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Abstract. The hypervolume indicator is an increasingly popular set
measure to compare the quality of two Pareto sets. The basic ingredient
of most hypervolume indicator based optimization algorithms is the cal-
culation of the hypervolume contribution of single solutions regarding a
Pareto set. We show that exact calculation of the hypervolume contri-
bution is #P-hard while its approximation is NP-hard. The same holds
for the calculation of the minimal contribution. We also prove that it is
NP-hard to decide whether a solution has the least hypervolume contri-
bution. Even deciding whether the contribution of a solution is at most
(1+ε) times the minimal contribution is NP-hard. This implies that it is
neither possible to efficiently find the least contributing solution (unless
P = NP) nor to approximate it (unless NP = BPP).
Nevertheless, in the second part of the paper we present a very fast
approximation algorithm for this problem. We prove that for arbitrarily
given ε, δ > 0 it calculates a solution with contribution at most (1 + ε)
times the minimal contribution with probability at least (1−δ). Though it
cannot run in polynomial time for all instances, it performs extremely fast
on various benchmark datasets. The algorithm solves very large problem
instances which are intractable for exact algorithms (e.g., 10000 solutions
in 100 dimensions) within a few seconds.

1 Introduction

Multi-objective optimization deals with the task of optimizing several objective
functions at the same time. As these functions are often conflicting, we cannot
aim for a single optimal solution but for a set of Pareto optimal solutions. Un-
fortunately, the Pareto set frequently grows exponentially in the problem size.
In this case, it is not possible to compute the whole front efficiently and the goal
is to compute a good approximation of the Pareto front.

There are many indicators to measure the quality of a Pareto set, but there
is only one widely used that is strictly Pareto compliant [22], namely the hyper-
volume indicator. Strictly Pareto compliant means that given two Pareto sets
A and B the indicator values A higher than B if the Pareto set A dominates
the Pareto set B. The hypervolume (HYP) measures the volume of the dom-
inated portion of the objective space. It was first proposed and employed for
multi-objective optimization by Zitzler and Thiele [20].



2

It has become very popular recently and several algorithms have been de-
veloped to calculate it. The first one was the Hypervolume by Slicing Objec-
tives (HSO) algorithm which was suggested independently by Zitzler [19] and
Knowles [9]. To improve its runtime on practical instances, various speed up
heuristics of HSO have been suggested [16, 18]. The currently best asymptotic
runtime of O(n log n+nd/2) is obtained by Beume and Rudolph [2] by an adap-
tion of Overmars and Yap’s algorithm [11] for Klee’s Measure Problem [8].

From a geometric perspective, the hypervolume indicator is just measuring
the volume of the union of a certain kind of boxes in Rd≥0, namely of boxes which
share the reference point1 as a common point. We will use the terms point and
box interchangeably for solutions as the dominated volume of a point defines a
box and vice versa. Given a set M of n points in Rd, we define the hypervolume
of M to be

HYP(M) := vol

( ⋃
(x1,...,xd)∈M

[0, x1]× . . .× [0, xd]

)

In [4] the authors have proven that it is #P-hard2 in the number of dimension
to calculate HYP precisely. Therefore, all hypervolume algorithms must have an
exponential runtime in the number of objectives (unless P = NP). Without the
widely accepted assumption P 6= NP, the only known lower bound for any d
is Ω(n log n) [3]. Note that the worst-case combinatorial complexity (i.e., the
number of faces of all dimensions on the boundary of the union) of Θ(nd) does
not imply any bounds on the computational complexity.

Though the #P-hardness of HYP dashes the hope for an exact subexponen-
tial algorithm, there are a few estimation algorithms [1, 4] for approximating the
hypervolume based on Monte Carlo sampling. However, the only approximation
algorithm with proven bounds is presented in [4]. There, the authors describe
an FPRAS for HYP which gives an ε-approximation of the hypervolume with
probability (1− δ) in time O(log(1/δ)nd/ε2).

