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Abstract

We present YAGO2, an extension of the YAGO knowledge base, in which
entities, facts, and events are anchored in both time and space. YAGO2 is
built automatically from Wikipedia, GeoNames, and WordNet. It contains
80 million facts about 9.8 million entities. Human evaluation confirmed an
accuracy of 95% of the facts in YAGO2. In this paper, we present the extrac-
tion methodology, the integration of the spatio-temporal dimension, and our
knowledge representation SPOTL, an extension of the original SPO-triple
model to time and space.
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1 Introduction

1.1 Motivation

Comprehensive knowledge bases in machine-readable representations have
been an elusive goal of AI for decades. Seminal projects such as Cyc [26]
and WordNet [18] manually compiled common-sense and lexical (word-sense)
knowledge, yielding high-quality repositories on intensional knowledge: gen-
eral concepts, semantic classes, and relationships like hyponymy (subclass-of)
and meronymy (part-of). These early forms of knowledge bases contain log-
ical statements that songwriters are musicians, that musicians are humans
and that they cannot be any other species, or that Canada is part of North
America and belongs to the British Commonwealth. However, they do not
know that Bob Dylan and Leonard Cohen are songwriters, that Cohen is
born in Montreal, that Montreal is a Canadian city, or that both Dylan and
Cohen have won the Grammy Award. Early resources like the original Cyc
and WordNet lacked extensional knowledge about individual entities of this
world and their relationships (or had only very sparse coverage of such facts).

In the last few years, the great success of Wikipedia and algorithmic ad-
vances in information extraction have revived interest in large-scale knowl-
edge bases and enabled new approaches that could overcome the prior limita-
tions. Notable endeavors of this kind include DBpedia [4], KnowItAll [16, 5],
Omega [34], Wikitaxonomy [36, 35], and YAGO [41, 42], and meanwhile
there are also commercial services such as freebase.com, trueknowledge.com,
or wolframalpha.com. These contain many millions of individual entities,
their mappings into semantic classes, and relationships between entities. DB-
pedia has harvested facts from Wikipedia infoboxes at large scale, and also
interlinks its entities to other sources in the Linked-Data cloud [7]. YAGO
has paid attention to inferring class memberships from Wikipedia category
names, and has integrated this information with the taxonomic backbone
of WordNet. Most of these knowledge bases represent facts in the form
of subject-property-object triples (SPO triples) according to the RDF data
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model, and some provide convenient query interfaces based on languages like
SPARQL.

However, current state-of-the-art knowledge bases are mostly blind to the
temporal dimension. They may store birth dates and death dates of people,
but they are unaware of the fact that this creates a time span that demarcates
the person’s existence and her achievements in life. They are also largely
unaware of the temporal properties of events. For example, they may store
that a certain person is the president of a certain country, but presidents of
countries or CEOs of companies change. Even capitals of countries or spouses
are not necessarily forever. Therefore, it is crucial to capture the time periods
during which facts of this kind actually happened. However, this kind of
temporal knowledge has not yet been treated systematically in state-of-the-
art work. A similar problem of insufficient scope can be observed for the
spatial dimension. Purely entity-centric representations know locations and
their located-in relations, but they do not consistently attach a geographical
location to events and entities. The geographical location is a crucial property
not just of physical entities such as countries, mountains, or rivers, but also of
organization headquarters, or events such as battles, fairs, or people’s births.
All of these entities have a spatial dimension.

If it were possible to consistently integrate the spatial and the temporal
dimension into today’s knowledge bases, this would catapult the knowledge
bases to a new level of usefulness. The knowledge base would be fully time
and space aware, knowing not only that a fact is true, but also when and
where it was true. The most obvious application is that it would become
possible to ask for distances between places, such as organization headquar-
ters and cities (already possible today), or even between places of events
(mostly not supported today). The time-awareness would allow asking tem-
poral queries, such as “Give me all songs that Leonard Cohen wrote after
‘Suzanne’ ”. Another, perhaps less obvious application is the ability to spa-
tially and temporally locate practically any entity that occurs in a natu-
ral language discourse. Simple examples are sentences such as “I am going
to Berlin”, which could be automatically annotated with the coordinates of
Berlin. We may even want to refer to locations by informal and vague phrases
such as “the midwest” or “the corn belt”. Likewise, the new knowledge base
would be able to assign a time dimension to a sentence such as “During the
era of Elizabeth I, the English waged war against the Spanish”, so that this
event could be temporally anchored. More subtle examples are expressions
that have both a temporal and a spatial dimension. Take “Summer of Love”
as example. This term conveys more than just a time (1967). It also con-
veys a place (San Francisco) and a duration (a few months) [17]. A time
and space aware knowledge base could correctly locate this event on both
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dimensions. We could for example ask for “all musicians born in the vicinity
of the Summer of Love”.

1.2 Contribution

What we need is a comprehensive anchoring of current ontologies along both
the spatial and the temporal dimension. This paper presents such an en-
deavor: YAGO2. As the name suggests, this is a new edition of the YAGO
knowledge base. However, in contrast to the original YAGO, the methodol-
ogy for building YAGO2 (and also maintaining it) is systematically designed
top-down with the goal of integrating entity-relationship-oriented facts with
the spatial and temporal dimensions. To this end, we have developed an ex-
tensible approach to fact extraction from Wikipedia and other sources, and
we have tapped on specific inputs that contribute to the goal of enhancing
facts with spatio-temporal scope. Moreover, we have developed a new rep-
resentation model, coined SPOTL tuples (SPO + T ime + Location), which
can co-exist with SPO triples, but provide a much more convenient way of
browsing and querying the YAGO2 knowledge base.

Along these lines, the paper makes the following novel contributions:

• an extensible framework for fact extraction that can tap on infoboxes,
lists, tables, categories, and regular patterns in free text, and allows
fast and easy specification of new extraction rules;

• an extension of the knowledge representation model tailored to cap-
ture time and space, as well as rules for propagating time and location
information to all relevant facts;

• methods for gathering temporal facts from Wikipedia and
for seamlessly integrating spatial types and facts from GeoN-
ames (http://geonames.org), in an ontologically clean manner with
high accuracy;

• a new SPOTL representation of spatio-temporally enhanced facts, with
expressive and easy-to-use querying.

The result is the YAGO2 knowledge base, which is publicly available at www.
mpi-inf.mpg.de/yago-naga/yago2/. It contains more than 80 million facts
for 9.8 million entities (if GeoNames data is included). Without GeoNames,
it still contains more than 33 million facts for 2.6 million entities, extracted
from Wikipedia and WordNet. Both facts and entities are properly placed
on their temporal and geographical dimension, thus making YAGO2 a truly
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time- and space-aware ontology. More than 13 million facts are associated
with their occurrence time, and more than 1.5 million with the location of
their occurrence. Sampling-based manual assessment shows that YAGO2
has a precision (i.e., absence of false positives) of more than 95 percent (with
statistical significance tests).

The rest of the paper is organized as follows. Section 2 gives a brief
overview of the original YAGO knowledge base. Section 3 presents our extrac-
tion architecture. Section 4 introduces the temporal dimension in YAGO2.
Section 5 introduces the spatial dimension. Section 6 explains additional
context data in YAGO2. Section 7 describes our SPOTL model and query-
ing. Section 8 presents the evaluation of YAGO2. Section 9 reviews related
work, before Section 10 concludes.
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2 The YAGO Knowledge Base

YAGO was originally introduced in [41]. The YAGO knowledge base is au-
tomatically constructed from Wikipedia. Each article in Wikipedia becomes
an entity in the knowledge base (e.g., since Leonard Cohen has an article
in Wikipedia, LeonardCohen becomes an entity in YAGO). Certain cate-
gories in Wikipedia can be exploited to deliver type information (e.g., the
article about Leonard Cohen is in the category Canadian poets, so he be-
comes a canadian poet). YAGO links this type information to the tax-
onomy of WordNet [18] (e.g., canadian poet becomes a subclass of the
WordNet synset poet). YAGO has about 100 manually defined relations,
such as wasBornOnDate, locatedIn and hasPopulation. Categories and
infoboxes can be exploited to deliver instances of these relations. For this
purpose, YAGO has manually defined patterns that map categories and in-
fobox attributes to fact templates (e.g., Leonard Cohen has the infobox at-
tribute born=Montreal, which gives us the fact wasBornIn(LeonardCohen,

Montreal)). This resulted in 2 million extracted entities and 20 million facts.
On top of these extractions, the YAGO algorithms performed extensive con-
sistency checks, eliminating facts that do not conform to type or functionality
constraints. A manual evaluation confirmed an overall precision of YAGO
of 95%. The key to such a high precision on such a large set of facts were
the manually defined relations, which gave the facts a well-defined semantics
and thus enabled YAGO to self-check its consistency.

