
Efficient Sampling Methods for Discrete Distributions∗

Karl Bringmann1 and Konstantinos Panagiotou2

1Max Planck Institute for Informatics
2University of Munich

August 8, 2016

Abstract

We study the fundamental problem of the exact and efficient generation of random values
from a finite and discrete probability distribution. Suppose that we are given n distinct events
with associated probabilities p1, . . . , pn. First, we consider the problem of sampling from the
distribution where the i-th event has probability proportional to pi. Second, we study the
problem of sampling a subset which includes the i-th event independently with probability pi.
For both problems we present on two different classes of inputs – sorted and general probabilities
– efficient data structures consisting of a preprocessing and a query algorithm. Varying the
alloted preprocessing time yields a trade-off between preprocessing and query time, which we
prove to be asymptotically optimal everywhere.

1 Introduction

Generating random variables from finite and discrete distributions has long been an important
building block in many applications. For example, in computer simulations usually a huge number
of random decisions based on prespecified or dynamically changing distributions is made. In this
work we consider two fundamental computational problems, namely sampling from a distribution
and sampling independent events. We consider these problems on general probabilities as well
as restricted to sorted probabilities. The latter case is motivated by the fact that many natural
distributions, such as the geometric or binomial distribution, are unimodal, i.e., they change mono-
tonicity at most once. After splitting up such a distribution at its only extremum, we obtain two
sorted sequences of probabilities, see Section 5 for a thorough discussion. As we will see, there is a
rich interplay in designing efficient algorithms that solve these different problem variants.

We present our results on the classical Real RAM model of computation [13, 1]. In particular,
we will assume that the following operations take constant time: (1) accessing the content of
any memory cell, (2) generating a uniformly distributed real number in the interval [0, 1], and
(3) performing basic arithmetical operations involving real numbers like addition, multiplication,
division, comparison, truncation, and evaluating any fundamental function like exp and log. We
argue in Section 5 that our algorithms can also be adapted to work on the Word RAM model of
computation.

∗A preliminary version of this paper with worse upper and lower bounds appeared at ICALP’12.

1

1.1 Proportional Sampling

We first focus on the classic problem of sampling from a given distribution. Given p = (p1, . . . , pn) ∈
Rn≥0, we define a random variable Y = Yp that takes values in1 [n] such that Pr[Y = i] = pi/µ,
where µ =

∑n
i=1 pi is assumed to be positive. Note that if µ = 1 then p is indeed a probability

distribution, otherwise we need to normalize first. We concern ourselves with the problem of
sampling Y . We study this problem on two different classes of input sequences, sorted and general
(i.e., not necessarily sorted) sequences; depending on the class under consideration we call the
problem SortedProportionalSampling or UnsortedProportionalSampling.

A single-sample algorithm for SortedProportionalSampling or UnsortedProportion-
alSampling gets input p and outputs a number s ∈ [n] that has the same distribution as Y .
When we speak of “input p” we mean that the algorithm gets to know n and can access every pi in
constant time. This can be achieved by storing all pi’s in an array, but also, e.g., by having access
to an algorithm computing any pi in constant time. In particular, the algorithm does not know the
number of i’s with pi = 0. Moreover, the input format is not sparse. For this problem we prove
the following result.

Theorem 1.1. There is a single-sample algorithm for SortedProportionalSampling with
expected time O

(logn
log logn

)
and for UnsortedProportionalSampling with expected time O(n).

Both bounds are asymptotically tight.

We remark that all our lower bounds only hold for algorithms that work for all n and all (sorted)
sequences p1, . . . , pn. They are worst-case bounds over the input sequence p and asymptotic in n.
For particular instances p there can be faster algorithms. To avoid any confusion, note that we
mean worst-case bounds whenever we speak of (running) time and expected bounds whenever we
speak of expected (running) time.

To obtain faster sampling times, we consider sampling data structures that support Propor-
tionalSampling as a query. We view building the data structure as preprocessing of the input.
More precisely, in this preprocessing-query variant we consider the interplay of two algorithms.
First, the preprocessing algorithm P gets p as input and computes some auxiliary data D = D(p).
Second, the query algorithm Q gets input p and D, and samples Y , i.e., for any s ∈ [n] we have
Pr[Q(p, D) = s] = Pr[Y = s]. For Pr[Q(p, D) = s] the probability goes only over the random
choices of Q, so that, after running the preprocessing once, running the query algorithm multiple
times generates multiple independent samples. In this setting we prove the following tight result.

Theorem 1.2. For any 2 ≤ β ≤ O(logn
log logn), SortedProportionalSampling can be solved in

preprocessing time O(logβ n) and expected query time O(β). This is optimal, as there is a constant

ε > 0 such that for all 2 ≤ β ≤ O(logn
log logn) SortedProportionalSampling has no data structure

with preprocessing time ε logβ(n) and expected query time ε β.

