cover for B[G ·G′]. First, we look at the edges
E(B[G ·G′]) as the union of two edge sets E1 ∪ E2 where

E1 = {(u, a, 1)(v, b, 2) : u 6= v, uv ∈ E(G)}

and
E2 =

⋃
u∈V (G)

{(u, a, 1)(u, b, 2) : a = b ∨ ab ∈ E(G′)} .

To cover edges in E1, we define the collection of vertices {Xuv}uv∈E(G) as Xuv =

{(u, a, 1) : a ∈ V (G′)}∪{(v, b, 2) : b ∈ V (G′)}. Notice that each Xuv is a biclique
subgraph of B[G·G′]: For each pair (u, a, 1) and (v, b, 2) in Xuv, since uv ∈ E(G),
there must be an edge (u, a, 1)(v, b, 2). Thus, the following claim holds.

Claim. The collection {Xuv}uv∈E(G) covers all edges in E1.

Now we define another collection of bicliques {Yc,j} to cover edges in E2 as
follows. Let C1, . . . , C` be the partition of vertices of G into cliques. For each
clique c = 1, . . . , `, for each j = 1, . . . , h, define a subset of vertices Yc,j ⊆ V (B[G·
G′]) where Yc,j = {(u, a, 1) : u ∈ Cc, (a, 1) ∈ Sj}∪{(u, b, 2) : u ∈ Cc, (b, 2) ∈ Sj}.
Now we verify that the induced subgraph of each Yc,j is biclique: For any pair
of vertices (u, a, 1), (v, b, 2) ∈ Yc,j ,
– If u = v, then it must hold that (a, 1)(b, 2) ∈ E(G′j) (because both (a, 1) and

(b, 2) belong to biclique Sj). There are two cases again. If a = b, we have an
edge (u, a, 1)(u, a, 2) ∈ B[G ·G′] by definition; otherwise, if a 6= b, there must
be an edge ab ∈ E(G′), implying that (u, a, 1)(u, b, 2) is an edge in B[G ·G′].

– If u 6= v, the fact that both u and v belong to the same clique Cc means that
an edge uv ∈ E(G), implying that (u, a, 1)(v, b, 2) is an edge in B[G ·G′].

Claim. The collection of bicliques Yc,j covers all edges in E2.

Proof. Fix some u ∈ V (G). Consider an edge (u, a, 1)(u, b, 2) ∈ E2. Let Cc be the
clique that contains vertex u. Since ab ∈ E(G′) or a = b, we have (a, 1)(b, 2) as an
edge in B[G′]. Therefore, it is covered by some biclique G′j , i.e. (a, 1), (b, 2) ∈ Sj .
This implies that both (u, a, 1) and (u, b, 2) belong to Yc,j , hence covered. ut
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4 Algorithmic Results

We will now give two approximation algorithms for BicliqueCover. Thereby,
we achieve two mutually non-dominating approximation guarantees in terms of
the number of nodes and edges, respectively.

4.1 An Approximation Guarantee of O(n/
√

log(n))

We first describe a simple approximation algorithm for BicliqueCover that
achieves a performance ratio of O(nU/

√
log(nU )) where nU is the number of

left vertices in the bipartite input graph G = (U ∪V,E) (we assume w.l.o.g that
the left side of the graph is the smaller one, i.e. |U | ≤ |V |). Moreover, we will
apply exactly the same scheme to solve BicliquePartition, thereby achieving
the same performance guarantee for BicliquePartition.

The main idea behind the algorithm is to split the left vertex set U in parts
of equal size r (to be fixed later) and run an α(r)-approximation algorithm
for finding a biclique cover in each of these subgraphs. The results of all nU/r
subproblems are then put together to form a biclique cover of the whole graph
G. This also works for biclique partition, as the subgraphs are edge-disjoint. The
following theorem relates the approximation guarantee for the subproblems to
the guarantee for the overall problem.

Lemma 6. Let G = (U, V,E) be a bipartite graph with nU = |U | ≤ |V |. If we
can solve BicliqueCover on a graph G′ with r left vertices with an approxima-
tion guarantee of α(r), then we can solve the problem on G with approximation
guarantee nU

r α(r). The same holds for BicliquePartition.

