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Abstract. Probabilistic analysis for metric optimization problems has
mostly been conducted on random Euclidean instances, but little is
known about metric instances drawn from distributions other than the
Euclidean.
This motivates our study of random metric instances for optimization
problems obtained as follows: Every edge of a complete graph gets a
weight drawn independently at random. The length of an edge is then
the length of a shortest path (with respect to the weights drawn) that
connects its two endpoints.
We prove structural properties of the random shortest path metrics gen-
erated in this way. Our main structural contribution is the construction
of a good clustering. Then we apply these findings to analyze the approx-
imation ratios of heuristics for matching, the traveling salesman problem
(TSP), and the k-center problem, as well as the running-time of the 2-opt
heuristic for the TSP. The bounds that we obtain are considerably bet-
ter than the respective worst-case bounds. This suggests that random
shortest path metrics are easy instances, similar to random Euclidean
instances, albeit for completely different structural reasons.

1 Introduction

For large-scale optimization problems, finding optimal solutions within reason-
able time is often impossible, because many such problems, like the traveling
salesman problem (TSP), are NP-hard. Nevertheless, we often observe that sim-
ple heuristics succeed surprisingly quickly in finding close-to-optimal solutions.
Many such heuristics perform well in practice but have a poor worst-case per-
formance. In order to explain the performance of such heuristics, probabilistic
analysis has proved to be a useful alternative to worst-case analysis. Probabilistic
analysis of optimization problems has been conducted with respect to arbitrary
instances (without the triangle inequality) [14,22] or instances embedded in Eu-
clidean space. In particular, the limiting behavior of various heuristics for many
of the Euclidean optimization problems is known precisely [34].

However, the average-case performance of heuristics for general metric in-
stances is not well understood. This lack of understanding can be explained by



two reasons: First, independent random edge lengths (without the triangle in-
equality) and random geometric instances are relatively easy to handle from a
technical point of view – the former because of the independence of the lengths,
the latter because Euclidean space provides a structure that can be exploited.
Second, analyzing heuristics on random metric spaces requires an understanding
of random metric spaces in the first place. While Vershik [32] gave an analysis
of a process for obtaining random metric spaces, using this directly to analyze
algorithms seems difficult.

In order to initiate systematic research of heuristics on general metric spaces,
we use the following model, proposed by Karp and Steele [23, Section 3.4]: Given
an undirected complete graph, we draw edge weights independently at random.
Then the length of an edge is the length of a shortest path connecting its end-
points. We call such instances random shortest path metrics.

This model is also known as first-passage percolation, and has been intro-
duced by Broadbent and Hemmersley as a model for passage of fluid in a porous
medium [6, 7]. More recently, it has also been used to model shortest paths in
networks such as the internet [12]. The appealing feature of random shortest
path metrics is their simplicity, which enables us to use them for the analysis of
heuristics.

1.1 Known and Related Results

There has been significant study of random shortest path metrics or first-passage
percolation. The expected length of an edge is known to be Θ(log n/n) [9,20], and
the same asymptotic bound holds also for the longest edge almost surely [17,
20]. This model has been used to analyze algorithms for computing shortest
paths [15, 17, 27]. Kulkarni and Adlakha have developed algorithmic methods
to compute distribution and moments of several optimization problems [24–
26]. Beyond shortest path algorithms, random shortest path metrics have been
applied only rarely to analyze algorithms. Dyer and Frieze, answering a question
raised by Karp and Steele [23, Section 3.4], analyzed the patching heuristic for
the asymmetric TSP (ATSP) in this model. They showed that it comes within
a factor of 1 + o(1) of the optimal solution with high probability. Hassin and
Zemel [17] applied their findings to the 1-center problem.

From a more structural point of view, first-passage percolation has been
analyzed in the area of complex networks, where the hop-count (the number
of edges on a shortest path) and the length of shortest path trees have been
analyzed [19]. These properties have also been studied on random graphs with
random edge weights [5,18]. More recently, Addario-Berry et. al. [1] showed that
the number of edges in the longest of the shortest paths is O(log n) with high
probability, and hence the shortest path trees have depth O(log n).

1.2 Our Results

As far as we are aware, simple heuristics such as greedy heuristics have not been
studied in this model yet. Understanding the performance of such algorithms is



particularly important as they are easy to implement and used in many appli-
cations.

We provide a probabilistic analysis of simple heuristics for optimization un-
der random shortest path metrics. First, we provide structural properties of
random shortest path metrics (Section 3). Our most important structural con-
tribution is proving the existence of a good clustering (Lemma 3.8). Then we
use these structural insights to analyze simple algorithms for minimum weight
matching and the TSP to obtain better expected approximation ratios compared
to the worst-case bounds. In particular, we show that the greedy algorithm for
minimum-weight perfect matching (Theorem 4.2), the nearest-neighbor heuristic
for the TSP (Theorem 4.3), and every insertion heuristic for the TSP (Theo-
rem 4.4) achieve constant expected approximation ratios. We also analyze the
2-opt heuristic for the TSP and show that the expected number of 2-exchanges
required before the termination of the algorithm is bounded by O(n8 log3 n)
(Theorem 4.5). Investigating further the structural properties of random short-
est path metrics, we then consider the k-center problem (Section 5), and show
that the most trivial procedure of choosing k arbitrary vertices as k-centers yields
a 1 + o(1) approximation in expectation, provided k = O(n1−ε) for some ε > 0
(Theorem 5.2). Due to space limitations, most proofs are in the appendix.

2 Model and Notation

We consider undirected complete graphs G = (V,E) without loops. First, we
draw edge weights w(e) independently at random according to the exponential
distribution with parameter 1. (Exponential distributions are technically the
easiest to handle because they are memoryless. However, our results hold also for
other distributions, in particular for the uniform distribution on [0, 1]. We briefly
discuss this in Section 6.) Second, let the distances or lengths d : V ×V → [0,∞)
be given by the lengths of the shortest paths between the vertices with respect to
the weights thus drawn. In particular, we have d(v, v) = 0 for all v ∈ V , we have
d(u, v) = d(v, u) because G is undirected, and we have the triangle inequality:
d(u, v) ≤ d(u, x) + d(x, v) for all u, x, v ∈ V . We call the complete graph with
edge lengths d obtained from random weights w a random shortest path metric.