Note that if we can afford a preprocessing time of O(log n) then the query time is already O(1),
which is optimal. Thus, larger preprocessing times cannot yield better query times. Moreover,
for β = Θ(logn

log logn) the preprocessing time is equal to the query time. Thus, we may skip the
preprocessing phase and run both the preprocessing and query algorithm for every sample. We
obtain a single-sample algorithm with runtime O(logn

log logn). This shows that β � logn
log logn makes no

sense and explains why we allow preprocessing time O(logβ n) with 2 ≤ β ≤ O(logn
log logn). Varying

β yields a trade-off between preprocessing and query time; if one wants to have a large number of
samples, one should set β = 2 to minimize query time, while a large β yields superior runtimes if

1Throughout the paper, we abbreviate [n] = {1, . . . , n}.

2

one wants only a small number of samples. Note that we prove a matching lower bound for this
trade-off for all β.

For general input sequences, ProportionalSampling can be solved by the technique known as
pairing or aliasing [17, 8]; see also Mihai Pătraşcu’s blog [14] for an excellent exposition. Basically,
we use O(n) preprocessing to distribute the probabilities of all elements over n urns such that any
urn contains exactly 1/n probability mass, stemming from at most two elements. For querying
we first choose an urn uniformly at random. Then we choose one of the two included elements
randomly according to their probability mass in the urn, resulting in an O(1) (worst-case) query
time. This result is not new, but will be used in the proofs of Theorem 1.5 and Theorem 1.6 below,
so we include it for completeness.

Theorem 1.3. UnsortedProportionalSampling can be solved in preprocessing time O(n) and
query time O(1). This is optimal, as there is a constant ε > 0 such that UnsortedProportion-
alSampling has no data structure with preprocessing time εn and expected query time εn.

Note that any data structure with preprocessing time tp and query time tq can be transformed
into a single-sample algorithm with expected time tp+tq, so the single-sample variant of the problem
is also solved by the preprocessing-query variant. This argument proves that Theorem 1.1 follows
from Theorems 1.2 and 1.3.

Related work. The fundamental problem of the exact and efficient generation of random val-
ues from discrete and continuous distributions has been studied extensively in the literature. The
seminal work [9] examines the power of several restricted devices, like finite-state machines; the
articles [18, 6] provide a further refined treatment of the topic. However, their results are not
directly comparable to ours, since on the one hand they do not make any assumption on the se-
quence of probabilities and use unbiased coin flips as the only source of randomness, but on the
other hand they cannot guarantee efficient precomputation on general sequences. Furthermore, [7]
and [10] provided algorithms for a dynamic version of UnsortedProportionalSampling, where
the probabilities may change over time. In particular, under certain mild conditions their results
guarantee the same bounds as in Theorem 1.3. Finally, there is a solution to UnsortedPropor-
tionalSampling [3] that can be implemented on a WordRAM (i.e., the pi’s are each represented
by w bits, and the usual arithmetic operations on w-bit integers take constant time) that improves
upon Walker’s technique and has optimal space and time requirements.

1.2 Subset Sampling

In the previous section we considered the problem of sampling from a distribution. In this section
we give an algorithm to randomly pick a subset S of {1, . . . , n}, where the values pi = Pr[i ∈ S]
are given as an input, and the events “i ∈ S” are independent. In other words, we are given
p = (p1, . . . , pn) as input and we want to sample a random variable X ⊆ [n] with

Pr[X = S] =

(∏
i∈S

pi

)
·
(∏
i∈[n]\S

(1− pi)
)
.

For shortcut we write µ = µp =
∑n

i=1 pi = E[X]. We call the problem of sampling X Sorted-
SubsetSampling or UnsortedSubsetSampling, if we consider it on sorted or general input
sequences, respectively.

The motivation for this problems comes from sampling certain random graphs. Consider for
instance the Chung-Lu random graph model [4]: We are given weights w1 ≥ . . . ≥ wn and

3

sample a graph on vertex set [n] where the edge {i, j} is independently present with probabil-
ity min{1, wiwj∑

k wk
}. Note that for any fixed vertex i, the edge probabilities to vertices j > i are

descendingly sorted. Thus, sampling the set of neighbors of vertex i is an instance of SortedSub-
setSampling. Solving these instances for all vertices i yields a Chung-Lu random graph, and our
algorithms from this paper do this in total time O(n log n+m), where m is the expected number of
edges. This does not match the optimal O(n+m) [11], because we ignore the structure connecting
the different arising instances. However, it serves as a motivating example.

As previously, we consider two variations of SubsetSampling. In the single-sample variant we
are given p and we want to compute an output that has the same distribution as X. Moreover, in
the preprocessing-query variant we have a precomputation algorithm that is given p and computes
some auxiliary data D, and a query algorithm that is given p and D and has an output with the
same distribution as X; where the results of multiple calls to the query algorithm are independent.

Any query algorithm cannot run faster than O(1 + µ), as its expected output size is µ and any
algorithm requires a running time of Ω(1). Whether this query time is achievable depends on µ
and the alloted preprocessing time, as our results below make precise. Note that the single-sample
variant of UnsortedSubsetSampling can be solved trivially in time O(n); we just toss a biased
coin for every pi. This algorithm is optimal, as shown by the following tight result.