New complexity results

We will now describe a few problems related to the calculation of the hyper-
volume indicator and state our results. For this, observe that calculating the
hypervolume itself is actually not necessary in a hypervolume-based evolution-
ary multi-objective optimizer as the algorithm actually only has to find a box
with the minimal contribution to the hypervolume.

The contribution of a box x ∈M to the hypervolume of a setM of boxes is the
volume dominated by x and no other element of M . We define the contribution

1 Without loss of generality we assume the reference point to be 0d.
2 #P is the analog of NP for counting problems. For details see either the original

paper by Valiant [15] or the standard textbook on computational complexity by
Papadimitriou [12].
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CON(M,x) of x to be

CON(M,x) := HYP(M)−HYP(M \ x).

In Section 2 we show that this problem is #P-hard to solve exactly. Furthermore,
approximating CON by a factor of 2d

1−ε

is NP-hard for any ε > 0. Hence, CON
is not approximable. Note that this is no contradiction to the above-mentioned
FPRAS for HYPas an approximation of HYP yields no approximation of CON.

As a hypervolume-based optimizer is only interested in the box with the
minimal contribution, we also consider the following problem. Given a set M of
n boxes in Rd, find the least contribution of any box in M , that is,

MINCON(M) := min
x∈M

CON(M,x).

The reduction in Section 2 shows that MINCON is #P-hard and not approx-
imable, even if we know the box which is the least contributor.

Both mentioned problems can be used to find the box contributing the least
hypervolume, but their hardness does not imply hardness of the problem itself,
which we are trying to solve, namely calculating which box has the least contri-
bution. Therefore we also examine the following problem. Given a set M of n
boxes in Rd, we want to find a box with the least contribution in M , that is,

LC(M) := argmin
x∈M

CON(M,x).

If there are multiple boxes with the same (minimal) contribution, we are, of
course, satisfied with any of them. In Section 2 we prove that this problem is
NP-hard to decide.

However, for practical purposes it most often suffices to solve a relaxed version
of the above problem. That is, we just need to find a box which contributes not
much more than the minimal contribution, meaning that is is only a (1 + ε)
factor away. If we then throw out such a box, we have an error of at most ε. We
will call this ε-LC(M) as it is an “approximation” of the problem LC. Given a
set M of n boxes in Rd and ε > 0, we want to find a box with contribution at
most (1 + ε) times the minimal contribution of any box in M , that is,

CON(M, ε-LC(M)) ≤ (1 + ε) MINCON(M).

The final result of Section 2 is the NP-hardness of ε-LC. This shows, that there
is no way of computing the least contributor efficiently, and even no way to
approximate it.

New approximation algorithm

In Section 3 we will give a “practical” algorithm for determining a small contrib-
utor. Technically speaking, it solves the following problem we call ε-δ-LC(M):
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Given a set M of n boxes in Rd, ε > 0 and δ > 0, with probability at least 1− δ
find a box with contribution at most (1 + ε) MINCON(M).

Pr[CON(M, ε-δ-LC(M)) ≤ (1 + ε) MINCON(M)] ≥ 1− δ.

As we will be able to choose δ arbitrarily, solving this problem is of high prac-
tical interest. By the NP-hardness of ε-LC there is no way of solving ε-δ-LC
efficiently, unless NP = BPP. This means, our algorithm cannot run in poly-
nomial time for all instances. Its runtime depends on some hardness measure H
(cf. Section 3.2), which is an intrinsic property of the given input, but generally
unbounded, i.e., not bounded by some function in n and d.

However, in Section 4 we show that our algorithm is practically very fast
on various benchmark datasets, even for dimensions completely intractable for
exact algorithms like d = 100 for which we can solve instances with n = 10000
points within seconds. This implies a huge shift in the practical usability of the
hypervolume indicator.

