
Efficient Time-Travel on Versioned
Text Collections

Klaus Berberich, Srikanta Bedathur, Gerhard Weikum

Max-Planck-Institut für Informatik, Saarbrücken

Motivation – Today…

! Versioned text collections available today:
Web archives, Wikis, Information feeds,…

! Search is limited!
! Only most recent versions are searched
! Versions are treated as independent documents

! Time-travel search functionality is missing!

Motivation – Why time-travel search?

! Historical information needs, e.g.,
! Web page mentioning Web 2.0 in early 2004

! Interview with Angela Merkel from 2002
! Blogs praising Jürgen Klinsmann as a coach

before FIFA World Cup 2006

! Temporal text mining applications can
leverage time-travel search functionality

Motivation – Why time-travel search?

! Historical information needs, e.g.,
! Web page mentioning Web 2.0 in early 2004

! Interview with Angela Merkel from 2002
! Blogs praising Jürgen Klinsmann as a coach

before FIFA World Cup 2006

! Temporal text mining applications can
leverage time-travel search functionality

Motivation – Why time-travel search?

! Historical information needs, e.g.,
! Web page mentioning Web 2.0 in early 2004

! Interview with Angela Merkel from 2002
! Blogs praising Jürgen Klinsmann as a coach

before FIFA World Cup 2006

! Temporal text mining applications can
leverage time-travel search functionality

Motivation – Challenges

! Large data volumes:
! Internet Archive (~2 PBytes)

! Revision history of English Wikipedia (~1TByte)

! Existing relevance models do not handle
time-varying collections statistics, e.g.,
! growing collection size

! idf-scores of increasingly popular terms

! Query response time: users are “spoiled” by
Google etc., expect quick responses

Contributions

! Data, query, and relevance model for
time-travel search

! Indexing infrastructure that includes
! an adaptation of the inverted file index
! approximate temporal coalescing as a highly

effective technique to reduce index size

! Experimental evaluation of our approach on a
real-world large-scale dataset

Outline

! Motivation
! Data & Query Model
! Relevance Model

! Temporal Text Indexing
! Query Processing
! Experimental Results
! Conclusions

Data & Query Model (I)

! Versioned text collection with each
document potentially having many versions

! Document is regarded as a sequence of its
timestamped versions

! Version has validity time-interval

d = 〈d ti , d ti+1 , . . .〉

d ti [ti , ti +1)

d

Data & Query Model (II)

! Time-travel query as a keyword query
that is enriched by a temporal context

! Evaluated across all versions that existed at
any point during the temporal context

q [tb, te]

q
[tb, te]

Outline

! Motivation
! Data & Query Model
! Relevance Model

! Temporal Text Indexing
! Query Processing
! Experimental Results
! Conclusions

Relevance Model (I)

! Existing relevance models are time-agnostic
and must therefore first be made time-aware

! OKAPI BM25 with time-dependent statistics

wtf (v, d ti) =
(k1 + 1) · tf(v, d ti)

k1 · ((1− b) + b · dl(d t i)
avdl(ti)) + tf(v, d ti)

widf (v, t) = log
N(t)− df(v, t) + 0.5

df(v, t) + 0.5

w(q [tb, te], d ti) =
∑

v∈q

wtf (v, d ti) · widf (v, [tb, te])

Relevance Model (I)

! Existing relevance models are time-agnostic
and must therefore first be made time-aware

! OKAPI BM25 with time-dependent statistics

wtf (v, d ti) =
(k1 + 1) · tf(v, d ti)

k1 · ((1− b) + b · dl(d t i)
avdl(ti)) + tf(v, d ti)

widf (v, t) = log
N(t)− df(v, t) + 0.5

df(v, t) + 0.5

w(q [tb, te], d ti) =
∑

v∈q

wtf (v, d ti) · widf (v, [tb, te])

Relevance Model (I)

! Existing relevance models are time-agnostic
and must therefore first be made time-aware

! OKAPI BM25 with time-dependent statistics

wtf (v, d ti) =
(k1 + 1) · tf(v, d ti)

k1 · ((1− b) + b · dl(d t i)
avdl(ti)) + tf(v, d ti)

widf (v, t) = log
N(t)− df(v, t) + 0.5

df(v, t) + 0.5

w(q [tb, te], d ti) =
∑

v∈q

wtf (v, d ti) · widf (v, [tb, te])

Relevance Model (I)

! Existing relevance models are time-agnostic
and must therefore first be made time-aware

! OKAPI BM25 with time-dependent statistics

wtf (v, d ti) =
(k1 + 1) · tf(v, d ti)

k1 · ((1− b) + b · dl(d t i)
avdl(ti)) + tf(v, d ti)

widf (v, t) = log
N(t)− df(v, t) + 0.5

df(v, t) + 0.5

w(q [tb, te], d ti) =
∑

v∈q

wtf (v, d ti) · widf (v, [tb, te])

Relevance Model (I)

! Existing relevance models are time-agnostic
and must therefore first be made time-aware

! OKAPI BM25 with time-dependent statistics

wtf (v, d ti) =
(k1 + 1) · tf(v, d ti)

k1 · ((1− b) + b · dl(d t i)
avdl(ti)) + tf(v, d ti)

widf (v, t) = log
N(t)− df(v, t) + 0.5

df(v, t) + 0.5

w(q [tb, te], d ti) =
∑

v∈q

wtf (v, d ti) · widf (v, [tb, te])

Relevance Model (II)

! Potentially, many nearly-identical versions
dilute the query result

! Aggregation of version-level relevance scores
at the document level

MIN

MAX

TAVG
Time

R
el

ev
an

ce
 s

co
re

Relevance Model (II)

