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Abstract5

The Fréchet distance is a popular and widespread distance measure for point sequences and for curves.6

About two years ago, Agarwal et al. [SIAM J. Comput. 2014] presented a new (mildly) subquadratic7

algorithm for the discrete version of the problem. This spawned a flurry of activity that has led to several8

new algorithms and lower bounds.9

In this paper, we study the approximability of the discrete Fréchet distance. Building on a recent10

result by Bringmann [FOCS 2014], we present a new conditional lower bound showing that strongly11

subquadratic algorithms for the discrete Fréchet distance are unlikely to exist, even in the one-dimensional12

case and even if the solution may be approximated up to a factor of 1.399.13

This raises the question of how well we can approximate the Fréchet distance (of two given d-14

dimensional point sequences of length n) in strongly subquadratic time. Previously, no general results15

were known. We present the first such algorithm by analysing the approximation ratio of a simple,16

linear-time greedy algorithm to be 2Θ(n). Moreover, we design an α-approximation algorithm that runs17

in time O(n logn+n2/α), for any α ∈ [1, n]. Hence, an nε-approximation of the Fréchet distance can be18

computed in strongly subquadratic time, for any ε > 0.19

1 Introduction20

Let P and Q be two polygonal curves with n vertices each. The Fréchet distance provides a meaningful21

way to define a distance between P and Q that overcomes some of the shortcomings of the classic Hausdorff22

distance [6]. Since its introduction to the computational geometry community by Alt and Godau [6], the23

concept of Fréchet distance has proven extremely useful and has found numerous applications (see, e.g.,24

[4, 6–10] and the references therein).25

The Fréchet distance has two classic variants: continuous and discrete [6, 12]. In this paper, we focus26

on the discrete variant. In this case, the Fréchet distance between two sequences P and Q of n points in d27

dimensions is defined as follows: imagine two frogs traversing the sequences P and Q, respectively. In each28

time step, a frog can jump to the next vertex along its sequence, or it can stay where it is. The discrete29

Fréchet distance is the minimal length of a leash required to connect the two frogs while they traverse the30

two sequences from start to finish, see Figure 1.31

The original algorithm for the continuous Fréchet distance by Alt and Godau has running timeO(n2 log n) [6];32

while the algorithm for the discrete Fréchet distance by Eiter and Mannila needs time O(n2) [12]. These33

algorithms have remained the state of the art until very recently: in 2013, Agarwal et al. [4] presented a34

slightly subquadratic algorithm for the discrete Fréchet distance. Building on their work, Buchin et al. [9]35

managed to find a slightly improved algorithm for the continuous Fréchet distance a year later. At the36

time, Buchin et al. thought that their result provides evidence that computing the Fréchet distance may not37

be 3SUM-hard [13], as had previously been conjectured by Alt [5]. Even though Grønlund and Pettie [15]38

showed recently that 3SUM has subquadratic decision trees, casting new doubt on the connection between39
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Figure 1: Examples of the discrete Fréchet distance: (a) and (b) show two sequences with small Fréchet
distance; (c) shows a two sequences with large Fréchet distance.
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Figure 2: Lifting a one-dimensional discrete Fréchet instance into two dimensions.

3SUM and the Fréchet distance, the conclusions of Buchin et al motivated Bringmann [7] to look for other40

reasons for the apparent difficulty of the Fréchet distance.41

He found an explanation in the Strong Exponential Time Hypothesis (SETH) [16, 17], which roughly42

speaking asserts that satisfiability cannot be decided in time1 O∗((2− ε)n) for any ε > 0 (see Section 2 for43

details). Since exhaustive search takes time O∗(2n) and since the fastest known algorithms are only slightly44

faster than that, SETH is a reasonable assumption that formalizes a barrier for our algorithmic techniques.45

It has been shown that SETH can be used to prove conditional lower bounds even for polynomial time46

problems [1, 2, 18, 20]. In this line of research, Bringmann [7] showed, among other things, that there are47

no strongly subquadratic algorithms for the Fréchet distance unless SETH fails. Here, strongly subquadratic48

means any running time of the form O(n2−ε), for constant ε > 0. Bringmann’s lower bound works for two-49

dimensional curves and both classic variants of the Fréchet distance. Thus, it is unlikely that the algorithms50

by Agarwal et al. and Buchin et al. can be improved significantly, unless a major algorithmic breakthrough51

occurs.52

1.1 Our Contributions53

We focus on the discrete Fréchet distance. Our main results are as follows.54

Conditional Lower Bound. We strengthen the result of Bringmann [7] by showing that even in the55

one-dimensional case computing the Fréchet distance remains hard. More precisely, we show that any 1.399-56

approximation algorithm in strongly subquadratic time for the one-dimensional discrete Fréchet distance57

violates the Strong Exponential Time Hypothesis. Previously, Bringmann [7] had shown that no strongly58

subquadratic algorithm approximates the two-dimensional Fréchet distance by a factor of 1.001, unless SETH59

fails.60

One can embed any one-dimensional sequence into the two-dimensional plane by fixing some ε > 0 and61

by setting the y-coordinate of the i-th point of the sequence to i · ε. For sufficiently small ε, this embedding62

roughly preserves the Fréchet distance, see Figure 2. Thus, unless SETH fails, there is also no strongly63

subquadratic 1.399-approximation for the discrete Fréchet distance on (1) two-dimensional curves without64

self-intersections, and (2) two-dimensional x-monotone curves (also called time-series). These interesting65

special cases had been open.66

1The notation O∗(·) hides polynomial factors in the number of variables n and the number of clauses m.
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Approximation: Greedy Algorithm. A simple greedy algorithm for the discrete Fréchet distance67

goes as follows: in every step, make the move that minimizes the current distance, where a “move” is a step68

in either one sequence or in both of them. This algorithm has a straightforward linear time implementation.69

We analyze the approximation ratio of the greedy algorithm, and we show that, given two sequences of n70

points in d dimensions, the maximal distance attained by the greedy algorithm is a 2Θ(n)-approximation71

for their discrete Fréchet distance. We emphasize that this approximation ratio is bounded, depending only72

on n, but not the coordinates of the vertices. This is surprising, since so far no bounded approximation73

algorithm that runs in strongly subquadratic time was known at all. Moreover, although an approximation74

ratio of 2Θ(n) is huge, the greedy algorithm is the best linear time approximation algorithm that we could75

come up with. We also show how to extend this algorithm to the continuous case.76

Approximation: Improved Algorithm. For the case that slightly more than linear time is accept-77

able, we provide a much better approximation algorithm: given two sequences P and Q of n points in d78

dimensions, we show how to find an α-approximation of the discrete Fréchet distance between P and Q in79

time O(n log n + n2/α), for any 1 ≤ α ≤ n. In particular, this yields an n/ log n-approximation in time80

O(n log n), and an nε-approximation in strongly subquadratic time for any ε > 0. We leave it open whether81

these approximation ratios can be improved.82

2 Preliminaries and Definitions83

We begin with some background and basic definitons.84

2.1 Discrete Fréchet Distance85

Since we focus on the discrete Fréchet distance, we will sometimes omit the term “discrete”. Let P =86

〈p1, . . . , pn〉 and Q = 〈q1, . . . , qn〉 be two sequences of n points in d dimensions. A traversal β of P and Q87

is a sequence of pairs (p, q) ∈ P × Q such that (i) the traversal β begins with the pair (p1, q1) and ends88

with the pair (pn, qn); and (ii) the pair (pi, qj) ∈ β can be followed only by one of (pi+1, qj), (pi, qj+1), or89

(pi+1, qj+1). We call β parallel if it only makes steps of the third kind, i.e., if β advances in both P and Q90

in each step. We define the distance of the traversal β as δ(β) := max(p,q)∈β d(p, q), where d(., .) denotes91

the Euclidean distance. The discrete Fréchet distance of P and Q is now defined as δdF(P,Q) := minβ δ(β),92

where β ranges over all traversals of P and Q.93

We review a simple O(n2 log n) time algorithm to compute δdF(P,Q) that is the starting point of our94

second approximation algorithm. First, we describe a decision procedure that, given a value γ, decides95

whether δdF(P,Q) ≤ γ. For this, we define the free-space matrix F . This is a Boolean n × n matrix such96

that for i, j = 1, . . . , n, we set Fij = 1 if d(pi, qj) ≤ γ, and Fij = 0, otherwise. Then δdF(P,Q) ≤ γ if and97

only if F allows a monotone traversal from (1, 1) to (n, n), i.e., if we can go from entry F11 to Fnn while98

only going down, to the right, or diagonally, and while only using 1-entries. This is captured by the reach99

matrix R, which is again an n× n Boolean matrix. We set R11 = F11, and for i, j = 1, . . . , n, (i, j) 6= (1, 1),100

we set Rij = 1 if Fij = 1 and either one of R(i−1)j , Ri(j−1), or R(i−1)(j−1) equals 1 (we define any entry of101

the form R(−1)j or Ri(−1) to be 0). Otherwise, we set Rij = 0. From these definitions, it is straightforward102

to compute F and R in total time O(n2). Furthermore, by construction we have δdF(P,Q) ≤ γ if and only103

if Rnn = 1; see Figure 3.104

With this decision procedure at hand, we can use binary search to compute δdF(P,Q) in total time105

O(n2 log n) by observing that the optimum must be achieved for one of the n2 distances d(pi, qj), for i, j =106

1, . . . , n. Through a more direct use of dynamic programming, the running time can be reduced to O(n2) [12].107

We call an algorithm an α-approximation for the Fréchet distance if, given point sequences P and Q, it108

returns a number between δdF(P,Q) and α δdF(P,Q).109

2.2 Hardness Assumptions110

Strong Exponential Time Hypothesis (SETH). As is well-known, the k-SAT problem is as follows:111

given a CNF-formula Φ over Boolean variables x1, . . . , xn with clause width k, decide whether there is an112
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Figure 3: Decision procedure for the discrete Fréchet distance: (a) two point sequences P (disks) and Q
(crosses); (b) the associated free-space matrix; (c) the resulting reach matrix.