Theorem 1.4. There is a single-sample algorithm for SortedSubsetSampling with expected
time

t(n, µ) =

O(µ), if µ ≥ 1
2 log n,

O
(
1 + logn

log(logn
µ

)

)
, otherwise,

and for UnsortedProportionalSampling with expected time O(n). Both bounds are asymp-
totically tight for any fixed µ = µ(n).

Let us discuss what we mean by “asymptotically tight for any fixed µ = µ(n)”. Fix any
µ = µ(n). Consider any single-sample algorithm for SortedSubsetSampling that, given any p
(not necessarily with µp = µ), correctly samples from the desired distribution. Then there exists
an input p with µp = µ such that the expected time of the algorithm on input p is Ω(t(n, µ)),
where t(n, µ) is defined in Theorem 1.4. This holds even if we allow the algorithm to have a very
large runtime for all instances with µp 6= µ. In particular, our runtime bound is not only tight for
one infinite family of input p (realizing a particular function µ(n)), but for every µ(n) we construct
a hard family of inputs. A similar discussion applies to Theorems 1.5 and 1.6 below.

As for ProportionalSampling, the single-sample result Theorem 1.4 follows from our results
on the preprocessing-query variant below.

Theorem 1.5. For any 2 ≤ β < n, SortedSubsetSampling can be solved in preprocessing time
O(logβ n) and expected query time O(tβq (n, µ)), where

tβq (n, µ) =


µ, if µ ≥ 1

2 log n,

1 + βµ, if µ < 1
β logβ n,

logn

log(logn
µ

)
, otherwise.

In particular, the query time is always at most O(1+βµ). This is optimal, as there is a constant ε >
0 such that for all 2 ≤ β < n SortedSubsetSampling has no data structure with preprocessing
time ε logβ n and expected query time ε tβq (n, µ) for any fixed µ = µ(n).

4

Observe that setting β = 2 in the above result yields a preprocessing time of O(log n) and an
(optimal) expected query time of O(1 + µ).

The next result addresses the case of general, i.e., not necessarily sorted, probabilities.

Theorem 1.6. UnsortedSubsetSampling can be solved in preprocessing time O(n) and expected
query time O(1 + µ). This is optimal, as there is a constant ε > 0 such that UnsortedSubset-
Sampling has no data structure with preprocessing time εn and expected query time εn for any
fixed µ = µ(n).

Both positive results in the previous theorems highly depend on each other. In particular,
as is demonstrated in Section 2.2, we prove them by repeatedly reducing the instance size n and
switching from the one problem variant to the other.

We also present a relation between ProportionalSampling and SubsetSampling that sug-
gests that the classic problem ProportionalSampling is the easier of the two problems (or can
be seen as a special case of SubsetSampling). Specifically, we present a reduction that allows one
to infer the upper bounds for ProportionalSampling (Theorems 1.2 and 1.3) from the upper
bounds for SubsetSampling (Theorems 1.5 and 1.6), see Section 4 for details.

Related work. A classic algorithm solves SubsetSampling for p1 = . . . = pn = p in the optimal
expected time O(1 + µ), see, e.g., the monographs [5] and [8], where also many other cases are
discussed. Indeed, observe that the index i1 of the first sampled element is geometrically distributed,
i.e., Pr[i1 = i] = (1 − p)i−1p. Such a random value can be generated by setting i1 = b log rand()

log(1−p) c.
Moreover, after having sampled the index of the first element, we iterate the process starting at
i1 + 1 to sample the second element, and so on, until we arrive for the first time at an index ik > n.
In [16] the “orthogonal” problem is considered, where we want to uniformly sample a fixed number
of elements from a stream of objects. The problem of UnsortedSubsetSampling was considered
also in [15], where algorithms with linear preprocessing time and suboptimal query time O(log n+µ)
were designed. Our results improve upon this running time, and provide matching lower bounds.

1.3 Notation and Organization

In the remainder, we will write lnx for the natural logarithm of x, logt x = lnx/ ln t, and log x =
log2 x. Finally, we will write rand() for a uniform random number in [0, 1].

The rest of the paper is structured as follows. In Section 2 we present our new algorithms,
proving (the upper bounds of) Theorem 1.2 in Section 2.1 and Theorems 1.5 and 1.6 in Section 2.2.
In Section 3 we present the lower bounds, proving (the lower bounds of) Theorems 1.3 and 1.6 in
Section 3.1, Theorem 1.2 in Section 3.2, and Theorem 1.5 in Section 3.3. We present our reduction
from ProportionalSampling to SubsetSampling in Section 4. We discuss relaxations to our
input and machine model and possible extensions in Section 5.