We use the following notation: Let ∆max = maxe∈E d(e) denote the longest
edge in the random shortest path metric. Let Nv

∆ = {u ∈ V | d(u, v) ≤ ∆} be
the set of all nodes in a ∆-environment of v, and let kv∆ = |Nv

∆| the number of
nodes around v in a ∆-environment. We denote the minimal ∆ such that there
are at least k nodes within a distance of ∆ of v by ∆v

k. Formally, we define
∆v
k = min{∆ | kv∆ ≥ k}. Note that v ∈ Nv

∆ for any ∆ ≥ 0 because the distance
of v to itself is 0. Consequently, we have ∆v

1 = 0 and kv0 ≥ 1.

By Exp(λ), we denote the exponential distribution with parameter λ. By
exp, we denote the exponential function. For n ∈ N, let [n] = {1, . . . , n}, and let
Hn =

∑n
i=1 1/i be the n-th harmonic number.



3 Structural Properties of Shortest Path Metrics

3.1 Random Process

To understand random shortest path metrics, it is convenient to fix a starting
vertex v and see how the lengths from v to the other vertices develop. In this
way, we analyze the distribution of ∆v

k.
The values ∆v

k are generated by a simple birth process as follows. (The same
process has been analyzed by Davis and Prieditis [9], Janson [20], and also in
subsequent work.) For k = 1, we have ∆v

k = 0. For k ≥ 1, we are looking for
the closest vertex to any vertex in Nv

∆vk
in order to obtain ∆v

k+1. This conditions

all edges (u, x) with u ∈ Nv
∆vk

and x /∈ Nv
∆vk

to be of length at least ∆v
k −

d(v, u). Otherwise, x would already be in Nv
∆vk

. The set Nv
∆vk

contains k vertices.

Thus, there are k · (n − k) connections from Nv
∆vk

to the rest of the graph.

Consequently, the difference δk = ∆v
k − ∆v

k−1 is distributed as the minimum
of k(n − k) exponential random variables (with parameter 1), or, equivalently,
as an exponential random variable with parameter k · (n − k). We obtain that

∆v
k+1 =

∑k
i=1 Exp

(
i · (n− i)

)
. (Note that the exponential distributions and the

random variables δ1, . . . , δn are independent.)
Exploiting linearity of expectation and that the expected value of Exp(λ) is

1/λ yields the following theorem.

Theorem 3.1. For any k ∈ [n] and any v ∈ V , we have E
(
∆v
k

)
= 1

n ·
(
Hk−1 +

Hn−1 −Hn−k
)

and ∆v
k is distributed as

∑k−1
i=1 Exp

(
i · (n− i)

)
.

From this result, we can easily deduce two known results: averaging over k
yields that the expected length of an edge is Hn−1

n−1 ≈ lnn/n [9,20]. By considering
∆v
n, we obtain that the longest edge incident to a fixed vertex has an expected

length of 2Hn−1/n ≈ 2 · lnn/n [20]. For completeness, the length of the longest
edge in the whole graph is roughly 3 · lnn/n [20].

3.2 Distribution of ∆v
k

Let us now have a closer look at the distribution of ∆v
k for fixed v ∈ V and

k ∈ [n]. Let F vk denote the cumulative distribution function (CDF) of ∆v
k, i.e.,

F vk (x) = P(∆v
k ≤ x). A careful analysis of the distribution of a sum of exponential

random variables yields the following two lemmas.

Lemma 3.2. For every ∆ ≥ 0, v ∈ V , and k ∈ [n], we have(
1− exp(−(n− k)∆)

)k−1 ≤ F vk (∆) ≤
(
1− exp(−n∆)

)k−1
.

Proof. We have already seen that ∆v
k is a sum of exponentially distributed ran-

dom variables with parameters λi = i(n − i) ∈ [(n − k)i, ni] for i ∈ [k − 1]. We
approximate the parameters by ci for c ∈ {n−k, n}. The distribution with c = n
is stochastically dominated by the true distribution, which is in turn dominated
by the distribution obtained for c = n− k.



We keep c as a parameter and obtain the following density function for the
sum of exponentially distributed random variables with parameters c, . . . , (k −
1) · c [30, p. 308ff]:

k−1∑
i=1

 ∏
j∈[k−1]\{i}

j

j − i

 · ci · exp(−cix) =

k−1∑
i=1

(k−1)!
i · (−1)i−1

(i− 1)!(k − 1− i)!
· ci · exp(−cix)

=

k−1∑
i=1

(
k − 1

i

)
(−1)i−1 · ci · exp(−cix).

Integrating plus the binomial theorem yields

k−1∑
i=1

(
k − 1

i

)(
− exp(−cix)

)
(−1)i−1 · ci · exp(−cix) =

(
− exp(−cx) + 1

)k−1 − 1.

Taking the difference of the function values at ∆ and 0 yields
(
1−exp(−c∆)

)k−1
,

which yields the bounds claimed by choosing c = n− k and c = n. ut

Lemma 3.3. Fix ∆ ≥ 0 and a vertex v ∈ V . Then(
1− exp(−(n− k)∆)

)k−1 ≤ P
(
kv∆ ≥ k

)
≤
(
1− exp(−n∆)

)k−1
.

We can improve Lemma 3.2 slightly in order to obtain even closer lower
and upper bounds. For n, k ≥ 2, combining Lemmas 3.2 and 3.4 yields tight
lower and upper bounds if we disregard the constants in the exponent, namely

F vk (∆) =
(
1− exp(−Θ(n∆))

)Θ(k)
.

Lemma 3.4. For all v ∈ V , k ∈ [n], and ∆ ≥ 0, we have F vk (∆) ≥ (1 −
exp(−(n− 1)∆/4))n−1 and F vk (∆) ≥ (1− exp(−(n− 1)∆/4))

4
3 (k−1).

3.3 Tail Bounds for kv∆ and ∆max

Our first tail bound for kv∆, which is the number of vertices within a distance of
∆ of a given vertex v, follows directly from Lemma 3.2.

From this lemma we derive the following corollary, which is a crucial in-
gredient for the existence of good clusterings and, thus, for the analysis of the
heuristics in the remainder of this paper.

Corollary 3.5. Let n ≥ 5 and fix ∆ ≥ 0 and a vertex v ∈ V . Then we have

P
(
kv∆ < min

{
exp (∆n/5) ,

n+ 1

2

})
≤ exp (−∆n/5) .

Corollary 3.5 is almost tight according to the following result.

Corollary 3.6. Fix ∆ ≥ 0, a vertex v ∈ V , and any c > 1. Then

P
(
kv∆ ≥ exp(c∆n)

)
< exp

(
−(c− 1)∆n

)
.



