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Motivation – Today…

! Versioned text collections available today:
Web archives, Wikis, Information feeds,…

! Search is limited!
! Only most recent versions are searched
! Versions are treated as independent documents

! Time-travel search functionality is missing!



Motivation – Why time-travel search?

! Historical information needs, e.g.,
! Web page mentioning Web 2.0 in early 2004

! Interview with Angela Merkel from 2002
! Blogs praising Jürgen Klinsmann as a coach

before FIFA World Cup 2006

! Temporal text mining applications can 
leverage time-travel search functionality
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Motivation – Challenges

! Large data volumes:
! Internet Archive (~2 PBytes)

! Revision history of English Wikipedia (~1TByte)

! Existing relevance models do not handle 
time-varying collections statistics, e.g.,
! growing collection size

! idf-scores of increasingly popular terms

! Query response time: users are “spoiled” by 
Google etc., expect quick responses 



Contributions

! Data, query, and relevance model for 
time-travel search

! Indexing infrastructure that includes
! an adaptation of the inverted file index
! approximate temporal coalescing as a highly 

effective technique to reduce index size

! Experimental evaluation of our approach on a 
real-world large-scale dataset



Outline

! Motivation
! Data & Query Model
! Relevance Model

! Temporal Text Indexing
! Query Processing
! Experimental Results
! Conclusions



Data & Query Model (I)

! Versioned text collection with each 
document potentially having many versions

! Document    is regarded as a sequence of its 
timestamped versions

! Version      has validity time-interval

d = 〈d ti , d ti+1 , . . .〉

d ti [ti , ti +1)

d



Data & Query Model (II)

! Time-travel query as a keyword query 
that is enriched by a temporal context

! Evaluated across all versions that existed at 
any point during the temporal context

q [tb, te]

q
[tb, te]
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Relevance Model (I)

! Existing relevance models are time-agnostic 
and must therefore first be made time-aware

! OKAPI BM25 with time-dependent statistics

wtf (v, d ti ) =
(k1 + 1) · tf(v, d ti )

k1 · ((1− b) + b · dl(d t i )
avdl(ti ) ) + tf(v, d ti )

widf (v, t) = log
N(t)− df(v, t) + 0.5

df(v, t) + 0.5

w(q [tb, te], d ti) =
∑

v∈q

wtf (v, d ti) · widf (v, [tb, te])
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Relevance Model (II)

! Potentially, many nearly-identical versions 
dilute the query result

! Aggregation of version-level relevance scores 
at the document level

MIN

MAX

TAVG
Time

R
el

ev
an

ce
 s

co
re



Relevance Model (II)

! Potentially, many nearly-identical versions 
dilute the query result

! Aggregation of version-level relevance scores 
at the document level

MIN

MAX

TAVG

MIN

Time

R
el

ev
an

ce
 s

co
re



Relevance Model (II)

! Potentially, many nearly-identical versions 
dilute the query result

! Aggregation of version-level relevance scores 
at the document level

MIN

MAX

TAVG
Time

R
el

ev
an

ce
 s

co
re



Relevance Model (II)

! Potentially, many nearly-identical versions 
dilute the query result

! Aggregation of version-level relevance scores 
at the document level

MIN

MAX

TAVG

MAX

Time

R
el

ev
an

ce
 s

co
re



Relevance Model (II)

! Potentially, many nearly-identical versions 
dilute the query result

! Aggregation of version-level relevance scores 
at the document level

MIN

MAX

TAVG
Time

R
el

ev
an

ce
 s

co
re



Relevance Model (II)

! Potentially, many nearly-identical versions 
dilute the query result

! Aggregation of version-level relevance scores 
at the document level

MIN

MAX

TAVGTAVG
Time

R
el

ev
an

ce
 s

co
re



Relevance Model (II)

! Potentially, many nearly-identical versions 
dilute the query result

! Aggregation of version-level relevance scores 
at the document level

MIN

MAX

TAVG
Time

R
el

ev
an

ce
 s

co
re



Outline

! Motivation
! Data & Query Model
! Relevance Model

! Temporal Text Indexing
! Query Processing
! Experimental Results
! Conclusions



Temporal Text Indexing (I)

! IDF-scores maintained separately in B-Tree
! TF-scores kept in adapted inverted file index

! One posting per term per version!

IDF

“harry”

“potter”

TF

( d1, 11.2, [t1, t2) )

( d1, 10.6, [t2, t5) )

“harry”

( d8, 10.9, [t7, t9) )



Temporal Text Indexing (II)

! Many changes between versions
! are minor (e.g., corrected typos)

! have no noticeable effect on the ranked result
(e.g., 500 x “harry” vs. 501 x “harry”)

! Approximate temporal coalescing coalesces 
adjacent postings having similar scores

time

sc
o
re

non-coalesced

coalesced



Temporal Text Indexing (III)

! Approximate temporal coalescing finds a 
piecewise-constant representation of 

! Maximal relative error per segment is
upper bounded by a threshold

! Optimal solution (minimal # of segments) by 
dynamic programming in time 

! Approximate solution computable in time 
        good enough in practice

ε

O(N 3)

O(N)

! (t0, wtf (v, d t0)), . . . , (tN , wtf (v, d tN )) "
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Query Processing

! Bookkeeping of candidates extended to 
maintain time series instead of simple scores

! Document-level relevance aggregations ready 
for efficient top-k query processing

tb tet2

( d1, 11.2, [t1, t3) )

( d7, 10.6, [t7, t8) )
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Experimental Setup

! Corpus: Revision history of English Wikipedia
! 892,255 documents (encyclopedia articles)

! 2,795,383 versions (20% sample of the corpus)

! Queries: 45 most popular queries, e.g.,
“french revolution”, “american idol”, “da vinci code”

from AOL query log with result clicks on 
wikipedia.org each combined with 6 temporal 
contexts

! Prototype implementation: Java, Oracle 10g, 
4 CPU 64bit machine, 16GB RAM



Experimental Results – Index Size

! Original index has 1,244,168,879 postings
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Experimental Results – Precision

! Top-100 relative precision measured using
! Overlap: fraction of contained original results
! Kendall’s !  computed on overlap 
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Experimental Results – Performance

! Performance measured as # sorted accesses 
to process query batch
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Conclusions

! Data, query, and relevance model for time-
travel search over versioned text collections

! Indexing infrastructure including
! an adapted inverted file index
! approximate temporal coalescing as a highly 

effective technique to reduce index size

! Experiments on large-scale real-world dataset 
! Index size and query-processing time reduced to 

20% without sacrificing result quality



Thanks for your attention!

Any questions?


