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Abstract

Classic similarity measures of strings are longest common subsequence and Levenshtein dis-
tance (i.e., the classic edit distance). A classic similarity measure of curves is dynamic time
warping. These measures can be computed by simple O(n2) dynamic programming algorithms,
and despite much effort no algorithms with significantly better running time are known.

We prove that, even restricted to binary strings or one-dimensional curves, respectively, these
measures do not have strongly subquadratic time algorithms, i.e., no algorithms with running
time O(n2−ε) for any ε > 0, unless the Strong Exponential Time Hypothesis fails. We generalize
the result to edit distance for arbitrary fixed costs of the four operations (deletion in one of the
two strings, matching, substitution), by identifying trivial cases that can be solved in constant
time, and proving quadratic-time hardness on binary strings for all other cost choices. This
improves and generalizes the known hardness result for Levenshtein distance [Backurs, Indyk
STOC’15] by the restriction to binary strings and the generalization to arbitrary costs, and adds
important problems to a recent line of research showing conditional lower bounds for a growing
number of quadratic time problems.

As our main technical contribution, we introduce a framework for proving quadratic-time
hardness of similarity measures. To apply the framework it suffices to construct a single gadget,
which encapsulates all the expressive power necessary to emulate a reduction from satisfiability.

Finally, we prove quadratic-time hardness for longest palindromic subsequence and longest
tandem subsequence via reductions from longest common subsequence, showing that conditional
lower bounds based on the Strong Exponential Time Hypothesis also apply to string problems
that are not necessarily similarity measures.

1 Introduction

For many classic polynomial time problems the worst-case running time is stagnant for decades,
e.g., a classic algorithm solves the problem in time Õ(n2), up to logarithmic factors, but it is
unknown whether any faster algorithms exist. For these problems we would like to explain why
it is hard to find faster algorithms. One type of explanation is a conditional lower bound. Here
we assume that some problem P has no algorithms faster than a long-standing time barrier and
prove resulting lower bounds for other problems, via reductions from P . The most prominent
such approach is 3SUM-hardness, which dates back to 1995 [11]: Assuming that 3SUM has no
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(strongly) subquadratic algorithms, many lower bounds have been shown, especially for problems
in computational geometry. However, for many other problems it seems to be impossible to find a
reduction from 3SUM.

In the last years, new assumptions emerged that allow to prove conditional lower bounds for
problems where 3SUM-hardness does not seem to apply. The prime example is the Strong Expo-
nential Time Hypothesis (SETH), which was introduced by Impagliazzo and Paturi [13] and asserts
that satisfiability has no algorithms that are much faster than exhaustive search.

Hypothesis SETH: For no ε > 0, k-SAT can be solved in time O(2(1−ε)N ) for all k ≥ 3.

Note that exhaustive search takes time O(2N ) and the best-known algorithms for k-SAT have a
running time of the form O(2(1−c/k)N ) for some constant c > 0 [18]. Thus, SETH is a reasonable
hypothesis and, due to lack of progress in the last decades, can be considered unlikely to fail.

The idea to use SETH to prove conditional lower bounds for polynomial time problems dates
back to 2005 [23], but only in recent years more and more such conditional lower bounds have been
proven, see, e.g., [1, 2, 3, 6, 8, 17, 19]. Two recent examples, that motivated this paper, are the
conditional lower bounds for Fréchet distance [8] and Levenshtein distance [6]. Both problems are
natural similarity measures between two sequences (curves or strings, respectively). In this paper we
study additional classic similarity measures between strings and curves. We propose a framework for
proving lower bounds for such similarity measures. This allows us to prove quadratic-time hardness
of the following problems.

Edit Distance Given two strings x, y of length n,m (n ≥ m), we start in their first symbols at
positions (1, 1) and traverse them up to their last symbols at positions (n,m) using the following
operations: If we are at positions (i, j) we may (1) delete a symbol in x (this costs cdel-x and we
advance to (i + 1, j)), (2) delete a symbol in y (this costs cdel-y and we advance to (i, j + 1)), (3)
match the current symbols, which is only possible if x[i] = y[j] (this costs cmatch and we advance
to (i + 1, j + 1)), or (4) substitute the current symbols, which is only possible if x[i] 6= y[j] (this
costs csubst and we advance to (i + 1, j + 1)). The minimum total cost of such a sequence of
operations is called the edit distance of x and y, and we denote the problem of computing the
edit distance by Edit(cdel-x, cdel-y, cmatch, csubst). The Levenshtein distance (i.e., the classic edit
distance) is Edit(1, 1, 0, 1). An important special case is the longest common subsequence (LCS) of
two strings, which can be seen to be equivalent to Edit(1, 1, 0, 2). One obtains more variants for
other cost choices, e.g., for aligning DNA sequences a classic choice is Edit(2, 2,−1, 1) [22].

Edit distance has a natural dynamic programming algorithm with running time O(nm), which is
taught in many undergraduate algorithms courses. Since such string distance measures have many
applications in bioinformatics and data comparison, Levenshtein distance and LCS are well-studied
with a rich literature focussing on approximation algorithms (see, e.g., [5]) and algorithms that
perform well on special cases (see, e.g., [12] and see [7] for a survey). However, the best-known
worst-case running time (of an exact algorithm) is O(nm/ log n+ n) [16], i.e., algorithms are stuck
slightly below quadratic time. Even if we restrict the input to strings over a binary alphabet {0, 1}
no better worst-case running time is known. In this paper we present a possible explanation for this
situation by proving conditional lower bounds for edit distance on binary strings, thus improving and
generalizing the known quadratic-time hardness for the Levenshtein distance on alphabet size 4 [6].
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Dynamic Time Warping (DTW) Fix a metric space (M,d). A sequence of points in M is
called a curve. Consider two curves x, y of length n,m (n ≥ m). We may traverse x and y by
starting in their first entries, in any time step advancing to the next entry in x or y or both, and
ending in their last entries (see Section 2 for details). The cost of such a traversal is the sum over
all points in time of the distance between the current entries. The dynamic time warping distance
of x and y is the minimal cost of any traversal. This similarity measure can, e.g., readily detect
whether two given signals are equal up to time accelerations or decelerations. This property, among
others, makes it a very useful measure in practice, with many applications in comparing temporal
data such as video and audio, e.g., for speech recognition or music processing (see, e.g., [20]). The
best-known worst-case running time is achieved by a simple dynamic programming algorithm that
computes the DTW distance of x and y in time O(nm). To break this apparent barrier in practice,
many heuristics have been designed for this problem (see, e.g., [21]).

An important special case that frequently arises in practice is dynamic time warping on one-
dimensional curves. Here the metric space is M = R and the distance measure is d(a, b) := |a− b|
for any a, b ∈ R. Even for this important special case the best-known algorithm takes time O(nm).
We provide a possible explanation for this situation by proving a conditional lower bound for DTW
on one-dimensional curves.

1.1 Our Results

Dynamic Time Warping As our first main result, we prove a conditional lower bound for
DTW. This shows that strongly subquadratic algorithms for DTW can be considered unlikely to
exist. Specifically, obtaining such algorithms is at least as hard as a breakthrough for satisfiability.

Theorem 1.1. DTW on one-dimensional curves taking values in {0, 1, 2, 4, 8} ⊆ R has no O(n2−ε)
algorithm for any ε > 0, unless SETH fails.

Edit Distance Our second main result is a classification of Edit(cdel-x, cdel-y, cmatch, csubst) for
all operation costs cdel-x, cdel-y, cmatch, csubst: We identify trivial variants where the edit distance
is independent of the input x, y, and only depends on n,m. In this case, it can be computed in
constant time. For all remaining choices of the operation costs we prove quadratic-time hardness,
even restricted to binary strings. This includes quadratic-time hardness of LCS and Levenshtein
distance on binary strings. Compared to the known lower bound for Levenshtein distance [6], our
result decreases the alphabet size from 4 to 2 and adds hardness of a large class of problems including
LCS.

Theorem 1.2. Edit(cdel-x, cdel-y, cmatch, csubst) can be solved in constant time if csubst = cmatch or
cdel-x + cdel-y ≤ min{cmatch, csubst}. Otherwise, Edit(cdel-x, cdel-y, cmatch, csubst) on binary strings has
no O(n2−ε) algorithm for any ε > 0, unless SETH fails.

As first step of the hardness part of this theorem, for some 0 < c′subst ≤ 2 depending on
cdel-x, cdel-y, cmatch, csubst we reduce Edit(1, 1, 0, c′subst) to Edit(cdel-x, cdel-y, cmatch, csubst). This re-
duction is what fails for the trivial cases. Then we prove hardness of Edit(1, 1, 0, c′subst) using a
construction that is parameterized by c′subst.

Unbalanced Inputs Our main results are most meaningful for inputs with n ≈ m. It is con-
ceivable that for unbalanced inputs, i.e., m � n, faster algorithms exist, say the running time of
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O(nm) could be reduced to Õ(n+m2). For DTW we show that such an improvement is unlikely,
by proving that “for any m” no algorithm with running time O((nm)1−ε) exists, assuming SETH.
This is analogous to the situation for Fréchet distance [8].

Theorem 1.3. Unless SETH fails, DTW on one-dimensional curves taking values in {0, 1, 2, 4, 8}
has no O((nm)1−ε) algorithm for any ε > 0, and this even holds restricted to instances with
nα−o(1) ≤ m ≤ nα+o(1) for any 0 < α < 1.

For edit distance, Theorem 1.2 implies that there is no O(m2−ε) algorithm for any ε > 0 (in the
worst case over all strings x, y with |x| ≤ n and |y| ≤ m for any n ≥ m). Our reduction from SETH
cannot result in unbalanced strings, and thus we are not able to prove better lower bounds than
O(m2−ε). This behaviour hints at the possibility of an Õ(n+m2) algorithm for edit distance - and
indeed there is an algorithm for LCS from ’77 due to Hirschberg [12] matching this time complexity.
For completeness, we show that this algorithm can be generalized to edit distance.

Theorem 1.4. Edit(cdel-x, cdel-y, cmatch, csubst) has an Õ(n+m2) algorithm.

Thus, for unbalanced inputs DTW and edit distance differ in their behaviour, but using SETH
we can readily explain this difference.

Reductions from Longest Common Subsequence Note that any near-linear time reduction
from LCS to another problem P transfers the quadratic-time lower bound of LCS to P . We think
that this notion of LCS-hardness could be used to prove lower bounds for many string problems
(not only distance measures). To support this claim, we present two easy results in this direction.

A palindromic subsequence (also called symmetric subsequence) of a string x of length n is a
subsequence z that is the same as its reverse rev(z). Computing a longest palindromic subsequence
is a popular exercise in undergraduate text books (e.g., [9, Exercise 15-2]), since it can be easily
solved by a reduction to LCS or adapting the dynamic programming solution of LCS, both resulting
in an O(n2) algorithm. A tandem subsequence of a string x is a subsequence z that can be written as
the concatenation z = yy of a string y with itself. In contrast to longest palindromic subsequence, it
is non-trivial to compute a longest tandem subsequence in time O(n2) [15]. We present reductions
from LCS to both of these problems, which yields the following lower bounds.

Theorem 1.5. On binary strings, longest palindromic subsequence and longest tandem subsequence
have no O(n2−ε) algorithms for any ε > 0, unless SETH fails.

These results show that SETH-based lower bounds via LCS are applicable to string problems
that are not necessarily similarity measures.

1.2 Technical Contribution

We introduce a framework for proving SETH-based lower bounds for similarity measures. It is
based on a construction that we call alignment gadget. Given instances x1, . . . , xn and y1, . . . , ym,
m ≤ n, an alignment gadget consists of two instances x, y whose similarity δ(x, y) is closely related
to
∑

(i,j)∈A δ(xi, yj), where A = {(i1, 1), . . . , (im,m)} is the best-possible ordered alignment of the
numbers in [m] to [n] (for details see Section 3). We prove a quadratic lower bound for any similarity
measure admitting an alignment gadget. This proof is a simplified version of a construction in the
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known lower bound for Levenshtein distance [6], which is also closely related to the lower bound for
Fréchet distance [8].

Working with our framework has two advantages: First, it unifies three constructions that are
separate proof steps in other SETH-based lower bounds [6, 8], thus reducing the amount of work
necessary to prove SETH-based lower bounds. Second, it hides the reduction from satisfiability,
providing a level of abstraction that allows to ignore the details of the satisfiability problem and
instead focus on the details of the problem we reduce to. This makes it possible to tackle general
problems such as Edit(cdel-x, cdel-y, cmatch, csubst), where the reduction depends on parameters of the
problem, without resulting in an overly complex proof.

We present alignment gadgets for edit distance and dynamic time warping. This part needs
careful problem-specific constructions. In particular, we have to construct instances where the
optimal sequence of edit distance operations has some exploitable structure, which is made difficult
by the fact that we work over binary alphabet, so that in principle any two zeroes and any two ones
can be matched.

1.3 Related Work

Independently of our work, similar lower bounds for LCS and DTW have been shown by Abboud
et al. [1]. Let us briefly compare our approaches. Our main technical contribution is the alignment-
framework, which allows us to give shorter hardness proofs. The proofs of Abboud et al. are
longer, in particular since they are using the lower bound for Levenshtein distance [6], while our
proofs are self-contained. The main technical contribution of Abboud et al., apart from careful
reductions, seems to be that they reduce from a novel problem that they call Most-Orthogonal
Vectors. Regarding the problem LCS, our hardness result is stronger, since we show hardness on
binary strings, while Abboud et al. need alphabet size 7. Regarding DTW, we prove hardness
of different special cases, as we consider DTW on one-dimensional curves over alphabets of size
5 (where the distance of two numbers is their absolute difference), while Abboud et al. consider
DTW on strings over alphabets of size 5 (where the distance of two symbols is 1 or 0, depending
on whether they are equal or not). On top of these core results, Abboud et al. generalize their
result for LCS to k-LCS, the longest common subsequence of k strings. We classify the complexity
of edit distance for arbitrary operation costs and prove hardness of additional string problems via
reductions from LCS.

1.4 Organization

In Section 2 we fix notation and discuss alternative assumptions to SETH that can be used to prove
our results. We present our framework for obtaining quadratic lower bounds in Section 3. We then
first prove a conditional lower bound for LCS in Section 4; this proof is superseded by the conditional
lower bound for edit distance in Section 5, but it is shorter and might be more accessible. Quadratic-
time hardness of dynamic time warping follows in Section 6. Finally, in Section 7 we prove hardness
of longest palindromic subsequence and longest tandem subsequence.