CNF-SAT

n variables
m clauses

Orthogonal Vectors

2N vectors
D dimensions

Discrete Fréchet

2 sequences
n points eachN = 2n/2

D = m n = O(DN)

Figure 4: The structure of the reductions and the associated parameters.

assignment of x1, . . . , xn that satisfies Φ. Of course, k-SAT is NP-hard, and it is conjectured that no113

subexponential algorithm for the problem exists [14]. The Strong Exponential Time Hypothesis (SETH)114

goes one step further and basically states that the exhaustive search running time of O∗(2n) cannot be115

improved to O∗(1.99n) [16,17].116

Conjecture 2.1 (SETH). For no ε > 0, k-SAT has an O(2(1−ε)n) algorithm for all k ≥ 3.117

The fastest known algorithms for k-SAT take time O(2(1−c/k)n) for some constant c > 0 [19]. Thus,118

SETH is reasonable and, due to lack of progress in the last decades, can be considered unlikely to fail. It is119

by now a standard assumption for conditional lower bounds.120

Orthogonal Vectors (OV). Many reductions involving SETH proceed through the Orthogonal Vec-121

tors problem (OV), which is defined as follows: given two sequences u1, . . . , uN v1, . . . , vN ∈ {0, 1}D of N122

vectors in D dimensions, decide whether there are i, j ∈ {1, . . . , N} with ui ⊥ vj , i.e., with (ui)k · (vj)k = 0,123

for k = 1, . . . , D. We denote by (ui)k the k-th coordinate of the i-th vector. This problem has a trivial124

O(DN2) algorithm. The fastest known algorithm runs in time N2−1/O(log(D/ logN)) [3], which is only slightly125

subquadratic for D � logN . It is known that OV has no strongly subquadratic time algorithms unless SETH126

fails [21]; we present a proof for completeness; see Figure 4 for the structure of the reductions in this paper.127

Lemma 2.2. If there exists an ε > 0 such that OV has an algorithm with running time DO(1) ·N2−ε, then128

SETH fails.129

Proof. Let Φ be a k-SAT formula Φ with n variables x1, . . . , xn and m clauses C1, . . . , Cm. We construct an130

instance for OV with N = 2n/2 and D = m. Without loss of generality, we assume that n is even. Denote by131

φ1, . . . , φN all possible truth assignments to the first n/2 variables x1, . . . , xn/2. For each such assignment132

φi, we construct a vector ui such that (ui)l = 0 if φi satisfies at least one literal in Cl, and (ui)l = 1,133

otherwise, for l = 1, . . . , D. Similarly, we enumerate all truth assignments ψ1, . . . , ψN for the remaining134

variables xn/2+1, . . . , xn, and for each ψj we construct a vector vj where (vj)l = 0 if ψj satisfies at least one135

literal in Cl, and (vj)l = 1, otherwise, for l = 1, . . . , D. Then, (ui)l · (vj)l = 0 if and only if one of φi and ψj136

satisfies the clause Cj . Thus, we have ui ⊥ vj if and only if (φi, ψj) constitutes a satisfying assignment for137

the formula Φ. The vectors can be constructed in time O(DN).138

It follows that any algorithm for OV with running time DO(1) ·N2−ε gives an algorithm for k-SAT with139

running time mO(1)2(1−ε/2)n. Since m ≤ (2n)k = 2o(n), this contradicts SETH.140
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Figure 5: The point set P constructed in the conditional lower bound.

−2 −1 0 1 2ao1ao0 ae1 ae0bo0bo1 be1be0

ui = (0 1 0 1 1 0)

vj = (1 0 0 0 1 1)

Figure 6: The vector gadgets Ai (disks) and Bj (crosses) for the vectors ui = (0, 1, 0, 1, 1, 0) and vj =
(1, 0, 0, 0, 1, 1). The optimal traversal traversal goes through Ai and Bj in parallel. As Ai and Bj are not
orthogonal, the distance in the fifth position is 1.8.

We call a problem Π OV-hard if there is a reduction that transforms an instance I of OV with parameters141

N , D, to an equivalent instance I ′ of Π of size n ≤ DO(1)N , in time DO(1)N2−ε, for some ε > 0. A strongly142

subquadratic algorithm (i.e., with running time O(n2−ε′) for some ε′ > 0) for Π would then yield an algorithm143

for OV with running time DO(1)N2−min{ε,ε′}. Thus, by Lemma 2.2, if an OV-hard problem has a strongly144

subquadratic time algorithm, then SETH fails. Most known SETH-based lower bounds for polynomial time145

problems are actually OV-hardness results; our lower bound in the next section is no exception. Note that146

OV-hardness is potentially stronger than a SETH-based lower bound, since it may be that SETH fails, while147

OV still has no strongly subquadratic algorithms.148

3 Hardness of Approximation in One Dimension149

We prove OV-hardness of the discrete Fréchet distance on one-dimensional curves. By Lemma 2.2, this also150

yields a SETH-based lower bound.151

Let u1, . . . , uN , v1, . . . , vN ∈ {0, 1}D be an instance of the Orthogonal Vectors problem. Without loss152

of generality, we assume that D is even (if not, we duplicate a coordinate). We show how to construct two153

sequences P and Q of O(DN) points in R in time O(DN) such that there are i, j ∈ {1, . . . , N} with ui ⊥ vj154

if and only if δdF(P,Q) ≤ 1. Our sequences P and Q consist of elements from the following set P of 13155

points; see Figure 5.156

• ao0 = −0.8, ao1 = −0.4, ae1 = 0.4, ae0 = 0.8.157

• bo1 = −1.8, bo0 = −1.4, be0 = 1.4, be1 = 1.8.158

• s = 0, x1 = −1.2, x2 = 1.2159

• w1 = −0.2, w2 = 0.2.160

We first construct vector gadgets. For each ui, i ∈ {1, . . . , N}, we define a sequence Ai of D points from161

P as follows: for k = 1, . . . , D let p ∈ {o, e} be the parity of k (odd or even). Then, the k-th point of Ai162

is ap(ui)k
. Similarly, for each vj , we define a sequence Bj of D points from P. For Bj , we use the points bp∗163

instead of ap∗. The next claim characterizes how the vector gadgets encode orthogonality, see Figure 6.164

Claim 3.1. Fix i, j ∈ {1, . . . , N} and let β be a traversal of (Ai, Bj). We have: (i) if β is not the parallel165

traversal, then δ(β) ≥ 1.8; (ii) if β is the parallel traversal and ui ⊥ vj, then δ(β) ≤ 1; and (iii) if β is the166

parallel traversal and ui 6⊥ vj, then δ(β) ≥ 1.4.167
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Figure 7: An example reduction for the vectors u1 = (0, 1), u2 = (1, 0), v1 = (1, 1), and v2 = (1, 0). The
vectors u1 and v2 are orthogonal.

Proof. First, suppose that β is not a parallel traversal. Consider the first time when β makes a move on one168

sequence but not the other. Then, the current points on Ai and Bj lie on different sides of s, which forces169

δ(β) ≥ min{d(ao1, b
e
0), d(ae1, b

o
0)} = 1.8.170

Next, suppose that ui ⊥ vj . Then, the parallel traversal β of Ai and Bj has δ(β) ≤ 1. Indeed, for each171

coordinate k ∈ {1, . . . , D}, at least one of (ui)k and (vj)k is 0. Thus, the k-th point of Ai and the k-th point172

of Bj lie on the same side of s, and at least one of them is in {ao0, ae0, bo0, be0}. It follows that the distance173

between the k-th points in β is at most 1, for k = 1, . . . , D.174

Finally, suppose that (ui)k = (vj)k = 1 for some k. Let β be the parallel traversal of Ai and Bj , and175

consider the time when β reaches the k-th points of Ai and Bj . These are either {ao1, bo1} or {ae1, be1}, so176

δ(β) = min{d(ao1, b
o
1), d(ae1, b

o
1)} ≥ 1.4.177

Let W be the sequence of D(N − 1) points that alternates between ao0 and ae0, starting with ao0 (recall178

that D is even). We set179

P = W ◦ x1 ◦
(
©N
i=1 s ◦Ai

)
◦ s ◦ x2 ◦W180

and181

Q =©N
j=1 w1 ◦Bj ◦ w2,182

where ◦ denotes the concatenation of sequences, see Figure 7 for an example. The idea is to implement an183

or-gadget. If there is a pair of orthogonal vectors, then P and Q should be able to reach the corresponding184

vector gadgets and traverse them simultaneously. If there is no such pair, it should not be possible to “cheat”.185

The purpose of the sequences W and the points w1 and w2 is to provide a buffer so that one sequence can186

wait while the other sequence catches up. The purpose of the points x1, x2, and s is to synchronize the187

traversal so that no cheating can occur. The next two claims make this precise. First, we show completeness.188

Claim 3.2. If there are i, j ∈ {1, . . . , N} with ui ⊥ vj, then δdF(P,Q) ≤ 1.189

Proof. Fix i, j ∈ {1, . . . , N} with ui ⊥ vj . We traverse P and Q as follows (see Figure 8 for an example):190

1. P goes through D(N − j) points of W ; Q stays at w1.191

2. For k = 1, . . . , j − 1, we perform a parallel traversal of Bk and the next portion of W starting with ao0192

and the first point on Bk. When the traversal reaches ae0 and the last point of Bk, P stays at ae0 while193

Q goes to w2 and w1. If k < j − 1, the traversal continues with ao0 on P and the first point of Bk+1 on194

Q. If k = j − 1, we go to Step 3.195

3. P proceeds to x1 and walks until the point s before Ai, Q stays at w1 before Bj .196

4. P and Q go in parallel through Ai and Bj , until the pair (s, w2) after Ai and Bj .197
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Figure 8: A traversal for the example from Figure 7 with distance 1. The numbers on the left correspond to
the steps in the proof of Claim 3.2.

5. P continues to x2 while Q stays at w2.198

6. For k = j+1, . . . , N , P goes to the next ao0 on W while Q goes to w1. We then perform a simultaneous199

traversal of Bk and the next portion of W . When the traversal reaches ae0 and the last point of Bk,200

P stays at ae0 while Q continues to w2. If k < N , the traversal continues with the next iteration,201

otherwise we go to Step 7.202

7. P finishes the traversal of W , while Q stays at w2.203

We use the notation max-d(S, T ) := maxs∈S,t∈T d(s, t), and max-d(s, T ) := max-d({s}, T ), max-d(S, t) :=204

max-d(S, {t}). The traversal maintains a maximum distance of 1: for Step 1, this is implied by max-d({ao0, ae0}, w1) =205

1. For Step 2, it follows from D being even and from206

max-d(ao0, {bo1, bo0}) = max-d(ae0, {be1, be0, w1, w2}) = 1.207

For Step 3, it is because max-d({x1, a
o
0, a

o
1, s, a

e
1, a

e
0}, w1) = 1. For Step 4, we use Claim 3.1 and d(s, w2) = 0.2.208

In Step 5, it follows from max-d({ao0, ao1, s, ae1, ae0, x2}, w2) = 1. In Step 6, we again use that D is even and209

that210

max-d(ao0, {bo1, bo0, w1}) = max-d(ae0, {be1, be0, w2}) = 1.211

Step 7 uses max-d({ao0, ae0}, w2) = 1.212

The second claim establishes the soundness of the construction.213

Claim 3.3. If there are no i, j ∈ {1, . . . , N} with ui ⊥ vj, then δdF(P,Q) ≥ 1.4.214

Proof. Let β be a traversal of (P,Q). Consider the time when β reaches x1 on P . If Q is not at either w1215

or at a point from Bo = {bo0, bo1}, then δ(β) ≥ 1.4, and we are done. Next, suppose that the current position216

is in {x1} × Bo. In the next step, β must advance P to s or Q to {be0, be1} (or both).2 In each case, we217

get δ(β) ≥ 1.4. From now on, suppose we reach x1 in position (x1, w1). After that, P must advance to s,218

because advancing Q to Bo would take us to a position in {x1} ×Bo, implying δ(β) ≥ 1.4 as we saw above.219