YAGO represents facts as triples of subject (S), predicate (P), and object
(O), in compatibility with the RDF data model. YAGO makes extensive use
of reification: every fact (SPO triple) is given an identifier, and this identifier
can become the subject or the object of other facts. For example, to say that
a fact with id #42 was extracted from Wikipedia, YAGO can contain the
fact wasFoundIn(#42, Wikipedia). This fact has itself an id. Unlike RDF,
YAGO can only reify facts that are already part of the knowledge base.
Thereby, YAGO avoids problems of undecidability. The consistency of a
YAGO knowledge base can still be decided in polynomial time [41].
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During its young life, YAGO has found many applications and is part of
or contributes to numerous other knowledge base endeavors (such as DBpedia
or SUMO). The present paper embarks to take YAGO to the next level of a
temporally and spatially enhanced ontology.
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3 Extensible Extraction
Architecture

In the first version of YAGO, much of the extraction was done by hard-wired
rules in the source code. As this design does not allow easy extension, we
have completely re-engineered the code. The new YAGO2 architecture is
based on declarative rules that are stored in text files. This reduces the
hard-wired extraction code to a method that interprets the rules. The rules
take the form of subject-predicate-object-triples, so that they are basically
additional YAGO2 facts. Indeed, the rules themselves are a part of the
YAGO2 knowledge base. There are different types of rules.

Factual rules are simply additional facts for the YAGO2 knowledge
base. They are declarative translations of all the manually defined excep-
tions and facts that the previous YAGO code contained. These include the
definitions of all relations, their domains and ranges, and the definition of
the classes that make up the YAGO2 hierarchy of literal types (yagoInteger
etc.). Each literal type comes with a regular expression that can be used to
check whether a string is part of the lexical space of the type. The factual
rules also add 3 new classes to the taxonomy: yagoLegalActor (which com-
bines legal actors such as organizations and people), yagoLegalActorGeo

(the union of yagoLegalActor and geopolitical entities) and yagoGeoEntity

(which groups geographical locations such as mountains and cities). The
factual rules also help with the extraction of classes. In principle, every Wi-
kipedia category (such as “American Rock n’Roll singers”) becomes a class in
YAGO2 and gets linked to the corresponding WordNet class (“singer”). Not
all Wikipedia categories shall be treated this way (“1935 births”, e.g., is not
a subclass of “births”) and so the class rules define a handful of words that
identify non-conceptual categories. The rules also include a list of 60 words
with their primary meaning, if the primary meaning as defined in WordNet
is not suitable. For example, the word “capital” has as primary meaning in
WordNet the financial amount, whereas the categories use the word in the
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sense of a city. Such a factual rule is represented as a simple YAGO fact:

"capital" hasPreferredMeaning wordnet_capital_108518505

Implication rules say that if certain facts appear in the knowledge base,
then another fact shall be added. Thus, implication rules serve to deduce new
knowledge from the existing knowledge. An implication rule is also expressed
as a YAGO fact, i.e., as a triple. The subject of the fact states the premise
of the implication, and the object of the fact holds the conclusion. Both the
subject and the object are strings that contain fact templates. Whenever
the YAGO2 extractor detects that it can match facts to the templates of
the subject, it generates the fact that corresponds to the object and adds it
to the knowledge base. Thus, implication rules have the expressive power of
domain-restricted Horn rules. For example, one of the implication rules states
that if a relation is a sub-property of another relation, then all instances of
the first relation are also instances of the second relation. Implication rules
use the relation implies, with strings as arguments:

"$1 $2 $3; $2 subpropertyOf $4;" implies "$1 $4 $3"

Replacement rules say that if a part of the source text matches a spec-
ified regular expression, it should be replaced by a certain string. This takes
care of interpreting micro-formats, cleaning up HTML tags, and normalizing
numbers. It also takes care of eliminating administrative Wikipedia cate-
gories (such as “Articles to be cleaned up”) and articles that we do not want
to process (such as articles entitled “Comparison of...”) – simply by replac-
ing this material by the empty string. Replacement rules use replace, with
strings as arguments:

"\{\{USA\}\}" replace "[[United States]]"

Extraction rules say that if a part of the source text matches a specified
regular expression, a sequence of facts shall be generated. These rules apply
primarily to patterns found in the Wikipedia infoboxes, but also to Wikipe-
dia categories, article titles, and even other regular elements in the source
such as headings, links, or references. The regular expression (Syntax as in
java.util.regex) contains capturing groups that single out the parts that
contain the entities. The capturing groups are used in the templates that
generate the facts. The templates also define the syntactic type of the entity,
e.g. “Wikipedia Link” or “Class” or one of the YAGO literal types. This
allows the extractor to seek and check the entities in the captured group,
thus making sure that no syntactically wrong information is extracted.

"\[\[Category:(.+) births\]\]" pattern "$0 wasBornOnDate Date($1)"
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This architecture for extraction rules is highly versatile and easily ex-
tensible. It allows accommodating new infoboxes, new exceptions, new fact
types, and new preprocessing by simply modifying the text files of rules.
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4 Giving YAGO a Temporal
Dimension

The meta-physical characteristics of time and existence have been the subject
of intense philosophical debate ever since the inception of philosophy. In fact,
long before it came to mean “semantic knowledge base”, the word “ontology”
itself referred foremost to the philosophical study of existence. For YAGO2,
we can choose a more pragmatic approach to time, because we can derive
the temporal properties of objects from the data we have in the knowledge
base.

YAGO2 contains a data type yagoDate that denotes time points, typ-
ically with a resolution of days but sometimes with cruder resolution like
years. Dates are denoted in the standard format YYYY-MM-DD (ISO 8601).
If only the year is known, we write dates in the form YYYY-##-## with #

as a wildcard symbol. In YAGO2, facts can only hold at time points; time
spans are represented by two relations that together form a time interval
(e. g. wasBornOnDate and diedOnDate). We consider temporal information
for both entities and facts:

• Entities are assigned a time span to denote their existence in time. For
example, Elvis Presley is associated with 1935-01-08 as his birthdate
and 1977-08-16 as his time of death. Bob Dylan (who is still alive),
is associated only with the time of birth, 1941-05-24. The relevant
relations are discussed below in Section 4.1.

• Facts are assigned a time point if they are instantaneous events, or a
time span if they have an extended duration with known begin and end.
For example, the fact BobDylan created BlondeOnBlonde is associated
with time point 1966-05-16 (the release date of this album). The fact
BobDylan isMarriedTo SaraLowndes is associated with the time span
from 1965-##-## to 1977-##-##. The time of facts is discussed in
Section 4.2.
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Thus, YAGO2 assigns begin and/or end of time spans to all entities, to
all facts, and to all events, if they have a known start point or a known end
point. If no such time points can be inferred from the knowledge base, it
does not attempt any assignment. Thereby, YAGO2 chooses a conservative
approach, leaving some time-dependent entities without a time scope, but
never assigning an ill-defined time.

4.1 Entities and Time

Many entities come into existence at a certain point of time and cease to exist
at another point of time. People, for example, are born and die. Countries
are created and dissolved. Buildings are built and possibly destroyed. We
capture this by the notion of an entity’s existence time, the span between the
creation and destruction of the entity.

Some entities come into existence, but never cease to exist. This applies
to abstract creations such as pieces of music, scientific theories, or literature
works. These entities have not existed prior to their inception, but they
will never cease to exist. Thus, they have an unbounded end point of their
existence time. Other entities have neither well-defined begin nor end, or
we lack information about these points in the knowledge base. Examples are
numbers, mythological figures, or virus strains (for which we do not have any
information about their existence – which is different from their discovery).
In these cases, YAGO2 does not assign any existence time.

Instead of manually considering each and every entity type as to whether
time spans make sense or not, we focused on the following four major entity
types:

People where the relations wasBornOnDate and diedOnDate demarcate
their existence times;

Groups such as music bands, football clubs, universities, or companies,
where the relations wasCreatedOnDate and wasDestroyedOnDate de-
marcate their existence times;

Artifacts such as buildings, paintings, books, music songs or albums, where
the relations wasCreatedOnDate and wasDestroyedOnDate (e.g., for
buildings or sculptures) demarcate their existence times;

Events such as wars, sports competitions like Olympics or world cham-
pionship tournaments, or named epochs like the “German autumn”,
where the relations startedOnDate and endedOnDate demarcate their
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existence times. This includes events that last only one day (e.g., the
fall of the Berlin wall). Here, the start date and the end date of the
event coincide. We use the relation happenedOnDate for these cases.

We believe that these four types cover almost all of the cases where entities
have a meaningful existence time. Note that the entities are already captured
in richly populated types within YAGO2, covering 76% of all entities.