2 Preliminaries

For a sequence x, we write |x| for its length, x[k] for its k-th entry, x[k..`] for the substring from
x[k] to x[`], and rev(x) for the reversed sequence. For sequences x, y we denote their concate-
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nation by x y. A traversal of two sequences x, y of length n,m, respectively, is a sequence of
pairs ((a1, b1), . . . , (at, bt)) with t ∈ N satisfying (1) (a1, b1) = (1, 1), (2) (at, bt) = (n,m), and (3)
(ai+1, bi+1) is either of (ai + 1, bi), (ai, bi + 1), or (ai + 1, bi + 1) for all 1 ≤ i < t.

Edit Distance Let x, y be strings over an alphabet Σ of length n,m (n ≥ m), respectively. For a
traversal T = ((a1, b1), . . . , (at, bt)) of x, y we say that its i-th operation, 1 ≤ i < t, is (1) a deletion
in x if (ai+1, bi+1) = (ai + 1, bi), (2) a deletion in y if (ai+1, bi+1) = (ai, bi + 1), (3) a matching if
(ai+1, bi+1) = (ai + 1, bi + 1) and x[ai] = y[bi], or (4) a substitution if (ai+1, bi+1) = (ai + 1, bi + 1)
and x[ai] 6= y[bi]. These four operations incur costs of cdel-x, cdel-y, cmatch, and csubst, respectively.
We will always assume that these costs are rational constants, so that we can ignore representation
issues. The cost δEdit(T ) of a traversal T is the total cost of all its operations. The edit distance
δEdit(x, y) is the minimal cost of any traversal of x, y. We write Edit(cdel-x, cdel-y, cmatch, csubst) for
the problem of computing the edit distance of two given strings with costs cdel-x, cdel-y, cmatch, and
csubst. We write Edit(csubst) as a shorthand for Edit(1, 1, 0, csubst). Note that for these problems
the costs of all four operations are constant, i.e., they stay fixed with growing n,m. We will mostly
consider edit distance over binary strings, i.e., we set Σ = {0, 1}.

Dynamic Time Warping (DTW) Let (M,d) be any metric space. Let x, y be curves, i.e.,
sequences over M of length n,m (n ≥ m), respectively. The cost δDTW(T ) of a traversal T =
((a1, b1), . . . , (at, bt)) is

∑t
i=1 d(x[ai], y[bi]). The dynamic time warping distance δDTW(x, y) is the

minimal cost of any traversal of x and y. We obtain the special case of dynamic time warping on
one-dimensional curves by setting M = R and d(a, b) := |a− b| for any a, b ∈ R.

2.1 Hardness Assumptions

Consider the Orthogonal Vectors problem (OV): Given sets A,B of vectors in {0, 1}d, |A| = n, |B| =
m, decide whether there is a pair of vectors a ∈ A, b ∈ B such that a[k] · b[k] = 0 for all k (which
we denote by 〈a, b〉 = 0). Clearly, this problem can be solved in time O(n2d). The best-known
algorithm runs in time n2−1/O(log(d/ logn)) [4], which is only slightly subquadratic for d � log n.
Thus, the following hypotheses are reasonable.

Orthogonal Vectors Hypothesis (OVH): For no ε > 0 there is an algorithm for OV, restricted
to n = m, that runs in time O(n2−εpoly(d)).

Unbalanced Orthogonal Vectors Hypothesis (UOVH): Let 0 < α ≤ 1. For no ε > 0 there
is an algorithm for OV, restricted to m = Θ(nα) and d ≤ no(1), that runs in time O((nm)1−ε).

It is well-known that SETH implies OVH [23]. A slight generalization shows that SETH also
implies UOVH. Hence, these hypotheses are weaker assumptions than SETH.

Lemma 2.1. SETH implies OVH and UOVH.

Proof. For OVH the statement follows from [23]. Let 0 < ε < 1/2 and 0 < α ≤ 1. Assume that
Orthogonal Vectors, restricted to m = Θ(nα) and d ≤ no(1), has an O((nm)1−ε) algorithm. We
show that this contradicts SETH. To this end, let ϕ be an instance of k-SAT with N variables
and M clauses. We use the sparsification lemma [14], which yields t := 2εN/2 k-SAT instances

6



ϕ1, . . . , ϕt with N variables and f(k, ε) · N clauses such that ϕ is satisfiable if and only if some
ϕi is satisfiable. If N ≤ f(k, ε) then we decide each ϕi in time Ok,ε(1). Otherwise, ϕi has at
most N2 clauses, and we can assume equality by duplicating clauses. In this case, we construct
an instance of Orthogonal Vectors as follows. Let x1, . . . , xN be the variables and C1, . . . , CN2 be
the clauses of ϕi. We set d := N2 and split the variables into the left half x1, . . . , xN/(1+α) and
the right half xN/(1+α)+1, . . . , xN . The set A consists of one vector az ∈ R for every assignment
z of true and false to the left half of the variables. If z causes clause Ci to be true, i.e., some
unnegated variable of Ci is set to true in z or some negated variable of Ci is set to false in z,
then we set az[i] := 0. Otherwise, we set az[i] := 1. Similarly, set B has a vector bz′ for any
assignment z′ of true or false to the right half of the variables and bz′ [i] = 0 or 1, depending on
whether z′ causes clause Ci to be true. Then 〈az, bz′〉 = 0 if and only if (z, z′) forms a satisfying
assignment of ϕi. Thus, we can decide ϕi by solving the constructed instance of Orthogonal Vectors.
Note that n = |A| = 2N/(1+α) and m = |B| = 2Nα/(1+α), so that indeed m = Θ(nα). Moreover,
d = N2 ≤ 2o(N) = no(1). Thus, we can apply the algorithm for Orthogonal Vectors, that we assumed
to exist, running in time O((nm)1−ε) = O(2(1−ε)N ). Running this procedure for all ϕi decides ϕ in
time O(t · 2(1−ε)N ) = O(2(1−ε/2)N ), contradicting SETH.

Thus, any lower bound conditional on OVH or UOVH also holds conditional on SETH. In fact,
we prove all of our results by reductions from Orthogonal Vectors, so that in our results we may
replace the assumption SETH by OVH or UOVH. Specifically, in Theorems 1.1, 1.2, and 1.5 we can
replace SETH by OVH, and in Theorem 1.3 we can replace SETH by UOVH. We remark that a
version of OVH has also been used in [1] and is implicit in many other SETH-based lower bounds.

3 Framework

We consider a similarity (or distance) measure δ : I×I → N0, where I denotes the set of inputs, e.g.,
all binary strings or all one-dimensional curves. By a reduction from Orthogonal Vectors, we prove
that computing this similarity measure cannot be done in strongly subquadratic time unless SETH
fails if δ admits a gadget that allows us to exactly realize alignments of inputs x1, . . . , xn ∈ I and
y1, . . . , ym ∈ I. To formally state the requirement, we start by introducing the following notions.

Types In this paper, we define the type of a sequence x ∈ I to be its length and the sum of
its entries, i.e., type(x) := (|x|,

∑
i x[i]) (where for binary strings

∑
k x[k] is to be interpreted as

the number of ones in x). The definition of types can be customized to the similarity measure
under consideration and is chosen to work for the problems considered in this paper. We define
It := {x ∈ I | type(x) = t} as the set of inputs of type t.

Alignments Let n ≥ m. A (partial) alignment is a set A = {(i1, j1), . . . , (ik, jk)} with 0 ≤ k ≤ m
such that 1 ≤ i1 < . . . < ik ≤ n and 1 ≤ j1 < . . . < jk ≤ m. We say that (i, j) ∈ A are aligned.
Any i ∈ [n] or j ∈ [m] that is not contained in any pair in A is called unaligned. We denote the set
of all partial alignments (with respect to n,m) by An,m.

We call the partial alignment {(∆ + 1, 1), . . . , (∆ + m,m)}, with 0 ≤ ∆ ≤ n −m, a structured
alignment. We denote the set of all structured alignments by Sn,m.
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(a) Cost δ(A) of a partial alignment A ∈ An,m (b) Cost δ(A) of a structured alignment A ∈ Sn,m

Figure 1: Costs of Alignments

For any x1, . . . , xn ∈ I and y1, . . . , ym ∈ I we define the cost of alignment A ∈ An,m by

δ(A) = δx1,...,xny1,...,ym(A) :=
∑

(i,j)∈A

δ(xi, yj) + (m− |A|) max
i,j

δ(xi, yj).

In other words, for any j ∈ [m] which is aligned to some i we pay the distance δ(xi, yj), while for
any unaligned j we pay the maximal distance of any (xi′ , yj′) (note that there are m−|A| unaligned
j ∈ [m], see Figure 1). This means that we get punished for any unaligned j.

Alignment Gadget We start with some intuition. Consider the problem of computing the value
minA∈Sn,m δ(A). This can be solved in time O(nm) if each δ(xi, yj) can be evaluated in constant
time, since |Sn,m| = O(n) and evaluating δ(A) amounts to computing m values δ(xi, yj). Moreover,
intuitively it should not be possible to compute this value in strongly subquadratic time. We will
show that in some sense it is even hard to compute, in strongly subquadratic time, any value v with

min
A∈An,m

δ(A) ≤ v ≤ min
A∈Sn,m

δ(A). (1)

Now, an alignment gadget is simply a pair of instances (x, y) such that from δ(x, y) we can infer1 a
value v as above. The main reason to relax our goal from computing minA∈Sn,m δ(A) to satisfying
(1) is that this makes constructing alignment gadgets much easier. Note that for the alignment
gadget (x, y) computing δ(x, y) is as hard as computing minA∈Sn,m δ(A) (in an approximate sense
as given by (1)), which we argued above should take quadratic time. This informal discussion
motivates the following definition.

Definition 3.1. The similarity measure δ admits an alignment gadget, if the following conditions
hold: Given instances x1, . . . , xn ∈ Itx , y1, . . . , ym ∈ Ity with m ≤ n and types tx = (`x, sx), ty =
(`y, sy), we can construct new instances x = GAm,ty

x (x1, . . . , xn) and y = GAn,tx
y (y1, . . . , ym) and

C ∈ Z such that

min
A∈An,m

δ(A) ≤ δ(x, y)− C ≤ min
A∈Sn,m

δ(A). (2)

Moreover, type(x) and type(y) only depend on n,m, tx, and ty. Finally, this construction runs in
time O((n+m)(`x + `y)).

If the construction additionally fulfills |x| = O(n(`x + `y)) and |y| = O(m(`x + `y)), then we
say that δ admits an unbalanced alignment gadget.

1For us “infer” will simply mean that v = δ(x, y) − C for an appropriate C.
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Note that the types serve the purpose of simplifying the algorithmic problem in the above
definition by restricting the inputs to same-type objects. If we can construct suitable x and y for
arbitrary inputs x1, . . . , xn and y1, . . . , ym then we may completely disregard types.

Definition 3.2. The similarity measure δ admits coordinate values, if there exist 0x,0y,1x,1y ∈ I
satisfying

δ(1x,1y) > δ(0x,1y) = δ(0x,0y) = δ(1x,0y),

and moreover, type(0x) = type(1x) and type(0y) = type(1y).

Theorem 3.3. Let δ be a similarity measure admitting an alignment gadget and coordinate values
and consider the problem of computing δ(x, y) with |x| ≤ n, |y| ≤ m, and m ≤ n. For no ε > 0 this
problem can be solved in time O(m2−ε) unless OVH fails. If δ even admits an unbalanced alignment
gadget, then for no ε > 0 this problem can be solved in time O((nm)1−ε), unless UOVH fails. Both
statements hold restricted to nα−o(1) ≤ m ≤ nα+o(1) for any 0 < α ≤ 1.

3.1 Proof of Theorem 3.3

We present a reduction from OV to the problem of computing δ. This uses constructions and
arguments similar to [8, 6]. Consider an instance a1, . . . , an ∈ {0, 1}d and b1, . . . , bm ∈ {0, 1}d of
OV, n ≥ m. We construct x, y ∈ I and ρ ∈ N0 such that δ(x, y) ≤ ρ if and only if there are i ∈ [n]
and j ∈ [m] with 〈ai, bj〉 = 0. To this end, let ai[k] denote the k-th component of ai. For all i ∈ [n]
and j ∈ [m], we construct coordinate gadgets as follows

CG(ai, k) :=

{
0x if ai[k] = 0

1x if ai[k] = 1
1 ≤ k ≤ d, CG(ai, d+ 1) := 0x,

CG(bj , k) :=

{
0y if bj [k] = 0

1y if bj [k] = 1
1 ≤ k ≤ d, CG(bj , d+ 1) := 1y.

Note that we have type(CG(ai, 1)) = · · · = type(CG(ai, d + 1)) =: tx and type(CG(bj , 1)) = · · · =
type(CG(bj , d + 1)) =: ty by definition of coordinate values. This allows us to use the alignment
gadget to obtain the following vector gadgets

VG(ai) := GAd+1,ty
x (CG(ai, 1), . . . ,CG(ai, d+ 1)),

VG(bj) := GAd+1,tx
y (CG(bj , 1), . . . ,CG(bj , d+ 1)),

S := GAd+1,ty
x (0x, . . . ,0x,1x︸ ︷︷ ︸

d+1

),

Note that type(VG(a1)) = . . . = type(VG(an)) = type(S) =: t′x and type(VG(b1)) = . . . =
type(VG(bm)) =: t′y, because the type of the output of the alignment gadget only depends on the
number of input elements and their type, which are all tx or all ty, respectively. We introduce
normalized vector gadgets as follows

NVG(ai) := GA
1,t′y
x (S,VG(ai)),

NVG(bj) := GA
2,t′x
y (VG(bj)).
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(a) Case 〈ai, bj〉 = 0. Aligning VG(bj) with VG(ai)
achieves an alignment cost of (d+ 1)ρ0.

(b) Case 〈ai, bj〉 > 0. Aligning VG(bj) with S
achieves an alignment cost of dρ0 + ρ1.

Figure 2: Schematic illustration of the coordinate, vector, and normalized vector gadgets.

Note that we have type(NVG(a1)) = . . . = type(NVG(an)) =: t′′x and type(NVG(b1)) = . . . =
type(NVG(bm)) =: t′′y. We finally obtain x and y by setting

x := GA
m,t′′y
x (NVG(a1), . . . ,NVG(an),NVG(a1), . . . ,NVG(an)),

y := GA
2n,t′′x
y (NVG(b1), . . . ,NVG(bm)).