2 Upper Bounds

2.1 A Simple Algorithm for Sorted Proportional Sampling

In this section, we prove the upper bound of Theorem 1.2 by presenting an algorithm for Sort-
edProportionalSampling with O(β) expected query time after O(logβ n) preprocessing, where

2 ≤ β ≤ O(logn
log logn) is a parameter. We remark that our algorithm also works for β � logn

log logn , but
is not meanigful in this case, because then the preprocessing time is less than the query time.

5

Let p1, . . . , pn be an input sequence to SortedProportionalSampling. Consider the blocks
Bk := {i ∈ [n] | βk ≤ i < βk+1} with 0 ≤ k ≤ L := blogβ nc. Note that B0, . . . , BL partition [n].
For i ∈ Bk we set pi := pβk , which is an upper bound for pi. Let µ :=

∑
i pi and µ :=

∑
i pi. We

also set for 0 ≤ k ≤ L

qk :=
∑
i∈Bk

pi = |Bk| · pβk =
(
min(βk+1, n+ 1)− βk

)
· pβk .

For preprocessing, we run the preprocessing of UnsortedProportionalSampling on q1, . . . , qL.
This takes time O(L) = O(logβ n) using Theorem 1.3, since qk can be evaluated in constant time.

Our query algorithm consists of two steps. First, we sample an index i with distribution
p1, . . . , pn. To this end, we sample a block Bk proportional to the distribution q1, . . . , qL and then
sample an index i ∈ Bk uniformly at random. Second, with probability 1 − pi/pi we reject i and
repeat the whole process. Otherwise we return i. This culminates into Algorithm 1.

Algorithm 1 SortedProportionalSampling

Input: p1 ≥ . . . ≥ pn ≥ 0 and parameter 2 ≤ β ≤ O(logn
log logn)

Preprocessing:
L := blogβ nc
qk := (min{βk+1, n+ 1} − βk) · pβk
Run preprocessing of UnsortedProportionalSampling(q0, . . . , qL)

Querying:
Repeat

k := UnsortedProportionalSampling(q1, . . . , qL)
pick i uniformly at random in {βk, . . . ,min{βk+1 − 1, n}}

Exit loop with probability pi/pβk
Return i

Note that we pick index i ∈ Bk with probability proportional to pi and do not reject it with
probability pi/pi. Thus, the probability of returning a particular index i is proportional to pi·pi/pi =
pi and we obtained an exact sampling algorithm. Moreover, in any iteration of the loop the
probability r of not rejecting, i.e., of leaving the loop, is

r =
1

µ

n∑
i=1

pi · pi/pi.

In this equation, note the first step of sampling with respect to p1, . . . , pn (1
µ

∑n
i=1 pi) and the

second step of rejection (pi/pi). Clearly, this simplifies to r = µ/µ. The following lemma shows
that µ ≤ β · µ, implying r ≥ 1/β. Hence, the expected number of iterations of the loop is O(β),
and in total querying takes expected time O(β).

Lemma 2.1. We have µ ≤ µ ≤ β · µ.

Proof. The first inequality follows from pi ≤ pi. Note that for i ∈ Bk we have di/βe ≤ βk. Thus,
pdi/βe ≥ pβk . Hence,

µ =

n∑
i=1

pi ≤
n∑
i=1

pdi/βe ≤ β
n∑
i=1

pi = β · µ.

6

2.2 Subset Sampling

In this section we consider SortedSubsetSampling and UnsortedSubsetSampling and prove
the upper bounds of Theorems 1.5 and 1.6. An interesting interplay between both of these problem
variants will be revealed on the way.

We begin with an algorithm for unsorted probabilities that has a quite large preprocessing time,
but will be used as a base case later. The algorithm uses Theorem 1.3.

Lemma 2.2. UnsortedSubsetSampling can be solved in preprocessing time O(n2) and expected
query time O(1 + µ).

Proof. For i ∈ [n] let us denote by Si the smallest sampled element that is at least i, or ∞, if no
such element is sampled. Then Si is a random variable such that

Pr[Si = j] = pj
∏
i≤k<j

(1− pk) and Pr[Si =∞] =
∏

i≤k≤n
(1− pk).

All these probabilities can be computed on a Real RAM in time O(n) for any i, i.e., in time O(n2)
for all i. After having computed the distribution of the Si’s, we execute, for each i ∈ [n], the
preprocessing of Theorem 1.3, which allows us to quickly sample Si later on. This preprocessing
takes time O(n2).

For querying, we start at i = 1 and iteratively sample the smallest element j ≥ i (i.e., sample
Si), output j, and start over with i = j + 1. This is done until j =∞ or i = n+ 1. Note that any
sample of Si can be computed in O(1) time with our preprocessing, so that sampling S ⊆ [n] will
be done in time O(1 + |S|). The expected runtime is, thus, O(1 + µ).

After having established this base case, we turn towards reductions between SortedSubset-
Sampling and UnsortedSubsetSampling. First, we give an algorithm for UnsortedSubset-
Sampling that reduces the problem to SortedSubsetSampling. For this, we roughly sort the
probabilities so that we get good upper bounds for each probability. Then these upper bounds will
be a sorted instance. After querying from this sorted instance, we use rejection (see, e.g., [8]) to
sample with the original probabilities.