Now consider the next step when Q leaves w1. Then Q must go to a point from Bo. At this time, P220

must be at a point from Ao = {ao0, ao1}, or we would get δ(β) ≥ 1.4 (note that P has already passed the point221

x1). This point on P belongs to a vector gadget Ai or to the final gadget W (again because P is already222

past x1). In the latter case, we have δ(β) ≥ 1.4, because in order to reach the final W , P must have gone223

2Recall that we assumed D to be even.
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through x2 and d(x2, w1) = 1.4. Thus, P is at a point in Ao in a vector gadget Ai, and Q is at the starting224

point (from Bo) of a vector gadget Bj .225

Now β must alternate in parallel in P and Q among both sides of s, or again δ(β) ≥ 1.4, see Claim 3.1.226

Furthermore, if P does not start in the first point of Ai, then eventually P has to go to s while Q has to go227

to a point in Bo or stay in {be0, be1}, giving δ(β) ≥ 1.4. Thus, we may assume that β simultaneously reached228

the starting points of Ai and Bj and traverses Ai and Bj in parallel. By assumption, the vectors ui, vj are229

not orthogonal, so Claim 3.1 gives δ(β) ≥ 1.4.230

Theorem 3.4. Fix α ∈ [1, 1.4). Computing an α-approximation of the discrete Fréchet distance in one231

dimension is OV-hard. In particular, the discrete Fréchet distance in one dimension has no strongly sub-232

quadratic α-approximation unless SETH fails.233

Proof. We use Claims 3.2 and 3.3 and the fact that P and Q can be computed in time O(DN) from234

u1, . . . , uN , v1, . . . , vN : any O(n2−ε) time α-approximation for the discrete Fréchet distance would yield an235

OV algorithm with runing time DO(1)N2−ε, which by Lemma 2.2 contradicts SETH.236

Remark 3.5. The proofs of Claims 3.2 and 3.3 yield a system of linear inequalities that constrain the points237

in P. Using this system, one can see that the inapproximability factor 1.4 in Theorem 3.4 is best possible for238

our current proof.239

4 Approximation Quality of the Greedy Algorithm240

In this section we study the following greedy algorithm. Let P = 〈p1, . . . , pn〉 and Q = 〈q1, . . . , qn〉 be two241

sequences of n points in Rd. We construct a greedy traversal βgreedy = βgreedy(P,Q) as follows: We begin at242

(p1, q1). If the current position is (pi, qj), there are at most three possible successor configurations: (pi+1, qj),243

(pi, qj+1), and (pi+1, qj+1) (or fewer, if we have already reached the last point from P or Q). Among these,244

we pick the pair (pi′ , qj′) that minimizes the distance d(pi′ , qj′). We stop when we reach (pn, qn). We denote245

the largest distance taken by the greedy traversal by δgreedy(P,Q) := δ(βgreedy(P,Q)).246

Theorem 4.1. Let P and Q be two sequences of n points in Rd. Then, δdF(P,Q) ≤ δgreedy(P,Q) ≤247

2O(n)δdF(P,Q). Both inequalities are tight, i.e., there are polygonal curves P,Q with δgreedy(P,Q) = δdF(P,Q) >248

0 and δgreedy(P,Q) = 2Ω(n)δdF(P,Q) > 0, respectively.249

The inequality δdF(P,Q) ≤ δgreedy(P,Q) follows directly from the definition, since the traversal βgreedy(P,Q)250

is a candidate for an optimal traversal. Furthermore, one can check that if P and Q are increasing one-251

dimensional sequences, then the greedy traversal is optimal (this is similar to the merge step in merge-252

sort). Thus, there are examples where δgreedy(P,Q) = δdF(P,Q). It remains to show the upper bound253

δgreedy(P,Q) ≤ 2O(n)δdF(P,Q) and to provide an example where this inequality is tight. This is done in the254

next two sections.255

4.1 Upper Bound256

We call a pair pipi+1 of consecutive points on P an edge of P , for i = 1, . . . , n− 1, and similarly for Q. Let257

m be the total number of edges of P and Q, and let `1 ≤ `2 ≤ · · · ≤ `m be the sorted sequence of the edge258

lengths. We pick k∗ ∈ {0, . . . ,m} minimum such that259

4 δdF(P,Q) + 2

k∗∑
i=1

`i < `k∗+1,260

where we set `m+1 =∞. We define δ∗ as the left hand side, δ∗ := 4 δdF(P,Q) + 2
∑k∗

i=1 `i.261

Lemma 4.2. We have (i) δ∗ ≥ 4δdF(P,Q); (ii)
∑k∗

i=1 `i ≤ δ∗/2 − 2 δdF(P,Q); (iii) there is no edge with262

length in (δ∗/2− 2δdF(P,Q), δ∗); and (iv) δ∗ ≤ 3k
∗
4δdF(P,Q).263
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Figure 9: The long edges are matched by the greedy and any optimal traversal. The distance at the endpoints
of the long edges is at most δdF(P,Q). The short edges cannot increase the Fréchet distance beyond δ∗.

Proof. Properties (i) and (ii) follow by definition. Property (iii) holds since for i = 1, . . . , k∗, we have264

`i ≤ δ∗/2− 2δdF(P,Q), by (ii), and for i = k∗+ 1, . . . ,m, we have `i ≥ δ∗, by definition. It remains to prove265

(iv): for k = 0, . . . , k∗, we set δk = 4 δdF(P,Q)+2
∑k
i=1 `i, and we prove by induction that δk ≤ 3k 4δdF(P,Q).266

For k = 0, this is immediate. Now suppose we know that δk−1 ≤ 3k−1 4δdF(P,Q), for some k ∈ {1, . . . , k∗}.267

Then, k ≤ k∗ implies `k ≤ δk−1, so δk = δk−1 + 2`k ≤ 3δk−1 ≤ 3k4δdF(P,Q), as desired. Now (iv) follows268

from δ∗ = δk∗ .269

We call an edge long if it has length at least δ∗, and short otherwise. In other words, the short edges270

have lengths `1, . . . , `k∗ , and the long edges have lengths `k∗+1, . . . , `m. Let β be an optimal traversal of P271

and Q, i.e., δ(β) = δdF(P,Q).272

Lemma 4.3. The sequences P and Q have the same number of long edges. Furthermore, if pi1pi1+1, . . . , pikpik+1273

and qj1qj1+1, . . . , qjkqjk+1 are the long edges of P and of Q, for 1 ≤ i1 < · · · < ik < n and 1 ≤ j1 < · · · <274

jk < n, then both β and βgreedy contain the steps (pi1 , qj1)→ (pi1+1, qj1+1), . . . , (pik , qjk)→ (pik+1, qjk+1).275

Proof. First, we show that for every long edge pipi+1 of P , the optimal traversal β contains the step276

(pi, qj) → (pi+1, qj+1), where qj , qj+1 is a long edge of Q. Consider the step of β from pi to pi+1. This277

step has to be of the form (pi, qj) → (pi+1, qj+1) for some qj ∈ Q: since max{d(pi, qj), d(pi+1, qj)} ≥278

d(pi, pi+1)/2 ≥ δ∗/2 ≥ 2δdF(P,Q), by Lemma 4.2(i), staying in qj would result in δ(β) ≥ 2δdF(P,Q).279

Now, since max{d(pi, qj), d(pi+1, qj+1)} ≤ δ(β) = δdF(P,Q), the triangle inequality gives d(qj , qj+1) ≥280

d(pi, pi+1)− 2 δdF(P,Q) ≥ δ∗ − 2 δdF(P,Q). Lemma 4.2(iii) now implies d(qj , qj+1) ≥ δ∗, so the edge qjqj+1281

is long.282

Thus, β traverses every long edge of P in parallel with a long edge of Q. A symmetric argument shows283

that β traverses every long edge of Q in parallel with a long edge of P . Since β is monotone, it follows284

that P and Q have the same number of long edges, and that β traverses them in parallel in their order of285

occurrence along P and Q.286

It remains to show that the greedy traversal βgreedy traverses the long edges of P and Q in parallel. Set287

i0 = j0 = 0. We will prove for a ∈ {0, . . . , k − 1} that if βgreedy contains the position (pia+1, qja+1), then it288

also contains the step (pia+1 , qja+1)→ (pia+1+1, qja+1+1) and hence the position (pia+1+1, qja+1+1). The claim289

on βgreedy then follows by induction on a, since βgreedy contains the position (p1, q1) by definition. Thus, fix290

a ∈ {0, . . . , k−1} and suppose that βgreedy contains (pia+1, qja+1). We need to show that βgreedy also contains291

the step (pia+1
, qja+1

) → (pia+1+1, qja+1+1). For better readability, we write i for ia, j for ja, i′ for ia+1,292

and j′ for ja+1. Consider the first position of βgreedy when βgreedy reaches either pi′ or qj′ . Without loss of293

generality, this position is of the from (pi′ , ql), for some l ∈ {j+1, . . . , j′}. Then, d(pi′ , ql) ≤ δ∗/2−δdF(P,Q),294

since we saw that d(pi′ , qj′) ≤ δ(β) = δdF(P,Q) and since the remaining edges between ql and qj′ are short295

and thus have total length at most δ∗/2− 2 δdF(P,Q), by Lemma 4.2(ii). The triangle inequality now gives296

d(pi′+1, ql) ≥ d(pi′ , pi′+1) − d(pi′ , ql) ≥ δ∗/2 + δdF(P,Q). If l < j′, the same argument applied to ql+1297

shows that d(pi′ , ql+1) ≤ δ∗/2 − δdF(P,Q) and thus d(pi′+1, ql+1) ≥ δ∗/2 + δdF(P,Q). Thus, βgreedy moves298

to (pi′ , ql+1). If l = j′, then βgreedy takes the step (pi′ , qj′) → (pi′+1, qj′+1), as d(pi′+1, qj′+1) ≤ δ(β) =299

δdF(P,Q), but d(pi′ , qj′+1), d(pi′+1, qj′) ≥ δ∗ − δdF(P,Q) ≥ 3 δdF(P,Q), by Lemma 4.2(i).300

Finally, we can show the desired upper bound on the greedy algorithm; see Figure 9.301
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Lemma 4.4. We have δgreedy(P,Q) ≤ δ∗/2.302

Proof. By Lemma 4.3, P and Q have the same number of long edges. Let pi1pi1+1, . . . , pikpik+1 and303

qj1qj1+1, . . . , qjk , qjk+1 be the long edges of P and of Q, where 1 ≤ i1 < · · · < ik < n and 1 ≤ j1 <304

· · · < jk < n. By Lemma 4.3, βgreedy contains the positions (pia , qja) and (pia+1, qja+1) for a = 1, . . . , k,305

and d(pia , qja), d(pia+1, qia+1) ≤ δdF(P,Q) for a = 1, . . . , k. Thus, setting i0 = j0 = 0 and ik+1 =306

jk+1 = n, we can focus on the subtraversals βa = (pia+1, qia+1), . . . , (pia+1 , qia+1) of βgreedy, for a =307