2 Hardness of approximation

In this section we first show hardness of approximating MINCON, which we will
use afterwards to show hardness of LC and ε-LC. We will reduce #MON-CNF
to MINCON, which is the problem of counting the number of satisfying assign-
ments of a Boolean formula in conjunctive normal form in which all variables
are unnegated. While the problem of deciding satisfiability of such formula is
trivial, counting the number of satisfying assignments is #P-hard and even ap-
proximating it by a factor of 2d

1−ε

for any ε > 0 is NP-hard, where d is the
number of variables (see Roth [14] for a proof).

Theorem 1. MINCON is #P-hard and approximating it by a factor of 2d
1−ε

is NP-hard for any ε > 0.

Proof. To show the theorem, we reduce #MON-CNF to MINCON. Let
�(a1, . . . , ad) denote a box [0, a1] × . . . × [0, ad]. Let f =

∧n
k=1

∨
i∈Ck

xi be
a monotone Boolean formula given in CNF with Ck ⊆ [d] := {1, . . . , d}, for
k ∈ [n], d the number of variables, n the number of clauses. First, we construct
a box Ak = �(ak1 , . . . , a

k
d, 2

d + 2) ⊆ Rd+1 for each clause Ck with one vertex at
the origin and the opposite vertex at (ak1 , . . . , a

k
d, 2

d + 2), where we set

aki =

{
1, if i ∈ Ck
2, otherwise

, i ∈ [d].

Additionally, we need a box B = �(2, . . . , 2, 1) ⊆ Rd+1 and set M =
{A1, . . . , An, B}. Since we can assume without loss of generality that no clause is
dominated by another, meaning Ci 6⊆ Cj for every i 6= j, every box Ak uniquely
overlaps a region [x1, x1+1]×. . .×[xd, xd+1]×[1, 2d+2] with xi ∈ {0, 1}, i ∈ [d],
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so that the contribution of every box Ak is greater than 2d and the contribution
of B is at most 2d, so that B is indeed the least contributor.

Observe that the contribution of B to HYP(M) can be written as a union
of boxes of the form Bx1,...,xd

= [x1, x1 + 1] × · · · × [xd, xd + 1] × [0, 1] with
xi ∈ {0, 1}, i ∈ [d]. Moreover, Bx1,...,xd

is not a subset of the contribution of
B to HYP(M) iff it is a subset of

⋃n
k=1Ak iff it is a subset of some Ak iff we

have aki ≥ xi + 1 for i ∈ [d] iff aki = 2 for all i with xi = 1 iff i /∈ Ck for
all i with xi = 1 iff (x1, . . . , xd) satisfies

∧
i∈Ck

¬xi for some k iff (x1, . . . , xd)
satisfies the negated formula f̄ =

∨n
k=1

∧
i∈Ck

¬xi. This implies that Bx1,...,xd

is a subset of the contribution of B iff (x1, . . . , xd) satisfies f . Hence, since
vol(Bx1,...,xd

) = 1, we have MINCON(M) = CON(M,B) = |{(x1, . . . , xd) ∈
{0, 1}d | (x1, . . . , xd) satisfies f}|. Thus a polynomial time algorithm solving
MINCON(M) would result in a polynomial time algorithm for #MON-CNF,
which proves the claim.

Note that the reduction from above implies that MINCON is #P-hard
and NP-hard to approximate even if the least contributor is known. Moreover,
since we constructed boxes with integer coordinates in [0, 2d + 2] a number of
b = O(d2n) bits suffices to represent all d+1 coordinates of the n+1 constructed
points. Hence, MINCON is hard even if all coordinates are integral. We define
as input size b + n + d, where b is the number of bits in the input. We will use
this result in the next proof. Also note that the same hardness for CON follows
immediately, as it is hard to compute CON(M,B) as constructed above.

By reducing MINCON to LC, one can now show NP-hardness of LC. We
skip this proof and directly prove NP-hardness of ε-LC by using the hardness
of approximating MINCON in the following theorem.

Theorem 2. ε-LC is NP-hard for any constant ε. More precisely, it is
NP-hard for (1 + ε) bounded from above by 2d

1−c−1 for some c > 0.