Lemma 2.3. Assume that SortedSubsetSampling can be solved in preprocessing time tp(n, µ)
and expected query time tq(n, µ), where tp and tq are monotonically increasing in n and µ. Then
UnsortedSubsetSampling can be solved in preprocessing time O(n+ tp(n, 2µ+ 1)) and expected
query time O(1 + µ+ tq(n, 2µ+ 1)).

Proof. Let p = (p1, . . . , pn) be an input sequence to UnsortedSubsetSampling. For prepro-
cessing, we permute the input p so that it is approximately sorted, by partitioning it into buckets
Uk := {i ∈ [n] | 2−k ≥ pi > 2−k−1}, for k ∈ {0, 1, . . . , L − 1}, and UL := {i ∈ [n] | 2−L ≥ pi},
where L = dlog ne. For each i ∈ Uk we set pi := 2−k, which is an upper bound on pi. We sort the
probabilities pi, i ∈ [n], descendingly using bucket sort with the buckets Uk, yielding p′1 ≥ . . . ≥ p′n.
In this process we store the original index ind(i) corresponding to p′i, so that we can find pind(i)

corresponding to p′i in constant time. Then we run the preprocessing of SortedSubsetSampling
on p′1, . . . , p

′
n. Note that

µ :=

n∑
i=1

p′i =

n∑
i=1

pi ≤
n∑
i=1

max

{
2pi,

1

n

}
≤ 2µ+ 1.

7

Thus, the total preprocessing time is bounded by

O(n) + tp(n, µ) = O(n+ tp(n, 2µ+ 1)),

establishing the first claim.
For querying, we query p′1, . . . , p

′
n using SortedSubsetSampling, yielding S′ ⊆ [n]. We

compute S := {ind(i) | i ∈ S′}. Each i ∈ S was sampled with probability pi ≥ pi. We use rejection
to get this probability down to pi. For this, we generate for each i ∈ S a random number rand()
and check whether it is smaller than or equal to pi/pi. If this is not the case, we delete i from S.
Note that we have thus sampled i with probability pi, and all elements are sampled independently,
so S has the desired distribution. Moreover, since the expected size of S′ is µ, the expected query
time is bounded by

tq(n, µ) +O(1 + E[|S′|]) = O(1 + µ+ tq(n, 2µ+ 1)),

and the second claim is also established.

We also give a reduction in the other direction, solving SortedSubsetSampling by Unsort-
edSubsetSampling.

Lemma 2.4. Let 2 ≤ β < n. Assume that UnsortedSubsetSampling can be solved in prepro-
cessing time tp(n, µ) and expected query time tq(n, µ), where tp and tq are monotonically increasing
in n and µ. Then SortedSubsetSampling can be solved in preprocessing time O(logβ n+ tp(1 +
logβ n, βµ)) and expected query time O(1+βµ+tq(1+logβ n, βµ)). More precisely, our preprocessing
computes a value µ with µ ≤ µ ≤ βµ and the expected query time is O(1 + µ+ tq(1 + logβ n, µ)).

Proof. Let p1, . . . , pn be an input sequence to SortedSubsetSampling. As in Section 2.1, we
consider blocks Bk = {i ∈ [n] | βk ≤ i < βk+1}, with k ∈ {0, . . . , L} and L := blogβ nc, and let
pi := pβk for i ∈ Bk. We will first sample with respect to the probabilities pi – call the sampled
elements potential – and then use rejection. For this, let Xk be an indicator random variable for
the event that we sample at least one potential element in Bk. Then

qk := Pr[Xk = 1] = 1− (1− pβk)|Bk|.

Moreover, let Yk be a random variable for the index of the first potential element in block Bk,
minus βk. Let Yk =∞, if no element in Bk is sampled as a potential element. Then Pr[Yk = i] =
pβk(1− pβk)i for i ∈ {0, . . . , |Bk| − 1}, and Pr[Yk =∞] = Pr[Xk = 0] = 1− qk. We calculate

Pr[Yk = i | Xk = 1] =
Pr[Yk = i]

Pr[Xk = 1]
=
pβk

qk
(1− pβk)i, i ∈ {0, . . . , |Bk| − 1}.

Since this is a (truncated) geometric distribution, we can sample from it in constant time. Indeed,
consider a geometric random variable Z with parameter p truncated at m, i.e., Pr[Z = i] =
p(1− p)i/q for i ∈ {0, . . . ,m− 1}, where q := 1− (1− p)m. Then blog(1− q · rand())/ log(1− p)c
samples from Z; see also [8].

For preprocessing, we first compute the probabilities qk, k ∈ {0, . . . , L}. This can be done in
time O(L) = O(logβ n) (as ab = exp(b ln a) can be computed in constant time on a Real RAM).
Then we run the preprocessing of UnsortedSubsetSampling on them; note that the qk’s are in
general not sorted. In total, the preprocessing time is at most

O(logβ n) + tp(1 + logβ n, ν), where ν =

blogβ nc∑
i=0

qk.