We denote by C,C ′, C ′′ the value C in the three invocations of Property (2) of the alignment gadget.
Observe that x and y have length O((n+m)d) and can be constructed in time O((n+m)d) by

applying the algorithm implicit in Definition 3.1 three times. Moreover, if δ admits an unbalanced
alignment gadget, then we have |x| = O(nd) and |y| = O(md). It remains to show that if we
know δ(x, y) then we can decide the given OV instance in constant time, i.e., correctness of our
construction, which we do below. This finishes our reduction from OV to the problem of computing
δ. To obtain Theorem 3.3, let 0 < α ≤ 1 and assume that δ(x′, y′) can be computed in time
O(M2−ε) whenever |x′| ≤ N , |y′| ≤ M , and Nα−o(1) ≤ M ≤ Nα+o(1). Then in particular for
n = m we can compute δ(x, y) in time O(min{|x|, |y|}2−ε + |x| + |y|) = O(((n + m)d)2−ε) =
O((nd)2−ε), contradicting OVH. In case of an unbalanced alignment gadget, assume that δ(x′, y′)
can be computed in time O((NM)1−ε) whenever |x′| ≤ N , |y′| ≤M , and Nα−o(1) ≤M ≤ Nα+o(1).
Then for m = Θ(nα) and d ≤ no(1) we can compute δ(x, y) in time O((|x||y|)1−ε + |x| + |y|) =
O(((nd)(md))1−ε + (n+m)d) = O((nm)1−ε/2), contradicting UOVH. This proves Theorem 3.3.

Correctness We now prove correctness of our construction and refer to Figure 2 for an intuition
for coordinate, vector, and normalized vector gadgets. Let ρ0 := δ(0x,0y) = δ(0x,1y) = δ(1x,0y)
and ρ1 := δ(1x,1y). Recall that ρ0 < ρ1.

Claim 3.4. For any i ∈ [n], j ∈ [m], if 〈ai, bj〉 = 0, then δ(VG(ai),VG(bj)) = C + (d + 1)ρ0.
Otherwise, δ(VG(ai),VG(bj)) ≥ C + dρ0 + ρ1. Moreover, δ(S,VG(bj)) = C + dρ0 + ρ1.

Proof. If 〈ai, bj〉 = 0, then the structured alignment {(1, 1), . . . , (d + 1, d + 1)} has cost δ(A) =∑d+1
k=1 δ(CG(ai, k),CG(bj , k)) = (d + 1)ρ0, since in each component k at least one value is 0x or

0y, incurring a cost of ρ0 (indeed even in position k = d + 1 we have CG(ai, d + 1) = 0x). By
definition of alignment gadgets, we obtain δ(VG(ai),VG(bj))−C ≤ (d+ 1)ρ0. Moreover, since the
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cost δ(A) of any alignment A ∈ Ad+1,d+1 consists of d + 1 summands of the form δ(ux, uy) with
ux ∈ {0x,1x}, uy ∈ {0y,1y}, we also have δ(VG(ai),VG(bj))− C ≥ (d+ 1)ρ0.

If 〈ai, bj〉 > 0, then consider any A ∈ An,m. If |A| = d+ 1 then A = {(1, 1), . . . , (d+ 1, d+ 1)},
and this alignment incurs a cost of at least dρ0 + ρ1, since in at least one position k we have
CG(ai, k) = 1x and CG(bj , k) = 1y. Otherwise, if |A| < d+1, then δ(A) consists of d+1 summands
of the form δ(ux, uy) with ux ∈ {0x,1x}, uy ∈ {0y,1y}, and at least one of these summands is
the punishment term maxk,` δ(CG(ai, k),CG(bj , `)) because |A| < d + 1. Since 〈ai, bj〉 = 1, the
punishment term is ρ1 and we obtain δ(A) ≥ dρ0 + ρ1. By definition of alignment gadgets, we have
δ(VG(ai),VG(bj))− C ≥ dρ0 + ρ1.

We argue similarly for δ(S,VG(bj)): The alignment {(1, 1), . . . , (d + 1, d + 1)} incurs a cost of
dρ0 + ρ1, since the (d+ 1)-th component of S is 1x and of VG(bj) is VG(bj , d+ 1) = 1y, while all
other components of S are 0x. Moreover, any alignment with |A| < d+1 incurs a punishment term,
so that it incurs cost of at least dρ0 + ρ1.

Claim 3.5. For any i ∈ [n], j ∈ [m], if 〈ai, bj〉 = 0 then δ(NVG(ai),NVG(bj)) = C+C ′+(d+1)ρ0 =:
ρ′0. Otherwise, δ(NVG(ai),NVG(bj)) = C + C ′ + dρ0 + ρ1 =: ρ′1.

Proof. Note that {(1, 1)}, {(2, 1)}, and ∅ are the only alignments in A2,1, which corresponds to align-
ing (S,VG(bj)) or (VG(ai),VG(bj)) or nothing. Moreover, the structured alignments are {(1, 1)}
and {(2, 1)}. Observe that the cost of the alignment ∅ is simply the maximum of the other two
alignments. By Claim 3.4, if 〈ai, bj〉 = 0 then the minimal cost is C + (d+ 1)ρ0, attained by align-
ment {(2, 1)}. Otherwise, the minimal cost is C + dρ0 + ρ1, attained by alignment {(1, 1)}. By
definition of alignment gadgets, this yields that δ(NVG(ai),NVG(bj))−C ′ is equal to C+ (d+ 1)ρ0

or C + dρ0 + ρ1, respectively.

The claim shows that δ(NVG(ai),NVG(bj)) attains one of only two values, depending on whether
〈ai, bj〉 = 0.

Claim 3.6. If there is no i ∈ [n], j ∈ [m] with 〈ai, bj〉 = 0, then δ(x, y) ≥ C ′′ + mρ′1. Otherwise,
δ(x, y) ≤ C ′′ + (m− 1)ρ′1 + ρ′0.

Proof. If 〈ai, bj〉 > 0 for all i, j, then by the previous claim we have δ(NVG(ai),NVG(bj)) ≥ ρ′1 for
all i, j. Since the cost of any alignment consists of m summands of the form δ(NVG(ai),NVG(bj))
for some i, j, the cost of any alignment is at least mρ′1. By definition of alignment gadgets, we
obtain δ(x, y)− C ′′ ≥ mρ′1.

If 〈ai, bj〉 = 0 for some i, j, then consider the structured alignment A = {(∆ + 1, 1), . . . , (∆ +
m,m)} with ∆ := i− j if i ≥ j, or ∆ := n+ i− j if i < j. Its cost consists of m summands, of which
one is δ(NVG(ai),NVG(bj)) = ρ′0 and all others are at most ρ′1. Hence, the cost of A is at most
(m− 1)ρ′1 +ρ′0 and by definition of alignment gadgets, we obtain δ(x, y)−C ′′ ≤ (m− 1)ρ′1 +ρ′0.

By setting ρ := C ′′ + (m − 1)ρ′1 + ρ′0 we have found a threshold such that δ(x, y) ≤ ρ if and
only if there is a pair (i, j) with 〈ai, bj〉 = 0. Thus, computing δ(x, y) allows to decide the given OV
instance. This finishes the proof of Theorem 3.3.

4 Longest Common Subsequence

In this section, we present an alternative hardness proof for longest common subsequence (LCS),
which is shorter than for the more general problem Edit(cdel-x, cdel-y, cmatch, csubst) in Section 5.
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Given two strings x, y over an alphabet Σ, a longest common subsequence is a binary string z that
appears in x and in y as a subsequence and has maximal length. We denote by LCS(x, y) some
longest common subsequence of x and y, and by |LCS(x, y)| the length of any longest common
subsequence of x and y.

We present an alignment gadget and coordinate values for LCS over binary strings, i.e., we
consider the set of inputs I :=

⋃
k≥0{0, 1}k. Note that LCS is a maximization problem, but

Definition 3.1 implicitly assumes a minimization problem, so we instead consider the number of
unmatched symbols δLCS(x, y) := |x| + |y| − 2|LCS(x, y)| for binary strings x, y. Note that this is
equivalent to Edit(cdel-x, cdel-y, cmatch, csubst) for cdel-x = cdel-y = 1, cmatch = 0, and csubst = 2.

Lemma 4.1. LCS admits coordinate values by setting

1x := 11100, 0x := 10011, 1y := 00111, 0y := 11001.

Proof. All four values have the same length and the same number of 1s, so they have equal type.
Short calculations show that LCS(1x,1y) = 111, LCS(1x,0y) = 1100, LCS(0x,1y) = 0011, and
LCS(0x,0y) = 1001. Thus, 4 = δLCS(1x,1y) > δLCS(1x,0y) = δLCS(0x,1y) = δLCS(0x,1y) =
2.

Definition 4.2. Consider instances x1, . . . , xn ∈ Itx and y1, . . . , ym ∈ Ity with n ≥ m and types
tx = (`x, sx), ty = (`y, sy). Set γ1 := `x + `y, γ2 := 6(`x + `y), γ3 := 10(`x + `y) + 2sx − `x, γ4 :=
13(`x + `y). We guard the input strings by blocks of zeroes and ones, setting G(z) := 1γ20γ1z0γ11γ2 .
We define the alignment gagdet as

x := G(x1) 0γ3 G(x2) 0γ3 . . . G(xn−1) 0γ3 G(xn),

y := 0nγ4 G(y1) 0γ3 G(y2) 0γ3 . . . G(ym−1) 0γ3 G(ym) 0nγ4 .

Lemma 4.3. Definition 4.2 realizes an alignment gadget for LCS.

Thus, Theorem 3.3 is applicable, implying a lower bound of O(m2−ε) for LCS. We remark
that our construction is no unbalanced alignment gadget, as the length of y grows linearly in n,
not necessarily in m ≤ n. Thus, we do not obtain a conditional lower bound of O((nm)1−ε) (for
m ≈ nα for any 0 < α < 1).

Proof of Lemma 4.3. Observe that indeed x only depends on m, ty, and x1, . . . , xn, and type(x)
only depends on n,m, tx, and ty, and similarly for y. Moreover, x and y can clearly be constructed
in time O((n+m)(`x + `y)), where `x = |x1| = . . . = |xn| and `y = |y1| = . . . = |ym|.

It remains to prove that by setting C := 2nγ4 we have

min
A∈An,m

δ(A) ≤ δ(x, y)− C ≤ min
A∈Sn,m

δ(A). (3)

We first prove the following three useful observations. Here for a string z and indices a ≤ b we
denote the substring from z[a] to z[b] by z[a..b].
Claim 4.4. Let x and z1, . . . , zk be binary strings. Set z = z1 . . . zn. Then we have

δLCS(x, z) = min
x(z1),...,x(zk)

k∑
j=1

δLCS(x(zj), zj),

where x(z1), . . . , x(zk) range over all ordered partitions of x into k substrings, i.e., x(z1) = x[i0 +
1..i1], x(z2) = x[i1 + 1..i2], . . . , x(zk) = x[ik−1 + 1..ik] for any 0 = i0 ≤ i1 ≤ . . . ≤ ik = |x|.
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Proof. For any ordered partition, the substrings x(zj) are disjoint and ordered along x, so we can
take the longest common subsequences of (x(zj), zj), j ∈ [k], and concatenate them to form a
common subsequence of (x, z). This shows |LCS(x, z)| ≥

∑k
j=1 |LCS(x(zj), zj)|. Since furthermore

|x| =
∑k

j=1 |x(zj)| and |z| =
∑k

j=1 |zj | we obtain δLCS(x, z) ≤
∑k

j=1 δLCS(x(zj), zj).
Now consider a longest common subsequence s of (x, y), which can be seen as a matching of

symbols in x and y. Let Jj be the indices in x that are matched to symbols in zj by s. Note that∑k
j=1 |Jj | = |LCS(x, y)|, as any matched symbol in x is matched to some zj . Also note that the

matching is ordered, meaning that for any i ∈ Jj and i′ ∈ Jj′ with j < j′ we have i < i′. This allows
to find an ordered partition x(z1), . . . , x(zk) of x such that x(zj) contains the indices Jj for any j.
Finally, for this partition we have LCS(x(zj), zj) ≥ |Jj | so that δLCS(x(zj), zj) ≤ |x(zj)|+|zj |−2|Jj |.
Summing up over j, we obtain

∑k
j=1 δLCS(x(zj), zj) ≤ |x|+|z|−2|LCS(x, z)| = δLCS(x, z). Together

both halves of the proof imply the desired statement.

Claim 4.5. Let z, w be binary strings and `, k ∈ N0. Then we have (1) δLCS(1kz, 1kw) = δLCS(z, w)
and (2) δLCS(0`z, 1kw) ≥ min{k, δLCS(z, 1kw)}. Symmetrically, we have (2’) δLCS(0kz, 1`w) ≥
min{k, δLCS(0kz, w)}, and we obtain more symmetric statements by reversing all involved strings.

Proof. (1) It suffices to show the claim for k = 1, then the general statement follows by induction.
Consider a LCS s of (1z, 1w). At least one ’1’ is matched in s, as otherwise we can extend s by
matching both ’1’s. If exactly one ’1’ is matched in s, then the other ’1’ is free, so we may instead
match the two ’1’s. Thus, without loss of generality a LCS of (1z, 1w) matches the two ’1’s. This
yields |LCS(1z, 1w)| = 1 + |LCS(z, w)|. Hence, δLCS(1z, 1w) = |1z| + |1w| − 2|LCS(1z, 1w)| =
|z|+ |w| − 2|LCS(z, w)| = δLCS(z, w).

(2) Fix a LCS s of (0`z, 1kw). If s starts with a 0, then it does not contain the leading 1k

of the second argument, leaving at least k symbols unmatched, so that δLCS(0`z, 1kw) ≥ k. Oth-
erwise, if s starts with a 1, then it does not contain the leading 0` of the first argument, so that
|LCS(0`z, 1kw)| = |LCS(z, 1kw)|. Then we have δLCS(0`z, 1kw) = |0`z|+ |1kw|−2|LCS(0`z, 1kw)| ≥
|z|+ |1kw| − 2|LCS(z, 1kw)| = δLCS(z, 1kw).

Claim 4.6. Let ` ≥ 0. For any prefix x′ of x we have δLCS(x′, 0`) ≥ `. Moreover, if x′ is of the form
G(x1)0γ3 . . .G(xi)0

γ3 for some 0 ≤ i < n and ` ≥ i · (2γ2 + sx), then δLCS(x′, 0`) = `. Symmetric
statements hold for any suffix of x.