Rather than dealing with each of the above four types in a separate man-
ner, we unify these cases by introducing two generic entity-time relations :
startsExistingOnDate and endsExistingOnDate. Both are an instance of
the general yagoRelation, and hold between an entity and an instance of
yagoDate. They define the temporal start point and end point of an entity,
respectively. We then specify that certain relations are sub-properties of
the generic ones: wasBornOnDate subpropertyOf startsExistingOnDate,
diedOnDate subpropertyOf endsExistingOnDate, wasCreatedOnDate

subpropertyOf startsExistingOnDate, and so on. For events that last
only day, we specify that happenedOnDate is a sub-property of both
startsExistingOnDate and endsExistingOnDate. Declaring relations
subpropertyOf other relations serves on the one hand as grouping, on the
other hand we use the YAGO2 implication rule infrastructure to automat-
ically deduce a second fact for the parent relation. For example, for the
fact BobDylan wasBornOnDate 1941-05-24, an implication rule creates the
second fact BobDylan startsExistingOnDate 1941-05-24.

The YAGO2 extractors can obtain a lot of temporal information about
entities from Wikipedia infoboxes. Our extractors also find temporal infor-
mation in the categories. For example, the article about the 82nd Academy
Awards Ceremony is in the category “2009 Film Awards”, which gives us the
temporal dimension for the award: the year 2009.

Our infrastructure generates existence times for all entities where YAGO
can deduce such information from its data.

4.2 Facts and Time

4.2.1 Facts with an Extracted Time

Facts, too, can have a temporal dimension. For example, BobDylan

wasBornIn Duluth is an event that happened in 1941. The fact BarackObama
holdsPoliticalPosition PresidentOfTheUnitedStates denotes an epoch
from the time Obama was elected until either another president is elected
or Obama resigns. When we can extract time information for these kinds
of facts from Wikipedia, we associate it as occurrence time: the time span
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when the fact occurred. To capture this knowledge, we introduce two new
relations, occursSince and occursUntil, each with a (reified) fact and an
instance of yagoDate as arguments. For example, if the above fact had the
fact id #1, we would indicate its time by #1 occursSince 2009-01-20.

For facts that last only one day (or one year if this is the relevant
granularity, e.g., for awards), we use a short-hand notation by the auto-
matically deduced relation occursOnDate. For example, for BarackObama

wasInauguratedAs PresidentOfTheUnitedStates with fact id #2, we write
#2 occursOnDate 2009-01-20, as short-hand for two separate facts #2

occursSince 2009-01-20 and #2 occursUntil 2009-01-20.
If the same fact occurs more than once, then YAGO2 will contain it mul-

tiple times with different ids. For example, since Bob Dylan has won two
Grammy awards, we would have #1: BobDylan hasWonPrize GrammyAward

with #1 occursOnDate 1973, and a second #2: BobDylan hasWonPrize

GrammyAward (with a different id) and the associated fact #2 occursOnDate

1979.
The YAGO2 extractors can find occurrence times of facts from the Wi-

kipedia infoboxes. For example, awards are often mentioned with the year
they were awarded. Spouses are often mentioned with the date of marriage
and divorce. Our extractors can detect these annotations and attach the
corresponding occursSince and occursUntil facts directly to the target
fact.

4.2.2 Facts with a Deduced Time

In some cases, the entities that appear in a fact may indicate the occurrence
time of the fact. For example, for BobDylan wasBornIn Duluth, it seems
most natural to use Dylan’s birth date as the fact’s occurrence time. For
ElvisPresley diedIn Memphis we would want the death date of the sub-
ject as the occurrence time, and for BobDylan created BlondeOnBlonde, it
should be the creation time of the object.

The principle for handling these situations is to use rules that propagate
the begin or end of an entity’s existence time to the occurrence time of a fact,
where the entity occurs as a subject or object. To avoid a large number of
rules for many specific situations, we categorize relations into several major
cases. Each of these has an ontological interpretation, and each can be
handled by a straightforward propagation rule. More precisely, we consider
a fact of the form $id: $s $p $o where $id, $s, $p, $o are placeholders for
identifier, subject, property, and object of the fact, respectively. We want to
deduce an ontologically meaningful occurrence time for this fact, i.e., facts
with the relations occursSince or occursUntil, based on the ontological
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nature of the relation $p.

Permanent relations Entities can have permanent properties that are
non-modifiable; we call these permanent relations. Examples are
hasISBN, isCalled, or hasNativeName for events. The occurrence
time of facts for such relations coincides with the existence time
of the subject entity. We group all these relations into a new
relation class permanentRelation, by stating that hasISBN type

permanentRelation, isCalled type permanentRelation, and so on.
permanentRelation is in turn a subclass of yagoRelation. Note that
here we use type as means of categorizing relations meaningfully, and
not subpropertyOf, which would automatically deduce new facts. The
propagation of the existence time of $s to the time of the entire fact is
specified as an implication rule (see Section 3), written here in logical
deduction notation, with the premises above the bar and conclusion
below:

$id: $s $p $o;
$p type permanentRelation;
$s startsExistingOnDate $b;
$s endsExistingOnDate $e

$id occursSince $b;
$id occursUntil $e

Creation relations Some facts indicate the creation of an entity. For ex-
ample, a wasBornIn fact indicates the birth of a person. A fact with
such a relation has as its occurrence time the beginning of the exis-
tence time of the created entity. For example, the fact ElvisPresley

wasBornIn Tupelo has as its occurrence time the birth date of Elvis
Presley. Therefore, we introduce a class subjectStartRelation, which
groups all relations that indicate the creation of a new entity in their
subject position. Some relations indicate the creation of an entity in
their object position. For example, the relation created indicates the
creation of an artifact, which appears in the object position of the rela-
tion. Consider, e.g., the fact LeonardCohen created Suzanne(song),
which indicates the creation of the song Suzanne(song). We make
these relations instances of the class objectStartRelation.

Now, it suffices to transfer the starting point of the existence time of
the new entity to the occurrence time of the creation fact. This can be

16



done by an implication rule:

$id: $s $p $o;
$p type objectStartRelation;

$o startsExistingOn $b

$id occursSince $b;
$id occursUntil $b

Consider again the example fact #1: LeonardCohen created

Suzanne(song). Knowing that the song Suzanne came into existence
in 1967, we would deduce two new facts: #1 occursSince 1967-##-##

and #1 occursUntil 1967-##-##. An analogous rule transfers the
start point of the existence of the subject to the fact, if the relation is
an instance of subjectStartRelation.

Destruction relations Other facts indicate the destruction of an entity.
These are, e.g., diedIn or destroyed. Analogously to the creation
relations, we define two new classes of relations, subjectEndRelation
and objectEndRelation. The first class contains all relations that
indicate that the subject of the fact ceases to exist (such as diedIn).
The second class contains all relations that indicate that the object
of the fact ceases to exist (such as destroyed in Taliban destroyed

BuddhasOfBamyan). The time point of the destruction coincides with
the end of the existence time of the destroyed entity.

This can be expressed by a simple implication rule:

$id: $s $p $o;
$p type subjectEndRelation;

$s endsExistingOn $e

$id occursSince $e;
$id occursUntil $e

An analogous rule transfers the end point of the existence of the object
to the fact, if the relation is an instance of objectEndRelation.

Unless a relation is explicitly of one of these types, we do not use any
propagation of this kind. For example, we do not attempt to propagate entity
existence times into fact occurrence times for relations such as subclassOf

or hasDomain. Even relations such as hasWonPrize or isCapitalOf will not
receive an occurrence time, unless it is explicitly specified in the Wikipedia
infoboxes. This is a conservative approach, but avoids non-sensical deduction
of occurrence times.
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4.3 Extraction Time of Facts

In addition to the occurrence times, each fact also has a time point of its
extraction and insertion into the knowledge base. For example, assume that
the fact LeonardCohen created Suzanne has identifier #42. This fact #42

was found in Wikipedia and, therefore, we have a (meta-)fact #43: #42

wasFoundIn Wikipedia. The fact #43 happened on October 15, 2010,
when we ran the extractor, and therefore, we have a fact #43 extractedOn

2010-10-15. Each fact is adorned with this meta-information. This informa-
tion is independent of the semantic aspects of the fact, and rather captures
provenance. Still, such meta-facts are useful, as they allow reasoners to in-
clude or exclude facts from certain sources or from certain points of time.
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5 Giving YAGO a Spatial
Dimension

All physical objects have a location in space. For YAGO2, we are concerned
with entities that have a permanent spatial extent on Earth – for example
countries, cities, mountains, and rivers. In the original YAGO type hierarchy
(and in WordNet), such entities have no common super-class. Therefore, we
introduce a new class yagoGeoEntity, which groups together all geo-entities,
i. e. all entities with a permanent physical location on Earth. The subclasses
of yagoGeoEntity are (given by preferred name and WordNet 3.0 synset id):
location (27167), body of water (9225146), geological formation (9287968),
real property (13246475), facility (3315023), excavation (3302121), structure
(4341686), track (4463983), way (4564698), and land (9335240). The position
of a geo-entity can be described by geographical coordinates, consisting of lat-
itude and longitude. We introduce a special data type to store geographical
coordinates, yagoGeoCoordinates. An instance of yagoGeoCoordinates is
a pair of a latitude and a longitude value. Each instance of yagoGeoEntity is
directly connected to its geographical coordinates by the hasGeoCoordinates
relation.