8

Using that (1− x)y ≥ 1− xy for 0 < x < 1 and y ≥ 1 we obtain

ν =

blogβ nc∑
i=0

1− (1− pβk)|Bk| ≤
blogβ nc∑
i=0

pβk |Bk| =
n∑
i=1

pi = µ.

Using Lemma 2.1 we obtain ν ≤ βµ, and the bound O(logβ n + tp(1 + logβ n, βµ)) for the total
preprocessing time follows immediately.

For querying, we query the blocks Bk that contain potential elements, using the query algorithm
for UnsortedSubsetSampling on q0, . . . , qk. Then, for each block Bk that contains a potential
element, we sample all potential elements in this block. Note that the first of the potential elements
in Bk is distributed as Pr[Yk = i | Xk = 1], which is geometric, so we can sample from it in constant
time, while all further potential elements are distributed as Yk (but only on the remainder of the
block), which is still geometric. Then, after having sampled a set S of potential elements, we keep
each i ∈ S only if rand() ≤ pi/pi. This yields a random sample S ⊆ S with the desired distribution.
The overall query time is then at most

tq(1 + logβ n, ν) +O(1 + |S|) ≤ tq(1 + logβ n, µ) +O(1 + |S|)

As the expected value of |S| is µ ≤ βµ the proof is completed.

Next, we put the above three lemmas together to prove the upper bounds of Theorems 1.5
and 1.6.

Proof of Theorem 1.6, upper bound. To solve UnsortedSubsetSampling, we use the reduction
Lemma 2.3 and then Lemma 2.4 (where we set β = 2), followed by the base case Lemma 2.2. This
reduces the instance size from n to O(log n), so that preprocessing costs O(n) for the invocation of
the first lemma, O(log n) for the second, and O(log2 n) for the third. Note that µ is increased only
by constant factors, so that we indeed get the a query time of O(1 + µ).

For SortedSubsetSampling we first prove a weaker statement than Theorem 1.5, which
follows from simply putting together the reductions of this section.

Lemma 2.5. Let 2 ≤ β < n . Then SortedSubsetSampling can be solved in preprocessing time
O(logβ n) and expected query time O(1 + βµ). More precisely, our preprocessing computes a value
µ with µ ≤ µ ≤ βµ and the expected query time is O(1 + µ).

Proof. To solve SortedSubsetSampling, we use the reduction presented in Lemma 2.4 followed
by the upper bound of Theorem 1.6 that we proved above. This reduces the instance size from n to
O(logβ n) while µ is increased to O(1 + βµ). We obtain the desired preprocessing time O(logβ n)
and query time O(1 + βµ).

Proof of Theorem 1.5, upper bound. Assume that we are allowed preprocessing time O(logβ̃ n) for

some 2 ≤ β̃ < n. Our algorithm for SortedSubsetSampling simply runs the preprocessing of
Lemma 2.5 with β = β̃ to satisfy the preprocessing time constraint.

For querying, we improve upon the runtime of Lemma 2.5 as follows. For any β ∈ {2, . . . , n},
let µ(β) be the upper bound on µ computed by Lemma 2.5 given O(logβ n) preprocessing time.

Initially, we set β := β̃ so that µ(β) = µ(β̃) was computed by our preprocessing. If 1 + µ(β̃) ≤
logβ̃ n then we run the query algorithm of Lemma 2.5 and are done. Otherwise, we repeatedly set

β := dβ1/2e and rerun the preprocessing of Lemma 2.5, until β = 2 or 1 + µ(β) ≤ logβ n. Then we
run the query algorithm of Lemma 2.5.

9

It remains to analyze the runtime of this query algorithm. We consider three cases. (1) If
1 + µ(β̃) ≤ logβ̃ n then the β-decreasing loop does not start and the query time is O(1 + µ(β̃)) ≤
O(1 + β̃µ). (2) If the β-decreasing loop breaks at β = 2, then since it did not stop at β ∈ {3, 4} we
have 1 + 4µ > log4 n, or µ = Ω(log n). In this case, the total query time is O(1 +µ+ log n) = O(µ).
(3) Otherwise the β-decreasing loop stopped at some β∗ with 1+µ(β∗) ≤ logβ∗ n. Using µ(β) ≤ βµ
and that we decrease β by taking its square root, we obtain β∗ ≥ γ1/2, where γ ≥ 2 satisfies

1 + γµ = logγ n.

The above equation solves to γ = Θ
(logn

µ

/
log
(logn

µ

))
. This yields a total query time ofO(logβ∗ n) =

O(logγ n) = O
(logn

log(logn
µ

)

)
, which proves the claimed query time.

3 Lower Bounds

We prove most of our lower bounds by reducing the various sampling problems to the following
fact, that searching in an unordered array of length m takes time Ω(m). A notable exception is
Lemma 3.4.