Proof. We first show that for any i ∈ [n] the string G(xi)0
γ3 contains as many ones as zeroes, and

any prefix of G(xi)0
γ3 contains at least as many ones as zeroes. To this end, note that each xi has

length `x and contains sx ones, so that the number of ones of G(xi)0
γ3 is 2γ2 +sx, while the number

of zeroes is `x − sx + 2γ1 + γ3, and we chose γ3 such that both values are equal. For a prefix, note
that G(xi) starts with γ2 ones. Since each G(xi) contains 2γ1 + `x − sx ≤ γ2 zeroes, any prefix
of G(xi) has as most as many zeroes as ones. Thus, we would have to advance to 0γ3 to see more
zeroes than ones, however, even G(xi)0

γ3 does not contain more zeroes than ones.
Hence, any prefix x′ of x contains at least as many ones as zeroes, implying |LCS(x′, 0`)| ≤ |x′|/2.

This yields δLCS(x′, 0`) = |x′| + |0`| − 2|LCS(x′, 0`)| ≥ `. If x′ is of the form G(x1)0γ3 . . .G(xi)0
γ3

and sufficiently many zeroes are available in 0` then we have equality.

Let us give names to the substrings consisting only of zeroes in x and y. In x, we denote the
0γ3-block after G(xi) by Zx

i , i ∈ [n−1]. In y, we denote the 0γ3-block after G(yj) by Zy
j , j ∈ [m−1].

Moreover, we denote the prefix 0nγ4 by Ly and the suffix 0nγ4 by Ry.
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Figure 3: Optimal traversal corresponding to structured alignment A = {(∆+j, j) | j ∈ [m]} ∈ Sn,m.

We now show the upper bound of (3), i.e., δLCS(x, y) ≤ 2nγ4 + minA∈Sn,m δ(A). Consider a
structured alignment A = {(∆ + 1, 1), . . . , (∆ +m,m)} ∈ Sn,m. We construct an ordered partition
of x as in Claim 4.4 by setting (see Figure 3)

x(G(yj)) := G(x∆+j) for j ∈ [m],

x(Zy
j ) := Zx

∆+j for j ∈ [m− 1],

x(Ly) := G(x1)Zx
1 . . .G(x∆)Zx

∆,

x(Ry) := Zx
∆+mG(x∆+m+1) . . . Zx

n−1G(xn).

Note that indeed these strings partition x and y, respectively. Thus, Claim 4.4 yields

δLCS(x, y) ≤ δLCS(x(Ly), Ly) + δLCS(x(Ry), Ry) +
m∑
j=1

δLCS(G(x∆+j),G(yj)) +
m−1∑
j=1

δLCS(Zx
∆+j , Z

y
j ).

Since Ly = 0nγ4 and x(Ly) is a prefix of x of the correct form, by Claim 4.6 we have δLCS(x(Ly), Ly) =
nγ4 (note that γ4 is chosen sufficiently large to make Claim 4.6 applicable). Similarly we obtain
δLCS(x(Ry), Ry) = nγ4. Since Zx

i = Zy
j = 0γ3 we have δLCS(Zx

∆+j , Z
y
j ) = 0. Finally, by matching

the guarding ones and zeroes of G(x∆+j) = 1γ20γ1x∆+j0
γ11γ2 and G(yj) = 1γ20γ1yj0

γ11γ2 we obtain
δLCS(G(x∆+j),G(yj)) ≤ δLCS(x∆+j , yj). Hence, we have

δLCS(x, y) ≤ 2nγ4 +
∑

(i,j)∈A

δLCS(xi, yj).

As A ∈ Sn,m was arbitrary, we proved δLCS(x, y) ≤ 2nγ4 + minA∈Sn,m δ(A), as desired.
It remains to prove the lower bound of (3), i.e., δLCS(x, y) ≥ 2nγ4 + minA∈An,m δ(A). As in

Claim 4.4, let x(Ly), x(G(yj)) for j ∈ [m], x(Zy
j ) for j ∈ [m− 1], x(Ry) be an ordered partition of

x such that

δLCS(x, y) = δLCS(x(Ly), Ly)+δLCS(x(Ry), Ry)+
m∑
j=1

δLCS(x(G(yj)),G(yj))+

m−1∑
j=1

δLCS(x(Zy
j ), Zy

j ).

Clearly, we can bound δLCS(x(Zy
j ), Zy

j ) ≥ 0. Since Ly = 0nγ4 and x(Ly) is a prefix of x, by
Claim 4.6 we have δLCS(x(Ly), Ly) ≥ nγ4, and similarly we get δLCS(x(Ry), Ry) ≥ nγ4. It remains
to construct an alignment A ∈ An,m satisfying

δ(A) ≤
m∑
j=1

δLCS(x(G(yj)),G(yj)), (4)
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then together we have shown the desired inequality δLCS(x, y) ≥ 2nγ4 + minA∈An,m δ(A).
Let us construct such an alignment A. For any j ∈ [m], if x(G(yj)) contains more than half of

some xi′ (which is part of G(xi′)), then let i be the leftmost such index and align i and j. Note
that the set A of all these aligned pairs (i, j) is a valid alignment in An,m, since no xi or yj can be
aligned more than once.

Since by definition we have δ(A) =
∑

(i,j)∈A δLCS(xi, yj)+(m−|A|) maxi,j δLCS(xi, yj) and since
maxi,j δLCS(xi, yj) ≤ maxi,j(|xi| + |yj |) = `x + `y, in order to show (4) it suffices to prove the
following two claims.
Claim 4.7. For any aligned pair (i, j) ∈ A we have δLCS(x(G(yj)),G(yj)) ≥ δLCS(xi, yj).

Proof. Recall that x(G(yj)) contains more than half of xi. First consider the case that x(G(yj))
touches not only G(xi) but also G(xi′) for some i′ 6= i. As between xi and G(xi′) there is at
least one block of zeroes 0γ3 and half of the guarding of G(xi) (i.e., 1γ20γ1 or 0γ11γ2), we obtain
|x(G(yj))| ≥ |0γ3 | + |1γ20γ1 | = γ3 + γ2 + γ1. Thus, any matching of x(G(yj)) and G(yj) leaves at
least |x(G(yj))|− |G(yj)| ≥ (γ3 +γ2 +γ1)− (2γ2 +2γ1 + `y) = γ3−γ2−γ1− `y ≥ `x + `y unmatched
symbols, implying δLCS(x(G(yj)),G(yj)) ≥ `x + `y ≥ δLCS(xi, yj).

Now consider the remaining case, where x(G(yj)) touches no other G(xi′). In this case, x(G(yj))
is a substring of 0γ3G(xi)0

γ3 , i.e., we can write x(G(yj)) as 0hLz0hR , where z is a substring
of G(xi). Since G(yj) starts with γ2 ones, by Claim 4.5.(2) we have δLCS(x(G(yj)),G(yj)) ≥
min{γ2, δLCS(z0hR ,G(yj))}. Since γ2 ≥ `x+`y ≥ δLCS(xi, yj), it suffices to bound δLCS(z0hR ,G(yj))
from below. By a symmetric argument, we eliminate the block 0hR and only have to bound
δLCS(z,G(yj)) from below. We can assume that |z| > |G(yj)|−γ2, since otherwise δLCS(z,G(yj)) ≥
γ2 ≥ `x+`y ≥ δLCS(xi, yj). Thus, we have G(yj) = 1γ20γ1yj0

γ11γ2 and can write z as 1rL0γ1xi0
γ11rR

with rL, rR > 0. By Claim 4.5.(1) we have δLCS(z,G(yj)) = δLCS(0γ1xi0
γ11rR , 1γ2−rL0γ1yj0

γ11γ2).
By Claim 4.5.(2’), this yields δLCS(z,G(yj)) ≥ min{γ1, δLCS(0γ1xi0

γ11rR , 0γ1yj0
γ11γ2)}, and since

γ1 ≥ `x + `y ≥ δLCS(xi, yj) it suffices to bound the latter term. By a symmetric argument we
eliminate the ones on the right side, and it suffices to bound δLCS(0γ1xi0

γ1 , 0γ1yj0
γ1). Using

Claim 4.5.(1) twice, this is equal to δLCS(xi, yj). Hence, we have shown the desired inequality
δLCS(x(G(yj)),G(yj)) ≥ δLCS(xi, yj).

Claim 4.8. If j is unaligned in A, then δLCS(x(G(yj)),G(yj)) ≥ `x + `y.

Proof. Since x(G(yj)) contains less than half of any xi, examining the structure of x we see that
x(G(yj)) is a substring2 of P := xi0

γ11γ20γ31γ20γ1xi+1 for some 1 ≤ i < n, where at most half of
xi and xi+1 can be part of x(G(yj)). If x(G(yj)) contains ones to the left and to the right of 0γ3

in P , then x(G(yj)) contains at least γ3 zeroes. Since G(yj) contains 2γ1 + `y − sy ≤ 2γ1 + `y
zeroes, at most 2γ1 +`y zeroes of x(G(yj)) can be matched, leaving at least γ3−2γ1−`y unmatched
zeroes. Thus, δLCS(x(G(yj)),G(yj)) ≥ γ3 − 2γ1 − `y ≥ `x + `y. Otherwise, if x(G(yj)) contains
only ones to the left of 0γ3 in P (or only to the right), then x(G(yj)) contains at most γ2 + `x ones.
Thus, among the 2γ2 + sy ≥ 2γ2 ones of G(yj) at least γ2 − `x ones remain unmatched, implying
δLCS(x(G(yj)),G(yj)) ≥ γ2 − `x ≥ `x + `y.

This finishes the proof of Lemma 4.3.
2Actually x(G(yj)) could also be a substring of 1γ20γ1x1 or of xn0γ11γ2 . We treat these border cases by setting

x0 := x1 and xn+1 := xn and letting from now on 0 ≤ i ≤ n.
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5 Edit Distance

We first show that the trivial cases of Edit(cdel-x, cdel-y, cmatch, csubst) can be solved in constant time.
For all other cases, on binary strings we present a reduction from Edit(cdel-x, cdel-y, cmatch, csubst)
to Edit(c′subst) and vice versa, see Section 5.1. Then in Section 5.2 we prove a conditional lower
bound of O(m2−ε) for Edit(csubst) by applying our alignment-framework. Finally, in Section 5.3 we
show that Edit(cdel-x, cdel-y, cmatch, csubst) can be solved in time Õ(n+m2), which matches our lower
bound.

5.1 Easy Reductions

All of our reductions are of the following form. Let E1 = Edit(cdel-x, cdel-y, cmatch, csubst) and
E2 = Edit(c′del-x, c

′
del-y, c

′
match, c

′
subst) be two variants of the edit distance and denote the cost of

any traversal T with respect to Ei by δEi(T ). We say that E1 and E2 are equivalent, if there are
constants α, β such that for any traversal T we have δE1(T ) = α · δE2(T ) + β. Then the complexity
of computing E1 and E2 is asymptotically equal.

Lemma 5.1. (1) Edit(cdel-x, cdel-y, cmatch, csubst) can be solved in constant time if csubst = cmatch or
cdel-x + cdel-y ≤ min{cmatch, csubst}. Otherwise, Edit(cdel-x, cdel-y, cmatch, csubst) on binary strings is
equivalent to Edit(c′subst) on binary strings for some 0 < c′subst ≤ 2.

(2) Edit(cdel-x, cdel-y, cmatch, csubst) is equivalent to Edit(c′del-x, c
′
del-y, c

′
match, c

′
subst) for some pos-

itive integers c′del-x, c
′
del-y, c

′
match, c

′
subst.

Note that by the first statement, hardness for general rational cost parameters follows by proving
hardness of Edit(c′subst) for 0 < c′subst ≤ 2. The second statement allows us to assume positive integer
costs when giving an algorithm for Edit(cdel-x, cdel-y, cmatch, csubst) in Section 5.3.

Proof of Lemma 5.1. Let x, y be strings of length n,m. By symmetry, we may assume n ≥ m.
Observe that we can write the cost of any traversal T with respect to Edit(cdel-x, cdel-y, cmatch, csubst)
as

δEdit(T ) = A · cmatch +B · csubst + C · (cdel-x + cdel-y) + (n−m) · cdel-x,

for some A,B,C ≥ 0 with A + B + C = m, since matchings and substitutions touch as many
symbols in x as in y, so that we need exactly n−m more deletions in x than deletions in y.

(1) If cdel-x + cdel-y ≤ min{cmatch, csubst}, then we can replace any matching or substitution by
a deletion in x and a deletion in y without increasing the cost. Thus, an optimal traversal has
C = m and minimal cost n · cdel-x +m · cdel-y, which can be computed in constant time. Similarly,
if cmatch = csubst, then the minimal cost is independent of the symbols in x and y. We may
arbitrarily set A+B and C subject to A+B +C = m and A+B,C ≥ 0, and the minimal cost is
m ·min{cmatch, cdel-x + cdel-y}+ (n−m)cdel-x, which can be computed in constant time.

Now assume that cmatch 6= csubst and cdel-x+cdel-y > min{cmatch, csubst}. Restricting our attention
to binary strings, by flipping all symbols in y but not in x we can swap the costs of matching and
substitution. Thus, we may assume that csubst > cmatch (and cdel-x + cdel-y > cmatch). We set

c′subst := α(csubst − cmatch) where α := 2
cdel-x+cdel-y−cmatch

.

One can easily verify that for any traversal T with cost δEdit(T ) = A ·cmatch +B ·csubst +C · (cdel-x +
cdel-y) + (n−m) · cdel-x (with respect to Edit(cdel-x, cdel-y, cmatch, csubst)) we have

αδEdit(T )− αm · cmatch + (n−m)(1− αcdel-x) = B · c′subst + C · 2 + (n−m).
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As the latter is the cost of T with respect to Edit(c′subst), this proves that Edit(c
′
subst) is equivalent

to Edit(cdel-x, cdel-y, cmatch, csubst). Finally, note that c′subst > 0. If c′subst > 2, then we can replace it
by 2 without changing the cost of the optimal traversal, since we can replace any substitution (of
cost 2) by a deletion and an insertion (both of cost 1). This yields 0 < c′subst ≤ 2.

(2) Since we always assume all operation costs to be rationals, without loss of generality
cdel-x, cdel-y, cmatch, csubst have a common denominatorD. We obtain positive integral operation costs
by setting c′del-x := Dcdel-x+M , c′del-y := Dcdel-y+M , c′match := Dcmatch+2M , c′subst := Dcsubst+2M
for a sufficiently large integer M . Both variants are equivalent, since δEdit(T ) is changed to

DδEdit(T ) +m · 2M + (n−m) ·M.