0, . . . , k. Now, since all edges traversed in βa are short, and since d(pia+1, qia+1) ≤ δdF(P,Q), we have308

δ(βa) ≤ δdF(P,Q) + δ∗/2 − 2 δdF(P,Q) ≤ δ∗/2 by Lemma 4.2(iii) and the triangle inequality. Thus,309

δ(βgreedy) ≤ max{δdF(P,Q), δ(β1), . . . , δ(βk)} ≤ δ∗/2, as desired.310

Lemmas 4.2(iv) and 4.4 prove the desired inequality δgreedy(P,Q) ≤ 2O(n)δdF(P,Q), since k∗ ≤ m =311

2n− 2.312

4.2 Tight Example for the Upper Bound313

Fix 1 < α < 2. Consider the sequence P = 〈p1, . . . , pn〉 with pi := (−α)i and the sequence Q = 〈q1, . . . , qn−2〉314

with qi := (−α)i+2. We show the following:315

1. The greedy traversal βgreedy(P,Q) makes n − 2 simultaneous steps in P and Q followed by 2 single316

steps in P . This results in a maximal distance of δgreedy(P,Q) = αn + αn−1.317

2. The traversal which makes 2 single steps in P followed by n− 2 simultaneous steps in both P and Q318

has distance α3 + α2.319

Together, this shows that δgreedy(P,Q)/δdF(P,Q) = Ω(αn) = 2Ω(n), proving that the inequality δgreedy(P,Q) ≤320

2O(n)δdF(P,Q) is tight, see Figure 10.321

To see (1), assume that we are at position (pi, qi). Moving to (pi, qi+1) would result in a distance of322

d(pi, qi+1) = αi+3 + αi. Similarly, the other possible moves to (pi+1, qi) and to (pi+1, qi+1) would result in323

distances αi+2 +αi+1, and αi+3−αi+1, respectively. It can be checked that for all α > 1 we have αi+3 +αi >324

αi+2 +αi+1. Moreover, for all α < 2 we have αi+2 +αi+1 > αi+3−αi+1. Thus, the greedy algorithm makes325

the move to (pi+1, qi+1). Using induction, this shows that the greedy traversal starts with n−2 simultaneous326

moves in P and Q. In the end, the greedy algorithm has to take two single moves in P . Thus, the greedy327

traversal contains the pair (pn−1, qn−2), which is in distance d(pn−1, qn−2) = αn + αn−1 = 2Ω(n).328

To see (2), note that the traversal which makes 2 single steps in P followed by n−2 simultaneous moves in329

P and Q starts with (p1, q1) and (p2, q1) followed by (pi, qi−2) for i = 2, . . . , n. Note that d(p1, q1) = α3−α,330

d(p2, q1) = α3 + α2, and pi = qi−2, so that the remaining distances are 0. Thus, we have δdF(P,Q) ≤331

α3 + α2 = O(1).332

5 Improved Approximation Algorithm333

Let P = 〈p1, . . . , pn〉 and Q = 〈q1, . . . , qn〉 be two sequences of n points in Rd, where d is constant. Let334

1 ≤ α ≤ n. We show how to find a value δ∗ with δdF(P,Q) ≤ δ∗ ≤ αδdF(P,Q) in time O(n log n + n2/α).335

For simplicity, we will assume that all points on P and Q are pairwise distinct. This can be achieved by an336

infinitesimal perturbation of the point set.337

5.1 Decision Algorithm338

We begin by describing an approximate decision procedure. For this, we prove the following theorem.339

Theorem 5.1. Let P and Q be two sequences of n points in Rd, and let 1 ≤ α ≤ n. Suppose that the points340

of P and Q have been sorted along each coordinate axis. There exists a decision algorithm with running time341

O(n2/α) and the following properties: if δdF(P,Q) ≤ 1, the algorithm returns YES; if δdF(P,Q) ≥ α, the342

algorithm returns NO; if δdF(P,Q) ∈ (1, α), the algorithm may return either YES or NO. The running time343

depends exponentially on d.344
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Figure 10: The greedy algorithm traverses P and Q in parallel, increasing the distance by a constant factor
in each step. The optimal algorithm delays the traversal of Q for two steps, giving a perfect match for the
remainder.

Consider the regular d-dimensional grid with diameter 1 (all cells are axis-parallel cubes with side length345

1/
√
d). The distance between two grid cells C and D, d(C,D), is defined as the smallest distance between346

a point in C and a point in D. The distance between a point x and a grid cell C, d(x,C), is the distance347

between x and the closest point in C. For a point x ∈ Rd, we write Bx for the closed unit ball with center x348

and Cx for the grid cell that contains x (since we are interested in approximation algorithms, we may assume349

that all points of P ∪ Q lie strictly inside the cells). We compute for each point r ∈ P ∪ Q the grid cell350

Cr that contains it. We also record for each nonempty grid cell C the number of points from Q contained351

in C. This can be done in total linear time as follows: we scan the points from P ∪ Q in x1-order, and we352

group the points according to the grid intervals that contain them. Then we split the lists that represent the353

x2-,. . . , xd-order correspondingly, and we recurse on each group to determine the grouping for the remaining354

coordinate axes. Each iteration takes linear time, and there are d iterations, resulting in a total time of355

O(n). In the following, we will also need to know for each non-empty cell the neighborhood of all cells that356

have a certain constant distance from it. These neighborhoods can be found in linear time by modifying the357

above procedure as follows: before performing the grouping, we make O(1) copies of each point r ∈ P ∪ Q358

that we translate suitably to hit all neighboring cells for r. By using appropriate cross-pointers, we can then359

identify the neighbors of each non-empty cell in total linear time. Afterwards, we perform a clean-up step,360

so that only the original points remain.361

A grid cell C is full if |C ∩ Q| ≥ 5n/α. Let F be the set of full grid cells. Clearly, |F| ≤ α/5. We say362

that two full cells C,D ∈ F are adjacent if d(C,D) ≤ 4. This defines a graph H on F of constant degree.363

Using the neighborhood finding procedure from above, we can determine H and its connected components364

L1, . . . , Lk in time O(n+ α). For C ∈ F , the label LC of C is the connected component of H containing C,365

see Figure 11.366

Figure 11: The full cells are shown grey. The graph H has two connected components. The labels of the
vertices are indicated by arrows. The remaining vertices are unlabeled.
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For each q ∈ Q, we search for a full cell C ∈ F with d(q, C) ≤ 2. If such a cell exists, we label q with367

Lq = LC ; otherwise, we set Lq =⊥. Similarly, for each p ∈ P , we search a full cell C ∈ F with d(p, C) ≤ 1.368

In case of success, we set Lp = LC ; otherwise, we set Lp =⊥. Using the neighborhood finding procedure369

from above, this takes linear time. Let P ′ = {p ∈ P | Lp 6=⊥} and Q′ = {q ∈ Q | Lq 6=⊥}. The labeling has370

the following properties.371

Lemma 5.2. We have372

1. for every r ∈ P ∪Q, the label Lr is uniquely determined;373

2. for every x, y ∈ P ′ ∪Q′ with Lx = Ly, we have d(x, y) ≤ α;374

3. if p ∈ P ′ and q ∈ Bp ∩Q, then Lp = Lq; and375

4. if p ∈ P \ P ′, there are O(n/α) points q ∈ Q with d(p, Cq) ≤ 1. Hence, |Bp ∩Q| = O(n/α).376

Proof. Let r ∈ P ∪ Q and suppose there are C,D ∈ F with d(r, C) ≤ 2 and d(r,D) ≤ 2. Then d(C,D) ≤377

d(C, r) + d(r,D) ≤ 4, so C and D are adjacent in H. It follows that LC = LD and that Lr is determined378

uniquely.379

Fix x, y ∈ P ′ ∪Q′ with Lx = Ly. By construction, there are C,D ∈ F with d(x,C) ≤ 2, d(y,D) ≤ 2 and380

LC = LD. This means that C and D are in the same component of H. Therefore, C and D are connected381

by a sequence of adjacent cells in F . We have |F| ≤ α/5, any two adjacent cells have distance at most 4,382

and each cell has diameter 1. Thus, the triangle inequality gives d(x, y) ≤ 2 + 4(|F| − 1) + |F|+ 2 ≤ α.383

Let p ∈ P ′ and q ∈ Bp ∩ Q. Take C ∈ F with d(p, C) ≤ 1. By the triangle inequality, d(q, C) ≤384

d(q, p) + d(p, C) ≤ 2, so Lq = Lp = LC .385

Take p ∈ P and suppose there is a grid cell C with |C ∩ Q| > 5n/α and d(p, C) ≤ 1. Then C ∈ F , so386

Lp 6=⊥, which means that p ∈ P ′. The contrapositive gives (4).387

Lemma 5.2 enables us to design an efficient approximation algorithm. For this, we define the approximate388

free-space matrix F . This is an n× n matrix with entries from {0, 1}. For i, j ∈ {1, . . . , n}, we set Fij = 1 if389

either (i) pi ∈ P ′ and Lpi = Lqj ; or (ii) pi ∈ P \P ′ and d(pi, qj) ≤ 1. Otherwise, we set Fij = 0. The matrix390

F is approximate in the following sense:391

Lemma 5.3. If δdF(P,Q) ≤ 1, then F allows a monotone traversal from (1, 1) to (n, n). Conversely, if F392

has a monotone traversal from (1, 1) to (n, n), then δdF(P,Q) ≤ α.393

Proof. Suppose that δdF(P,Q) ≤ 1. Then there is a monotone traversal β of (P,Q) with δ(β) ≤ 1. By394

Lemma 5.2(3), β is also a traversal of F .395

Now let β be a monotone traversal of F . By Lemma 5.2(2), we have δ(β) ≤ α, as desired.396

Additionally, we define the approximate reach matrix R, which is an n × n matrix with entries from397

{0, 1}. We set Rij = 1 if F allows a monotone traversal from (1, 1) to (i, j), and Rij = 0, otherwise. By398

Lemma 5.3, Rnn is an α-approximate indicator for δdF ≤ 1. We describe how to compute the rows of R399

successively in total time O(n2/α).400

First, we perform the following preprocessing steps: we break Q into intervals, where an interval is a401

maximal consecutive subsequence of points q ∈ Q with the same label Lq 6=⊥. For each point in an interval,402

we store pointers to the first and the last point of the interval. This takes linear time. Furthermore, for each403

pi ∈ P \ P ′, we compute a sparse representation Ti of the corresponding row of F , i.e., a sorted list of all404

the column indices j for which Fij = 1. This can be done in O(n2/α) time as follows: in the preprocessing405

phase, we have determined for input point the grid cell that contains it. By a single scan through Q, we406

can thus obtain for each non-empty grid cell the ordered subsequence of points from Q contained in it. For407

each pi ∈ P \ P ′, we inspect all grid cells with distance at most 1 from pi (this neighborhood was found408

during preprocessing). By the proof of Lemma 5.2(4), the total number of points from Q in these grid cells409

is O(n/α), so we can find the sparse representation Ti in O(n/α) time by filtering and merging these lists.410