Janson [20] derived the following tail bound for the length ∆max of the longest
edge. A qualitatively similar bound can be proved using Lemma 3.3 and can also
be derived from Hassin and Zemel’s analysis [17]. However, Janson’s bound is
stronger with respect to the constants in the exponent.

Lemma 3.7 (Janson [20, p. 352]). For any fixed c > 3, we have P(∆max >
c ln(n)/n) ≤ O(n3−c log2 n).

3.4 Stars and Clusters

In this section, we show our main structural contribution, which is a more global
property of random shortest path metrics. We show that such instances can be
divided into a small number of clusters of any given diameter.

From now on, let #(n,∆) = min{exp(∆n/5), (n+ 1)/2}, as in Corollary 3.5.
If the number kv∆ of vertices within a distance of ∆ of v is at least #(n,∆),
then we call the vertex v a ∆-center, and we call the set Nv

∆ of vertices within
a distance of at most ∆ of v (including v itself) the ∆-star of v. Otherwise, if
kv∆ < #(n,∆), we call the vertex v a sparse ∆-center. Any two vertices in the
same ∆-star have a distance of at most 2∆ because of the triangle inequality. If
∆ is clear from the context, then we also speak about centers and stars without
parameter. We can bound, by Corollary 3.5, the expected number of sparse
∆-centers to be at most O(n/#(n,∆)).

We want to partition the graph into a small number of clusters, each of
diameter at most 6∆. For this purpose, we put each sparse ∆-center in its own
cluster (of size 1). Then the diameter of each such cluster is 0 ≤ 6∆ and the
number of these clusters is expected to be at most O(n/#(n,∆)).

We are left with the ∆-centers, which we cluster using the following algo-
rithm: Consider an auxiliary graph whose vertices are all ∆-centers. We draw
an edge between two ∆-centers u and v if Nu

∆ ∩ Nv
∆ 6= ∅. Now consider any

maximal independent set of this auxiliary graph (for instance, a greedy indepen-
dent set), and let t be the number of its vertices. Then we form initial clusters
C ′1, . . . , C

′
t, each containing one of the ∆-stars corresponding to the vertices in

the independent set. By the independence, all t ∆-stars are disjunct, which im-
plies t ≤ n/#(n,∆). The star of every remaining center v has at least one vertex
(maybe v itself) in one of the C ′i. We add all remaining vertices of Nv

∆ to such
a C ′i to form the final clusters C1, . . . , Ct. Now, the maximum distance within
each Ci is at most 6∆: Consider any two vertices u, v ∈ Ci. The distance of u
towards its closest neighbor in the initial star C ′i is at most 2∆. The same holds
for v. Finally, the diameter of the initial star C ′i is also at most 2∆.

With this partitioning, we have obtained the following structure: We have
an expected number of O(n/#(n,∆)) clusters of size 1 and diameter 0, and a
number of O(n/#(n,∆)) clusters, each of size at least #(n,∆) and diameter
at most 6∆. Thus, we have O(n/#(n,∆)) = O(1 + n/ exp(∆n/5)) clusters in
total. We summarize these findings in the following lemma. It will be the crucial
ingredient for bounding the expected approximation ratios of the greedy, nearest-
neighbor, and insertion heuristics.



Lemma 3.8. Consider a random shortest path metric and let ∆ ≥ 0. If we par-
tition the instance into clusters, each of diameter at most 6∆, then the expected
number of clusters needed is O(1 + n/ exp(∆n/5)).

4 Analysis of Heuristics

In order to bound approximation ratios, we will exploit a simple upper bound on
the probability that an optimal TSP tour or matching has a length of at most c
for some small constant c (Lemma B.1). Note that the expected lengths of the
minimum-length perfect matching and the optimal TSP are Θ(1) even without
taking shortest paths [14, 33]. Thus, both the optimal TSP and the optimal
matching have an expected length of O(1) for random shortest path metrics.

4.1 Greedy Heuristic for Minimum-Length Perfect Matching

Finding minimum-length perfect matchings in metric instances is the first prob-
lem that we consider. This problem has been widely considered in the past and
has applications in, e.g., optimizing the speed of mechanical plotters [28,31]. The
worst-case running-time of O(n3) for finding an optimal matching is prohibitive
if the number n of points is large. Thus, simple heuristics are often used, with
the greedy heuristic being probably the simplest one: at every step, choose an
edge of minimum length incident to the unmatched vertices and add it to the
partial matching. Let GREEDY denote the cost of the matching output by this
greedy matching heuristic, and let MM denote the optimum value of the mini-
mum weight matching. The worst-case approximation ratio for greedy matching
on metric instances is Θ(nlog2(3/2)) [28], where log2(3/2) ≈ 0.58. In the case of
Euclidean instances, the greedy algorithm has an approximation ratio of O(1)
with high probability on random instances [3]. For independent random edge
weights (without the triangle inequality), the expected weight of the matching
computed by the greedy algorithm is Θ(log n) [10] whereas the optimal matching
has a weight of Θ(1) with high probability, which gives an O(log n) approxima-
tion ratio.

We show that greedy matching finds a matching of constant expected length
on random shortest path metrics. The proof is similar to the ones of Theorems 4.3
and 4.4, and we include it as an example.

Theorem 4.1. E[GREEDY] = O(1).

Proof. Set ∆i = i/n for i ∈ {0, 1, . . . , log n}. We divide the run of GREEDY in
phases as follows: We say that GREEDY is in phase i if the lengths of the edges
it inserts are in the interval (6∆i−1, 6∆i]. Lemma 3.7 allows to show that the
expected sum of all lengths of edges longer than 6∆O(logn) is o(1), so we can
ignore them.

Since the lengths of the edges that GREEDY adds increases monotonically,
GREEDY goes through phases i with increasing i (while a phase can be empty).
We now estimate the contribution of phase i to the matching computed by



GREEDY. Using Lemma 3.8, after phase i − 1, we can find a clustering into
clusters of diameter at most 6∆i−1 using an expected number of O(1+n/e(i−1)/5)
clusters. Each such cluster can have at most one unmatched vertex. Thus, we
have to add at most O(1 + n/e(i−1)/5) edges in phase i, each of length at most
6∆i. Thus, the contribution of phase i is O(∆i(1 + n/e(i−1)/5)) in expectation.
Summing over all phases yields the desired bound:

E[GREEDY] = o(1) +

logn∑
i=1

O
( i

e(i−1)/5
+
i

n

)
= O(1).

ut

Careful analysis allows us to even bound the expected approximation ratio.