Proof. We reduce MINCON to ε-LC. Let M be a set of n boxes in Rd, i.e., a
problem instance of MINCON represented by a number of b bits, so that the
input size is b+ n+ d.

As discussed above, we can assume that the coordinates are integral. We
can further assume that d ≥ 2 as MINCON is trivial for d = 1. The minimal
contribution of M might be 0, but this occurs if and only if one box in M
dominates another. As the latter can be checked in polynomial time, we can
without loss of generality also assume that MINCON(M) > 0.

Now, let V be the volume of the bounding box of all the boxes in M , i.e.,
the product of all maximal coordinates in the d dimensions. We know that V is
an integer with 1 ≤ V ≤ 2b, as there are only b bits in the input.

We now define a slightly modified set of boxes:

A = {�(a1 + 2V, a2, . . . , ad) | �(a1, . . . , ad) ∈M},
B = �(2V, . . . , 2V ),
Cλ = �(1, . . . , 1, 2V + λ),
Mλ = A ∪ {B} ∪ {Cλ}.
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The boxes in A are the boxes of M , but shifted along the x1-axis. By defini-
tion, ai ≤ V , i ∈ [d] for all �(a1, . . . , ad) ∈ M . The contribution to HYP(Mλ)
of a box in A is the same as the contribution to HYP(M) of the corresponding
box in M as the additional part is overlapped by the “blocking” box B. Also
note that the contribution of a box in A is less or equal than V .

The box B uniquely overlaps at least the space [V, 2V ] × . . . × [V, 2V ] (as
every coordinate of a point in M is less than equal to V ) which has volume at
least V . Hence, B is never the least contributor of Mλ. The box Cλ then has a
contribution of vol([0, 1]× . . .× [0, 1]× [2V, 2V + λ]) = λ, so that Cλ is a least
contributor iff λ is less than or equal to the minimal contribution of any box in
A to HYP(Mλ) which holds iff we have λ ≤MINCON(M).

Since we can decide, whether Cλ is the least contributor, by one call to
LC(Mλ), we can do kind of a binary search on λ. As we are interested in a
multiplicative approximation, we search for κ := log2(λ) to be the largest value
less than equal to log2(MINCON(M)), where κ now is an integer in the range
[0, b]. As we can only answer ε-LC-queries we cannot do exact binary search.
But we can still follow its lines, recurring on the left half of the current interval,
if for the median value κm we get ε-LC(Mλm) = Cλm , where λm = 2κm , and on
the right half, if we get any other result.

The incorrectness of ε-LC may misguide our search, but since we have
CON(M, ε-LC(M)) ≤ (1 + ε) MINCON(M) it can give a wrong answer (i.e.,
not the least contributor) only if we have (1 + ε)−1MINCON(M) ≤ 2κ ≤
(1 + ε) MINCON(M). Outside of this interval our search goes perfectly well.
Thus, after the binary search, i.e, after at most dlog2(b)e many calls to ε-LC, we
end up at a value κ which is either inside the above interval (in which case we
are satisfied) or the largest integer smaller than log2((1 + ε)−1MINCON(M))
or the smallest integer greater than log2((1+ε) MINCON(M)). Hence, we have
κ ≤ log2((1 + ε) MINCON(M)) + 1 implying λ = 2κ ≤ 2(1 + ε) MINCON(M).
Analogously, we get λ = 2κ ≥ MINCON(M)/(2(1 + ε)). Therefore after
O(log(b)) many calls to ε-LC we get a 2 (1+ε) approximation of MINCON(M).
Since this is NP-hard for 2 (1 + ε) bounded from above by 2d

1−c

for some c > 0,
we showed NP-hardness of ε-LC in this case. Note that this includes any con-
stant ε.