Now we successively compute a sparse representation for each row i of R, i.e., a sorted list Ii of disjoint411

intervals [a, b] ∈ Ii such that for j = 1, . . . , n, we have Rij = 1 if and only if there is an interval [a, b] ∈ Ii412

with j ∈ [a, b]. We initialize I1 as follows: if F11 = 0, we set I1 = ∅ and abort. Otherwise, if p1 ∈ P ′, then413

I1 is initialized with the interval of q1 (since F11 = 1, we have Lp1 = Lq1 by Lemma 5.2(3)). If p1 ∈ P \ P ′,414
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we determine the maximum b such that F1j = 1 for all j = 1, . . . , b, and we initialize I1 with the singleton415

intervals [j, j] for j = 1, . . . , b. This can be done in time O(n/α), irrespective of whether pi lies in P ′ or not.416

Now suppose we already have the interval list Ii for some row i, and we want to compute the interval list417

Ii+1 for the next row. We consider two cases.418

Case 1: pi+1 ∈ P ′. If Lpi+1
= Lpi , we simply set Ii+1 = Ii. Otherwise, we go through the intervals419

[a, b] ∈ Ii in order. For each interval [a, b], we check whether the label of qb or the label of qb+1 equals the420

label of pi+1. If so, we add the maximal interval [b′, c] to Ii+1 with b′ = b or b′ = b + 1 and Lpi+1 = Lqj421

for all j = b′, . . . , c. With the information from the preprocessing phase, this takes O(1) time per interval.422

The resulting set of intervals may not be disjoint (if pi ∈ P \ P ′), but any two overlapping intervals have423

the same endpoint. Also, intervals with the same endpoint appear consecutively in Ii+1. We next perform424

a clean-up pass through Ii+1: we partition the intervals into conscutive groups with the same endpoint, and425

in each group, we only keep the largest interval. All this takes time O(|Ii|+ |Ii+1|).426

Case 2: pi+1 ∈ P \P ′. In this case, we have a sparse representation Ti+1 of the corresponding row in F427

at our disposal. We simultaneously traverse Ii and Ti+1 to compute Ii+1 as follows: for each j ∈ {1, . . . , n}428

with F(i+1)j = 1, if Ii has an interval containing j − 1 or j or if [j − 1, j − 1] ∈ Ii+1, we add the singleton429

[j, j] to Ii+1. This takes total time O(|Ii|+ |Ii+1|+ n/α).430

The next lemma shows that the interval representation remains sparse throughout the execution of the431

algorithm, and that the intervals Ii indeed represent the approximate reach matrix R.432

Lemma 5.4. We have |Ii| = O(n/α) for i = 1, . . . , n. Furthermore, the intervals in Ii correspond exactly433

to the 1-entries in the approximate reach matrix R.434

Proof. First, we prove that |Ii| = O(n/α) for i = 1, . . . , n. This is done by induction on i. We begin with435

i = 1. If p1 ∈ P ′, then |I1| = 1. If p1 ∈ P \ P ′, then Lemma 5.2(4) shows that the first row of F contains at436

most O(n/α) 1-entries, so |I1| = O(n/α). Next, suppose that we know by induction that |Ii| = O(n/α). We437

must argue that |Ii+1| = O(n/α). If pi+1 ∈ P \ P ′, then the (i + 1)-th row of F contains O(n/α) 1-entries438

by Lemma 5.2(4), and |Ii+1| = O(n/α) follows directly by construction. If pi+1 ∈ P ′ and Lpi+1 = Lpi , then439

Ii+1 = Ii, and the claim follows by induction. Finally, if pi+1 ∈ P ′ and Lpi+1 6= Lpi , then by construction,440

every interval in Ii gives rise to at most one new interval in Ii+1. Thus, by induction, |Ii+1| ≤ |Ii| = O(n/α).441

Second, we prove that Ii represents the i-th row of R, for i = 1, . . . , n. Again, the proof is by induction.442

For i = 1, the claim holds by construction, because the first row of R consists of the initial segment of 1s443

in F . Next, suppose we know that Ii represents the i-th row of R. We must argue that Ii+1 represents the444

(i + 1)th row of R. If pi+1 ∈ P \ P ′, this follows directly by construction, because the algorithm explicitly445

checks the conditions for each possible 1-entry of R (R(i+1)j can only be 1 if F(i+1)j = 1). If pi+1 ∈ P ′ and446

Lpi+1
= Lpi , then the (i+ 1)-th row of F is identical to the i-th row of F , and the same holds for R: there447

can be no new monotone paths, and all old monotone paths can be extended by one step along Q. Finally,448

consider the case pi+1 ∈ P ′ and Lpi+1
6= Lpi . If pi ∈ P \ P ′, then every interval in Ii is a singleton [b, b],449

from which a monotone path could potentially reach (i+ 1, b) and (i+ 1, b+ 1), and from there walk to the450

right. We explicitly check both of these possibilities. If pi ∈ P ′, then for every interval [a, b] ∈ Ii and for all451

j ∈ [a, b] we have Lqj = Lpi 6= Lpi+1
. Thus, the only possible move is to (i+ 1, b+ 1), and from there walk452

to the right, which is what we check.453

The first part of Lemma 5.4 implies that the total running time is O(n2/α), since each row is processed454

in time O(n/α). By Lemma 5.3 and the second part of Lemma 5.4, if In has an interval containing n then455

δdF(P,Q) ≤ α, and if δdF(P,Q) ≤ 1 then n appears in In. Since the intervals in In are sorted, this condition456

can be checked in O(1) time. Theorem 5.1 follows.457

5.2 Optimization Procedure458

We now leverage Theorem 5.1 to an optimization procedure.459

Theorem 5.5. Let P and Q be two sequences of n points in Rd, and let 1 ≤ α ≤ n. There is an algorithm460

with running time O(n2 log n/α) that computes a number δ∗ with δdF(P,Q) ≤ δ∗ ≤ αδdF(P,Q). The running461

time depends exponentially on d.462
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Proof. If α ≤ 5, we compute δdF(P,Q) directly in O(n2) time. Otherwise, we set α′ = α/5. We sort the463

points of P ∪Q according to the coordinate axes, and we compute a (1/3)-well-separated pair decomposition464

P = {(S1, T1), . . . , (Sk, Tk)} for P ∪Q in time O(n log n) [11]. Recall the properties of a well-separated pair465

decomposition: (i) for all pairs (S, T ) ∈ P, we have S, T ⊆ P ∪Q, S ∩T = ∅, and max{diam(S),diam(T )} ≤466

d(S, T )/3 (here, diam(S) denotes the maximum distance between any two points in S); (ii) the number of467

pairs is k = O(n); and (iii) for every distinct q, r ∈ P ∪ Q, there is exactly one pair (S, T ) ∈ P with q ∈ S468

and r ∈ T , or vice versa.469

For each pair (Si, Ti) ∈ P, we pick arbitrary s ∈ Si and t ∈ Ti, and set δi = 3d(s, t). After sorting, we470

can assume that δ1 ≤ . . . ≤ δk. We call δi a YES-entry if the algorithm from Theorem 5.1 on input α′ and471

the point sets P an Q scaled by a factor of δi returns YES; otherwise, we call δi a NO-entry. First, we test472

whether δ1 is a YES-entry. If so, we return δ∗ = α′δ1. If δ1 is a NO-entry, we perform a binary search on473

δ1, . . . , δk: we set l = 1 and r = k. Below, we will prove that δk must be a YES-entry. We set m = d(l+r)/2e.474

If δm is a NO-entry, we set l = m, otherwise, we set r = m. We repeat this until r = l + 1. In the end,475

we return δ∗ = α′δr. The total running time is O(n log n + n2 log n/α). Our procedure works exactly like476

binary search, but we presented it in detail in order to emphasize that δ1, . . . , δk is not necessarily monotone:477

NO-entries and YES-entries may alternate.478

We now argue correctness. The algorithm finds a YES-entry δr such that either r = 1 or δr−1 is a479

NO-entry. By Theorem 5.1, any δi is a NO-entry if δi ≤ δdF(P,Q)/α′. Thus, we certainly have δ∗ = α′δr >480

δdF(P,Q). Now take a traversal β with δ(β) = δdF(P,Q), and let (p, q) ∈ P × Q be a position in β that481

has d(p, q) = δ(β). There is a pair (Sr∗ , Tr∗) ∈ P with p ∈ Sr∗ and q ∈ Tr∗ , or vice versa. Let s ∈ Sr∗ and482

t ∈ Tr∗ be the points we used to define δr∗ . Then483

d(s, t) ≥ d(p, q)− diam(Sr∗)− diam(Tr∗) ≥ d(p, q)− 2d(Sr∗ , Tr∗)/3 ≥ d(p, q)/3,484

and485

d(s, t) ≤ d(p, q) + diam(Sr∗) + diam(Tr∗) ≤ d(p, q) + 2d(Sr∗ , Tr∗)/3 ≤ 5d(p, q)/3,486

so δr∗ = 3d(s, t) ∈ [δ(β), 5δ(β)]. Since by Theorem 5.1 any δi is a YES-entry if δi ≥ δdF(P,Q), all δi with487

i ≥ r∗ are YES-entries (in particular, δk is a YES-entry). Thus, δ∗ ≤ α′δr∗ ≤ 5α′δdF(P,Q) ≤ αδdF(P,Q).488

The running time of Theorem 5.5 can be improved as follows.489

Theorem 5.6. Let P and Q be two sequences of n points in Rd, and let 1 ≤ α ≤ n. There is an algorithm490

with running time O(n log n + n2/α) that computes a number δ∗ with δdF(P,Q) ≤ δ∗ ≤ αδdF(P,Q). The491

running time depends exponentially on d.492

Proof. If α ≤ 4, we can compute δdF(P,Q) exactly. Otherwise, we use Theorem 5.5 to compute a number δ′493

with δdF(P,Q) ≤ δ′ ≤ n · δdF(P,Q), or, equivalently, δdF(P,Q) ∈ [δ′/n, δ′]. This takes time O(n log n). Set494

i∗ = dlog(n/α)e+ 1 and for i = 1, . . . , i∗ let αi = n/2i+1. Also, set a1 = δ′/n and b1 = δ′.495

We iteratively obtain better estimates for δdF(P,Q) by repeating the following for i = 1, . . . , i∗−1. As an496

invariant, at the beginning of iteration i, we have δdF(P,Q) ∈ [ai, bi] with bi/ai = 4αi. We use the algorithm497

from Theorem 5.1 with inputs αi and P and Q scaled by a factor 2ai (since αi ≥ αi∗−1 = n/2dlog(n/α)e+1 ≥498

α/4, the algorithm can be applied). If the answer is YES, it follows that δdF(P,Q) ≤ αi2ai = bi/2, so we set499

ai+1 = ai and bi+1 = bi/2. If the answer is NO, then δdF(P,Q) ≥ 2ai, so we set ai+1 = 2ai and bi+1 = bi.500