5.2 Hardness Proof

In this section we study the edit distance with matching cost 0, deletion and insertion cost 1, and
substitution cost 0 < csubst ≤ 2. We abbreviate δEdit = δEdit(csubst).

Lemma 5.2. Edit(csubst) admits coordinate values by setting

1x := 11100, 0x := 10011, 1y := 00111, 0y := 11001.

Proof. All four values have the same length and the same number of ones, so they have equal
type. Using Fact 5.5.(1) (to be proven below), we have δEdit(0x,0y) = δEdit(10011, 11001) =
δEdit(0011, 1001) = δEdit(001, 100). Depending on csubst, the optimal traversal of (001, 100) is ei-
ther to delete both ones or to substitute the first and last symbols. This yields δEdit(001, 100) =
min{2, 2csubst}. Similarly, we obtain δEdit(1x,0y) = δEdit(0x,1y) = δEdit(0x,0y) = min{2, 2csubst}
and δEdit(1x,1y) = δEdit(11100, 00111) = min{4, 4csubst}. Hence, δEdit(1x,1y) > δEdit(1x,0y) =
δEdit(0x,1y) = δEdit(0x,0y).

Definition 5.3. Consider instances x1, . . . , xn ∈ Itx and y1, . . . , ym ∈ Ity with n ≥ m and types
tx = (`x, sx), ty = (`y, sy). We define the parameters ρ := 2d1/csubste, γ1 := 10ρ(`x + `y), γ2 :=
6ργ1 + 5sx − `x, and γ3 := 2γ2 (since csubst is constant, these parameters are Θ(`x + `y)).

To guard a string by blocks of zeroes and ones, we set G(z) := (1γ10γ1)ρz(0γ11γ1)ρ. Now the
alignment gagdet is

x := G(x1) 0γ2 G(x2) 0γ2 . . . G(xn−1) 0γ2 G(xn),

y := 0nγ3 G(y1) 0γ2 G(y2) 0γ2 . . . G(ym−1) 0γ2 G(ym) 0nγ3 .

Let us provide some intuition on the complex guarding G(z), which contains more parts com-
pared to the construction for LCS. Consider a block B = (1γ0γ)ρ. Clearly, B can be completely
matched to B, resulting in a cost of 0. Consider a slight perturbation B′ of B by prepending ∆ ones
and deleting the last ∆ zeroes. Then the edit distance of B and B′ is at most 2∆, since we may
delete the prepended ones in B′ and the additional zeroes at the end of B. Another upper bound
for the edit distance of B and B′ is 2ρ ·∆csubst, since we may match the first γ ones, then substitute
the next ∆ symbols, then match the next γ −∆ zeroes, and so on. By choosing ρ := 2d1/csubste,
the traversal using substitutions is more expensive, and indeed we prove that then the edit distance
is at least 2∆. This provides a building block where we got rid of substitutions and where slight
perturbations are severely punished. Thus, our guarding G(z) = (1γ10γ1)ρz(0γ11γ1)ρ ensures that
an optimal traversal of G(x) and G(y) aligns x and y, and this also holds after small perturbations.
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Lemma 5.4. For any 0 < csubst ≤ 2, Definition 5.3 realizes an alignment gadget for Edit(csubst).

Thus, Theorem 3.3 is applicable, implying a lower bound of O(m2−ε) for Edit(csubst). Combining
this with Lemma 5.1 proves Theorem 1.2. We remark that our construction is no unbalanced
alignment gadget, as the length of y grows linearly in n, not necessarily in m. Thus, we do not
obtain a conditional lower bound of O((nm)1−ε) (i.e., not for m ≈ nα for all 0 < α < 1), which in
fact is ruled out by the algorithmic result of Theorem 1.4, see Section 5.3.

In the proof of Lemma 5.4 we make use of the following basic observations.

Fact 5.5. Let x, y, z be binary strings and `, k ∈ N0. Then we have (1) δEdit(1
kx, 1ky) = δEdit(x, y),

(2) δEdit(x, y) ≥
∣∣|x|− |y|∣∣ and (3) |δEdit(xz, y)− δEdit(x, y)| ≤ |z|. We obtain symmetric statements

by replacing all 1’s by 0’s and by reversing all involved strings.

Proof. We show (1) for k = 1, then the general statement follows by induction. Consider an optimal
traversal T of 1x, 1y. If both ’1’s are deleted in T , then we can instead match them and improve T ,
contradicting optimality. If exactly one ’1’ is matched or substituted, then the other ’1’ is deleted,
so we may instead match the two ’1’s without increasing cost. Thus, without loss of generality an
optimal traversal of (1x, 1y) matches the two ’1’s.

For (2), note that matchings and substitutions touch as many symbols in x as in y. Hence, there
have to be at least |x| − |y| deletions in x and at least |y| − |x| deletions in y.

For (3), taking an optimal traversal of (x, y) and appending |z| deletions of the symbols in z
shows that δEdit(xz, y) ≤ δEdit(x, y)+ |z|. For the other direction, consider an optimal traversal T of
(xz, y). Replace any matching or substitution of a symbol in z with a symbol y[j] in y by a deletion
of y[j]. Also remove every deletion of a symbol in z. This results in a traversal T ′ of (x, y) with
cost at most δEdit(xz, y) + |z|, as we introduced at most |z| deletions in y. This proves the desired
inequality δEdit(x, y) ≤ δEdit(xz, y) + |z|.

Fact 5.6. Let `,m, r ≥ 0. Then for any x ∈ {0`1m0r, 1m−`−r, 1m−`0r, 0`1m−r} we have δEdit(x, 1
m) ≥

|`− r|+ csubst ·min{`, r}.

Proof. Fact 5.5.(2) yields δEdit(0
`1m0r, 1m), δEdit(1

m−`−r, 1m) ≥ ` + r ≥ |` − r|+ csubst ·min{`, r},
since csubst ≤ 2. For x = 0`1m−r, consider any optimal traversal T . If T substitutes s zeroes and
deletes the remaining `− s zeroes, then δEdit(0

`1m−r, 1m) = csubst · s+ (`− s) + δEdit(1
m−r, 1m−s).

By Fact 5.5.(1), δEdit(1
m−r, 1m−s) = δEdit(ε, 1

|r−s|) = |r − s|, where ε is the empty string. Hence,
δEdit(0

`1m−r, 1m) = min0≤s≤`{csubst · s + ` − s + |r − s|}. A short case analysis shows that this
term is minimized for s = min{`, r}, where it evaluates to csubst ·min{`, r}+ `+ r − 2 min{`, r} =
csubst ·min{`, r}+ |`− r|. The case x = 1m−`0r is symmetric.

For a string y and indices a ≤ b we denote the substring from y[a] to y[b] by y[a..b].

Fact 5.7. Let x and y1, . . . , yk be binary strings. Set y = y1 . . . yn. Then we have

δEdit(x, y) = min
x(y1),...,x(yk)

k∑
j=1

δEdit(x(yj), yj),

where x(y1), . . . , x(yk) ranges over all ordered partitions of x into k substrings, i.e., x(y1) = x[i0 +
1..i1], x(y2) = x[i1 + 1..i2], . . . , x(yk) = x[ik−1 + 1..ik] for any 0 = i0 ≤ i1 ≤ . . . ≤ ik = |x|.
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Proof. For any ordered partition, the substrings x(yj) are disjoint and ordered along x, so we can
concatenate (optimal) traversals of (x(yj), yj), j ∈ [k], to form a traversal of (x, y). This shows
δEdit(x, y) ≤

∑k
j=1 δEdit(x(yj), yj).

Now let T be an optimal traversal of (x, y). Let Jj be the indices in x that appear in a matching
or substitution operation with symbols in yj . Note that these sets are ordered, in the sense that
for any i ∈ Jj and i′ ∈ Jj′ with j < j′ we have i < i′. This allows to find an ordered partition
x(y1), . . . , x(yk) of x such that x(yj) contains the indices Jj for any j. Let us denote the total
cost of the substitutions involving yj by sj . Since traversal T deletes |yj | − |Jj | symbols in yj and
|x(yj)| − |Jj | symbols in x(yj), we have δ(T ) =

∑k
j=1 |yj | + |x(yj)| − 2|Jj | + sj . Clearly, we can

construct a traversal of (x(yj), yj) that follows the matchings and substitutions in Jj and deletes all
other symbols, showing δEdit(x(yj), yj) ≤ |yj |+ |x(yj)| − 2|Jj |+ sj . By optimality of T , we obtain
δEdit(x, y) ≥

∑k
i=1 δEdit(x(yj), yj).

Proof of Lemma 5.4. From now on let x, y be as in Definition 5.3. Observe that indeed x only
depends on m, ty, and x1, . . . , xn, and type(x) only depends on n,m, tx, and ty, and similarly for
y. Moreover, x and y can clearly be constructed in time O((n + m)(`x + `y)), where `x = |x1| =
. . . = |xn| and `y = |y1| = . . . = |ym|.

It remains to prove that for some C, we have

min
A∈An,m

δ(A) ≤ δ(x, y)− C ≤ min
A∈Sn,m

δ(A). (5)

We will set
C := 2nγ3 − β(n−m)(γ4 + γ2),

where
β := 1− csubst/5 and γ4 := 4ργ1 + `x.

Note that γ4 is the length of G(xi).
Let us give names to the substrings consisting only of zeroes in x and y. In x, we denote the

0γ2-block after G(xi) by Zx
i , i ∈ [n−1]. In y, we denote the 0γ2-block after G(yj) by Zy

j , j ∈ [m−1].
Moreover, we denote the prefix 0nγ3 by Ly and the suffix 0nγ3 by Ry.

We first prove the crucial property that for any prefix x′ of x the distance δEdit(x
′, Ly) is

essentially |Ly| − β|x′| = nγ3 − β|x′|. This is due to a careful choice of the parameters γ1, γ2, ρ.
Claim 5.8. For any prefix x′ of x we have δEdit(x

′, Ly) ≥ nγ3 − β|x′|, with equality if x′ is of the
form G(x1)0γ2 . . .G(xi)0

γ2 for any 0 ≤ i < n. Symmetric statements hold for δEdit(x
′′, Ry) where

x′′ is any suffix of x.

Proof. The parameter γ3 is chosen such that |x′| ≤ |x| ≤ |Ly|: Indeed, |x| ≤ n(4ργ1 + `x + γ2) ≤
n · 2γ2 ≤ nγ3 = |Ly|. Observe that all zeroes of x′ can be matched to zeroes of Ly, while all ones
of x′ have to be substituted. The remaining zeroes of Ly have to be deleted. Denoting the number
of ones in x′ by `, we obtain δEdit(x

′, Ly) = ` · csubst + (|Ly| − |x′|). We will show ` ≥ |x′|/5, with
equality if x′ has the special form as in the statement. In other words, the relative number of ones
`/|x′| is at least 1/5, with equality if x′ has the special form. This implies δEdit(x

′, Ly) ≥ nγ3−β|x′|,
with equality if x′ has the special form.

Note that each xi has length `x and contains sx ones, so that G(xi)Z
x
i = (1γ10γ1)ρxi(0

γ11γ1)ρ0γ2

contains 2ργ1 + (`x − sx) + γ2 zeroes and 2ργ1 + sx ones. The parameter γ2 is chosen so that the
number of zeroes is four times the number of ones, implying that the relative number of ones is

19



Figure 4: Optimal traversal corresponding to structured alignment A = {(∆+j, j) | j ∈ [m]} ∈ Sn,m.

1/5. Note that any prefix of (1γ10γ1)ρ has relative number of ones at least 1/2. Since xi0γ1 has less
than 2γ1 zeroes and |(1γ10γ1)ρ| ≥ 2γ1, any prefix of (1γ10γ1)ρxi0

γ1 has relative number of ones at
least 1/4. Since any prefix of 1γ1(0γ11γ1)ρ−1 has relative number of ones at least 1/2, any prefix of
(1γ10γ1)ρxi(0

γ11γ1)ρ has relative number of ones at least 1/4. The relative number of ones decreases
by adding any prefix of 0γ2 , however, for the final string (1γ10γ1)ρxi(0

γ11γ1)ρ0γ2 , we already argued
that the relative number of ones is 1/5. This shows that the relative number of ones of any prefix
of x is at least 1/5.

We now show the upper bound of (5), i.e., δEdit(x, y) ≤ C + minA∈Sn,m
∑

(i,j)∈A δEdit(xi, yj).
Consider a structured alignment A = {(∆+1, 1), . . . , (∆+m,m)} ∈ Sn,m. We construct an ordered
partition of x as in Fact 5.7 by setting (see Figure 4)

x(G(yj)) := G(x∆+j) for j ∈ [m],

x(Zy
j ) := Zx

∆+j for j ∈ [m− 1],

x(Ly) := G(x1)Zx
1 . . .G(x∆)Zx

∆,

x(Ry) := Zx
∆+mG(x∆+m+1) . . . Zx

n−1G(xn).

Note that indeed these strings partition x and y, respectively. Thus, Fact 5.7 yields

δEdit(x, y) ≤ δEdit(x(Ly), Ly) + δEdit(x(Ry), Ry) +
m∑
j=1

δEdit(G(x∆+j),G(yj)) +
m−1∑
j=1

δEdit(Z
x
∆+j , Z

y
j ).

Since x(Ly) is a prefix of x of the correct form, by Claim 5.8 we have δEdit(x(Ly), Ly) = nγ3 −
β|x(Ly)|. Symmetrically, we obtain δEdit(x(Ry), Ry) = nγ3 − β|x(Ry)|. Note that |G(xi)Z

x
i | =

γ4 + γ2, so that |x(Ly)| + |x(Ry)| = (n − m)(γ4 + γ2). Moreover, as Zx
i = Zy

j = 0γ2 we
have δEdit(Z

x
∆+j , Z

y
j ) = 0. Finally, by matching all guarding zeroes and ones of G(x∆+j) =

(1γ10γ1)ρx∆+j(0
γ11γ1)ρ and G(yj) = (1γ10γ1)ρyj(0

γ11γ1)ρ we conclude δEdit(G(x∆+j),G(yj)) ≤
δEdit(x∆+j , yj). This yields

δEdit(x, y) ≤ 2nγ3 − β(n−m)(γ4 + γ2) +

m∑
j=1

δEdit(x∆+j , yj) = C +
∑

(i,j)∈A

δEdit(xi, yj).