The NP-hardness of ε-LC not only implies NP-hardness of LC, but also
the non-existence of an efficient algorithm for ε-δ-LC unless NP = BPP. The
above proof also gives a very good intuition about the problem ε-LC: As we can
approximate the minimal contribution by a small number of calls to ε-LC, there
cannot be a much faster way to solve ε-LC but to approximate the contributions
– approximating at least the least contribution can be only a factor of O(log(b))
slower than solving ε-LC. This motivates the algorithm we present in the next
section, which tries to approximate the contributions of the various boxes.
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3 Practical approximation algorithm

The last section ruled out the possibility of a worst case efficient algorithm for
computing or approximating the least contributor. Nevertheless, we are now
presenting an algorithm A that is “safe” and has a good practical runtime, but
no polynomial worst case runtime (as this is not possible). By “safe” we mean
that it provably solves ε-δ-LC, i.e., it holds that

Pr[CON(M,A(M, ε, δ)) ≤ (1 + ε) MINCON(M)] ≥ 1− δ.

As the algorithm is going to approximate the contributions, we cannot avoid
ε and solve LC directly, as with no (1+∆)-approximation, for any ∆ > 0 we can
decide whether two contributions are equal or just nearly equal (and in the latter
case which one is greater). We consider an ε around 10−2 or 10−3 as sufficient
for typical instances. This implies for most instances that we return the correct
result as there are no two small contributions which are only a (1 + ε)-factor
apart. For the remaining cases we return at least a box which has contribution
at most (1+ε) times the minimal contribution, which means we make an “error”
of ε.

Additionally, the algorithm is going to be a randomized Monte Carlo algo-
rithm, which is why we need the δ and do not always return the correct result.
However, we will be able to set δ = 10−6 or even δ = 10−12 without increas-
ing the runtime overly. In the following we will describe algorithm A, prove its
correctness and describe its runtime.

3.1 The algorithm A

Our algorithm works as follows. For each box A it determines the minimal bound-
ing box of the space that is uniquely overlapped by the box. To do so we start
with the box A itself. Then we iterate over all other boxes B. If B dominates A in
all but one dimension, then we can cut the bounding box in the non-dominated
dimension. This can be realized in O(dn2).

Having the bounding box BBA of the contribution of A we start to sample
randomly in it. For each random point we determine if it is uniquely dominated
by A. If we checked noSamples(A) random points and noSuccSamples(A)
of them were uniquely dominated by A, then the contribution of A is about
ṼA := noSuccSamples(A)

noSamples(A) vol(BBA), where vol(BBA) denotes the volume of
the bounding box of the contribution of A. Additionally, we can give an es-
timate of the deviation of ṼA from VA, the correct contribution of A (i.e.,
VA = CON(M,A)): Using Chernoff’s inequality we get that for

∆(A) :=

√
log(2n/δ)

2noSamples(A)
vol(BBA) (1)

the probability that VA deviates from ṼA by more than ∆(A) is small enough.
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We would like to sample in the bounding boxes in parallel such that every ṼA
deviates about the same ∆. We do this by initializing ∆ arbitrarily (e.g., ∆ = 1)
and then in every iteration decrease ∆ by some factor (e.g., 1

2 ) and sample in
each bounding box until we have ∆(A) ≤ ∆. If we then have at any point two
boxes A and B with

ṼA −∆(A) > ṼB +∆(B) (2)

we can with good probability assume that A is not a least contributor as we
would need to have ṼA − VA > ∆(A) or VB − ṼB > ∆(B) for A having a
less contribution than B (which is necessary for A being the least contributor).
Hence, whenever such a situation occurs we can delete A from our race, meaning
that we do not have to sample in its bounding box anymore. Note that we never
have to compare two arbitrary boxes, but only a box A to the currently smallest
box L̃C, i.e., the box with Ṽ

L̃C
minimal.