This needs time O(n2/αi) and maintains the invariant.501

In the end, we return bi∗ . The invariant guarantees δdF(P,Q) ∈ [ai∗ , bi∗ ] and bi∗/ai∗ = 4αi∗ ≤ α, as502

desired. The total running time is proportional to503

n log n+

i∗−1∑
i=1

n2/αi = n log n+

i∗−1∑
i=1

n2i+1 ≤ n log n+ n2i
∗+1 = O(n log n+ n2/α).504

6 The Continuous Greedy Algorithm505

In this section, we extend the greedy algorithm from Section 4 to continuous curves. Let us briefly review506

the relevant definitions. In this section only, we denote by P,Q : [1, n] → Rd two d-dimensional polygonal507
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Figure 12: Two polygonal chains and a traversal for them, indicated by black segments between matched
points.

chains with n vertices. We assume that P and Q are parametrized in such a way that if we set pi = P (i)508

and qi = Q(i), for i = 1, . . . , n, then P (i + λ) = (1 − λ)pi + λpi+1 and Q(i + λ) = (1 − λ)qi + λqi+1, for509

i = 1, . . . , n− 1, and λ ∈ [0, 1]. We call p1, . . . , pn and q1, . . . , qn the vertices of P and Q. A traversal of P510

and Q is a pair β = (ϕ,ψ) of continuous, monotone, surjective functions ϕ,ψ : [1, n]→ [1, n]. The continuous511

Fréchet distance between P and Q, δF(P,Q), is defined as512

δF(P,Q) = inf
(ϕ,ψ)∈Φ

max
s∈[1,n]

d(P (ϕ(s)), Q(ψ(s))),513

where Φ is the set of all traversals of P and Q, see Figure 12. The results of Alt and Godau imply that514

there always exists a traversal that achieves δF(P,Q) [6], but since this is not immediately obvious, we use515

the infimum in the definition.516

The greedy algorithm. The greedy algorithm is analogous to the discrete case: we iteratively build a517

traversal for P and Q. In each step, we have an intermediate position (p, q) ∈ P ×Q, where at least one of p518

and q is a vertex. If p = pn or q = qn, we follow the other curve until the end. Otherwise, let p′ and q′ be the519

vertices on P and Q strictly after p and q. We find the point q∗ on qq′ closest to p′ and the point p∗ on pp′520

closest to q′. If d(p′, q∗) ≤ d(p∗, q′), we uniformly walk to (p′, q∗), otherwise we walk to (p∗, q′). We repeat521

until we reach the endpoints (pn, qn). Since we always advance to a new vertex, the process terminates after522

at most 2n steps. Let βgreedy = (ϕg, ψg) be the resulting greedy traversal, and set523

δgreedy = max
s∈[1,n]

d(P (ϕg(s)), Q(ψg(s))).524

Furthermore, let β = (ϕ,ψ) be an optimal traversal with525

δF(P,Q) = max
s∈[1,n]

d(P (ϕ(s)), Q(ψ(s))).526

As mentioned above, the results by Alt and Godau imply that β exists [6].527

Definitions and first properties. For brevity, we will write δF for δF(P,Q). Similar to Section 4.1, we528

let `1 ≤ `2 ≤ · · · ≤ `m be the sorted sequence of edge lengths, and we pick k∗ ∈ {0, . . . ,m} minimum with529

A
(
δF +

k∗∑
i=1

`i

)
≤ `k∗+1,530

where `m+1 =∞ and A is an appropriate large constant. We set531

δ∗ = A
(
δF +

k∗∑
i=1

`i

)
.532

The following lemma is analogous to Lemma 4.2.533

Lemma 6.1. We have (i) δF ≤ (1/A)δ∗; (ii)
∑k∗

i=1 `i ≤ (1/A)δ∗; and (iii) δ∗ ≤ (A+ 1)k
∗
AδF.534
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Figure 13: The subcurves on P and Q induced by an optimal traversal. The subcurves P2, P4, Q3, and Q5

are straight, the others are pointed.

Proof. Properties (i) and (ii) follow by definition. It remains to prove (iii): for k = 0, . . . , k∗, we set535

δk = A
(
δdF(P,Q) +

∑k
i=1 `i

)
, and we prove by induction that δk ≤ (A + 1)k AδdF(P,Q). For k = 0, this is536

immediate. Now suppose we have δk−1 ≤ (A + 1)k−1AδdF(P,Q), for some k ∈ {1, . . . , k∗}. Then, k ≤ k∗537

implies `k ≤ δk−1, so δk = δk−1 + A`k ≤ (A + 1)δk−1 ≤ (A + 1)kAδdF(P,Q), as desired. Now (iii) follows538

from δ∗ = δk∗ .539

We call an edge long if it has length at least δ∗, and short otherwise. Before we get into the details540

of the analysis, let us provide some intuition for our proof. In general, we would like to give a similar541

argument as in the discrete case: both the greedy traversal and every optimal traversal must match long542

edges uniformly, while short edge are irrelevant for the approximation factor. However, in the continuous543

setting, the situation is not as clear cut: an optimal traversal may match vertices and short edges against544

the interior of long edges. To deal with this, we fix an optimal traversal, and we mark the subcurves on545

P and Q during which the optimal traversal is at a vertex or at a short edge on either curve. Now, as in546

the discrete case, we would like to argue that these subcurves are “short” and that between two consecutive547

subcurves the greedy traversal and the optimal traversal behave essentially “uniformly”. However, this does548

not have to be true: under certain circumstances, two adjacent subcurves on P or on Q may be “close”549

to each other, so that it is not clear how the greedy algorithm will deal with them. Therefore, we need to550

perform a more detailed analysis to understand the behavior of the subcurves. Our analysis shows that this551

situation can be handled by merging “close” consecutive subcurves in a controlled manner. The resulting552

sequence of modified subcurves has the desired properties, and we can carry out our strategy as planned.553

Details follow.554

Let S ⊆ [1, n] be the set of all parameters s ∈ [1, n] such that at least one of P (ϕ(s)) or Q(ψ(s)) is555

a vertex or lies on a short edge. By construction, S consists of a finite number of pairwise disjoint closed556

intervals, I1, . . . , Ik, ordered from left to right. This induces a sequence of subcurves Pi = P (ϕ(Ii)) and557

Qi = Q(ψ(Ii)), for i = 1, . . . , k, see Figure 13.558

A subcurve of P or Q is a function of the form P|I or Q|I , where I ⊆ [1, n] is a closed interval. If559

I ⊆ [i, i+ 1], for some i ∈ {1, . . . , n− 1}, we call the subcurve a subsegment. A subsegment is initial, if i ∈ I,560

it is final if i+1 ∈ I. A subcurve is short if it does not intersect the interior of a long edge. A short subcurve561

is maximal if it is not properly contained in another short subcurve. We call a subcurve pointed if it contains562

a vertex, and straight otherwise. Given a subcurve P|I of P , let I ′ = ϕ−1(I) and J = ψ(I ′). We say that Q|J563

is matched to P|I by β. We write |P|I | for the length of a subcurve P|I . For two points p, p′ ∈ P , we denote564

by dP (p, p′) the distance between p and p′ along P . We extend this notation to subcurves in the obvious565

way. Our first technical lemma lets us bound the length of a subcurve that is matched to a subsegment.566

Lemma 6.2. Suppose that β matches a subsegment e of P to a subcurve Qe of Q. Then |Qe| ≥ |e|−(2/A)δ∗.567

An analogous statement holds with the roles of P and Q reversed.568

Proof. Let e = ab and let x be the first and y be the last point of Qe. Since β matches x to a and y to b, we569
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have570

|e| = d(a, b) ≤ d(a, x) + d(x, y) + d(y, b) ≤ δF + |Qe|+ δF ≤ |Qe|+ (2/A)δ∗,571

by the triangle inequality and Lemma 6.1(i).572

The next technical lemma shows that the subcurves are “close” to each other.573

Lemma 6.3. For every point p ∈ Pi, i ∈ {1, . . . , k} there is a q ∈ Qi with d(p, q) ≤ (1/A)δ∗.574

Proof. By construction, there is a q ∈ Qi with d(p, q) ≤ δF ≤ (1/A)δ∗, by Lemma 6.1(i).575

We now dig deeper into the structure of the subcurves Pi and Qi; examples of the different situations576

can be found in Figure 13.577

Lemma 6.4. The subcurve P1 consists of a (possibly empty) maximal short subcurve, followed by an initial578

segment of the first long edge; the subcurve Pk consists of a final segment of the last long edge, followed by579

a (possibly empty) maximal short subcurve. For i = 2, . . . , k − 1, the subcurve Pi is either a subsegment of580

the interior of a long edge, or it consists of a final subsegment of a long edge, followed by a (possibly empty)581

maximal short subcurve, followed by an initial subsegment of the next long edge. The subsegments may be582

degenerate (i.e., consist of only one point). If a subsegment is not degenerate, it has length at most (3/A)δ∗.583

Analogous statements hold for Q.584

Proof. Suppose a subcurve Pi, i ∈ {1, . . . , k}, contains a nondegenerate subsegment s of a long edge. By585

definition, s is matched by β to a short subcurve Qe ⊂ Qi. Then, by Lemma 6.1(ii) and Lemma 6.2, we have586

|s| ≤ (2/A)δ∗ + |Qe| ≤ (3/A)δ∗. In particular, since (3/A)δ∗ < δ∗, no Pi contains a complete long edge.587

The claim for P1 follows, as P1 contains an initial segment of the first long edge. The claim for Pk holds588

for analogous reasons. Now consider a subcurve Pi with i ∈ {2, . . . , k− 1}. If Pi contains at least one vertex589

p, then Pi contains the maximal short subcurve of P containing p, and the claim follows. If Pi is straight590

(does not contain a vertex), then Pi must be a subsegment of a long edge: if Pi contains at least one point591

on a short edge, then by the continuity of ϕ, it would contain the whole edge, including its end vertices.592

Lemma 6.4 has several consequences for the position of the subcurves. Let C be an appropriate large593

constant with 1� 1/C � 1/A.594

Lemma 6.5. The following holds:595

(i) for i = 1, . . . , k, at least one of Pi, Qi is pointed;596

(ii) for i = 1, . . . , k, we have |Pi|, |Qi| ≤ (7/A)δ∗.597

(iii) for any two pointed subcurves Pi, Pj, i 6= j, we have dP (Pi, Pj) ≥ (1−6/A)δ∗. An analogous statement598

holds for Q;599

(iv) for any two straight subcurves Pi, Pj, i 6= j, we have dP (Pi, Pj) ≥ (1−8/A)δ∗. An analogous statement600

holds for Q;601

(v) for any subcurve Pi, there is at most one subcurve Pj, j 6= i, with dP (Pi, Pj) ≤ (1/C)δ∗. In this case,602

j ∈ {i − 1, i + 1}. If Pi is pointed, then Qi and Pj are straight, and Qj is pointed. If Pi is straight,603

then Qi and Pj are pointed, and Qj is straight. An analogous statement holds for Q.604