As A ∈ Sn,m was arbitrary, the desired inequality follows.
It remains to prove the lower bound of (5), i.e., δEdit(x, y) ≥ C+minA∈An,m δ(A). As in Fact 5.7,

let x(Ly), x(G(yj)) for j ∈ [m], x(Zy
j ) for j ∈ [m− 1], x(Ry) be an ordered partition of x such that

δEdit(x, y) = δEdit(x(Ly), Ly)+δEdit(x(Ry), Ry)+
m∑
j=1

δEdit(x(G(yj)),G(yj))+
m−1∑
j=1

δEdit(x(Zy
j ), Zy

j ).
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Figure 5: Illustration for the proof of Claim 5.9.

We define an alignment A as follows. If there is some i such that xi is contained in x(G(yj)),
then align j with any such i. Otherwise leave j unaligned.
Claim 5.9. We have

δEdit(x(G(yj)),G(yj)) ≥ β(γ4 − |x(G(yj))|) +

{
δEdit(xi, yj) if j is aligned to i,
maxi,j′ δEdit(xi, yj′) if j is unaligned.

Proof. If |x(G(yj))| ≥ γ2, then |x(G(yj))| ≥ γ2 ≥ γ4 + 2(`x + `y) ≥ γ4 + 2 maxi,j′ δEdit(xi, yj′) and
by β > 1/2 the right hand side of the claim is at most 0, so the claim holds trivially. Otherwise
x(G(yj)) is shorter than any Zx

i = 0γ2 , implying that x(G(yj)) is a substring of 0γ2G(xi)0
γ2 for

some i ∈ [n].
We write G(yj) as z−2ρ z−2ρ+1 . . . z2ρ−1 z2ρ, where z−2k = z2k = 1γ1 , z−2k+1 = z2k−1 = 0γ1 ,

and z0 = yj (for all 1 ≤ k ≤ ρ). As in Fact 5.7, we split up x(G(yj)) into x(zk), −2ρ ≤
k ≤ 2ρ, such that δEdit(x(G(yj)),G(yj)) =

∑2ρ
k=−2ρ δEdit(x(zk), zk). Similarly, we write G(xi) as

w−2ρw−2ρ+1 . . . w2ρ−1w2ρ. We denote the distance of the start of x(zk) to the start of wk by ∆L(k),
i.e., if x(zk) = x[a..b] and wk = x[c..d] we set ∆L(k) := |a− c|. Similarly, we set ∆R(k) := |b− d|.
For an illustration, see Figure 5. Note that ∆R(k) = ∆L(k + 1) holds for any k.

First assume (∗): for some k 6= 0 the string x(zk) is longer than 5
4γ1 or x(zk) has less than

3
4γ1 common symbols with zk. Then clearly δEdit(x(G(yj)),G(yj)) ≥ δEdit(x(zk), zk) ≥ 1

4γ1. By
Fact 5.5.(2), we also have δEdit(x(G(yj)),G(yj)) ≥ |G(yi)|−|x(G(yj))| = γ4−|x(G(yj))|. As a linear
combination of these two lower bounds, we obtain δEdit(x(G(yj)),G(yj)) ≥ β(γ4−|x(G(yj))|)+(1−
β)1

4γ1. Since (1− β)1
4γ1 = csubst

20 γ1 ≥ `x + `y ≥ maxi,j′ δEdit(xi, yj′), we have proven the statement
in this case.

If (*) does not hold, then we have ∆L(k),∆R(k) ≤ 1
2γ1 for any |k| > 1: It suffices to show the

claim for any even k 6= 0, since ∆R(k) = ∆L(k + 1). For any even k 6= 0, the string x(zk) has to
contain the majority of a block w` with even ` 6= 0. Since the numbers of blocks are identical in
G(yj) and G(xi), x(zk) has to contain the majority of wk for any even k 6= 0. Specifically, x(zk)
contains at least 3

4γ1 symbols of wk and has length at most 5
4γ1, implying the desired inequalities

for ∆L(k),∆R(k). Note that in this case i and j are aligned.
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Note that for even k 6= 0 we obtain x(zk) from wk = zk = 1γ1 by either deleting a prefix of ∆L(k)
ones or prepending ∆L(k) zeroes, and by either deleting a suffix of ∆R(k) ones or by appending
∆R(k) zeroes. Hence, Fact 5.6 shows that

δEdit(x(zk), zk) ≥ |∆L(k)−∆R(k)|+ csubst ·min{∆L(k),∆R(k)}. (6)

The same argument works for any k with |k| > 1. For k ∈ {−1, 1} the argument does not work,
since z−1 = z1 = 0γ1 is not sorrounded by blocks of 1γ1 . However, for k ∈ {−1, 1} we have the
weaker δEdit(x(zk), zk) ≥ |∆L(k)−∆R(k)| by Fact 5.5.(2). Moreover, by Fact 5.5.(3) we have

δEdit(x(z0), z0) ≥ δEdit(xi, yj)−∆L(0)−∆R(0). (7)

Combining these inequalities yields δEdit(x(G(yj)),G(yj)) ≥ δEdit(xi, yj)+∆L(−2ρ)+∆R(2ρ) as
we show in the following. This implies the desired statement, since ∆L(−2ρ)+∆R(2ρ) ≥

∣∣|G(yj)|−
|x(G(yj))|

∣∣ ≥ γ4 − |x(G(yj))| ≥ β(γ4 − |x(G(yj))|). To show the claim, we set sL := min{∆L(k) |
−2ρ ≤ k ≤ 0} and sR := min{∆R(k) | 0 ≤ k ≤ 2ρ}. Note that ∆L(k) has a total variation of at least
∆L(−2ρ)−sL+∆L(0)−sL over k = −2ρ, . . . , 0, since it starts in ∆L(−2ρ), changes to sL, and then
changes to ∆L(0). Thus, summing |∆L(k)−∆R(k)| = |∆L(k)−∆L(k + 1)| over all −2ρ ≤ k ≤ −1
yields at least ∆L(−2ρ)−sL+∆L(0)−sL. Moreover, for every −2ρ ≤ k < −1 inequality (6) applies
and the summand csubst · min{∆L(k),∆R(k)} is at least csubst · sL. As the number of such k’s is
2ρ− 1 ≥ 2/csubst, the total contribution of the summand csubst ·min{∆L(k),∆R(k)} over all k < 0
is at least 2sL. Thus, we have

−1∑
k=−2ρ

δEdit(x(zk), zk) ≥
−1∑

k=−2ρ

|∆L(k)−∆R(k)|+
−2∑

k=−2ρ

csubst ·min{∆L(k),∆R(k)}

≥
(
∆L(−2ρ)− sL + ∆L(0)− sL

)
+
(
2sL
)
≥ ∆L(−2ρ) + ∆L(0).

Using a symmetric statement for the sum over all k > 0 as well as equation (7), we obtain the desired
inequality δEdit(x(G(yj)),G(yj)) =

∑2ρ
k=−2ρ δEdit(x(zk), zk) ≥ δEdit(xi, yj)+∆L(−2ρ)+∆R(2ρ).

Since Ly = 0nγ3 and x(Ly) is a prefix of x, by Claim 5.8 we have δEdit(x(Ly), Ly) ≥ nγ3 −
β|x(Ly)|, and symmetrically we get δEdit(x(Ry), Ry) ≥ nγ3 − β|x(Ly)|. By Fact 5.5.(2), we have
δEdit(x(Zy

j ), Zy
j ) ≥

∣∣|Zy
j | − |x(Zy

j )|
∣∣ ≥ β(γ2 − |x(Zy

j )|). Putting all of this together, we obtain

δEdit(x, y) ≥ 2nγ3 + β
[ m∑
j=1

(γ4 − |x(G(yj))|) +

m−1∑
j=1

(γ2 − |x(Zy
j )|)− |x(Ly)| − |x(Ry)|

]
+ δ(A),

where we used δ(A) =
∑

(i,j)∈A δEdit(xi, yj) + (m− |A|) maxi,j δEdit(xi, yj). Note that by definition
of x and since the strings x(G(yj)), x(Zy

j ), x(Ly), x(Ry) partition x we have

nγ4 + (n− 1)γ2 = |x| =
m∑
j=1

|x(G(yj))|+
m−1∑
j=1

|x(Zy
j )|+ |x(Ly)|+ |x(Ry)|.

Together, this yields the desired bound from below

δEdit(x, y) ≥ 2nγ3 − β(n−m)(γ4 + γ2) + δ(A).
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5.3 Algorithm

For completeness, we prove a generalization of the algorithm of Hirschberg [12] from LCS to edit
distance. Recall that the trivial dynamic programming algorithm computes a table storing all
distances δEdit(x[1..i], y[1..j]). In contrast, we build a dynamic programming table storing for any
index j and any cost k the minimal index i with δEdit(x[1..i], y[1..j]) − cdel-x(i − j) = k. For
some intuition, note that for i ≥ j at least i − j symbols in x[1..i] have to be deleted so that the
cost δEdit(x[1..i], y[1..j]) is at least cdel-x(i − j). Thus, it makes sense to “normalize” the cost by
subtracting cdel-x(i− j). As we will see, the normalized cost is bounded by O(m) (the length of the
smaller of the two strings), which reduces the table size to O(m2).

Theorem 5.10. Let cdel-x, cdel-y, cmatch, csubst be positive integers. Edit(cdel-x, cdel-y, cmatch, csubst)
can be solved in time O((n+m2) log |Σ|) on strings of length n,m with n ≥ m over alphabet Σ.

Note that it is easy to ensure Σ ⊆ [n+m] after O(n log(min{|Σ|, n})) preprocessing.3 Thus, the
running time is at most O((n + m2) log n) = Õ(n + m2), and Theorem 1.4 follows from the above
theorem and the second part of Lemma 5.1. Our algorithm is designed for the pointer machine
model; on the Word RAM the log-factor can be improved.

Consider strings x, y over alphabet Σ of length n,m, respectively, n ≥ m. For convenience, we
set min ∅ :=∞. For any index i ∈ {0, . . . , n} and symbol σ ∈ Σ we set

Nextx=σ(i) := min{i′ | i < i′ ≤ n and x[i′] = σ},
Nextx6=σ(i) := min{i′ | i < i′ ≤ n and x[i′] 6= σ}.

We argue that a data structure can be built in O(n log |Σ|) preprocessing time supporting Nextx=σ(i)
and Nextx6=σ(i) queries in time O(log |Σ|). A simple solution with worse running time is to precom-
pute all answers to all possible queries Nextx=σ(i) and Nextx6=σ(i), with i ∈ {0, . . . , n}, σ ∈ Σ, in
time O(|Σ|n) by one scan from x[n] to x[1]. To improve the preprocessing time for Nextx6=σ(i), note
that Nextx6=σ(i) = i+ 1 for all σ 6= x[i+ 1]. Thus, we only have to precompute Nextx6=x[i+1](i) (which
can be done in time O(n) by one scan from x[n] to x[1]), then Nextx6=σ(i) can be queried in time
O(1). For Nextx=σ(i), for any i ∈ {0, . . . , n} we build a dictionary Di storing Nextx=σ(i) for each
σ ∈ Σ. Note that Di−1 and Di differ only for the symbol x[i + 1]. Thus, we can use persistent
search trees [10] as dictionary data structures, resulting in a preprocessing time of O(n log |Σ|) for
building D0, . . . , Dn and a lookup time of O(log |Σ|) for querying Nextx=σ(i). Using such a Next
data structure, we can formulate our dynamic programming algorithm, see Algorithm 1.

Since Nextx=σ and Nextx6=σ can be queried in time O(log |Σ|) and M = (cdel-x + cdel-y)m = O(m),
Algorithm 1 runs in time O(m2 log |Σ|). Together with the preprocessing time for the Next data
structure, we obtain a total running time of O((n+m2) log |Σ|). It remains to argue correctness.

Correctness We prove that the dynamic programming table I[j, k] has the following meaning.

Lemma 5.11. Algorithm 1 computes for any j ∈ [m], k ∈ Z

I[j, k] = min{0 ≤ i ≤ n | δEdit(x[1..i], y[1..j])− cdel-x(i− j) = k}.
3To compress the alphabet we build a balanced binary search tree T whose nodes correspond to Σ (by simply

adding all symbols of x and y to T ). Then we replace each symbol by its index in some fixed ordering of the nodes
of T .
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Algorithm 1 Algorithm for solving Edit(cdel-x, cdel-y, cmatch, csubst) in time O((n+m2) log |Σ|).
Assumption: cdel-x, cdel-y, cmatch, csubst are positive integers
Input: strings x, y of length n,m, n ≥ m
Output: δEdit(x, y)

M ← (cdel-x + cdel-y)m
Implicitly set I[j, k]←∞ for all j and all k < 0 or k > M
I[0, 0]← 0
I[0, k]←∞ for 0 < k ≤M
for j = 1, . . . ,m do

for k = 0, . . . ,M do
I[j, k]← min{I[j − 1, k − cdel-x − cdel-y],

Nextx=y[j](I[j − 1, k − cmatch]),

Nextx6=y[j](I[j − 1, k − csubst])}
end for

end for
return cdel-x(n−m) + min{0 ≤ k ≤M | I[m, k] <∞}.

Proof. Let R[j, k] := min{0 ≤ i ≤ n | δEdit(x[1..i], y[1..j])− cdel-x(i− j) = k} be the right hand side
of the statement.

The statement is true for j = 0, since for the empty string ε we have δEdit(x[1..i], ε) = cdel-x · i,
so that R[0, k] = 0 for k = 0, and ∞ otherwise, which is exactly how we initialize I[0, k].

We show that R[j, k] = ∞ for k < 0 or k > M , which is also implicitly assumed for I[j, k] in
Algorithm 1. Note that for i ≥ j we have to delete at least i− j symbols in x[1..i] when traversing
it with y[1..j], which implies δEdit(x[1..i], y[1..j]) ≥ cdel-x(i − j). Since additionally for i < j the
term −cdel-x(i− j) is positive, we have δEdit(x[1..i], y[1..j])− cdel-x(i− j) ≥ 0 for all i, j. Thus, for
no k < 0 we can have δEdit(x[1..i], y[1..j]) − cdel-x(i − j) = k, implying R[j, k] = ∞ in this case.
Moreover, δEdit(x[1..i], y[1..j]) ≤ cdel-x ·i+cdel-y ·j, which implies δEdit(x[1..i], y[1..j])−cdel-x(i−j) ≤
(cdel-y + cdel-x)j ≤M . Thus, we also have R[j, k] =∞ for k > M .