Fact 3.1. Consider problem ArraySearch: Given m and query access to an array A ∈ {0, 1}m
consisting of m bits, with exactly one bit set to 1, find the position of this bit. Any randomized
algorithm for ArraySearch needs Ω(m) accesses to A in expectation.

3.1 Proportional Sampling on Unsorted Probabilities

The lower bound for Theorem 1.3 is provided by the following lemma that reduces ArraySearch
to UnsortedProportionalSampling. Moreover, the same proof yields the lower bound of
Theorem 1.6 for UnsortedSubsetSampling.

Lemma 3.2. Any single-sample algorithm for UnsortedProportionalSampling has expected
time Ω(n). Moreover, any single-sample algorithm for UnsortedSubsetSampling has expected
time Ω(n).

Proof. Let A be an instance of ArraySearch of size n, say with 1-bit at position `∗. We consider
the instance

pA = (pA1 , . . . , p
A
n) with pAi = A[i].

Any sampling algorithm for UnsortedProportionalSampling returns `∗ on instance pA with
probability 1. Thus, simulating any algorithm for UnsortedProportionalSampling (by com-
puting pAi on the fly) we obtain an algorithm for finding the 1-bit of array A. Hence, by Fact 3.1,
any algorithm for UnsortedProportionalSampling takes expected time Ω(n).

Observe that on the same instance pA any sampling algorithm for UnsortedSubsetSampling
returns the set {`∗} with probability 1. This needs expected time Ω(n) for the same reasons. With
varying µ, no better bound is possible, either: If µ ≥ 1, consider an ArraySearch instance A of
length n− s, where s := dµ− 1e. Let pAi = A[i] for 1 ≤ i ≤ n− s and set the last s probabilities pAi
to values that sum up to µ− 1. Then we still need runtime Ω(n− µ) by Fact 3.1. As we also need
runtime Ω(µ) for outputting the result, the lower bound of Ω(n) follows. Otherwise, if µ < 1, then
we consider p̃Ai := µ · A[i]. Since the algorithm does not know µ, it behaves just as in the case
µ = 1 until it reads pA`∗ . However, finding `∗ takes time Ω(n), which yields the result.

10

3.2 Proportional Sampling on Sorted Probabilities

Here we present the proof of the lower bound of Theorem 1.2 for SortedProportionalSampling.

Proof of Theorem 1.2, lower bound. Let n ∈ N and 2 ≤ β ≤ O(logn
log logn). Let si :=

∑i−1
j=0 β

j =

(βi−1)/(β−1). Let L be maximal with sL ≤ n and note that L = Θ(logβ n). Then β ≤ O(logn
log logn)

implies β = O(L). We consider blocks Bi := {si, si + 1, . . . , si + βi−1 − 1}, for i = 1, . . . , L, that
partition {1, . . . , sL}.

Let A be an instance of ArraySearch of size L, say with 1-bit at position `∗. To construct
the instance p = pA = (pA1 , . . . , p

A
n) we set for any ` ∈ {1, . . . , L} and j ∈ B`

pAj := β−`+A[`],

and pAj := 0 for sL < j ≤ n. As block B` has size β`, the total probability mass of B` is∑
j∈B` p

A
j = βA[`], i.e., it is β for A[`] = 1, and 1 otherwise. Observe that

µ =
n∑
i=1

pAi = L+ β − 1,

since block B`∗ contributes β and each of the other L− 1 blocks contributes 1 as total probability
mass. Furthermore, note that pA1 , . . . , p

A
n is indeed sorted, as the probability of an element in block

B` is smaller by a factor of (at least) β than the probability of an element in B`−1, except if ` = `∗,
in which case these probabilities coincide.

In the following we will prove that there is no sampling algorithm where the preprocessing
reads at most εL input values and the querying reads at most εβ input values in expectation, for
a sufficiently small constant ε > 0. Assume, for the sake of contradiction, that such an algorithm
exists. On pA we run the preprocessing and then K times the query algorithm, sampling K numbers
X1, . . . , XK ∈ {1, . . . , n}. Denote by Yk the block of Xk, i.e., Xk ∈ BYk . If A[Yk] = 1 for some
1 ≤ k ≤ K then we return Yk, otherwise we linearly search for the 1-bit of A.

This yields an algorithm for ArraySearch, let us analyze its expected number of accesses
to A. Since the total probability mass of block B`∗ is β, we have

Pr[Yk = `∗] =
β

µ
=

β

L+ β − 1
= Ω

(β
L

)
,

since β = O(L). Thus, Pr[@k : A[Yk] = 1] = (1 − Ω(β/L))K = exp(−Ω(Kβ/L)). Setting K =
Θ(log(1/ε)L/β) (with sufficiently large hidden constant), this probability is at most ε. Hence,
the expected number of accesses to A of the constructed algorithm is (counting preprocessing, K
queries, and a possible linear search through A)

εL+K · εβ + Pr[@k : A[Yk] = 1] · L ≤ O(log(1/ε)εL).