YAGO2 only knows about coordinates, not polygons, so even locations
that have a physical extent are represented by a single geo-coordinate pair.
As we extract these coordinates from Wikipedia, the assignment of coordi-
nates to larger geo-entities follows the rules given there: for a settlement like
a city, it represents the center, for military and industrial establishments the
main gate, and for administrative districts it represents the head office1.

1Guidelines from http://en.wikipedia.org/wiki/Wikipedia:WikiProject_

Geographical_coordinates, last accessed 2010-10-27
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5.1 Harvesting Geo-Entities

YAGO2 harvests geo-entities from two sources. The first source is Wikipedia.
Wikipedia contains a large number of cities, regions, mountains, rivers, lakes,
etc. Many of them also come with associated geographical coordinates. We
harvest these with our extraction framework and retrieve coordinates for
176,474 geo-entities.

However, not all geo-entities in Wikipedia are annotated with geograph-
ical coordinates. Furthermore, there are many more geo-entities than are
known to Wikipedia. Therefore, we tap into an even richer source of freely
available geographical data: GeoNames (http://www.geonames.org), which
contains data on more than 7 million locations. GeoNames classifies loca-
tions in a flat category structure, and each location is assigned only one class,
e. g. Berlin is a “capital of a political entity”. Furthermore, GeoNames con-
tains information on location hierarchies (partOf), e. g. Berlin is located
in Germany is located in Europe. GeoNames also provides alternate names
for each location. All this data is a valuable addition to YAGO, so we make
an effort to integrate it as completely as possible. This means that we need
to match the individual geo-entities that exist both in Wikipedia and GeoN-
ames, so that we do not duplicate theses entities when extracting them from
the respective repositories.

5.1.1 Matching Locations

When processing Wikipedia articles, we try to match individual geo-entities,
proceeding as follows:

1. If the Wikipedia entity has the type yagoGeoEntity and shares its
name with exactly one entity in GeoNames, we match them.

2. If the Wikipedia entity has the type yagoGeoEntity and shares its
name with more than one entity in GeoNames, and we have coordinates
for the Wikipedia entity, we match it to the geographically closest
GeoNames entity – if its distance does not exceed 5km.

3. In the end, we add all the unmatched GeoNames entities as new indi-
vidual entities to YAGO, together with all the facts about them given
in GeoNames.

Taking Berlin in Germany as an example, we find multiple geo-entities
in GeoNames that have the name “Berlin”. From Berlin’s Wikipedia ar-
ticle we extract the coordinates 52◦30′2′′N , 13◦23′56′′E, which is less than

20



3km distance to the coordinates we find for one of the Berlin locations in
GeoNames (52◦31′27′′N , 13◦24′37′′E). We unify the two entities and add all
further data extracted from GeoNames — like alternate names and where
Berlin is located — to the existing YAGO2 entity Berlin. Following this
approach for all Wikipedia articles, we unify 84,349 geo-entities. The rest of
the GeoNames locations are imported as they are.

5.1.2 Matching Classes

Matching individual locations is not enough to fully integrate GeoNames
into YAGO2, as in YAGO2 each individual needs to be typed. Fortunately,
GeoNames assigns a class to each location, which we can use as type. Again,
to avoid duplication of classes, we have to match them to existing classes.
There is prior work that aligns all GeoNames classes with WordNet classes
(the backbone of the YAGO2 class hierarchy), most notably, GeoWordNet
[20]. However, GeoWordNet relies on manual curation to accomplish correct
matchings. This approach is both time-intensive and fragile when either
GeoNames or WordNet changes, something that will definitely happen in
future releases of either resource.

To counter this problem, we devised an automated matching algorithm.
This algorithm uses solely data that is readily available, namely the YAGO2
class hierarchy, as well as textual descriptions for both YAGO2 classes and
GeoNames categories.

The automated matching works as follows.

1. For every class from GeoNames, we identify a set of WordNet classes
from YAGO that have the same name as the GeoNames class (including
synonymous alternative names).

2. If there are no such classes, we do a shallow noun phrase parsing of
the GeoNames class name in order to determine the head noun (this
is, e.g., “mine” for “gold mine”). We search for classes in YAGO2 that
carry the head noun as their name.

3. From the resulting YAGO2 classes, we remove the ones that are not
subclasses of yagoGeoEntity, as we know that GeoNames contains
only geographical classes.

4. If only a single class remains, we return this one as the matching class.

5. If more than one class remains, we use the glosses describing the GeoN-
ames class and the YAGO classes, respectively. The glosses are tok-
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enized, and the Jaccard Similarity of the resulting bag-of-words is cal-
culated between the GeoNames-class gloss and each candidate’s gloss.
The class with the highest overlap is returned as best match.

6. If there is no overlap between the glosses at all, we return the YAGO2
class that is most often denoted by the name of the GeoNames class
- this information is taken from WordNet, which sorts senses for each
word in order of most common use.

Algorithm 1 shows pseudo-code for this method.
Matched classes are added to YAGO2 as subclass of the matched class,

unmatched classes are added as subclass of yagoGeoEntity, so we do not
lose them.

This matching process augments YAGO2 with nearly 7 million geo-
entities and nearly 50 million new facts from GeoNames, in particular adding
geographical coordinates that could not be extracted from Wikipedia, which
renders more entities accessible by spatial queries. Furthermore, GeoNames
augments the isLocatedIn hierarchy in YAGO2. Last, it also yields alterna-
tive names for geographic entities. We use this information for entities that
do not exist in Wikipedia, but also augment entities extracted from Wikipe-
dia with alternate or foreign language names. For example, the information
that the “Peru-Chile Trench” is also called “Arica Trench” is not present in
Wikipedia.

5.2 Assigning a Location

We deal with the spatial dimension in a manner similar to the way we deal
with time, as described in Section 4: we assign a location to both entities
and facts, wherever this is ontologically reasonable and wherever this can be
deduced from the data. The location of facts and entities is given by a geo-
entity. For example, the location of the Summer of Love is San Francisco,
which is an instance of yagoGeoEntity.

5.2.1 Entities and Location

Many entities are associated with a location. For example, events take place
at a specific place, organizations have their headquarters in a specific city,
and works of art are displayed in a museum. We have such spatial data in
our knowledge base for the following types of entities:
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Events that took place at a specific location, such as battles or sports com-
petitions, where the relation happenedIn holds the place where it hap-
pened.

Groups or organizations that have a venue, such as the headquarters of a
company or the campus of a university. The location for such entities
is given by the isLocatedIn relation.

Artifacts that are physically located somewhere, like the Mona Lisa in the
Louvre, where the location is again given by isLocatedIn.

The semantics of such relations varies, but instead of treating each case
separately, we define a new relation to treat all entities in a uniform way:
placedIn. Both isLocatedIn and happenedIn are defined as sub-properties
of this new relation, and the YAGO2 infrastructure generates the placedIn

facts for each entity type where it can be deduced from the knowledge base.

5.2.2 Facts and Location

Some facts also have a spatial dimension. For example, the fact that Leonard
Cohen was born in 1934 happened in his city of birth, Montreal. Naturally,
not all facts have a spatial dimension: for example, schema-level facts such
as subclassOf or identifier relations such as hasISBN have no location on
Earth. We introduce the relation occursIn, which holds between a (reified)
fact and a geo-entity. For example, if we have the fact #1: LeonardCohen

wasBornOnDate 1934, we would write its location as #1 occursIn Montreal.
Again, the key to a semantically clean treatment of the spatial dimension of
facts lies in the relations. We distinguish three cases where we can deduce
an ontologically meaningful location.

Permanent Relations. As defined in Section 4.2, permanent relations de-
scribe properties of entities that are immutable. If the described entity
has a permanent location, so has the fact that describes it. We use the
following two implication rules, where the first transfers the location of
the entity to the fact, and the second transfers the entity itself if it is
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a geo-entity:

$id: $s $p $o;
$p type permanentRelation;

$s placedIn $l

$id occursIn $l

$id: $s $p $o;
$p type permanentRelation;

$s type yagoGeoEntity

$id occursIn $s

Take for example the 2006FIFAWorldCup. Assume that we extracted
from the Wikipedia infobox that 2006FIFAWorldCup happenedIn

Germany. We want to propagate this location to all associated facts
with a permanentRelation. For example, for id: 2006FIFAWorldCup

isCalled FootballWorldCup2006, we associate the meta-fact id

occursIn Germany.