Proof. Partition U arbitrarily into nU/r sets U1, . . . , UnU/r of size r and run the
approximation algorithm with performance guarantee α(r) on the subgraphs in-
duced by the sets Ui and their neighborhoods. Let Gi denote the i-th subgraph
and APXi the size of the solution produced by the approximation algorithm
on Gi. Furthermore, let OPTi be the size of the optimal solution on subgraph
Gi and OPT be the size of the optimal solution for G. Notice that the union
of the biclique covers of the subgraphs gives a biclique cover for G. Therefore,

we have that the size of this combined solution is APX =
∑nU/r
i=1 APXi ≤

α(r)
∑nU/r
i=1 OPTi ≤ α(r)nUr OPT. The last inequality follows as the optimal so-

lution of a subgraph of G is at most as large as the optimal solution of G. This
analysis also applies to BicliquePartition. ut

Theorem 6. There are O(n/
√

log n) approximation algorithms for Biclique-
Cover and BicliquePartition.

Proof. For solving the subproblems on G′ = (U ′, V ′, E′) with r = |U ′| left
vertices, we run a brute-force algorithm: Enumerate all 2r subsets of the left
vertices and enumerate all r-tuples of such subsets. Such a subset S ⊆ U ′ induces
a biclique together with the intersection of the neighborhoods of all vertices
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v ∈ S. Then return the smallest tuple of vertex sets that covers all edges. For
BicliquePartition, additionally ensure that the bicliques are edge-disjoint.
As the optimal solution needs at most r bicliques (simply take all the bicliques
induced by one of the left vertices) and we enumerate all bicliques of the graph
by enumerating all subsets of left vertices, this will return the optimal solution.
Hence the approximation factor on the subproblems is α(r) = 1. Thus, for the
whole algorithm on G, we get a guarantee of nU

r ≤
n
r . The running time of

the brute-force algorithm is O((2r)r), hence by choosing r =
√

log(n) we get a

polynomial running time of the algorithm and a guarantee of O(n/
√

log(n)). ut

4.2 An Approximation Guarantee w.r.t. the Number of Edges

A different approach to obtain an approximation guarantee, which dominates
the previous one on sparse graphs, is obtained via the following construction.

Definition 1. For a given undirected graph G = (V,E), the conflict graph G =
(V, E) contains a node for each edge of G, i.e. |V| = |E|. Two nodes of G are
connected by an edge if and only if the two corresponding edges of G are not
contained in a common biclique.

A node coloring of G corresponds to an edge coloring of G such that each color-
class is contained in a common biclique. Thus, the chromatic number of G is

equal to bc(G) and we can use [16] to obtain a guarantee in O
(
m log2 logm

log3m

)
.

Together with Thm. 6, this concludes the proof of Thm. 2.
However, we present another perspective, which not only gives algorithmic

insights but also leads to an improved hardness result for MaxWeightedBi-
clique. To this end, recall that the chromatic number of G is equal to cp(G), so
that a greedy algorithm that covers G with cliques also covers G with bicliques.

Thus, we analyze the family of greedy algorithms that pick a biclique in
each iteration containing as many uncovered edges as possible until every edge
is covered. To this end, we reexamine the relation between master and slave
problems in Johnson’s framework [19] under the premise that the approximation
guarantee α(·) is an increasing function on the number of uncovered elements.
That is, the approximation guarantee improves over iterations as the number of
uncovered edges shrinks. Hence, our master problem is BicliqueCover and its
slave problem is the problem of finding the heaviest biclique with edge-weights in
{0, 1} being 0 if an edge is already covered and 1 if not. Our result is summarized
in the following theorem, whose proof will appear in the full version of this paper.

Theorem 7. Let G = (V,E) be a bipartite graph. If there is an α-approximation
algorithm for MaxWeightedBiclique, then there is a greedy algorithm that
computes a BicliqueCover of size

O

(
α log

(
|E|
α

)
bcf (G)

)
,

where bcf (G) is the fractional biclique cover number.
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Such an α-approximation can be obtained from an approximation algorithm
for MaxClique operating on the complement of a conflict graph. By dropping
all the nodes of G that correspond to edges with weight 0 and finding an ap-
proximation of the largest clique in the remainder, we obtain a set of edges of G
that belongs to a common biclique, which has a weight of at least the maximum
weight divided by α. Using the MaxClique algorithm of Feige [11], we obtain

an approximation factor for {0, 1}-weighted biclique in O
(
m log2 logm

log3m

)
. This is

also essentially the best one can hope for as our new hardness result shows.

Corollary 2. There is no poly-time algorithm to approximate MaxWeight-
edBiclique within factors of n1−ε and m1/2−ε, respectively, for all ε > 0

unless P = NP , or within a factor of O
(

min{n,
√
m}

2log
7/8+ε n

)
for any ε > 0 unless

NP ⊆ BPTIME(2poly logn). This holds even when edge-weights are in {0, 1}.

A further consequence of Thm. 7 is that bc(G) = O(log(n)bcf (G)), which
yields the following corollary.

Corollary 4. It is NP-hard to approximate the fractional biclique number within
n1−ε or m1/2−ε for all ε > 0.
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