Theorem 4.2. The greedy algorithm for minimum-length matching has con-
stant approximation ratio on random shortest path metrics, i.e.,

E
[
GREEDY

MM

]
∈ O(1).

4.2 Nearest-Neighbor algorithm for the TSP

A greedy analogue for the traveling salesman problem (TSP) is the nearest neigh-
bor heuristic: Start with a vertex v as the current vertex, and at every iteration
choose the nearest yet unvisited neighbor u of the current vertex as the next
vertex in the tour and move to the next iteration with the new vertex u as the
current vertex. Let NN denote both the nearest-neighbor heuristic itself and the
cost of the tour computed by it. Let TSP denote the cost of an optimal tour. The
nearest-neighbor heuristic NN achieves a worst-case ratio of O(log n) for met-
ric instances and also an average-case ratio (for independent, non-metric edge
lengths) of O(log n) [2]. We show that NN achieves a constant approximation
ratio on random shortest path instances. The proof is similar to the ones of
Theorems 4.1 and 4.2.

Theorem 4.3. E[NN] = O(1) and E
[

NN
TSP

]
∈ O(1).

4.3 Insertion Heuristics

An insertion heuristic for the TSP is an algorithm that starts with an ini-
tial tour on a few vertices and extends this tour iteratively by adding the
remaining vertices. In every iteration, a vertex is chosen according to some
rule, and this vertex is inserted at the place in the current tour where it in-
creases the total tour length the least. Certain insertion heuristics such as nearest
neighbor insertion (which is different from the nearest neighbor algorithm from
the previous section) are known to achieve constant approximation ratios [29].
The random insertion algorithm, where the next vertex is chosen uniformly at
random from the remaining vertices, has a worst-case approximation ratio of



Ω(log log n/ log log log n), and there are insertion heuristics with a worst-case
approximation ratio of Ω(log n/ log log n) [4].

For random shortest path metrics, we show that any insertion heuristic pro-
duces a tour whose length is expected to be within a constant factor of the
optimal tour. This result holds irrespective of which insertion strategy we actu-
ally use. It holds even in the (admittedly a bit unrealistic) scenario, where an
adversary specifies the order in which the vertices have to be inserted after the
random instance is drawn.

Theorem 4.4. The expected cost of the TSP tour obtained with any insertion
heuristics is bounded from above by O(1). This holds even against an adaptive
adversary, i.e., if an adversary chooses the order in which the vertices are in-
serted after the edge weights are drawn.

Furthermore, the expected approximation ratio of any insertion heuristic is
also O(1).

4.4 Running-Time of 2-Opt for the TSP

The 2-opt heuristic for the TSP starts with an initial tour and successively
improves the tour by so-called 2-exchanges until no further refinement is possible.
In a 2-exchange, a pair of edges e1 = {u, v} and e2 = {x, y} are replaced by a
pair of edges f1 = {u, y} and f2 = {x, v} to get a shorter tour. The 2-opt
heuristic is easy to implement and widely used. In practice, it usually converges
quite quickly to close-to-optimal solutions [21]. However, its worst-case running-
time is exponential [13]. To explain 2-opt’s performance on geometric instances,
Englert et al. [13] have proved that the number of iterations that 2-opt needs
is bounded by a polynomial in a smoothed input model for geometric instances.
Also for random shortest path metrics, the expected number of iterations that
2-opt needs is bounded by a polynomial. The proof is similar to Englert et al.’s
analysis [13].

Theorem 4.5. The expected number of iterations that 2-opt needs to find a local
optimum is bounded by O(n8 log3 n).

5 k-Center

In the (metric) k-center problem, we are given a finite metric space (V, d) and
should pick k points U ⊆ V such that

∑
v∈V minu∈U d(v, u) is minimized. We

call the set U a k-center. Gonzalez [16] gave a simple 2-approximation for this
problem and showed that finding a (2− ε)-approximation is NP-hard.

In this section, we consider the k-center problem in the setting of random
shortest path metrics. In particular we examine the approximation ratio of the
algorithm TRIVIAL, which picks k points independent of the metric space, e.g.,
U = {1, . . . , k}, or k random points in V . We show that TRIVIAL yields a
(1 + o(1))-approximation for k = O(n1−ε). This can be seen as an algorithmic
result since it improves upon the worst-case approximation factor of 2, but it is



essentially a structural result on random shortest path metrics. It means that any
set of k points is, with high probability, a very good k-center, which gives some
knowledge about the topology of random shortest path metrics. For larger, but
not too large k, i.e., k ≤ (1− ε)n, TRIVIAL still yields an O(1)-approximation.

The main insight comes from generalizing the growth process described in
Section ?? Fixing U = {v1, . . . , vk} ⊆ V we sort the vertices V \ U by their
distance to U in ascending order, calling the resulting order vk+1, . . . , vn. Now
we consider δi = d(vi+1, U) − d(vi, U) for k ≤ i < n. These random variables
are generated by an easy growth process analogously to Section ??, which shows
that the δi are independent and δi ∼ Exp(i(n − i)). Since the cost of U as a
k-center can be expressed using the δi’s and since aExp(1) ∼ Exp(1/a), we have

cost(U) =
∑n−1
i=k (n− i) · δi ∼

∑n−1
i=k (n− i) ·Exp(i(n− i)) ∼

∑n−1
i=k Exp(i). From

this, we can read off the expected cost of U immediately, and thus the expected
cost of TRIVIAL.

Lemma 5.1. Fix U ⊆ V of size k. We have E[TRIVIAL] = E[cost(U)] = Hn−1−
Hk−1 = ln(n/k) +Θ(1).

By closely examining the random variable
∑n−1
i=k Exp(i), we can show good

tail bounds for the probability that the cost of U is lower than expected. Together
with the union bound this yields tail bounds for the optimal k-center CENTER,
which implies the following theorem. In this theorem, the approximation ratio

becomes 1 +O
( ln ln(n)

ln(n)

)
for k = O(n1−ε).

Theorem 5.2. Let k ≤ (1 − ε)n for some constant ε > 0. Then E
[
TRIVIAL
CENTER

]
=

O(1). If we even have k ≤ cn for some sufficiently small constant c ∈ (0, 1), then

E
[
TRIVIAL
CENTER

]
= 1 +O

( ln ln(n/k)
ln(n/k)

)
.