Space-Bound Relations. Some facts occur in a place that is indicated
by their subject or object. For example, the fact that Bob Dy-
lan was born in Duluth happened in Duluth. We introduce two
new classes to describe such relations, relationLocatedByObject

and relationLocatedBySubject, which are both subclasses of
yagoRelation. The first class combines relations whose location is
given by the location of their object. These include for example
wasBornIn, diedIn, worksAt, and participatedIn. The second class
groups relations whose location is given by the subject, e. g. hasMayor.
Then, we can transfer the location of the fact argument to the fact
itself by the following two rules:

$id: $s $p $o;
$p type relationLocatedByObject;

$o placedIn $l

$id occursIn $l

$id: $s $p $o;
$p type relationLocatedByObject;

$o type yagoGeoEntity

$id occursIn $o

(correspondingly for relationLocatedBySubject)
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The first rule fires for facts that directly concern geo-entities. For
example, it would infer the (trivial but correct) meta-fact #1 occursIn

Duluth for the fact #1: BobDylan wasBornIn Duluth. The second
rule fires for entities that are not geo-entities but do have a physical
location. For example, the second rule will infer that the location of the
fact FrenchEmpire participatedIn BattleOfWaterloo is Waterloo,
assuming that we know that BattleOfWaterloo is located in Waterloo.
Note that these rules will only fire if the subject or object indeed has
a known location.

Tandem Relations. Some relations occur in tandem: One relation de-
termines the location of the other. For example, the relation
wasBornOnDate defines the time of the corresponding wasBornIn

fact, and the latter defines the location of the former. We ex-
press this tandem situation by the relation timeToLocation, which
holds between two relations. The first relation specifies the time
of the event while the second specifies the location. Examples for
such pairs are wasBornOnDate/wasBornIn, diedOnDate/diedIn and
happenedOnDate/happenedIn. The following rule can transfer the lo-
cation from one relation to the other

$id1: $s $p $t;
$p timeToLocation $r;

$id2: $s $r $l;
$id2 occursIn $l;

$id1 occursIn $l

For example, given the facts #1: BobDylan wasBornOnDate 1941-05-24
and #2: BobDylan wasBornIn Duluth, the space-bound relation
wasBornIn will first deduce #2 occursIn Duluth. The tandem pair
wasBornOnDate/wasBornIn will then deduce #1 occursIn Duluth.

These rules derive a location for a fact whenever this is semantically mean-
ingful.
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Algorithm 1: Matching GeoNames to YAGO2 class

Input:
geo class: GeoNames class with gloss
YAGO: set of YAGO classes, each class with synonyms syn,
preferred meaning, and gloss
YagoGeo: set of YAGO classes with geographical meaning (manually
defined)
Output:
yago class ∈ YAGO (best match for geo class)

1 begin
2 Cand ← {y ∈ YAGO | y or syn(y) = geo class}
3 if Cand = ∅ then
4 Cand← {y ∈ YAGO | y or syn(y) = head(geo class)}
5 if Cand = ∅ then
6 return no match

7 GeoCand ← Cand ∩ YagoGeo
8 if |GeoCand = 1| then
9 return g ∈ GeoCand

10 else if |GeoCand| > 1 then
11 Cand ← GeoCand
12 /* Cand contains original set or only classes with geo meaning

*/

13 best ← argmaxc∈Cand(jacc sim(gloss(g), gloss(c)))
14 if jacc sim( g,best) > 0.0 then
15 return best
16 else
17 return preferred meaning(geo class)
18 /* preferred meaning is the meaning (class) the string is most

often used for */
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6 (Con-)Textual Data in
YAGO2

YAGO2 does not just contain a time and a location for facts and entities,
but also meta information about the entities. This includes non-ontological
data from Wikipedia as well as multilingual data.

6.1 Non-Ontological Data from Wikipedia

For each entity, YAGO2 contains contextual information. This context is
gathered by our extractors from Wikipedia. They include the following rela-
tions, with an entity and a string as arguments:

hasWikipediaAnchorText links an entity to a string that occurs as anchor
text in the entity’s article.

hasWikipediaCategory links an entity to the name of a category in which
Wikipedia places the article. These include not just the conceptual
categories that form the YAGO taxonomy, but also all other categories.

hasCitationTitle links an entity to a title of a reference on the Wikipedia
page. Wikipedia often references external works for reasons of veri-
fiability. The titles of these cited references form another source of
contextual information.

All of these relations are sub-properties of the relation hasContext. This
relation provides a wealth of keywords associated to the entity, we extract
more than 76 million context facts for the YAGO2 entities in total. We will
see in Section 7 how the context can be used as an additional means for
searching knowledge in YAGO2.
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6.2 Multilingual Information

For individual entities, we extract multilingual translations from inter-
language links in Wikipedia articles. This allows us to refer to and query
for YAGO2 individuals in foreign languages. YAGO2 represents these non-
English entity names through reified facts. For example, we have the reified
fact #1: BattleAtWaterloo isCalled SchlachtBeiWaterloo with the as-
sociated fact #1 inLanguage German.

This technique works for the individuals in YAGO2, but not for the
classes, because the taxonomy of YAGO2 is taken from WordNet, which is
in English. To fill this gap, we integrate the Universal WordNet (UWN) [12]
into YAGO2. UWN maps words and word senses of WordNet to their proper
translations and counterparts in other languages. For example, the French
word “école” is mapped to its English translation “school” at the word level,
but only to specific meanings of school at the word-sense level, as the French
word does never denote, e.g., a school of fish or a school of thought. UWN
contains about 1.5 million translations and sense assignments for 800,000
words in over 200 languages at a precision of over 90% [12]. Overall, this
gives us multilingual names for most entities and classes in YAGO2.
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7 SPOTL(X) Representation

7.1 Drawbacks of Reification-based Models

In YAGO2, as in YAGO [41], we represent the time and location of facts
through reification. Each base-fact has an identifier, which in turn can be
used in the S or O role in another fact, a meta-fact. For example, suppose we
know the base-fact #1: GratefulDead performed TheClosingOfWinterland
about the rock band Grateful Dead. Adding knowledge about the place
and time of this concert is expressed by two meta-facts #2: #1 occursIn

SanFrancisco and #3: #1 occursOnDate 1978-12-31.
The YAGO query language allows writing SPARQL-like queries that in-

clude fact identifiers. However, already a simple query for a location requires
a large number of joins. For example, if we want to find concerts that took
place near San Francisco, we need a rather convoluted query, consisting of
five triple patterns (separated by dots, the syntax of the SPARQL Where
clause):

?id: ?s performed ?o .

?id occursIn ?l .

?l hasGeoCoordinates ?g .

SanFrancisco hasGeoCoordinates ?sf .

?g near ?sf .

Here, near is a proximity predicate (with a predefined distance of say
50 km) and ?id is a fact-identifier variable; we specify a join between the
identifier variable and the S component of another (meta-fact) triple. In the
following, we refer to such identifier-based joins as de-reification joins. To
make this notion more precise, consider a set of RDF triples with identifiers
that can be used in other facts using reification. These triples can be viewed
as quadruples of the form (id, s, p, o). A de-reification join is then a con-
junctive query (in the relational Datalog sense) with the same variable ?x

appearing in the id role of one sub-query and either the s or the o role of
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another sub-query. If we cast all reified triples into a (virtual) relational ta-
ble with schema R(Id, S, P,O), then a de-reification join can be algebraically
written as an equi-join of the form R on[Id=S] R or R on[Id=O] R. The seman-
tics of de-reification joins are thus well-defined in terms of query results for
relational calculus (Datalog) or relational algebra.

For a non-expert, it is not easy to come up with these five joins and
the proper use of location names, coordinates, etc. Conceptually, the query
seems to require only a single spatial join between concerts and places, but the
tedious SPARQL formulation has four joins between five triple patterns. In
addition, the lack of genuine support for data types for space and time makes
it difficult to express proximity conditions or temporal comparisons. Note
that we already helped ourselves by liberally introducing the near predicate,
which is not really available in our knowledge base and not supported by
SPARQL.