It remains to show the statement for j > 1 and 0 ≤ k ≤ M . Inductively, we can assume that
the statement holds for j − 1. We show that R[j, k] satisfies the same recursive equation as I[j, k]
in Algorithm 1. Let i := R[j, k] and consider an optimal traversal T of (x[1..i], y[1..j]). We obtain
a traversal T ′ by removing the last operation in T .

If the last operation in T is a deletion in x, then T ′ is an optimal traversal of (x[1..i− 1], y[1..j])
with cost δEdit(x[1..i − 1], y[1..j]) = δEdit(x[1..i], y[1..j]) − cdel-x. Thus, we can decrease i to i − 1
while keeping k = δEdit(x[1..i], y[1..j]) − cdel-x(i − j) = δEdit(x[1..i − 1], y[1..j]) − cdel-x(i − 1 − j).
This contradicts minimality of i = R[j, k], so the last operation in T cannot be a deletion in x.

If the last operation in T is a deletion in y, then T ′ is an optimal traversal of (x[1..i], y[1..j− 1])
with cost δEdit(x[1..i], y[1..j − 1]) = δEdit(x[1..i], y[1..j])− cdel-y. Thus, we have

R[j, k] = min{0 ≤ i ≤ n | δEdit(x[1..i], y[1..j])− cdel-x(i− j) = k}
= min{0 ≤ i ≤ n | δEdit(x[1..i], y[1..j − 1])− cdel-x(i− (j − 1)) = k − cdel-y − cdel-x}
= R[j − 1, k − cdel-x − cdel-y].

If the last operation in T is a matching of x[i] and y[j], then T ′ is an optimal traversal of

24



(x[1..i − 1], y[1..j − 1]) with cost δEdit(x[1..i − 1], y[1..j − 1]) = δEdit(x[1..i], y[1..j]) − cmatch. This
implies δEdit(x[1..i − 1], y[1..j − 1]) − cdel-x((i − 1) − (j − 1)) = k − cmatch, so that i − 1 is a
candidate for R[j − 1, k − cmatch]. Let i′ := R[j − 1, k − cmatch] and note that i′ ≤ i − 1. As
x[i] = y[j], we obtain i ≥ Nextx=y[j](i

′) =: i∗. In the following we show i = i∗. By definition of i′

we have δEdit(x[1..i′], y[1..j − 1]) − cdel-x(i′ − j + 1) = k − cmatch. Hence, δEdit(x[1..i∗], y[1..j]) ≤
cmatch + cdel-x(i∗− i′−1) + δEdit(x[1..i′], y[1..j−1]) = k+ cdel-x(i∗− j). We even have equality, since
otherwise δEdit(x[1..i], y[1..j]) ≤ δEdit(x[1..i∗], y[1..j])+ cdel-x(i− i∗) < k+ cdel-x(i− j), contradicting
the definition of i. Thus, i∗ is a candidate for R[j, k], implying that we also have i ≤ i∗. Hence, we
have R[j, k] = i∗ = Nextx=y[j](i

′) = Nextx=y[j](R[j − 1, k − cmatch]).
We argue analogously if the last operation in T is a substitution of x[i] and y[j]. This yields

R[j, k] = min{R[j−1, k−cdel-x−cdel-y],Nextx=y[j](R[j−1, k−cmatch]),Nextx6=y[j](R[j−1, k−csubst])}.

Hence, R[j, k] satisfies the same recursion as I[j, k], and we proved R[j, k] = I[j, k] for all j, k.

Lemma 5.12. Algorithm 1 correctly computes δEdit(x, y).

Proof. Among all optimal traversals of (x, y), pick a traversal T that ends with the maximal num-
ber d of deletions in x, and set i := n − d. Observe that i is minimal with δEdit(x[1..i], y[1..m]) +
cdel-x(n− i) = δEdit(x, y), which is equivalent to δEdit(x[1..i], y[1..m])− cdel-x(i−m) = δEdit(x, y)−
cdel-x(n−m) =: k. Thus, i = I[m, k] <∞, which implies that the return value of Algorithm 1 is at
most cdel-x(n−m) + k = δEdit(x, y).

Moreover, for any k with I[m, k] <∞ there is a 0 ≤ i ≤ n with δEdit(x[1..i], y[1..m])− cdel-x(i−
m) = k. By appending n − i deletions in x to any optimal traversal of (x[1..i], y[1..m]), we obtain
δEdit(x, y) ≤ δEdit(x[1..i], y[1..m]) + cdel-x(n − i) = k + cdel-x(n − m). Hence, the return value of
Algorithm 1 is also at least δEdit(x, y).

6 Dynamic Time Warping

We present coordinate values and an unbalanced alignment gadget for DTW on one-dimensional
curves taking values in N0, i.e., we consider the set of inputs I :=

⋃
k≥0 Nk0.

Lemma 6.1. DTW admits coordinate values by setting

1x := 1100, 0x := 0110, 1y := 0011, 0y := 1010.

Proof. All four values have the same length and sum of all entries, so they have equal type. Short
calculations show that 4 = δDTW(1x,1y) > δDTW(0x,1y) = δDTW(0x,0y) = δDTW(1x,0y) = 1.

Definition 6.2. Consider instances x1, . . . , xn ∈ Itx and y1, . . . , ym ∈ Ity with n ≥ m and types
tx = (`x, sx), ty = (`y, sy). We define M := 2z, where z is the largest value contained in any of the
one-dimensional curves x1, . . . , xn, y1, . . . , ym, and we set κ := 3(`x + `y). We construct

GAm,ty
x (x1, . . . , xn) := Mκ x1 M

κ x2 M
κ . . . Mκ xn M

κ,

GAn,tx
y (y1, . . . , ym) := Mκ y1 M

κ y2 M
κ . . . Mκ ym Mκ,

where Mκ is to be understood as a sequence with κ times the entry M .
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Lemma 6.3. Definition 6.2 realizes an unbalanced alignment gadget for dynamic time warping.

Thus, Theorem 3.3 is applicable, implying a lower bound of O((nm)1−ε) for DTW on one-
dimensional curves over N0. To restrict the alphabet further, note that our basic values use the
alphabet {0, 1} ⊆ N0 and each invocation of the alignment gadget introduces a new symbol which
is twice as large as the largest value seen so far. Since in the proof of Theorem 3.3 we use alignment
gadgets three times, we introduce the symbols 2, 4, and 8. In total, we prove quadratic-time hardness
of DTW on one-dimensional curves taking values in {0, 1, 2, 4, 8} ⊆ N0. This proves Theorems 1.1
and 1.3.

Proof of Lemma 6.3. Observe that x := GAm,ty
x (x1, . . . , xn) and y := GAn,tx

y (y1, . . . , ym) can be
computed in time O((n+m)(`x + `y)) yielding strings of length O(n(`x + `y)) and O(m(`x + `y)),
respectively. Moreover, type(x) and type(y) only depend on tx, ty, n,m. It remains to show the
inequalities (2) of Definition 3.1, for which we set C := (n−m)(`xM − sx).

We start with the following useful observations.
Claim 6.4. Let ` ≥ 1 and a, a′, b, b′ ∈ N0. For any i ∈ [n], j ∈ [m], we have

(1) δDTW(xi,M
`) ≥ δDTW(xi,M) = `xM − sx ≥ `xM/2 and δDTW(M `, yj) ≥ δDTW(M,yj) =

`yM − sy ≥ `yM/2,

(2) δDTW(xi, yj) < (`x + `y)M/2.

(3) δDTW(x′,Mκ) ≥ κM/2 and δDTW(Mκ, y′) ≥ κM/2 for any substrings x′ of xi and y′ of yj ,

(4) δDTW(MaxiM
a′ ,M byjM

b′) ≥ δDTW(xi, yj).

Proof. For (1), observe that each symbol of xi can only be traversed together with the symbol M
and hence,

δDTW(xi,M
`) ≥ δDTW(xi,M) =

`x∑
k=1

|M − xi[k]| = `xM −
`x∑
k=1

xi[k] = `xM − sx.

Since xi[k] ≤ z = M/2, we have sx ≤ `xM/2. The statement for yj is symmetric.
For (2) and (3), note that all symbols in x′ are in [0, z]. Hence, we obtain δDTW(xi, yj) ≤

max{|xi|, |yj |} · z < (`x + `y)M/2. Likewise, δDTW(x′,Mκ) ≥ κ(M − z) = κM/2. The inequality
for yj follows symmetrically.

To prove (4), consider an optimal traversal T of MaxiM
a′ and M byjM

b′ . We construct a
traversal T ′ of xi and yj that has no larger cost. If T does not already traverse xi[1] together with
yj [1], then at some step in T either a symbol in xi is traversed together with a symbol of the prefix
M b or a symbol in yj is traversed together with a symbol of the prefix Ma. Let us assume the first
case, since the second is symmetric. A contiguous part TH of T consists of traversing a prefix x′ of
xi together with all symbols in M b, incurring a cost of at least |x′|M/2. Let TR be the remaining
part of T after TH . We construct a traversal T ′′ of xiMa′ and yjM b′ as follows. We first traverse x′

together with yj [1] and then follow TR, which is possible since TR starts at yj [1]. Since traversing
x′ together with yj [1] incurs a cost of at most |x′|z = |x′|M/2, which is smaller than the cost of TH ,
the cost of our constructed traversal T ′′ is no larger than the cost of T . Symmetrically, we eliminate
the suffixes Ma′ and M b′ and construct a traversal T ′ of xi and yj of cost no larger than T .

26



Figure 6: Optimal traversal corresponding to structured alignment A = {(∆+j, j) | j ∈ [m]} ∈ Sn,m.

We first verify that

δDTW(x, y) ≤ (n−m)(`xM − sx) + min
A∈Sn,m

∑
(i,j)∈A

δDTW(xi, yj),

by designing a traversal (illustrated in Figure 6) that achieves this bound. Let A ∈ Sn,m be
the alignment minimizing the expression, and note that A = {(∆ + 1, 1), . . . , (∆ + m,m)} for
some 0 ≤ ∆ ≤ n − m. We first traverse Mκx1M

κ . . .Mκx∆ together with the first symbol of
y, M , which contributes a cost of

∑∆
i=1 δDTW(xi,M) = ∆(`xM − sx). For i = 1, . . . ,m we

repeat the following: We traverse Mκx∆+i together with Mκyi by traversing Mκ and Mκ si-
multaneously, and xi and yi in a locally optimal manner; this incurs a cost of δDTW(x∆+i, yi)
for each i. Finally, we traverse the last block Mκ in y with the current block Mκ in x, and
then traverse the remainder x∆+m+1M

κ . . .MκxnM
κ of x together with the last symbol of y, M .

The total cost amounts to ∆(`xM − sx) +
∑m

i=1 δDTW(x∆+i, yi) + (n − ∆ − m)(`xM − sx) =
(n−m)(`xM − sx) +

∑
(i,j)∈A δDTW(xi, yj).

In the remainder of the proof, we verify that

δDTW(x, y) ≥ (n−m)(`xM − sx) + min
A∈An,m

[ ∑
(i,j)∈A

δDTW(xi, yj) + (m− |A|) max
i,j

δDTW(xi, yj)
]
.

Let T ∗ = ((a∗1, b
∗
1), . . . , (a∗t , b

∗
t )) be an optimal traversal of (x, y) (see Section 2 for the definition of

traversals). Substrings x′ of x and y′ of y are paired if for some index i in x′ and some index j in
y′ we have (i, j) = (a∗t′ , b

∗
t′) for some 1 ≤ t′ ≤ t.

We call the i-th occurrence of Mκ in x the i-th M -block Mx
i of x, and similarly for y. Let

X := {Mx
i | i ∈ [n + 1]}, Y := {My

j | j ∈ [m + 1]} be the sets of all M -blocks of x and y,
respectively. We define a bipartite graph GM with vertex set X ∪ Y , where M -blocks Mx

i and My
j

are connected by an edge if and only if they are paired. We show the following properties of GM .
Claim 6.5 (Planarity). For any paired Mx

i ,M
y
j and paired Mx

i′ ,M
y
j′ we have i ≤ i′ and j ≤ j′ (or

i ≥ i′ and j ≥ j′).

Proof. By monotonicity of traversals, for k ≤ k′ we have a∗k ≤ a∗k′ and b∗k ≤ b∗k′ . Thus, if x[a∗k] is in
Mx
i and x[a∗k′ ] is in Mx

i′ , then i ≤ i′. Similarly, if y[b∗k] is in My
j and y[b∗k′ ] is in My

j′ , then j ≤ j′.
Hence, for any paired Mx

i ,M
y
j and Mx

i′ ,M
y
j′ we have i ≤ i′, j ≤ j′ or i ≥ i′, j ≥ j′.

Claim 6.6. GM has no isolated vertices.
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Proof. Assume that some M -block Mx
i is not paired with any M -block of y, and let i be maximal

with this property. Note that i < n + 1, as the last M -block of x is always paired with the last
M -block of y. Then there is some j ∈ [m] such that Mx

i is paired with yj , but Mx
i is not paired

with any part of y outside yj . By maximality of i and planarity, My
j+1 is paired with xi or Mx

i+1,
as otherwise Mx

i+1 is not paired with any My
j′ .

We can find a cheaper traversal as follows. Consider the first time t1 at which the traversal T ∗

is simultaneously at the first symbol of Mx
i and any symbol of yj (this exists since Mx

i is paired
to yj , but to no part of y outside yj), and any time t2 at which T ∗ is at My

j+1 and xi or at My
j+1

and Mx
i+1. Between t1 and t2, T ∗ has a cost of at least δDTW(y′,Mκ), where y′ is any substring

of yj . By Claim 6.4.(3), this is at least κM/2. We replace this part of T ∗ by traversing (i) the
remainder of yj with the first symbol of Mx

i , (ii) M
x
i with the necessary part of My

j+1, and (iii) the
necessary part of xi and Mx

i+1 with the current symbol in y, M . By Claim 6.4.(1), this incurs a
cost of at most δDTW(xi,M) + δDTW(yj ,M) = `xM − sx + `yM − sy ≤ (`x + `y)M . By our choice
of κ = 3(`x + `y), we improve the cost of the traversal, contradicting optimality of T ∗. This shows
that no vertex in X is isolated, we argue similarly for vertices in Y .

Claim 6.7. GM contains no path of length 3.