We can run this race, deleting boxes if their contribution is clearly too much
by the above selection equation until either there is just one box left, in which
case we have found the least contributor, or until we have reached a point where
we have approximated all contributions well enough. Given an abortion crite-
rion ε we can just return L̃C (the box with currently smallest approximated
contribution) when we have

0 <
Ṽ
L̃C

+∆(L̃C)

ṼA −∆(A)
≤ 1 + ε,

for any box A 6= L̃C still in the race. If this equation holds, then we can be quite
sure that any box has contribution at least 1

1+εVL̃C , and, similarly, all other
boxes that are still in the race, too. So, after all, we have solved ε-δ-LC.

Due to space limitations, the proof that the described algorithm is indeed
correct has been removed. It can be found in Section 3.3 of [5].

3.2 Runtime

As discussed above, our algorithm needs a runtime of at least Ω(dn2). This seems
to be the true runtime on many practical instances (cf. Section 4). However, by
Theorem 2 we cannot hope for a matching upper bound. In this section we
present an upper bound on the runtime depending on some characteristics of
the input.

For an upper bound, observe that we have to approximate each box A up to
∆ = (VA −MINCON(M))/4 to be able to delete it with high probability: At
this point, ṼA ≥ VA −∆ and ṼB ≤ VB + ∆, for B a least contributor, so that
ṼA − ṼB ≥ 2∆ with probability at least 1 − δ/n. Similarly, we can show that
the expected value of ∆ where we delete box A is Ω(VA −MINCON(M)). By
equation (1) we observe that we need a number of

log(2n/δ)vol(BBA)2

2Ω(VA −MINCON(M))2
= O

(
log(n/δ)vol(BBA)2

(VA −MINCON(M))2

)
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Algorithm 1 A(M, ε, δ) solves ε-δ-LC(M) for a set M of n boxes in Rd
and ε, δ > 0, i.e., it determines a box x ∈ M s.t. Pr[CON(M,x) ≤ (1 +
ε) MINCON(M)] ≥ 1− δ.

determine the bounding boxes BBA for all A ∈M
initialize noSamples(A) = noSuccSamples(A) = 0 for all A ∈M
initialize ∆
set S := M
repeat

set ∆ := ∆/2
for all A ∈ S do

repeat
sample a random point in BBA
increase noSamples(A) and possibly noSuccSamples(A)

update ṼA and ∆(A)
until ∆(A) ≤ ∆

od
set L̃C := argmin{ṼA | A ∈ S}
for all A ∈ S do

if ṼA −∆(A) > ṼL̃C +∆(L̃C) then
S := S\{A}

od
od

until |S| = 1 or 0 <
Ṽ

L̃C
+∆(L̃C)

ṼA−∆(A)
≤ 1 + ε for any L̃C 6= A ∈ S

return L̃C

samples to delete box A on average. For the least contributor LC, we need
O
(

log(n/δ)vol(BBLC)2

(sec-min(V )−MINCON(M))2

)
many samples until we have finally deleted all other

boxes, where sec-min(V ) denotes the second smallest contribution of any box in
M . Since each sample takes runtime O(dn) and everything besides the sampling
takes much less runtime, we get an overall runtime of O(dn (n + log(n/δ) H)),
where

H =
vol(BBLC)2

(sec-min(V )−MINCON(M))2
+

∑
LC 6=A∈S

vol(BBA)2

(VA −MINCON(M))2

is a certain measure of hardness of the input. This value is unbounded and
can even be undefined if there is no unique least contributor. In this case our
abortion criterion comes into play: With probability (1− δ) after approximating
every contribution up to ∆ = ε

4+2εMINCON(M) we have ṼLC ≤ VLC +∆, thus
Ṽ
L̃C
≤ VLC +∆, and ṼA ≥ VLC−∆ for every other box A still in the race. Then

we conclude

Ṽ
L̃C

+∆(L̃C)

ṼA −∆(A)
≤ VLC + 2∆
VLC − 2∆

=
1 + 2 ε

4+2ε

1− 2 ε
4+2ε

= 1 + ε
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for every box L̃C 6= A ∈ S. Hence, the above defined value for ∆ suffices to
enforce abortion. Since we get this ∆ after noSamples(A) = log(2n/δ)vol(BBA)2

2( ε
4+2ε MINCON(M))2

samples, this yields another upper bound for the overall number of samples, a
still unbounded but always finite value:

O
(

log(n/δ)
ε2MINCON(M)2

∑
A∈M

vol(BBA)2
)

However, for the random testcases that we consider in Section 4 the above
defined hardness H is a more realistic measure of runtime as there are never two
identical contributions and not too many equally small contributions. There one
observes values for H that roughly lie in the interval [n, 10n].