! Potentially, many nearly-identical versions
dilute the query result

! Aggregation of version-level relevance scores
at the document level

MIN

MAX

TAVG

MIN

Time

R
el

ev
an

ce
 s

co
re

Relevance Model (II)

! Potentially, many nearly-identical versions
dilute the query result

! Aggregation of version-level relevance scores
at the document level

MIN

MAX

TAVG
Time

R
el

ev
an

ce
 s

co
re

Relevance Model (II)

! Potentially, many nearly-identical versions
dilute the query result

! Aggregation of version-level relevance scores
at the document level

MIN

MAX

TAVG

MAX

Time

R
el

ev
an

ce
 s

co
re

Relevance Model (II)

! Potentially, many nearly-identical versions
dilute the query result

! Aggregation of version-level relevance scores
at the document level

MIN

MAX

TAVG
Time

R
el

ev
an

ce
 s

co
re

Relevance Model (II)

! Potentially, many nearly-identical versions
dilute the query result

! Aggregation of version-level relevance scores
at the document level

MIN

MAX

TAVGTAVG
Time

R
el

ev
an

ce
 s

co
re

Relevance Model (II)

! Potentially, many nearly-identical versions
dilute the query result

! Aggregation of version-level relevance scores
at the document level

MIN

MAX

TAVG
Time

R
el

ev
an

ce
 s

co
re

Outline

! Motivation
! Data & Query Model
! Relevance Model

! Temporal Text Indexing
! Query Processing
! Experimental Results
! Conclusions

Temporal Text Indexing (I)

! IDF-scores maintained separately in B-Tree
! TF-scores kept in adapted inverted file index

! One posting per term per version!

IDF

“harry”

“potter”

TF

(d1, 11.2, [t1, t2))

(d1, 10.6, [t2, t5))

“harry”

(d8, 10.9, [t7, t9))

Temporal Text Indexing (II)

! Many changes between versions
! are minor (e.g., corrected typos)

! have no noticeable effect on the ranked result
(e.g., 500 x “harry” vs. 501 x “harry”)

! Approximate temporal coalescing coalesces
adjacent postings having similar scores

time

sc
o
re

non-coalesced

coalesced

Temporal Text Indexing (III)

! Approximate temporal coalescing finds a
piecewise-constant representation of

! Maximal relative error per segment is
upper bounded by a threshold

! Optimal solution (minimal # of segments) by
dynamic programming in time

! Approximate solution computable in time
 good enough in practice

ε

O(N 3)

O(N)

! (t0, wtf (v, d t0)), . . . , (tN , wtf (v, d tN)) "

Outline

! Motivation
! Data & Query Model
! Relevance Model

! Temporal Text Indexing
! Query Processing
! Experimental Results
! Conclusions

Query Processing

! Bookkeeping of candidates extended to
maintain time series instead of simple scores

! Document-level relevance aggregations ready
for efficient top-k query processing

tb tet2

(d1, 11.2, [t1, t3))

(d7, 10.6, [t7, t8))

Query Processing

! Bookkeeping of candidates extended to
maintain time series instead of simple scores

! Document-level relevance aggregations ready
for efficient top-k query processing

tb tet2

(d7, 10.6, [t7, t8))

Query Processing

! Bookkeeping of candidates extended to
maintain time series instead of simple scores

! Document-level relevance aggregations ready
for efficient top-k query processing

tb tet2

(d7, 10.6, [t7, t8))

Query Processing

! Bookkeeping of candidates extended to
maintain time series instead of simple scores

! Document-level relevance aggregations ready
for efficient top-k query processing

tb tet2

(d7, 10.6, [t7, t8))

t1 t3

Outline

! Motivation
! Data & Query Model
! Relevance Model

! Temporal Text Indexing
! Query Processing
! Experimental Results
! Conclusions

Experimental Setup

! Corpus: Revision history of English Wikipedia
! 892,255 documents (encyclopedia articles)

! 2,795,383 versions (20% sample of the corpus)

! Queries: 45 most popular queries, e.g.,
“french revolution”, “american idol”, “da vinci code”

from AOL query log with result clicks on
wikipedia.org each combined with 6 temporal
contexts

! Prototype implementation: Java, Oracle 10g,
4 CPU 64bit machine, 16GB RAM

Experimental Results – Index Size

! Original index has 1,244,168,879 postings

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

0,00 0,01 0,05 0,10

!

R
el

at
ive

 In
de

x
S

iz
e

Experimental Results – Precision

! Top-100 relative precision measured using
! Overlap: fraction of contained original results
! Kendall’s ! computed on overlap

0,00

0,20

0,40

0,60

0,80

1,00

1,20

0,00 0,01 0,05 0,10

!

BM25 Overlap Yearly BM25 Kendall's ! Yearly

BM25 Overlap Quarterly BM25 Kendall's ! Quarterly

Experimental Results – Performance

! Performance measured as # sorted accesses
to process query batch

10.000

100.000

1.000.000

10.000.000

100.000.000

0,00 0,01 0,05 0,10

!

#
 S

o
rt

e
d
 A

c
c
e
s
s
e
s

MAX-BM25 Yearly

MIN-BM25 Yearly

TAVG-BM25 Yearly

Outline

! Motivation
! Data & Query Model
! Relevance Model

! Temporal Text Indexing
! Query Processing
! Experimental Results
! Conclusions

Conclusions

! Data, query, and relevance model for time-
travel search over versioned text collections

! Indexing infrastructure including
! an adapted inverted file index
! approximate temporal coalescing as a highly

effective technique to reduce index size

! Experiments on large-scale real-world dataset
! Index size and query-processing time reduced to

20% without sacrificing result quality

Thanks for your attention!

Any questions?