6 Remarks and Open Problems

The results of this paper carry over to the case of edge weights drawn according
to the uniform distribution on the interval [0, 1]. The analysis remains basically
identical, but gets technically a bit more difficult because we lose the memory-
lessness of the exponential distribution. The intuition is that, because the longest
edge has a length of O(log n/n) = o(1), only the behavior of the distribution in
a small, shrinking interval [0, o(1)] is relevant. Essentially, if the probability that
an edge weight is smaller than t is t+ o(t), then our results carry over. We refer
to Janson’s coupling argument [20] for more details.

To conclude the paper, let us list the open problems that we consider most
interesting:

1. While the distribution of edge lengths in asymmetric instances does not differ
much from the symmetric case, an obstacle in the application of asymmet-
ric random shortest path metrics seems to be the lack of clusters of small
diameter (see Section 3). Is there an asymmetric counterpart for this?



2. Is it possible to prove even an 1 + o(1) (like Dyer and Frieze [11] for the
patching algorithm) approximation ratio for any of the simple heuristics
that we analyzed?

3. What is the approximation ratio of 2-opt in random shortest path metrics?
In the worst case, it is O(

√
n) [8]. For edge lengths drawn uniformly at

random from the interval [0, 1] without taking shortest paths, the expected

approximation ratio is O(
√
n · log3/2 n) [?]. For d-dimensional geometric in-

stances, the smoothed approximation ratio is O(φ1/d) [13], where φ is the
perturbation parameter.
We easily get an approximation ratio of O(log n) based on the two facts
that the length of the optimal tour is Θ(1) with high probability and that
∆max = O(log n/n) with high probability. Can we prove that the expected
ratio of 2-opt is o(log n)?
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A Proofs of Section 3

Theorem 3.1. For any k ∈ [n] and any v ∈ V ,

E
(
∆v
k

)
=

1

n
·
(
Hk−1 +Hn−1 −Hn−k

)
.

Proof. The proof is by induction on k. For k = 1, we have ∆v
k = 0 and Hk−1 +

Hn−1 −Hn−k = H0 +Hn−1 −Hn−1 = 0. Now assume that the lemma holds for
k for some k ≥ 1.

The additional distance ∆v
k+1 −∆v

k is an exponentially distributed random
variable with parameter k · (n − k), because it is the minimum of k · (n − k)
exponentially distributed random variables. Thus, its expected value is 1

k·(n−k) .

(Here, it is crucial that we use exponential distributions. Knowing ∆v
k and the k

vertices inNv
∆vk

puts a restriction on the edge from vertices inNv
∆vk

to vertices out-

side. However, because of the “memorylessness” of the exponential distribution,
conditioning on a certain minimum weight still leaves us with an exponentially
distributed random variable.)

Plugging in the induction hypothesis yields

E
(
∆v
k+1

)
= E

(
∆v
k

)
+

1

k · (n− k)
=

1

n
·
(
Hk−1 +Hn−1 −Hn−k

)
+

1

k · (n− k)

=
1

n
·
(
Hk−1 +Hn−1 −Hn−k

)
+

1

nk
+

1

n · (n− k)

=
1

n
·
(
Hk +Hn−1 −Hn−(k+1)

)
.

ut

Lemma 3.4. For all v ∈ V , k ∈ [n], and ∆ ≥ 0, we have

F vk (∆) ≥ (1− exp(−(n− 1)∆/4))n−1

and
F vk (∆) ≥ (1− exp(−(n− 1)∆/4))

4
3 (k−1).

Proof. As ∆v
k is monotonically increasing in k, we have F vk (∆) ≥ F vk+1(∆) for

all k. Thus, we have to prove the claim only for k = n. In this case, ∆v
n =∑n−1

i=1 Exp(λi), with λi = i(n− i) = λn−i. Setting m = dn/2e and exploiting the
symmetry around m yields

∆v
n ≤

m∑
i=1

Exp(λi) +

m∑
i=1

Exp(λi) = ∆v
m +∆v

m.

Here, “≤” means stochastic dominance, “=” means equal distribution, and “+”
means adding up two independent random variables. Hence,

F vn (∆) = P[∆v
n ≤ ∆] ≥ P[∆v

m +∆v
m ≤ ∆] ≥ P[∆v

m ≤ ∆/2]2.



By Lemma 3.2, and using m ≤ (n+ 1)/2, this is bounded by

F vn (∆) ≥ (1− exp(−(n−m)∆/2))2(m−1) ≥ (1− exp(−(n− 1)∆/4))n−1.

For the second inequality, we use the first inequality of Lemma 3.4 for k−1 ≥
3
4 (n− 1) and Lemma 3.2 for k − 1 < 3

4 (n− 1) as then n− k ≥ (n− 1)/4. ut

Lemma 3.3. Fix ∆ ≥ 0 and a vertex v ∈ V . Then(
1− exp(−(n− k)∆)

)k−1 ≤ P
(
kv∆ ≥ k

)
≤
(
1− exp(−n∆)

)k−1
.

Proof. We have kv∆ ≥ k if and only if ∆v
k ≤ ∆. Thus, the probability that

kv∆ ≥ k is sandwiched between (1−exp(−(n−k)∆))k−1 and (1−exp(−n∆))k−1

by Lemma 3.2. ut

Corollary 3.5. Let n ≥ 5 and fix ∆ ≥ 0 and a vertex v ∈ V . Then

P
(
kv∆ < min

{
exp (∆n/5) , n+1

2

})
≤ exp (−∆n/5) .

Proof. Lemma 3.3 yields

P
(
kv∆ < min

{
exp

(
∆n−1

4

)
, n+1

2

})
≤ 1−

(
1− exp

(
−n−12 ∆

))exp(∆(n−1)/4)

≤ exp
(
−∆n−1

4

)
,

where the last inequality follows from (1− x)y ≥ 1− xy for y ≥ 1, x ≥ 0. Using
(n − 1)/4 ≥ n/5 for n ≥ 5 yields the simplified statement of the lemma (this
is not really tight for larger n, but it does not change the asymptotics of our
results). ut

Corollary 3.6. Fix ∆ ≥ 0, a vertex v ∈ V , and any c > 1. Then

P
(
kv∆ ≥ exp(c∆n)

)
< exp

(
−(c− 1)∆n

)
.

Proof. Lemma 3.3 with k = c∆n yields

P
(
kv∆ ≥ exp(c∆n)

)
≤
(
1− exp(−n∆)

)exp(c∆n)−1
.