4 Experimental analysis

To demonstrate the performance of the described approximation algorithm for
the hypervolume contribution, we have implemented it and measured its perfor-
mance on different datasets. To yield a practically relevant algorithm, we have
implemented several heuristical improvements which are described in detail in
Section 3.4 of [5]. The most important for the correct interpretation of the ex-
periments is that we use a classical exact algorithm for small n and d. We now
first describe the used benchmark datasets and then our results.

4.1 Datasets

We used five different fronts similar to the DTLZ test suite [7]. As we do not
want to compare the hypervolume algorithms for point distributions specific to
different optimizers like NSGA-II [6] or SPEA2 [21], we have sampled the points
from different surfaces randomly. This allows full scalability of the datasets in
the number of points and the number of dimensions.

To define the datasets, we use random variables with two different distribu-
tions. Simple uniformly distributed random variables are provided by the build-
in random number generator rand() of C++. To get random variables with a
Gaussian distribution, we used the polar form of the Box-Muller transformation
as described in [13].

Linear dataset: The first dataset consists of points (x1, x2, . . . , xd) ∈ [0, 1]d

with
∑d
i=1 xi = 1. They are obtained by generating d Gaussian random variables

y1, y2, ..., yd and then using the normalized points

(x1, x2, . . . , xn) :=
(|y1|, |y2|, . . . , |yn|)
|y1|+ |y2|+ . . .+ |yd|

.
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(a) Spherical dataset. (b) Linear dataset. (c) Concave dataset.

Fig. 1. Visualization of the first three datasets.

(a) Spherical dataset. (b) Linear dataset. (c) Concave dataset.

Fig. 2. Experimental results for d = 3.

(a) Spherical dataset. (b) Linear dataset. (c) Concave dataset.

Fig. 3. Experimental results for d = 10.

(a) Spherical dataset. (b) Linear dataset. (c) Concave dataset.

Fig. 4. Experimental results for d = 100.
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(a) Random dataset 1. (b) Random dataset 2.

Fig. 5. Experimental results for random datasets with d = 5.

Spherical dataset: To obtain uniformly distributed points (x1, x2, . . . , xd) ∈
[0, 1]d with

∑d
i=1 x

2
i = 1 we follow the method of Muller [10]. That is, we generate

d Gaussian random variables y1, y2, ..., yd and take the points

(x1, x2, . . . , xn) :=
(|y1|, |y2|, . . . , |yn|)√
y2
1 + y2

2 + . . .+ y2
d

.

Concave dataset: Analogously to the spherical dataset we choose points
(x1, x2, . . . , xd) ∈ [0, 1]d with

∑d
i=1

√
xi = 1. For this, we generate again d Gaus-

sian random variables y1, y2, ..., yd and use the points

(x1, x2, . . . , xn) :=
(|y1|, |y2|, . . . , |yn|)

(
√
|y1|+

√
|y2|+ . . .+

√
|yd|)2

.

For d = 3, the surface of the dataset is shown in Figure 1. Additionally to
random points lying on a lower-dimensional surface, we have also examined the
following two datasets with points sampled from the actual space similar to the
random dataset examined by While et al. [17].

Random dataset 1: We first draw n uniformly distributed points from [0, 1]d

and then replace all dominated points by new random points until we have a set
of n nondominated points.

Random dataset 2: Very similar to the previous dataset, we choose random
points until there are no dominated points. The only difference is that this time
the points are not drawn uniformly, but Gaussian distributed in Rd with mean 1.