7.2 SPOTL(X)-View Model

The key idea for making browsing and querying more convenient is to provide
users and programmers with a de-reification-join view. Instead of seeing
only SPO triples and thus having to perform an explicit de-reification join
for associated meta-facts, the user should see extended 5-tuples where each
fact already includes its associated temporal and spatial information. We
refer to this view of the data as the SPOTL view: SPO triples augmented
by Time and Location. We also discuss a further optional extension into
SPOTLX 6-tuples where the last component offers keywords or key phrases
from the conteXt of sources where the original SPO fact occurs. The context
component caters to those cases where users have a good intuition about
their information need, but have problems casting it into triple patterns (e.g.,
because they lack proficiency with the knowledge base and its relations), or,
are faced with too large a query result that they need to narrow down. In
such situations, being able to query both fact triples and associated text
in a combined manner often proves to be very useful [15]. For example, we
may desire augmenting a triple pattern like ?s performed ?o with a keyword
condition like "psychedelic rock jam session" which cannot be cast into
a crisp ontological fact.

The situation that our knowledge base now contains well-defined tempo-
ral and spatial information for base-facts, as described in Sections 4 and 5,
simplifies the construction of the SPOTL(X) view. In detail, it is composed
of the following – virtual – relations:

R(Id, S, P,O) – all (id, s, p, o)-tuples in the knowledge base.
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T (Id, TB, TE) – all (id, tb, te)-tuples that associate the time interval [tb, te]
with the fact identified by id. The tb-component is set using the
occursSince relation; the te-component is set using the occursUntil

relation. Our definitions in Section 4 guarantee that this can be done
unambiguously and consistently. The tb- or te-component might not
be set, if there is no corresponding meta-fact in our knowledge base.
In that case, the respective component assumes a NULL value whose
appropriate interpretation is deferred until query-processing time.

L(Id, LAT, LON) – all (id, lat, lon)-tuples that associate the location
< lat, lon > (i.e., a pair of latitude and longitude) with the fact iden-
tified by id. The l-component is set using the occursIn relation to
retrieve the location and hasGeoCoordinates to retrieve its coordi-
nates.

X(Id, C) – all (id, c)-tuples that associate a context c with the fact identified
by id. The c-component is based on the hasContext relation, applied
to both the subject and the object of the fact. The hasContext relation
was introduced in Section 6.1. The range of the c-component is a set of
words or phrases by forming the union of the strings from the various
relations that underlie hasContext (or alternatively, a bag of words or
phrases if we want to consider frequencies of repeated strings).

Based on these building blocks we define the SPOTL(X) view as

π[R.Id, [TB,TE], <LAT,LON>,C](((R d|><|d[Id=Id] T ) d|><|d[Id=Id] L) d|><|d[Id=Id] X) ,

joining facts from R with their associated information from T , L, and C.
Here, d|><|d denotes an outer join, to avoid losing triples that do not have
spatio-temporal or contextual facts and instead producing NULL values
in the respective fields. Figure 7.1 shows a SPOTL(X) view as it could
be determined for our introductory example. Note that, in the figure, we
employ the short-hand notation [1978-12-31] to denote the time interval
[1978-12-31, 1978-12-31] and present content excerpts that are not men-
tioned in our introductory example.

7.3 SPOTL(X) Querying

The SPOTL(X) view defined above associates facts with canonical time and
space information and, as we describe now, avoids most de-reification joins.
Beyond that, time and space are special dimensions with inherent semantics
that remain hidden to standard triple-pattern queries. Finding all actors who
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Id S P O T L X

id1 GD performed TCOW 1978-12-31 -37.5, 122.3 “Wall of Sound. . . ”
id2 id1 occursIn SF “Golden Gate. . . ”
id3 id1 occursOnDate 1978-12-31

Figure 7.1: SPOTL(X)-View Example: Grateful Dead performing “The Clos-
ing of Winterland” in San Francisco on New Year’s Eve of 1978

were born near Berlin after the German reunification, for instance, is hard
to express. The lack of genuine support for data types time and space forces
users to “paraphrase” the query (e.g., by asking for birth places located in
the same federal state as Berlin). Second, Berlin and German reunifica-
tion, in our example, refer to a specific location (i.e., <48.52, 2.20>) and
time (i.e., [1990-10-03]), respectively. When using standard triple-pattern
queries, though, getting to this referred time and space would again require
(de-reification) joins and a deep comprehension of the knowledge base and its
relations. Our SPOTL(X) query interface, which we describe now, addresses
these issues and is designed to operate directly on the SPOTL(X) view.

Dimension Predicate Valid Examples

Time overlaps [1967, 1994] [1979, 2010]

during [1967, 1994] [1915, 2009]

before [1967, 1994] [2000, 2008]

after [1967, 1994] [1939, 1945]

Space westOf <48.52, 2.20> <52.31, 13.24>

northOf <48.52, 2.20> <41.54, 12.29>

eastOf <48.52, 2.20> <51.30, 0.70>

southOf <48.52, 2.20> <59.20, 18.30>

nearby <48.52, 2.20> <48.48, 2.80> 25.00

conteXt matches ‘‘...cowboys in Mexico...’’ (+cowboys)

‘‘...her debut album...’’ (+debut -live)

Table 7.1: Predicates supported for Querying the SPOTL(X)-View

To deal with the important dimensions of time, space, and context and
to make their inherent semantics accessible to users, we introduce the predi-
cates given in Table 7.1. Our time predicates are a subset of those identified
by Allen [2]. We include spatial predicates that reflect the relative position
of two locations, as well as nearby which tests whether the geographic dis-
tance between the two locations is below a given threshold (e.g., 25.0 km).
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The matches predicate for the context dimension tests whether the context
matches a given keyword query that consists of mandatory and forbidden
terms (e.g., +debut -live).

Queries can add one predicate from each dimension to every triple pat-
tern. Patterns may thus be of arity up to six. Consider, as an example, the
query

?p directed ?m after [1970] matches (+ cowboys +mexico) .

that finds directors of movies made after 1970 having something to do with
cowboys in Mexico (as captured by the context condition).

Often, the time or location of interest (e.g., [1970] above) would not be
known explicitly, but be associated with an entity. When using standard
triple-pattern queries, this is a frequent cause of (de-reification) joins, as
explained above. In our SPOTL(X) query interface, time and space can be
specified implicitly through an associated entity – a major improvement in
query convenience. For example, the query

GeorgeHarrison created ?s after JohnLennon .

identifies songs written by George Harrison after John Lennon’s death. When
processing the query, the entity JohnLennon is transparently replaced by its
associated time interval [1940-10-09, 1980-12-08] that is determined as
described in Section 4. Here, we compare time intervals with the semantics
that [b1, e1] precedes [b2, e2] if e1 < b2. This condition is satisfied for the
creation times (intervals that span only one day, or month or year if this is
the best known resolution) following the existence time of John Lennon. To
see how this improves querying convenience, consider the following, much
more tedious, triple-pattern formulation for the same information need:

GeorgeHarrison created ?s .

?s wasCreatedOn ?t1 .

JohnLennon diedOn ?t2 .

?t1 after ?t2 .

The possibility to specify time and space implicitly through an entity
name, in combination with our context dimension, allows for intuitive and
powerful queries, such as

?p isA Guitarist matches (+left +handed) .

?p wasBornIn ?c nearby Seattle 25.0 .

that identifies left handed guitarists who were born in the vicinity of (i.e., at
most 25 km away from) Seattle. Good results should include Jimi Hendrix.

Our query interface, as an additional feature, supports natural language
phrases to reference entities, which is particularly useful if the specific entity
name is unknown to the user. Thus, the query
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"Bobby Dylan" created ?s before "Knocking on Heaven ’s Door" .

identifies all songs that Bob Dylan wrote before Knocking on Heaven’s
Door. To this end, we leverage the means relation to map the phrases
“Bobby Dylan” and “Knocking on Heaven’s Door” to the entities named
BobDylan and Knockin’OnHeaven’sDoor, thus also retrieving the time span
[1973-07-13, ####-##-##] associated with the song. Note the subtle dif-
ferences between input phrases and official entity names. Here we exploit the
means relation that provides a rich repertoire of alternate names including
multilingual ones. The pseudo-constant ####-##-## indicates that the end
boundary of the time interval is unknown. This has no effect when evaluating
the query at hand, given that the before predicate only considers the begin
boundary of the time interval.

Putting all features together, our initial information need related to actors
can be satisfied by issuing the query

?p isA actor .

?p wasBornIn ?l nearby Berlin 10.0 .

?p wasBornOnDate ?d after "German reunification" .