Using 1 + x ≤ ex we get

P
(
kv∆ ≥ exp(c∆n)

)
≤ exp

(
exp(−n∆)− exp

(
(c− 1) ·∆n

))
.

Now, we bound exp(−n∆) ≤ 1 and exp
(
(c− 1) ·∆n

)
≥ 1 + (c− 1) ·∆n, which

yields the inequality claimed. ut



B Proofs of Section 4

We will use the following tail bound to estimate the approximation ratios of
the greedy heuristic for matching as well as the nearest-neighbor and insertion
heuristics for the TSP.

Lemma B.1. Let S be the sum of the lightest n/2 edge weights drawn according
to independent exponential distributions with parameter 1 (no shortest paths).
Then P(S ≤ c) ≤ (2e2c)n/2 for all c ≤ 1.

Furthermore, TSP ≥ MM ≥ S, where TSP and MM denote the length of the
shortest TSP tour and the minimum-weight perfect matching, respectively, in the
corresponding shortest path metric.

Proof. Let k = n/2. If there are q possible choice for k edges, then we have
P(S ≤ c) ≤ q ·ck/k! by a union bound over the q possible choice and an induction
over k. We have q ≤ (n2/2)k/k!.

Now we use kk ≥ k! ≥ (k/e)k. This yields an upper bound of

P(S ≤ c) ≤ n2kek

2kkk
· c
kek

kk
=
n2k(e2c/2)k

k2k
=
nn(e2c/2)n/2

(n/2)n

= (e2c/2)n/24n/2 = (2e2c)n/2.

What remains to be proved is TSP ≥ MM ≥ S. The first inequality is trivial.
For the second inequality, consider a minimum-weight perfect matching in a
random shortest path metric. We replace every edge by the corresponding paths.
If we disregard multiple edges, then we are still left with at least n/2 edges whose
length is not shortened by taking shortest paths. The sum of the weights of these
n/2 edges is at most MM and at least S. ut

Theorem 4.2. The greedy algorithm for minimum weight matching has con-
stant approximation ratio under the random-weights shortest path model, i.e.,
E
[
GREEDY

MM

]
∈ O(1).

Proof. The worst-case approximation ratio of GREEDY for minimum-weight per-
fect matching is nlog2(3/2) [28]. Let c > 0 be some constant to be specified later
on. Then the approximation ratio of GREEDY on random shortest path instances
is E

[
GREEDY

MM

]
≤ E

[
GREEDY

c

]
+ P(MM < c) · nlog2(3/2). By Theorem 4.1, the first

term is O(1). Choosing c ≤ 1/23 and applying Lemma B.1 shows that the second
term is o(1). ut

Theorem 4.3. E[NN] = O(1).

Proof. The proof is similar to the proof of Theorem 4.2. Let ai = c · exp(i) for
i ∈ N, and let ∆i = ai/n. Let Q = O(log n/n) be sufficiently large.

Let Ci,1, . . . , Ci,`i denote the clusters obtained with parameter ∆i as in the
discussion preceding Lemma 3.8. We refer to these clusters as the i-clusters. Let
v be any vertex. We call v bad at i, if v is in some i-cluster and NN chooses an
edge of weight larger than 6∆i for leaving v. Hence, if v is bad at i, then the



next vertex lies outside of the cluster to which v belongs. (Note that v is not
bad at i if the outgoing edge at v leads to a neighbor outside of the cluster of v,
but has a length of less than 6∆i.)

In the following, let the costs of a vertex v be the length of the outgoing edge
chosen with v as the current vertex. Thus, the length of the tour produced by
NN equals the sum of costs over all vertices.

Claim. The expected number of vertices with costs in the range (6∆i−1, 6∆i] is
at most O(n/ exp(ai−1/5)).

Proof (of Claim). Suppose that the costs of the neighbor chosen by NN for a
vertex v is in the interval (6∆i−1, 6∆i]. Then v is either bad at i− 1 or a single
vertex cluster with respect to ∆i−1. The event that v is bad at i − 1 happens
for at most one vertex in a ∆i−1 cluster. By Lemma 3.8, the number of ∆i−1
clusters is at most O(n/ exp(ai−1/5)). ut

If ∆max ≤ Q, then it suffices to consider i for i ≤ O(log n). If ∆max > Q,
then we bound the value of the tour produced by NN by n∆max. This failure
event, however, contributes only o(1) to the expected value by Lemma 3.7. For
the case ∆max ≤ Q, the contribution to the expected length of the NN tour is
bounded from above by

O(logn)∑
i=1

6∆i ·O
(

n

exp(ai−1/5)

)
= O(1).

The proof of the constant expected approximation ratio is similar to the proof
of Theorem 4.2. ut

Theorem 4.4. The expected cost of the TSP tour obtained with any insertion
heuristics is bounded from above by O(1). This holds even against an adaptive
adversary, i.e., if an adversary chooses the order in which the vertices are inserted
after the edge weights are drawn.

Proof. Let a1, . . . , a`, and ∆1, . . . ,∆` be chosen as in Theorem 4.1, where ` =
O(log n). Choose Q = O(log n/n) sufficiently large and assume that ∆max ≤ Q.
If ∆max > Q, then we bound the length of the tour produced by n ·∆max. This
contributes only o(1) to the expected value of length of the tour produced by
Lemma 3.7.

Suppose we have a partial tour τ and v is the vertex that we have to insert
next. If τ has a vertex u such that v and u are in a common ∆i-cluster, then
the triangle inequality implies that the costs of inserting v into τ is at most
12∆i. (The diameter of a cluster is at most 6∆i. Thus, going from u to v and
back costs at most 12∆i. We add this to τ and take a shortcut to obtain a TSP
tour.) For each i, there is at most one vertex for each ∆i-cluster whose insertion
could possibly cost more than 12∆i (namely, the first vertex of that cluster).
Thus, the number of vertices whose insertion would incur a cost in the range
(12∆i−1, 12∆i] is at most O( n

exp(ai−1/5)
) in expectation, since all of them have



cost more than 12∆i−1. Now, summing up the expected costs for all i, we obtain
that the costs of the tour obtained by an insertion heuristic is bounded from
above by

∑̀
i=1

O

(
n

exp(ai−1/5)
· ai
n

)
=
∑̀
i=1

O

(
n

exp(ai−1/5)
· ai−1/5

n

)

≤ O(1) +O(1) ·
∫ `+1

1

xe−xdx

≤ O
(

1 +
2

e
− log n

e · n
− 1

e · n

)
= O(1).