Note that the last two datasets are far from being uniformly distributed. The
points of the first set all have at least one coordinate very close to 1 while the
points of the second set all have at least one coordinate which is significantly
above the mean value. This makes their computation for many points (e.g.,
n ≥ 100) in small dimensions (e.g., d ≤ 5) computationally very expensive as it
becomes more and more unlikely to sample a nondominated point.
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(a) Random dataset 1. (b) Random dataset 2.

Fig. 6. Experimental results for random datasets with d = 100.

4.2 Comparison

We have implemented our algorithm in C++ and compared it with the available
implementations of HSO by Eckart Zitzler [19] and BR by Nicola Beume [2].
We did not add any further heuristics to both exact algorithms as all published
heuristics do not improve the asymptotic runtime and even a speedup of a few
magnitudes does not change the picture significantly.

It would be better to compare our approximation algorithm with other ap-
proximation algorithms instead of exact algorithms. However, the only other
published approximation algorithm seems to be [1], which is not publicly avail-
able yet. Another reason is that all available optimization algorithms based on
the hypervolume indicator use exact calculations and hence our speedup is car-
ried over to them.

All experiments were run on a cluster of 100 machines with two 2.4 GHz
AMD Opteron processors, operating in 32-bit mode, running Linux. For our
approximation algorithm we used the parameters δ = 10−6 and ε = 10−2. The
code used is available upon request and will be distributed from the homepage
of the second author.

Figure 2-6 show double-logarithmic plots of the runtime for different datasets
and number of dimensions. The shown values are the median of 100 runs each. To
illustrate the occurring deviations below and above the median, we also plotted
all measured runtimes as ligther single points in the back. As both axes are scaled
logarithmically, also the examined problem sizes are distributed logarithmically.
That is, we only calculated Pareto sets of size n if n ∈ {bexp(k/100)c | k ∈ N}.
We examined dimensions d = 3, 10, 100 for the first three datasets and d = 5, 100
for the last two datasets.

Independent of the number of solutions and dimension, we always observed
that, unless n ≤ 10, our algorithm outperformed HSO and BR substantially. On
the used machines this means that only if the calculation time was insignificant
(say, below 10−4 seconds), the exact algorithm could compete. On the other
hand, the much lower median of our algorithm also comes with a much higher
empirical standard deviation and interquartile range. In fact, we observed that
the upper quartile can be up to five times slower than the median (for the
especially degenerated random dataset 1). The highest ratio observed between
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the maximum runtime and the average runtime is 66 (again for the random
dataset 1). This behavior is represented in the plots by the spread of lighter
datapoints in the back of the median. However, there are not too many outliers
and even their runtime outperforms HSO and BR. The non-monotonicity of
our algorithm around n = 10 for d = 10 is caused by the approximate for the
runtimes of the exact algorithms.

For larger dimensions the advantage of our approximation algorithm becomes
tremendous. For d = 100 we observed that within 100 seconds our algorithm
could solve all problems with less than 6000 solutions while HSO an BR could
not solve any problem for a population of 6 solutions in the same time. For
example for 7 solutions on the 100-dimensional linear front, HSO needed 13
minutes, BR 7 hours while our algorithm terminated within 0.5 milliseconds.

5 Conclusions

We have proven that most natural questions about the hypervolume contribution
which are relevant for evolutionary multi-objective optimizers are not only com-
putationally hard to decide, but also hard to approximate. On the other hand, we
have presented a new approximation algorithm which works extremely fast for
all tested practical instances. It can solve efficiently large high-dimensional in-
stances (d ≥ 10, n ≥ 100) which are intractable for all previous exact algorithms
and heuristics.

It would be very interesting to compare the algorithms on further datasets.
We believe that only when two solutions have contributions of very close value,
our algorithm slows down. For practical instances this should not matter as it
simply occurs too rarely – but this conjecture should be substantiated by some
broader experimental study in the future.
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