Our concrete implementation of the SPOTL(X) query interface builds on
PostgreSQL as a relational database system. The SPOTL(X) view is mate-
rialized into a single table of 7-tuples (SPOTLX plus ids). To achieve good
response times, we adopt ideas put forward in recent work on the efficient
triple store RDF-3X [28]. We build auxiliary B+-Tree indexes for all six per-
mutations of the SPO columns. For the additional columns, corresponding to
the time, space, and context dimension, we build additional indexes specifi-
cally suited to the respective data type. In detail, for the space dimension we
use the freely available PostGIS extension (http://postgis.refractions.net) to
build a spatial index (based on GiST [23]). We build two additional B+-Tree
indexes to deal with the time dimension. Finally, to support efficient eval-
uation of our matches predicate on the X column, we employ PostgreSQL’s
built-in text-indexing functionality.
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8 Evaluation

Our main goal for the construction of the YAGO2 ontology was near-human
accuracy. Therefore, this section presents an exhaustive evaluation of our
knowledge base. In the ideal case, we would compare the data in YAGO2 to
some prior ground truth. Such ground truth, however, is only available for
a small subset of YAGO2, namely the GeoWordNet matching of GeoNames
classes onto YAGO2 classes. We will describe this evaluation in Section 8.2.
For the rest of the facts in YAGO2, there is no pre-existing ground truth, so
we had to rely on human judgement for sampled facts.

8.1 Facts from Wikipedia

We devised an extensive evaluation of the facts extracted from Wikipedia.
Our evaluation concerns only the base facts of YAGO2, not the facts de-
rived by implication rules. It also concerns exclusively the “semantic” re-
lations (such as wasBornOnDate) and not the “technical” relations (such as
hasWikipediaURL). In our methodology [41], human judges are presented
with randomly selected facts, for which they have to assess the correctness.
Since the judges might not have enough knowledge to assess each fact, the
Wikipedia page from which the fact was extracted was presented next to the
fact. Thus, the judges evaluated the correctness of YAGO2 with respect to
the content of Wikipedia. We did not assess the factual correctness of Wiki-
pedia itself. We used the Wikipedia dump from 2010-08-17 for the YAGO2
extraction and evaluation.

To get a detailed picture of the accuracy of YAGO2, we formed pools of
facts. We formed one pool for each relation, i.e., one pool with all wasBornIn
facts, one pool with all wasBornOnDate facts, etc. For each pool, we drew
random samples of facts. Then, we had the judges evaluate the correctness
of the facts in the sample. This allowed us to estimate the overall correctness
of the facts in the pool. One pool may contain facts extracted by different
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extraction patterns. Since samples were randomly drawn, we expect the
distribution of extraction patterns in the sample to represent the distribution
of patterns in the pool.

Two extraction methods deserve special attention:

Concept Linker: The heuristics that matches Wikipedia categories against
WordNet synsets. The categories that could be matched to WordNet
serve as type facts for entities.

Infobox Typer: The heuristics that matches the types of Wikipedia in-
fobox templates against WordNet synsets, thus contributing type facts
for the entities.

These techniques build the link from the Wikipedia data to the WordNet
taxonomy. Since this link is crucial for domain and range checking and for
the taxonomic coherence overall, we evaluated these two methods in two
separate pools.

26 judges participated in our evaluation. Over the course of a week,
they evaluated an overall number of 7465 facts. This gave us a precision
value for each sample. We generalize the precision on the sample to the
precision of the pool by help of the Wilson confidence interval [9], and get
a center of about 95% at an interval width of less than ±5%. This ensures
that our findings are statistically significant. Table 8.1 shows the results
for the techniques described above, Table 8.2 the results for some of the
important non-temporal, non-spatial relations. Table 8.3 shows the three
relations with best and worst accuracy. Table 8.4 finally shows the results
for temporal and spatial relations. Results for all relations are available at
http://www.mpi-inf.mpg.de/yago-naga/yago2/.

Technique #Evaluated Accuracy

Concept Linker 259 97.71%± 2.29%
Infobox Template Type 79 97.68%± 2.32%

Table 8.1: Results of evaluation of extraction techniques

The evaluation shows the very high accuracy of our extractors. The vast
majority of facts, 97.33%, were judged correct. This results in an overall

1hasLatitude is extracted from Wikipedia only, hasGeoCoordinates combines Wiki-
pedia coordinates and GeoNames coordinates

2For occursSince/Until we evaluated extracted facts only, not the ones created au-
tomatically using the methods described in Section 4

3Excluding 239,119 facts imported from GeoNames without evaluating them
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Relation #Total Facts #Evaluated Accuracy

actedIn 107,409 80 95.75%± 2.53%
created 206,860 79 95.48%± 3.54%
exports 522 145 93.33%± 3.84%
graduatedFrom 11,889 70 97.40%± 2.60%
hasExport 161 76 96.34%± 3.43%
hasGivenName 692,800 148 95.44%± 3.11%
hasLatitude1 190,224 80 97.71%± 2.29%
holdsPoliticalPosition 2,233 106 94.61%± 3.91%
influences 15,633 74 96.25%± 3.51%
isInterestedIn 184 141 93.15%± 3.95%
isMarriedTo 12,076 67 97.29%± 2.71%
subclassOf 571,641 339 95.64%± 2.09%
type 8,082,256 173 96.65%± 2.45%

Table 8.2: Results of evaluation of non-temporal, non-spatial relations with
facts extracted from Wikipedia

Wilson center (weighted average over all relations) of 95.36%, with an average
width of ±3.30%.

The crucial taxonomic relations are type (categorizing the individuals
into classes) and subclassOf (linking a subclass to a super-class). The latter
are extracted by the Concept Linker, which connects Wikipedia categories
to WordNet synsets. Both relations have a Wilson center of more than 95%,
demonstrating the very accurate integration of both resources. Relations
between individuals, such as graduatedFrom, influences, or isMarriedTo

are of even higher accuracy, as they are based on Wikipedia links between
articles, which are of very good quality.

The relations that link individuals to classes, such as isInterestedIn

or exports/imports, are of lower accuracy. The problem is that the ex-
tractors do not only have to extract the class name correctly, but they also
have to disambiguate the class to the correct WordNet class (which is done
using the Concept Linker technique). For example, the fact UnitedStates
imports medicine is wrong if medicine is matched to the WordNet class
“the branches of medical science that deal with nonsurgical techniques”, in-
stead of the correct “something that treats or prevents or alleviates the symp-
toms of disease”. A last source of errors are incorrectly formatted literals in
Wikipedia — handling all possible ways of formatting e. g. a date is nearly
impossible. Still, even these difficult extractions show an accuracy of at least
93%.
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Relation #Total Facts #Evaluated Accuracy

isCitizenOf 24,190 100 98.15%± 1.85%
diedIn 22,274 99 98.13%± 1.87%
livesIn 16,405 89 97.93%± 2.07%

...
hasGDP 160 122 92.91%± 4.28%
hasFamilyName 694,146 130 92.59%± 4.26%
hasHeight 23,893 133 92.02%± 4.38%

Table 8.3: Results of evaluation of best and worst relations

Relation #Total Facts #Evaluated Accuracy

diedIn 22,274 99 98.13%± 1.87%
diedOnDate 315,528 88 97.91%± 2.09%
happenedIn 5,192 68 95.93%± 3.81%
happenedOnDate 22,039 106 97.34%± 2.49%
occursSince/Until2 9,840 179 97.86%± 1.84%
isLocatedIn 95,3273 68 95.93%± 3.81%
livesIn 16,405 89 97.93%± 2.07%
wasBornIn 56,415 59 96.94%± 3.06%
wasBornOnDate 685,746 60 96.99%± 3.01%
wasCreatedOnDate 467,194 137 95.59%± 1.94%
wasDestroyedOnDate 24,218 85 95.59%± 3.77%

Table 8.4: Results of evaluation of temporal and spatial relations

8.2 GeoNames Matching

We evaluated the automated class matching (Section 5.1.2) with the
GeoNames-WordNet matches of GeoWordNet [20] as ground truth. We found
that we match 86.7% of GeoNames to YAGO2 classes. This match has a very
high precision of 94.1% – similar to the accuracy of our YAGO2 extractors.
As WordNet’s sense inventory is very fine-grained, some of the wrong matches
are actually still valid. Take “library” as an example: GeoWordNet matches
this to the WordNet “library” sense described by “a building that houses a
collection of books and other materials”. Our automated approach matches
it to “library” described by “a depository built to contain books and other
materials for reading and study”. We count this mapping as error, so the
precision is in fact even higher than the 94.1% we find by comparing against
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GeoWordNet.

8.3 Size of YAGO2

YAGO2 contains a huge amount of facts from Wikipedia. The number of lo-
cations we integrate from GeoNames, as well as the multilingual class names
imported from Universal WordNet [12] further increases this number. We
give numbers for the core of YAGO2 (without facts GeoNames or UWN), as
well as for the full YAGO with everything included, in Table 8.5. Table 8.6
breaks these numbers down by interesting classes of entities. Table 8.7 gives
the number of time/location meta-facts. Finally, Table 8.8 gives the num-
bers of base-facts (facts between entities, such as wasBornIn, interestedIn,
type, or subclassOf, semantic meta-facts extracted from Wikipedia (facts
about facts, such as occursSince or hasSuccessor), and semantic meta-
facts deduced by our rules in Section 4 and 5. Another type of meta-fact
are provenance facts, keeping book of where, when, and how a fact has been
extracted.