Proof. (i): If neither Pi nor Qi is pointed, then by Lemma 6.4 both are subsegments of the interiors of long605

edges, contradicting the definition.606

(ii): By, (i) and Lemma 6.4, if Pi is straight, it is matched by β to a short subcurve Qi on Q, and thus607

|Pi| ≤ (3/A)δ∗, by Lemma 6.1(ii) and Lemma 6.2. Otherwise, by Lemma 6.4, Pi consists of a short subcurve608

on P , plus two subsegments of length at most (3/A)δ∗ each. Thus, |Pi| ≤ (7/A)δ∗. The argument for Q is609

analogous.610

(iii): If Pi is pointed, then by Lemma 6.4, Pi consists of a final subsegment of a long edge eP , followed611

by a (possibly empty) short subcurve, followed by an initial subsegment of a long edge e′P . Let Pl be the612

subcurve that contains the startpoint of eP . Again by Lemma 6.4, Pl consists of a final subsegment of a long613

17



P̃1

P̃4

P̃2

P̃3

P̃5

Q̃1

Q̃2

Q̃3

Q̃4

Q̃5

Figure 14: Joining close subcurves. The subcurves P̃2, P̃3, Q̃2, and Q̃3 are composite. The others are simple.

edge, followed by a (possibly empty) short subcurve, followed by an initial subsegment on eP . Furthermore,614

the subsegments of eP on Pi and on Pl have length at most (3/A)δ∗. Thus, for all pointed Pj , j < i,615

dP (Pj , Pi) ≥ dP (Pl, Pi) ≥ δ∗ − 2(3/A)δ = (1− 6/A)δ∗.616

The argument for j > i is analogous.617

(iv): If Pi is straight, then Qi is pointed, by (i). Let l < i be maximum such that Ql is pointed. By (iii),618

we have dQ(Qi, Ql) ≥ (1− 6/A)δ∗, and by Lemma 6.2, the subsegment on Q between Ql and Qi is matched619

to a subcurve Pσ of P of length at least (1− 8/A)δ∗. Thus, by (i), for every straight Pj with j < i, we have620

dP (Pj , Pi) ≥ (1− 8/A)δ∗. The argument for j > i is analogous.621

(v): Suppose that Pi is pointed and suppose there exists a subcurve Pj , j < i, with dP (Pi, Pj) ≤ (1/C)δ∗.
By monotonicity, we also have dP (Pi−1, Pi) ≤ (1/C)δ∗, and by (iii) and since 1/C < 1− 8/A, the subcurve
Pi−1 is straight. Furthermore, for any other straight subcurve Pl, we have

dP (Pi, Pl) ≥ dP (Pi−1, Pl)− dP (Pi−1, Pi)− |Pi| (triangle inequality)

≥ (1− 8/A)δ∗ − (1/C)δ∗ − (7/A)δ∗ ((iii), assumption, (ii))

= (1− 15/A− 1/C)δ∗

> (1/C)δ∗. (A,C large enough)

Thus, Pi−1 is the only curve within distance (1/C)δ∗ from Pi. It follows from (i) that Qi is straight and622

that Qi−1 is pointed. The cases j > i and Pi straight are analogous.623

To deal with the case that subcurves may be close together, as in Lemma 6.5(v), we modify our subcurves624

as follows: we go through the subcurves P1, . . . , Pk in order. Let Pi be the current subcurve. If dP (Pi, Pi+1) >625

(1/C)δ∗, we proceed to Pi+1. Otherwise, if dP (Pi, Pi+1) ≤ (1/C)δ∗, we unite Pi and Pi+1 to a subcurve626

that goes from the startpoint of Pi to the endpoint of Pi+1, and we unite Qi and Qi+1 to a subcurve from627

the startpoint of Qi to the endpoint of Qi+1. Then, we proceed to Pi+2.628

Let P̃1, . . . , P̃k̃ and Q̃1, . . . , Q̃k̃ be the resulting sequences of subcurves. We call a subcurve P̃i or Q̃i629

composite if it was obtained by combining two original subcurves, and simple otherwise, see Figure 14. The630

next lemma collects properties of simple and composite subcurves.631

Lemma 6.6. For i = 1, . . . , k̃, we have632

(i) if P̃i is simple, then |P̃i|, |Q̃i| ≤ (7/A)δ∗, and for any j 6= i, dP (P̃i, P̃j) > (1/C)δ∗ and dQ(Q̃i, Q̃j) >633

(1/2C)δ∗;634

(ii) if P̃i is composite, then |P̃i| ≤ (2/C)δ∗ and |Q̃i| ≤ (2/C)δ∗. Furthermore, for any j 6= i, we have635

dP (P̃i, P̃j) > (1− 2/C)δ∗ and dQ(Q̃i, Q̃j) > (1− 2/C)δ∗.636
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Proof. (i): The bounds on |P̃i|, |Q̃i| are due to Lemma 6.5(ii). If P̃i−1 is simple, then dP (P̃i−1, P̃i) > (1/C)δ∗,637

as otherwise we would have combined the subcurves. If P̃i−1 was obtained by combining two original638

subcurves Pl, Pl+1, then dP (Pl, Pl+1) ≤ (1/C)δ∗, and hence dP (P̃i−1, P̃i) = dP (Pl+1, P̃i) > (1/C)δ∗, by639

Lemma 6.5(v). Similarly, we get dP (P̃i, P̃i+1) > (1/C)δ∗, and hence dP (P̃i, P̃j) > (1/C)δ∗ for all j 6= i.640

Since the subsegment between Q̃i and Q̃i−1 is matched to a subsegment of P with length at least641

(1/C)δ∗, we have dQ(Q̃i−1, Q̃i) ≥ (1/C − 2/A)δ∗, by Lemma 6.2. Similarly, dQ(Q̃i, Q̃i+1) ≥ (1/C − 2/A)δ∗,642

so dQ(Q̃i, Q̃j) ≥ (1/C − 2/A)δ∗ ≥ (1/2C)δ∗ for all j 6= i.643

(ii): Suppose that P̃i and Q̃i were obtained by combining the original subcurves Pl, Pl+1 and Ql, Ql+1. By644

Lemma 6.5, we have |Pl|, |Pl+1|, |Ql|, |Ql+1| ≤ (7/A)δ∗. By construction, we have dP (Pl, Pl+1) ≤ (1/C)δ∗,645

so by Lemma 6.2, dQ(Ql, Ql+1) ≤ (2/A + 1/C)δ∗. The bounds on |P̃i| and |Q̃i| now follow, because |P̃i| =646

|Pl|+ dP (Pl, Pl+1) + |Pl+1|, |Q̃i| = |Ql|+ dQ(Ql, Ql+1) + |Ql+1|, and 1/C � 1/A.647

By Lemma 6.5(v), P̃i consists of a straight and a pointed subcurve. Thus, for i 6= j,

dP (P̃i, P̃j) ≥ (1− 8/A)δ∗ − |P̃i| (triangle inequality, Lemma 6.5(iii,iv))

≥ (1− 22/A− 1/C)δ∗ (first part)

≥ (1− 1/2C)δ∗ (1/C � 1/A)

and similarly

dQ(Q̃i, Q̃j) ≥ (1− 8/A)δ∗ − |Q̃i|
≥ (1− 24/A− 1/C)δ∗

≥ (1− 1/2C)δ∗.

648

The invariant. We say that an edge e of P is incident to a subcurve P̃i, i ∈ {1, . . . , k̃}, if e and P̃i have at649

least one point in common, and similarly for Q. To analyze the greedy algorithm, we show that the traversal650

βgreedy maintains the following invariant.651

Invariant 6.7. Let (p, q) be an intermediate position of the greedy algorithm. If p is a vertex of P̃i, i ∈652

{1, . . . , k̃}, then q is the closest point of some vertex of P̃i on an edge incident to Q̃i. If q is a vertex of Q̃i,653

i ∈ {1, . . . , k̃}, then p is the closest point of some vertex of Q̃i on an edge incident to P̃i.654

Invariant 6.7 holds after the first step, because the greedy algorithm proceeds to either p2 and the closest655

point of p2 on q1q2 or to q2 and the closest point of q2 on p1p2. Clearly, p1p2 is incident to the subcurve656

containing p2 and q1q2 is incident to the subcurve containing p2.657

We focus on the situation that the greedy algorithm is at an intermediate position (p, q) such that p is a658

vertex of P̃i, i ∈ {1, . . . , k̃}, and such that q is the closest point of a vertex of P̃i on an edge incident to Q̃i.659

The case that q is a vertex of Qi is symmetric. Let p′ be the vertex of P strictly after p, and q′ the vertex660

of Q strictly after q. Let q∗ be the closest point to p′ on qq′ and p∗ the closest point to q′ on pp′. We need661

two technical lemmas about closest points on the edges of P and Q.662

Lemma 6.8. Let e ⊂ Q be the edge with qq′ ⊂ e. If q∗ 6= q, then q∗ is the closest point for p′ on e.663

Proof. Let `(x), x ∈ R, be some parametrization of the line spanned by e. Then the claim follows from the664

fact that the distance function x 7→ d(p′, `(x)) is bitonic.665

Lemma 6.9. Suppose that p is a vertex of P̃i, and that q ∈ Q is the closest point for p on a given edge666

incident to Q̃i. If P̃i is simple, then dQ(q, Q̃i) ≤ (16/A)δ∗. If P̃i is composite, then dQ(q, Q̃i) ≤ (5/C)δ∗ An667

analogous statement holds with the roles of P and Q exchanged.668

Proof. If q lies in Q̃i, then dQ(q, Q̃i) = 0, and the claim holds. Thus, assume that q lies on a long edge e
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incident to Q̃i. Let a be an endpoint of Q̃i that lies on e. Then,

dQ(q, Q̃i) ≤ d(q, a) (q and a lie on e)

≤ d(q, p) + d(p, a) (triangle inequality)

≤ 2d(p, a) (q is p’s closest point on e)

≤ 2d(p, Q̃i) + 2|Q̃i| (triangle inequality)

≤ (2/A)δ∗ + 2|Q̃i|. (Lemma 6.3)

The lemma follows by plugging in the bounds for |Q̃i| from Lemma 6.6.669

To show that Invariant 6.7 is maintained, we distinguish two cases, depending on whether P̃i is simple670

or composite.671

Case 1. First, suppose that P̃i (and Q̃i) is simple. We perform some quite straightforward calculations to672

bound the relevant distances.673

Lemma 6.10. We have674

(i) If p′ ∈ P̃i, then d(p′, q∗) ≤ (17/A)δ∗;675

(ii) If p′ 6∈ P̃i, then d(p′, Q̃i) ≥ (1/2C)δ∗;676

(iii) If q′ ∈ Q̃i, then d(p∗, q′) ≤ (8/A)δ∗;677

(iv) If q′ 6∈ Q̃i, then d(q′, P̃i) ≥ (1/3C)δ∗.678

Proof. (i): If p′ ∈ P̃i, then

d(p′, q∗) ≤ d(p′, q) ≤ d(p′, Q̃i) + dQ(Q̃i, q) (q is on qq′, triangle inequality)