Note that the above argument is independent of the choice of the vertex v being
inserted at any step.

The proof is similar to the proof of Theorem 4.2. ut

Theorem 4.5. The expected number of iterations that 2-opt needs to find a
local optimum is bounded by O(n8 log3 n).

Proof. The proof is similar to the analysis of 2-opt by Englert et al. [13]. Consider
a 2-exchange where edges e1 and e2 are replaced by edges f1 and f2. Here, e1 =
{u, v}, e2 = {x, y}, f1 = {u, y} and f2 = {x, v}. The improvement obtained from
this exchange is given by ∆(e1, e2, f1, f2) = d(u, v) + d(x, y)− d(u, y)− d(x, v).

We estimate the probability Pr[∆(e1, e2, f1, f2) ∈ (0, ε]] of the event that the
improvement is at most ε for some ε > 0. The distances d(u, v), d(x, y), d(u, y),
and d(x, v) correspond to shortest paths with respect to the edge weights w from
which we obtained d. Hence, we can write them as sums of edge weights, assuming
for now that they are fixed. This means that we can rewrite the improvement as

∆(e1, e2, f1, f2) = w(e1,1) + . . .+ w(e1,k1) + w(e2,1) + . . .+ w(e2,k2)

− w(f1,1)− . . .− w(f1,m1
)− w(f2,1)− . . .− w(f2,m2

). (1)

If replacing e1 and e2 by f1 and f2 is indeed a 2-exchange, then ∆(e1, e2, f1, f2) >
0. This means that there exists at least one edge whose contribution is not
canceled in (2).

Now suppose that all edge weights except for one edge e are fixed by an
adversary. Then ∆(e1, e2, f1, f2) ∈ (0, ε] only if w(e) assumes a weight in an
interval of length ε. Thus, given the choice of edges in (2), the probability that
∆(e1, e2, f1, f2) ∈ (0, ε] is bounded from above by ε. To obtain an upper bound
for Pr

[
∆(e1, e2, f1, f2) ∈ (0, ε]

]
, the first idea might be that we have to take a

union bound over the choices for the four shortest paths involved. Unfortunately,
the number of possible paths is exponential. However, we assumed that the
weights of all but one edge are fixed and that this edge e does not cancel out.

This leaves us with way fewer possibilities: We can just take the union bound
over the choice of e in the graph. This leaves us with O(n2) possibilities.

Let δmin be the minimum gain made by any 2-exchange. Since there are at
most n4 different 2-exchanges, we have Pr[δmin ∈ (0, ε]] ≤ O(n6ε). The initial



tour has a length of at most n∆max. Let T be the number of iterations that
2-opt takes. Then T ≤ n∆max/δmin. Now, T > x implies n∆max/δmin > x.
The event ∆max/δmin > x/n is contained in the union of the events ∆max >
log x lnn/n, and δmin < lnn · log x/x. The first happens with a probability of
at most n−Ω(log(x)) by Lemma 3.7. The second happens with a probability of at
most O(n6 log(x)/x). Thus, we obtain

Pr[T > x] ≤ n−Ω(log(x)) +O(n6 lnn · log(x)/x).

Since the number of iterations is at most n!, we obtain an upper bound of

E[T ] ≤
n!∑
x=1

(
n−Ω(log(x)) +O(n6 lnn log(x)/x)

)
.

The sum of the n−Ω(log(x)) is negligible. The sum of the O(n6 lnn log(x)/x)
contributes O(n6 lnn log(n!)2) = O(n8 log3 n). ut

C Proofs of Section 5

Lemma 5.1. Fix U ⊆ V of size k. We have

E[TRIVIAL] = E[cost(U)] = Hn−1 −Hk−1 = ln(n/k) +Θ(1).

Proof. We have E[cost(U)] =
∑n−1
i=k E[Exp(i)] =

∑n−1
i=k

1
i = Hn−1−Hk−1. Using

Hn = ln(n) +Θ(1) yields the last equality. ut

Lemma C.1. Let c > 0 be sufficiently large, and let k ≤ c′n for c′ = c′(c) > 0
be sufficiently small. Then Pr

[
CENTER < ln

(
n
k

)
− ln ln

(
n
k

)
− ln c

]
= n−Ω(c).

Proof. Fix U ⊆ V of size k and consider cost(U) ∼
∑n−1
i=k Exp(i). This sum of

exponentially distributed random variables has the following probability density
function [30, p. 308ff]:

f(x) =

(
n−1∏
i=k

i

)
·
n−1∑
j=k

exp(−jx)∏
k≤`<n, 6̀=j(`− j)

=

n−1∑
j=k

e−jx
(n− 1)!(−1)j−k

(k − 1)!(n− 1− j)!(j − k)!

=

n−1∑
j=k

e−jx
(
n− 1− k
j − k

)(
n− 1

k

)
k · (−1)j−k

= k

(
n− 1

k

)
e−kx

n−1−k∑
j=0

(
n− 1− k

j

)
(−1)je−jx

= k

(
n− 1

k

)
e−kx(1− e−x)n−1−k.



In the following we set m := n− 1 to shorten notation. We now want to upper
bound f(x) at x = ln

(
m
ak

)
for a large enough a with 1 ≤ a ≤ m/k (such an

a exists since k is small enough). Plugging in this particular x and bounding(
m
k

)
≤ mkek/kk yields

f(x) = k

(
m

k

)
akkk(m− ak)m−k

mm
≤ k(ea)k

(
1− ak

m

)m−k
.

Using 1 + x ≤ ex and m− k = Ω(m), so that (m− k)/m = Ω(1), yields

f(x) ≤ k(ea)k exp(−Ω(ak)).

Since a is large enough, the first two factors are lower order terms that we can
hide by the Ω. Thus, we can simplify this further to

f(x) ≤ exp(−Ω(ak)).

Rearranging this using a = m
k e
−x yields

f(x) = exp(−Ω(m exp(−x)),

which holds for any x ∈ [0, ln
(
m
αk

)
] for any sufficiently large α ≥ 1.

Now we can bound the probability that cost(U) ∼
∑n−1
i=k Exp(i) is less than

ln
(
m
αk

)
. This probability is equal to∫ ln( mαk )

0

f(x)dx =

∫ ln( mαk )

0

f
(

ln
( m
αk

)
− x
)

dx

=

∫ ln( mαk )

0

exp(−Ω(αk exp(x)))dx

≤
∫ ∞
0

exp(−Ω(αk(1 + x)))dx ≤ exp(−Ω(αk))

since
∫∞
0

exp(−Ω(αkx))dx = O(1/(αk)) ≤ 1 as α is sufficiently large.