Type Number in YAGO2 YAGO2 incl. GeoNames

Classes 562,312 562,954
Entities 2,661,594 9,849,496
Facts 253,213,842 451,726,172
Relations 99 101

Table 8.5: YAGO core and full numbers

Class #Entities

People 882,534
Organizations 240,047
Locations 695,712 (7,569,708 incl. GeoNames)
Events 212,236
Other 631,065

Table 8.6: Number of entities by class
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Relation #Facts

occursSince/Until 27,169,970
occursIn 3,066,757

Table 8.7: Number of time and location meta-facts

Type Number of Facts

base facts 27,550,575
semantic (extracted) meta-facts 5,715,127
semantic (deduced) meta-facts 30,236,727
provenance meta-facts 189,711,413

Table 8.8: Number of base and meta-facts in YAGO2 (without GeoNames)
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9 Related Work

Going beyond the classical knowledge sources Cyc [26] and WordNet [18]
and recently hand-crafted but small ontologies such as GeoWordNet [20],
most projects on automatic knowledge base construction have drawn from
semistructured elements in Wikipedia and other Web sources: infoboxes, cat-
egory names, tables, lists. [1, 14, 50] and the references given there provide
an overview of recent work along these lines. Commercial endeavors include
Cyc, Freebase, Trueknowledge, and Wolframalpha. Academic work of com-
prehensive scale and ontological rigor includes DBpedia [4, 7], Omega [34],
WikiTaxonomy [36, 35], and YAGO [41, 42]. WikiTaxonomy and YAGO have
emphasized high precision from Wikipedia categories, and aligning this with
WordNet into a much richer class system. YAGO has additionally harvested
infoboxes. DBpedia has placed emphasis on high recall from the infoboxes,
and makes use of the YAGO taxonomy. Omega integrated WordNet with
separate upper-level ontologies and populated various classes with instance
collections, including locations from geo gazetteers. Predating the advent of
Wikipedia harvesting, Omega’s size is considerably smaller than that of DB-
pedia or YAGO. None of these approaches has placed emphasis on attaching
time and space consistently to its facts and entities.

The Kylin/KOG project [51] has developed learning-based methods for
automatically typing Wikipedia entities and generating infobox-style facts;
however, this project has not yet led to the construction of large-scale knowl-
edge bases of near-human precision. Very recently, UWN and MENTA
[12, 13] have added a multilingual dimension to entity and concept names,
and also the class system. This work is complementary to YAGO and
YAGO2; we have integrated UWN into YAGO2.

In addition to this line of work on ontologically rigorous knowledge, a
suite of recent projects have been working on large-scale gathering of entity-
relationship-oriented knowledge from arbitrary Web sources and natural-
language documents. These include KnowItAll and its successor TextRunner
[16, 5], the Omnivore system [11], work on distilling Web tables and lists into
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facts [10], the ReadTheWeb project [47], the StatSnowball methods used for
building EntityCube [53], our own work on SOFIE [43], and others. These
approaches have not focused on the temporal and geographical dimension so
far.

The most prominent work on extracting temporal facts is TARSQI [46].
However, it is limited to capturing explicit dates and phrases such as “a
week ago” or “last year” (and mapping them into an explicit date relative
to a reference date like the date of a news article). The NLP community
has had event extraction tasks in its TempEval workshop series [45], using
representations such as TimeML and reference corpora such as Timebank
[8]. More recent work in this area is from Strötgen and Gertz [40], done as
part of the TempEval track in the SemEval workshop. There is no attempt,
though, to connect these dates to corresponding entity-relationship facts.

Temporal knowledge as a first-class citizen in richly populated knowledge
bases has been addressed by only a few prior papers: the TOB framework
of [52], our own preliminary attempt towards T-YAGO [49], and the TIE
approach of [27]. TOB [52] focused on extracting business-related temporal
facts such as terms of CEOs. It used a heavy NLP machinery, with deep
parsing of every sentence, and machine-learning methods for classifiers for
specifically interesting relations. It worked well, but was computationally
expensive, required extensive training, and could not easily generalize to
other relations. The work on T-YAGO [49] focused on extracting relevant
timepoints and intervals from semistructured data in Wikipedia: dates in
category names, lists, tables, infoboxes. It was rather preliminary and did
not aim at the exhaustive anchoring of an ontology in time and space. There
was no support for processing free text. Finally, the TIE approach [27] uses
training data with fine-grained annotations to learn an inference model based
on Markov Logic. This involves using consistency constraints on the relative
ordering of events.

The general theme of temporal knowledge is an old AI topic [19], but
prior work concentrated on representational models without any attempts at
populated knowledge bases. The standard textbook by Russel and Norvig
[38] refers to t-facts as fluents: instances of relations whose validity is a
function of time. There is also recent awareness of temporal IR: ranking
of search results for keyword queries with temporal phrases [3, 6, 29]. [48]
focused on logics-based querying over uncertain t-facts, but did not address
the extraction and fact harvesting process.

Prior literature on RDF-based data models [44] has proposed to extend
SPO triples into quadruples, quads for short, where the fourth component,
sometimes referred to as “color”, primarily serves to represent the provenance
of the triple, but can also be used for other kinds of meta-facts. The work
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that extends ontologies along the temporal and/or geographical dimension
includes Gutierrez et al. [22]. They have introduced a temporal semantics
for RDF, coined Temporal RDF, where time is modeled as a label on RDF
triples, giving each triple a validity time. For querying, the time interval can
be specified as an annotation to standard RDF query. Pugliese et al. [37]
propose an efficient implementation of a time index supporting such queries.
A very recent approach by Koubarakis and Kyzirakos [25] combines the se-
mantics of spatial and temporal constraint databases to create a time- and
space-aware extension of RDF called stRDF, as well as an equivalent exten-
sion to SPARQL. Perry et al. [32] proposed an ontological model for a time-
and space-aware ontology, together with a set of temporal and spatial query
operators. They also implemented their system in a relational DBMS, simi-
lar to our approach. We do not allow time queries as complex as [22] or [37],
where a time interval can be combined with a natural number denoting the
time of occurrences of a fact in the given interval. For our approach, simply
specifying the interval is enough. We also do not allow more complex spatial
representations such as polygons, as [32] and [25] do. Our main contribu-
tion is in how to deal with time when it is not only present as annotation
of thematic facts, but present as a base fact itself, and how to propagate
the available data to all relevant facts. For a more general overview on the
field of spatio-temporal databases, there is an overview paper of the field by
Pelekis et al. [30].

The field of geographical gazetteers is a very old one, the first geographi-
cal gazetteers have been created hundreds of years ago to collect information
associated with geographical locations. More recently, the idea of gazetteers
has been expanded, e. g. by Feinberg et al. [17], to encompass named pe-
riods, such as “The French Revolution” or “Renaissance”. In contrast to
geo-gazetteers, which store the geographical coordinates for entities, these
temporal gazetteers store the time periods for the named events. One such
temporal directory was created using Library of Congress subject headings
by Petras et al. [33]. YAGO2 takes this idea further, by combining the tem-
poral and geographical data and semantic information. It knows the periods
of named events or lifetimes of persons and extends them by the semantic
knowledge that connect these periods – something that increases the value
of YAGO2 beyond that of a gazetteers, as the new knowledge can be used,
e.g., for disambiguating strings occurring in texts to time periods in the
dictionary.
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10 Conclusions

We have developed methodology for enriching large knowledge bases of
entity-relationship-oriented facts along the dimensions of time and space,
and we have demonstrated the practical viability of this approach by the
YAGO2 ontology comprising more than 80 million facts of near-human qual-
ity. We believe that such spatio-temporal knowledge is a crucial asset for
many applications including entity linkage across independent sources (e.g.,
in the Linked-Data cloud [7]) and semantic search. Along the latter lines,
we think that the combined availability of ontological facts and contextual
keywords makes querying and knowledge discovery much more convenient
and effective.

Regardless of the impressive extent and great success of Wikipedia-centric
knowledge bases in the style of DBpedia, YAGO, Freebase, or YAGO2, there
is a wealth of latent knowledge beyond Wikipedia in the form of natural-
language text. This includes biographies and homepages of people or orga-
nizations, scientific publications, daily news, digests of contemporary events
and trends, and more. Tapping on these kinds of sources requires learning-
and reasoning-based forms of information extraction, as pursued, for exam-
ple, by our prior work on SOFIE [43]. In this context, too, considering
the temporal and spatial dimensions would be of utmost importance, but
here the complexity of natural language poses major obstacles. Early work
along these lines include [49, 27]. Much more refined and intensive efforts
are needed, though. Our future work aims at this open challenge of extract-
ing, reconciling, and integrating spatio-temporal knowledge from free-text
sources.
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