≤ (1/A)δ∗ + (16/A)δ∗ = (17/A)δ∗. (Lemmas 6.3 and 6.9)

(ii): If p′ 6∈ P̃i, then

d(p′, Q̃i) ≥ d(p′, P̃i)− d(P̃i, Q̃i)− |Q̃i| (triangle inequality)

≥ (1/C)δ∗ − (1/A)δ∗ − (7/A)δ∗ (Lemmas 6.6(i) and 6.3)

≥ (1/2C)δ∗ (1/C � 1/A)

(iii): If q′ ∈ Q̃i, then

d(p∗, q′) ≤ d(p, q′) ≤ |P̃i|+ dQ(P̃i, q
′) (p is on pp′, triangle inequality)

≤ (7/A)δ∗ + (1/A)δ∗ = (8/A)δ∗. (Lemmas 6.6(i) and 6.3)

(iv): If q′ 6∈ Q̃i, then

d(q′, P̃i) ≥ d(q′, Q̃i)− d(Q̃i, P̃i)− |P̃i| (triangle inequality)

≥ (1/2C)δ∗ − (1/A)δ∗ − (7/A)δ∗ (Lemmas 6.6(i) and 6.3)

≥ (1/3C)δ∗. (1/C � 1/A)

679

Now a simple case analysis shows that the invariant is maintained.680

Lemma 6.11. Invariant 6.7 holds in the next intermediate step.681
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Proof. If p′ ∈ P̃i and q′ ∈ Q̃i, then Invariant 6.7 clearly holds in the next step (in particular, by Lemma 6.8,682

if q∗ 6= q, then q∗ is the closest point of p′ on an edge incident to Q̃i).683

If p′ ∈ P̃i and q′ 6∈ Q̃i, then684

d(p′, q∗) ≤ (17/A)δ∗ ≤ (1/3C)δ∗ ≤ d(P̃i, q
′) ≤ d(p∗, q′),685

by Lemma 6.10(i,iv). Thus, the next intermediate position is (p′, q∗), and if q∗ 6= q, then q∗ is the closest686

point of p′ on an edge incident to Q̃i, by Lemma 6.8.687

If p′ 6∈ P̃i and q′ ∈ Q̃i, then688

d(p∗, q′) ≤ (8/A)δ∗ ≤ (1/3C)δ∗ ≤ d(p′, Q̃i)− |Q̃i| − d(Q̃i, q
∗) ≤ d(p′, q∗),689

by Lemma 6.10(ii,iii), Lemma 6.6(i), Lemma 6.9 and the triangle inequality. Thus, the next intermediate690

position is (p∗, q′), and p∗ is the closest point of q′ on an edge incident to P̃i.691

If p′ 6∈ P̃i and q′ 6∈ Q̃i, then p′ is the first vertex of P̃i+1, q′ is the first vertex of Q̃i+1, p∗ lies on the692

segment between P̃i and P̃i+1, and q∗ lies on the segment between P̃i and P̃i+1. If the next intermediate693

position is (p∗, q′), then Invariant 6.7 clearly holds in the next step. If the next intermediate position is694

(p′, q∗), it remains to argue that q∗ is indeed the closest point for p′ on the segment incident to Q̃i and Q̃i+1.695

Since the optimal traversal β passes the segment between P̃i and P̃i+1 and the segment between Q̃i and696

Q̃i+1 together,697

d(p′, q∗) = min{d(p′, q∗), d(p∗, q′)} ≤ δF ≤ (1/A)δ∗,698

by Lemma 6.1(i), whereas

d(p′, q) ≥ d(p′, Q̃i)− |Q̃i| − d(Q̃i, q) (triangle inequality)

≥ (1/2C)δ∗ − (7/A)δ∗ − (16/A)δ∗ (Lemmas 6.10(ii), 6.6(i), 6.9)

≥ (1/3C)δ∗. (1/C � 1/A)

Thus, q 6= q∗, and q∗ is the closest point of p′ on the segment between Q̃i and Q̃i+1.699

Case 2. Now suppose that P̃i (and Q̃i) is composite. The argument is completely analogous to the first700

case, but with different bounds.701

Lemma 6.12. We have702

(i) If p′ ∈ P̃i, then d(p′, q∗) ≤ (6/C)δ∗;703

(ii) If p′ 6∈ P̃i, then d(p′, Q̃i) ≥ (1− 5/C)δ∗;704

(iii) If q′ ∈ Q̃i, then d(p∗, q′) ≤ (3/C)δ∗;705

(iv) If q′ 6∈ Q̃i, then d(q′, P̃i) ≥ (1− 5/C)δ∗.706

Proof. (i): If p′ ∈ P̃i, then

d(p′, q∗) ≤ d(p′, q) ≤ d(p′, Q̃i) + dQ(Q̃i, q) (q is on qq′, triangle inequality)

≤ (1/A)δ∗ + (5/C)δ∗ (Lemmas 6.3 and 6.9)

≤ (6/C)δ∗. (1/C � 1/A)

(ii): If p′ 6∈ P̃i, then

d(p′, Q̃i) ≥ d(p′, P̃i)− d(P̃i, Q̃i)− |Q̃i| (triangle inequality)

≥ (1− 2/C)δ∗ − (1/A)δ∗ − (2/C)δ∗ (Lemmas 6.6(ii), 6.3)

≥ (1− 5/C)δ∗. (1/C � 1/A)

(iii): If q′ ∈ Q̃i, then

d(p∗, q′) ≤ d(p, q′) ≤ |P̃i|+ dQ(P̃i, q
′) (p on pp′, triangle inequality)

≤ (2/C)δ∗ + (1/A)δ∗ ≤ (3/C)δ∗. (Lemmas 6.6(ii),6.3)
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(iv): If q′ 6∈ Q̃i, then

d(q′, P̃i, q
′) ≥ d(q′, Q̃i)− d(Q̃i, P̃i)− |P̃i| (triangle inequality)

≥ (1− 2/C)δ∗ − (1/A)δ∗ − (2/C)δ∗ (Lemmas 6.6(ii),6.3)

= (1− 5/C)δ∗. (1/C � 1/A)

707

Lemma 6.13. Invariant 6.7 holds in the next intermediate step.708

Proof. If p′ ∈ P̃i and q′ ∈ Q̃i, then Invariant 6.7 clearly holds in the next step (in particular, by Lemma 6.8,709

if q∗ 6= q, then q∗ is the closest point of p′ on an edge incident to Q̃i).710

If p′ ∈ P̃i and q′ 6∈ Q̃i, then711

d(p′, q∗) ≤ (6/C)δ∗ ≤ (1− 5/C)δ∗ ≤ d(P̃i, q
′) ≤ d(p∗, q′),712

by Lemma 6.12(i,iv). Thus, the next intermediate position is (p′, q∗), and if q∗ 6= q, then q∗ is the closest713

point of p′ on an edge incident to Q̃i, by Lemma 6.8.714

If p′ 6∈ P̃i and q′ ∈ Q̃i, then715

d(p∗, q′) ≤ (3/C)δ∗ ≤ (1− 8/C)δ∗ ≤ d(p′, Q̃i)− |Q̃i| − d(Q̃i, q
∗) ≤ d(p′, q∗),716

by Lemma 6.12(ii,iii), Lemma 6.6(ii) and Lemma 6.9. Thus, the next intermediate position is (p∗, q′), and717

p∗ is the closest point of q′ on an edge incident to P̃i.718

If p′ 6∈ P̃i and q′ 6∈ Q̃i, then p′ is the first vertex of P̃i+1, q′ is the first vertex of Q̃i+1, p∗ lies on the719

segment between P̃i and P̃i+1, and q∗ lies on the segment between P̃i and P̃i+1. If the next intermediate720

position is (p∗, q′), then Invariant 6.7 clearly holds in the next step. If the next intermediate position is721

(p′, q∗), it remains to argue that q∗ is indeed the closest point of p′ on the segment incident to Q̃i and Q̃i+1.722

Since the optimal traversal β passes the segment between P̃i and P̃i+1 and the segment between Q̃i and723

Q̃i+1 together, we have724

d(p′, q∗) = min{d(p′, q∗), d(p∗, q′)} ≤ δF ≤ (1/A)δ∗,725

by Lemma 6.1(i), whereas

d(p′, q) ≥ d(p′, Q̃i)− |Q̃i| − d(Q̃i, q)

≥ (1− 5/C)δ∗ − (2/C)δ∗ − (5/C)δ∗

= (1− 12/C)δ∗,

by Lemmas 6.12(ii), 6.6(ii), 6.9, and the triangle inequality. Thus, q 6= q∗, and q∗ is the closest point of p′726

on the segment between Q̃i and Q̃i+1.727

Conclusion.728

Theorem 6.14. The greedy algorithm computes a 2O(n)-approximation for the continuous Fréchet distance729

in O(n) time.730

Proof. The running time follows by construction. Since the greedy algorithm moves uniformly between the
intermediate positions, δgreedy is the maximum distance of any intermediate position. We have d(p1, q1) ≤ δF,
and for all other intermediate positions, Invariant 6.7 holds by Lemmas 6.11 and 6.13. Now let (p, q) be an
intermediate position, and suppose that p is a vertex of P̃i, i ∈ {1, . . . , k̃}, and that q is the closest point of
some vertex of Pi on an edge incident to Q̃i. Then,

d(p, q) ≤ d(p, Q̃i) + |Q̃i|+ d(Q̃i, q)

≤ (1/A)δ∗ + (2/C)δ∗ + (5/C)δ∗ = O(δ∗)

by Lemma 6.3, Lemma 6.6, and Lemma 6.9. The case that q is a vertex of Q̃i is analogous. Thus, by731

Lemma 6.1(iii), we have δgreedy = O(δ∗) = 2O(n)δF.732
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7 Conclusions733

We have obtained several new results on the approximability of the discrete Fréchet distance. As our main734

results,735

1. we showed a conditional lower bound for the one-dimensional case that there is no 1.399-approximation736

in strongly subquadratic time unless the Strong Exponential Time Hypothesis fails. This sheds further737

light on what makes the Fréchet distance a difficult problem.738

2. we determined the approximation ratio of the greedy algorithm as 2Θ(n) in any dimension d ≥ 1. This739

gives the first general linear time approximation algorithm for the problem; and740

3. we designed an α-approximation algorithm running in time O(n log n + n2/α) for any 1 ≤ α ≤ n in741

any constant dimension d ≥ 1. This significantly improves the greedy algorithm, at the expense of a742

(slightly) worse running time.743

Our lower bounds exclude only (too good) constant factor approximations with strongly subquadratic running744

time, while our best strongly subquadratic approximation algorithm has an approximation ratio of nε. It745

remains a challenging open problem to close this gap.746
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