In order for CENTER to be less than ln
(
m
αk

)
, one of the subsets U ⊆ V of

size k has to have cost less than ln
(
m
αk

)
. We bound the probability of the latter

using the Union Bound and get

Pr
[
CENTER < ln

( m
αk

)]
= Pr

[
∃U ⊆ V, |U | = k : cost(U) < ln

( m
αk

)]
≤
(
n

k

)
Pr
[
cost(U) < ln

( m
αk

)]
≤
(
n

k

)
exp(−Ω(αk)).

By setting α = β ln
(
n
k

)
for sufficiently large β ≥ 1, we fulfill all conditions on α.

This yields

Pr
[
CENTER < ln

(n
k

)
− ln ln

(n
k

)
− lnβ

]
≤
(en
k

)k (n
k

)−Ω(βk)

.



Now, since k is sufficiently smaller than n, we have en
k ≤ (nk )2. Thus, for β large

enough, the right hand side simplifies to (nk )−Ω(βk). Since k is at least 1 and

small enough, we have (nk )k ≥ n, so that the probability is bounded by n−Ω(β),
which finishes the proof. ut

To bound the expected value of the quotient TRIVIAL /CENTER we further
need to bound the probabilities that TRIVIAL is much too large or CENTER is
much too small. This is achieved by the following two lemmas.

Lemma C.2. Let k ≤ (1 − ε)n for some constant ε > 0. Then, for any c > 0,
we have Pr[CENTER < c] = O(c)Ω(n).

Proof. Let we ∼ Exp(1) be the edge weight we sample for edge e, before we take
shortest paths to form the random shortest path metric G. Since n− k vertices
have to be connected to the k-center, the cost of the k-center is the sum of n−k
shortest path lengths. Thus, the cost of the minimal k-center is at least the sum
of the smallest n−k edge weights we. If we sort the edge weights we in ascending
order to ŵ1, . . . , ŵ(n2)

, then the cost of CENTER is at least

n−k∑
i=1

ŵi ≥
n− k

2
· ŵ(n−k)/2 = Ω(n) · ŵΩ(n).

For any m = Ω(n), c > 0, and N =
(
n
2

)
, a union bound yields

Pr[ŵm ≤ c/n] ≤
( c
n

)m(N
m

)
.

Using a weak version of Stirling’s formula, we have
(
N
m

)
≤ Nmem

mm ≤ n2mO(1)m

nm

(since m = Ω(n)), which yields

Pr[ŵm ≤ c/n] ≤ O(c)m = O(c)Ω(n).

Hence, we have

Pr[CENTER < c] ≤ Pr

[
ŵ(n−k)/2 <

2c

n− k

]
≤ O(c)Ω(n).

ut
Lemma C.3. For any c ≥ 3, we have Pr[TRIVIAL > nc] ≤ exp(−nc/3).

Proof. First, observe that the tail bound Pr[TRIVIAL > c · log n] ≤ n3−c · log2 n
simply follows from Lemma 3.7, as TRIVIAL > c · log n =⇒ ∆max > c(log n)/n.
If we is the weight of edge e before taking shortest paths, we can bound very
roughly TRIVIAL ≤ nmaxe{we}. This yields

Pr[TRIVIAL ≤ nc] ≥ Pr
[
max
e
{we} ≤ nc−1

]
≥ Pr

[
max

1≤i≤n2
Exp(1) ≤ nc−1

]
= Pr

[
Exp(1) ≤ nc−1

]n2

=
(
1− exp(−nc−1)

)n2

≥ 1− n2 exp(−nc−1) ≥ 1− exp(−nc−2) ≥ 1− exp(−nc/3).

ut



Theorem 5.2. Let k ≤ (1 − ε)n for some constant ε > 0. Then E
[
TRIVIAL
CENTER

]
=

O(1). If we even have k ≤ cn for some sufficiently small constant c ∈ (0, 1), then

E
[
TRIVIAL
CENTER

]
= 1 +O

( ln ln(n/k)
ln(n/k)

)
.

Proof. Let T = TRIVIAL and C = CENTER for short. We have for any m ≥ 0

E
[
T

C

]
≤ E

[
T

m

]
+ Pr[C < m] · E

[
T

C

∣∣∣∣C < m

]
. (2)

Case 1 – k ≤ c′n, c′ sufficiently small: Using Lemma C.1, we can pick c > 0
such that

Pr
[
C < ln

(n
k

)
− ln ln

(n
k

)
− ln c

]
≤ n−7.

Set m = ln
(
n
k

)
− ln ln

(
n
k

)
− ln c. Then, by Lemma 5.1, we have

E
[
T

m

]
≤ ln(n/k) +O(1)

m
≤ 1 +O

(
ln ln(n/k)

ln(n/k)

)
.

We show that the second summand of inequality (1) is O(1/n) in the current
situation, which shows the claim. We have

Pr[C < m] · E
[
T

C

∣∣∣∣C < m

]
= Pr[C < m] ·

∫ ∞
0

Pr[T/C ≥ x | C < m]dx

≤ Pr[C < m] ·
(
n6 +

∫ ∞
n6

Pr[T/C ≥ x | C < m]dx

)
≤ n−1 +

∫ ∞
n6

Pr[T/C ≥ x and C < m]dx

≤ n−1 +

∫ ∞
n6

Pr[T/C ≥ x]dx

≤ n−1 +

∫ ∞
n6

max
{

Pr[T ≥
√
x],Pr[C ≤ 1/

√
x]
}

dx,

since if T/C ≥ x then T ≥
√
x or C ≤ 1/

√
x. Using Lemmas C.2 and C.3, this

yields

Pr[C < m] · E
[
T

C

∣∣∣∣C < m

]
≤ n−1 +

∫ ∞
n6

max{exp(−x1/6), O(1/
√
x)Ω(n)}dx

= O(1/n).

This shows the second claim.
Case 2 – c′n < k ≤ (1 − ε)n: We repeat the proof above, now choosing m to
be a sufficiently small constant. Then Pr[C < m] = O(m)Ω(n) ≤ O(n−7) by
Lemma C.2 and we have

E
[
T

m

]
=

ln(n/k) +O(1)

m
= O(1),

since k > c′n. Together with the first case, this shows the first claim. ut