Proof. Assume that GM contains a path Mx
i −M

y
j −Mx

i′ −M
y
j′ . Without loss of generality we

assume i < i′, the case i > i′ is symmetric. By planarity, we have j < j′. Since GM has no isolated
vertices and by planarity, every Mx

i′′ with i ≤ i′′ ≤ i′ is paired with My
j , so we can assume that

i′ = i + 1 (after replacing i with i′ − 1). Similarly, we can assume j′ = j + 1, and the path is
Mx
i −M

y
j −Mx

i+1 −M
y
j+1.

We can find a cheaper traversal as follows. Consider any time t1 at which the traversal T ∗

is simultaneously at Mx
i and My

j (this exists since Mx
i and My

j are paired), and consider any
time t2 at which T ∗ is simultaneously at Mx

i+1 and My
j+1. Between t1 and t2, T ∗ traverses xi

with (parts of) My
j , and yj with (parts of) Mx

i+1, which by Claim 6.4.(1) incurs a cost of at least
δDTW(xi,M) + δDTW(M,yj) ≥ (`x + `y)M/2. We replace this part of T ∗ by traversing (i) the
remaining parts of Mx

i and My
j , (ii) xi and yj (in a locally optimal way), and (iii) the necessary

parts of Mx
i+1 and My

j+1. This incurs a cost of δDTW(xi, yj) < (`x + `y)M/2 (by Claim 6.4.(4)),
which contradicts optimality of T ∗.

By the above two claims, GM is a disjoint union of stars. By planarity and since GM has no
isolated vertices, the leafs of any star in GM have to be consecutive M -blocks. Hence, we can
write the components of GM as C1, . . . , Cs with Ck = {Mx

ik
} ∪ {My

jk
,My

jk+1, . . . ,M
y
jk+dk−1}, and

C ′1, . . . , C
′
s′ with C

′
k = {My

j′k
} ∪ {Mx

i′k
,Mx

i′k+1, . . . ,M
x
i′k+d′k−1}.

Claim 6.8. We have
∑s

k=1 dk = m− s′ + 1 and
∑s′

k=1 d
′
k = n− s+ 1.

Proof. Since the components C1, . . . , Cs and C ′1, . . . , C ′s′ partition GM , restricted to Y we have s′+∑s
k=1 dk =

∑s′

k=1 |C ′k∩Y |+
∑s

k=1 |Ck∩Y | = |Y | = m+1. The second claim follows analogously.

We construct an alignment by aligning the xi, yj that lie between two consecutive components
of GM . More formally, we define an alignment A by aligning (ik − 1, jk − 1) (for all k ∈ [s] with
ik, jk > 1) and aligning (i′k − 1, j′k − 1) (for all k ∈ [s′] with i′k, j

′
k > 1). Since GM has no isolated

vertices, A is a valid alignment. We have |A| = s+ s′− 1, since only the leftmost component of GM
has ik = 1, jk = 1, i′k = 1, or j′k = 1, and all other components give rise to exactly one aligned pair.
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Let us calculate the cost of T ∗. Each yj that lies between the leafs of a star Ck in GM (i.e.,
jk ≤ j < jk + dk) has to be traversed together with (parts of) Mx

ik
. By Claim 6.4.(1), this incurs a

cost of at least δDTW(M,yj) = `yM − sy. Likewise, each xi that lies between the leafs of a star C ′k
incurs a cost of at least `xM − sx. For any (i, j) ∈ A, xi is traversed together with a substring of
MκyjM

κ, and yj is traversed together with a substring of MκxiM
κ. Hence, there are a, a′, b, b′ ≥ 0

such that we traverse MaxiM
a′ together with M byjM

b′ . By Claim 6.4.(4), this incurs a cost of at
least δDTW(xi, yj). In total, the cost of the optimal traversal T ∗ is

δDTW(x, y) ≥
s∑

k=1

(dk − 1)(`yM − sy) +
s′∑
k=1

(d′k − 1)(`xM − sx) +
∑

(i,j)∈A

δDTW(xi, yj).

By Claim 6.8, we have
∑s

k=1(dk − 1) = m − (s + s′ − 1) = m − |A|. Similarly,
∑s′

k=1(d′k − 1) =
n − |A| = (n −m) + (m − |A|). Additionally bounding `yM − sy + `xM − sx ≥ (`x + `y)M/2 >
maxi,j δDTW(xi, yj), we obtain the desired inequality

δDTW(x, y) ≥ (m− |A|) max
i,j

δDTW(xi, yj) + (n−m)(`xM − sx) +
∑

(i,j)∈A

δDTW(xi, yj).

7 Palindromic and Tandem Subsequences

In this section, we prove quadratic-time hardness of longest palindromic subsequence (LPS) and
longest tandem subsequence (LTS) by presenting reductions from LCS. This proves Theorem 1.5.
We will use the following simple facts about LCS, where we regard LCS as a minimization problem
by defining δLCS(x, y) := |x| + |y| − 2|LCS(x, y)|. In the whole section we let Σ be any alphabet
with 0, 1 ∈ Σ.

Fact 7.1. Let z, w be binary strings and `, k ∈ N0. Then we have (1) δLCS(1kz, 1kw) = δLCS(z, w),
(2) δLCS(1kz, w) ≥ δLCS(z, w) − k and (3) δLCS(0`z, 1kw) ≥ min{k, δLCS(z, 1kw) + `}. We obtain
symmetric statements by flipping all bits and by reversing all involved strings.

Proof. (1) is a restatement of Claim 4.5.(1). (2) follows from Fact 5.5.(2). For (3), fix a LCS s of
(0`z, 1kw). If s starts with a 0, then it does not contain the leading 1k of the second argument,
leaving at least k symbols unmatched, so that δLCS(0`z, 1kw) ≥ k. Otherwise, if s starts with a 1,
then it does not contain the leading 0` of the first argument, so that |LCS(0`z, 1kw)| = |LCS(z, 1kw)|.
Then we have δLCS(0`z, 1kw) = |0`z|+ |1kw|−2|LCS(0`z, 1kw)| = `+ |z|+ |1kw|−2|LCS(z, 1kw)| =
`+ δLCS(z, 1kw).

7.1 Longest Palindromic Subsequence

We show that computing the length of the longest palindromic subsequence is essentially computa-
tionally equivalent to computing the length of the longest common subsequence of two strings. For
completeness, we provide the following well known result which shows that LPS can be reduced to
LCS in linear time. Recall that for a string x we denote the reversed string by rev(x).

Fact 7.2 (Folklore). For any input x ∈ Σ∗, we have |LPS(x)| = |LCS(x, rev(x))|.
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Proof. Let p be a palindromic subsequence of x. Then p = rev(p) is a common subsequence of x
and rev(x), yielding |LCS(x, rev(x))| ≥ |LPS(x)|.

For the other direction, let c be any LCS of x and rev(x) of length `. It remains to show that we
can find a palindromic subsequence p of x with |p| ≥ ` (observe that c itself is not necessarily a palin-
drome). Note that c gives rise to a sequence of pairs (a1, b1), . . . , (a`, b`) such that a1 < · · · < a`,
b1 > · · · > b`, and c = (x[a1], . . . , x[a`]) = (x[b1], . . . , x[b`]). Define m := b `2c+ 1. If am ≤ bm, then
a1 < · · · < am ≤ bm < · · · < b1 and hence (x[a1], . . . , x[am−1], x[am], x[bm−1], . . . , x[b1]) is a palin-
dromic subsequence of x of length 2m−1 = 2b `2c+1 ≥ `. Otherwise, i.e., if am > bm, then b` < · · · <
bm < am < · · · < a` gives rise to the palindromic subsequence (x[b`], . . . , x[bm], x[am], . . . , x[a`]) of
x with length 2(`−m+ 1) = 2`− 2b `2c ≥ `.

To prove our lower bound for computing a longest palindromic subsequence of a string x, we
present a simple reduction from LCS to LPS, and then appeal to our lower bound for LCS, which
is equivalent to Edit(1, 1, 0, 2), see Theorem 1.2.

Theorem 7.3. On input x, y ∈ Σ∗, we can compute, in time O(|x| + |y|), a string z ∈ Σ∗ and
κ ∈ N such that |LPS(z)| = 3κ+ 2|LCS(x, y)|.

Proof. Let κ := 2(`x + `y + 1), where `x := |x|, `y := |y|. We define

z := x 0κ 1κ 0κ rev(y).

Clearly, z and κ can be computed in time O(`x+`y). Let s be a LCS of x and y. Then s0κ1κ0κrev(s)
is a palindromic subsequence of z, which proves |LPS(z)| ≥ 3κ+ 2|LCS(x, y)|.

To show |LPS(z)| ≤ 3κ+2|LCS(x, y)|, fix a LPS p of z and let ` be its length. We definem := b `2c
and denote by p1 = (p[1], . . . , p[m]) the first “half” of p. Let z1 = (z[1], . . . , z[i]) be the shortest
prefix of z that contains p1 as a subsequence and let z2 := (z[i+ 1], . . . , z[|z|]) be the remainder of
z. Then p1, which by definition equals (p[`], . . . , p[` −m + 1]), is a subsequence of rev(z2). This
shows that if ` is even, then ` ≤ 2|LCS(z1, rev(z2))|. If ` is odd, we may without loss of generality
assume that p[m + 1] = z2[1]. Hence rev(p1) is a subsequence of z′2 := (z2[2], . . . , z2[|z2|]), so that
` ≤ 2|LCS(z1, rev(z′2))| + 1. It remains to show that (i) |LCS(z1, rev(z2))| ≤ 3

2κ + |LCS(x, y)| and
(ii) |LCS(z1, rev(z′2))| ≤ 3

2κ+ |LCS(x, y)| − 1
2 .

Assume that |z1| ≤ `x+κ or |z2| ≤ (`y+1)+κ, then by |LCS(x, y)| ≤ min{|x|, |y|} we obtain that
|LCS(z1, rev(z′2))| ≤ |LCS(z1, rev(z2))| ≤ max{`x, `y + 1} + κ < 3

2κ + |LCS(x, y)|. Hence without
loss of generality, z1 = x0κ1a and z2 = 1a

′
0κrev(y) with a′ ≥ 1, where we assume that a′ ≥ a since

the other case is symmetric. Note that (i) and (ii) are equivalent to δLCS(z1, rev(z2)) ≥ δLCS(x, y)
and δLCS(z1, rev(z′2)) ≥ δLCS(x, y), respectively. We compute

δLCS(z1, rev(z2)) = δLCS(x 0κ 1a, y 0κ 1a
′
)

= δLCS(x 0κ, y 0κ 1a
′−a) (by Fact 7.1.(1))

≥ min{κ, δLCS(x 0κ, y 0κ)} (by Fact 7.1.(3))
= min{κ, δLCS(x, y)} = δLCS(x, y). (by Fact 7.1.(1)).

By replacing a′ by a′ − 1 ≥ 0, we obtain δLCS(z1, rev(z′2)) ≥ δLCS(x, y) by the same calculation.
This yields |LPS(z)| = ` ≤ 3κ+ 2|LCS(x, y)|, as desired.
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7.2 Longest Tandem Subsequence

As for LPS, our lower bound for LTS follows from a simple reduction from LCS and appealing to
our lower bound for LCS of Theorem 1.2.

Theorem 7.4. On input x, y ∈ Σ∗, we can compute, in time O(|x| + |y|), a string z ∈ Σ∗ and
κ ∈ N such that |LTS(z)| = 4κ+ 2|LCS(x, y)|.

Proof. Let κ := `x + `y, where `x := |x| and `y := |y|. We define

z := 0κ x 1κ 0κ y 1κ.

Clearly, z can be computed in time O(`x + `y). Let s be a LCS of x and y. Then t := t′ t′ with
t′ := 0κs1κ is a tandem subsequence of z. Hence, we have |LTS(z)| ≥ |t| = 4κ+ 2|LCS(x, y)|.

To show |LTS(z)| ≤ 4κ+ 2|LCS(x, y)|, fix a LTS t = t′ t′ of z. Let i be the smallest index such
that t′ is a subsequence of z1 := (z[1], . . . , z[i]) and let z2 := (z[i+ 1], . . . , z[|z|]). By choice of t, t′

is also a subsequence of z2, so that |LTS(z)| = 2|t′| ≤ 2|LCS(z1, z2)|. Thus, it remains to prove that
2|LCS(z1, z2)| ≤ 4κ+ 2|LCS(x, y)|.

Assume that |z1| ≤ κ+ `x or |z2| ≤ κ+ `y. Then, using |LCS(x, y)| ≤ min{|x|, |y|}, we conclude
that 2|LCS(z1, z2)| ≤ 2κ+ 2(`x + `y) ≤ 4κ+ 2|LCS(x, y)|.

Hence, without loss of generality, we have (i) z1 = 0κx1` and z2 = 1`
′
0κy1κ or (ii) z1 = 0κx1κ0`

and z2 = 0`
′
y1κ, for some `, `′ with `+`′ = κ. We only consider case (i), since case (ii) is symmetric.

Note that 2|LCS(z1, z2)| ≤ 4κ+ 2|LCS(x, y)| is equivalent to δLCS(z1, z2) ≥ δLCS(x, y). We obtain

δLCS(z1, z2) = δLCS(0κx1`, 1`
′
0κy1κ)

≥ min{κ, δLCS(0κx1`, 0κy1κ) + `′} (by Fact 7.1.(3))

= min{κ, δLCS(x1`, y1κ) + `′} (by Fact 7.1.(1))

= min{κ, δLCS(x, y1κ−`) + `′} (by Fact 7.1.(1))
≥ min{κ, δLCS(x, y)− (κ− `) + `′} (by Fact 7.1.(2))
= min{κ, δLCS(x, y)} = δLCS(x, y),

which proves the desired inequality 2|LCS(z1, z2)| ≤ 4κ+ 2|LCS(x, y)|.

8 Conclusion

We prove conditional lower bounds for natural polynomial-time problems: Edit distance for general
operation costs, including its special case longest common subsequence, dynamic time warping,
longest palindromic subsequence, and longest tandem subsequence. Our results give strong evidence
that the known algorithms for these problems are optimal up to lower order factors, even restricted
to binary strings and one-dimensional curves, respectively. We hope that the underlying framework
will find application in hardness proofs for further similarity measures, and that the studied problems
serve as starting points for further reductions.

It remains an open question whether constant-factor approximations running in strongly sub-
quadratic time can be ruled out for the above problems assuming SETH. Furthermore, most
polynomial-time lower bounds show quadratic-time barriers, and it is challenging to prove match-
ing SETH-based lower bounds for problems with, say, cubic or O(n3/2)-time algorithms (only few
results are known in this direction [1, 17]).
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