For sufficiently small ε > 0 this contradicts Fact 3.1.

Note that the same proof also works for single-sample algorithms. In this case the preprocessing
reads no input values, and the only restriction is β ≤ O(L). Setting β = Θ(log(n)/ log log(n)) this
yields a lower bound of Ω(log(n)/ log log(n)) on the expected runtime of any single-sample algorithm
for SortedProportionalSampling.

11

3.3 Subset Sampling on Sorted Probabilities

We first prove two lemmas proving lower bounds for SortedSubsetSampling in different situa-
tions. Then we show how the lower bound of Theorem 1.5 follows from these lemmas.

Lemma 3.3. Let β ∈ {2, . . . , n}. Consider any data structure for SortedSubsetSampling with
preprocessing time ε logβ n (where ε > 0 is a sufficiently small constant) and query time tq(n, µ).
Then for any µ = µ(n) with β(1 + µ) = O(logβ n) we have tq(n, µ) = Ω(βµ).

Proof. We closely follow the proof of the lower bound of Theorem 1.2 (Section 3.2). Let si :=∑i−1
j=0 β

j = (βi − 1)/(β − 1). Let L be maximal with sL ≤ n and note that L = Θ(logβ n). We

consider blocks Bi := {si, si + 1, . . . , si + βi−1 − 1}, for i = 1, . . . , L, that partition {1, . . . , sL}.
Note that our assumptions imply β = O(logβ n), from which it follows that β = O(log n) and

thus L = Θ(logβ n) = Ω(log n/ log log n) grows with n. Since we can assume that n is sufficiently
large, we thus can assume the same for L. By assumption we also have µ = O(logβ n) = O(L). If
µ > L, then we introduce elements p1 = . . . = pdµ−Le = 1. Then on the remainder pdµ−Le+1, . . . , pn
we have a probability mass µ− dµ−Le, which is at most L, but still Ω(µ) (where we use that L is
at least a sufficiently large constant). Hence, it suffices to show that sampling from the remainder
takes query time Ω(βµ). Focussing on this remainder, without loss of generality we can from now
on assume µ ≤ L.

Let A be an instance of ArraySearch of size L, say with 1-bit at position `∗. To construct
the instance p = pA = (pA1 , . . . , p

A
n), for some 0 ≤ α ≤ 1 we set for any ` ∈ {1, . . . , L} and j ∈ B`

the input to pAj := α · β−`+A[`], and for sL < j ≤ n to pAj := 0. As block B` has size β`, the total

probability mass of B` is
∑

j∈B` p
A
j = α · βA[`]. Observe that µ =

∑n
i=1 p

A
i = α(L+ β − 1) indeed

has a solution 0 ≤ α ≤ 1, since µ ≤ L. Furthermore, note that pA1 , . . . , p
A
n is indeed sorted.

Assume for the sake of contradiction that there is a data structure for SortedSubsetSampling
where the preprocessing reads at most ε logβ n input values and the querying reads at most εβµ
input values in expectation, for a sufficiently small constant ε > 0.

On pA we run the preprocessing and then K times the query algorithm, sampling K sets
X1, . . . , XK ⊆ {1, . . . , n}. For every x ∈

⋃K
k=1Xk we determine its block By and check whether

A[y] = 1. If so, we have found the 1-bit of A. Otherwise we linearly search for the 1-bit of A.
This yields an algorithm for ArraySearch, let us analyze its expected number of accesses

to A. Let `∗ be the position of the 1-bit in A. The probability of not sampling any i ∈ B`∗ in any
of the K queries is ∏

i∈B`∗
(1− pi)K = (1− α · β−`∗+1)Kβ

`∗ ≤ exp(−Kαβ).

This probability becomes at most ε by setting K = dln(1/ε)/(αβ)e = Θ(1+log(1/ε)/(αβ)). Hence,
the expected number of accesses to A of the constructed algorithm is (counting preprocessing, K
queries, and a linear search through A with probability at most ε)

O(εL+K · εβµ+ ε · L) ≤ O(ε(L+ βµ+ log(1/ε)µ/α)) ≤ O(ε(log(1/ε)(L+ β) + βµ)),

using µ = α(L + β − 1). Because of the condition β(1 + µ) = O(logβ n) we can further bound
the expected number of accesses to A by O(log(1/ε)εL), which contradicts Fact 3.1 for sufficiently
small ε > 0.

12

Lemma 3.4. Consider any data structure for SortedSubsetSampling with preprocessing time
tp(n) and expected query time tq(n, µ). For any µ = µ(n) ≤ 1

2 we have

tp(n) + tq(n, µ) = Ω
(log n

log logn
µ

)
.

Note that this lemma directly implies the lower bound of Theorem 1.4 for SortedSubsetSam-
pling assuming µ ≤ 1

2 .

Proof. Let (P,Q) be a preprocessing and a query algorithm, and let p be an instance. Let D = P (p)
be the result of the precomputation. By definition we have

Pr[Q(p, D) = ∅] =
∏
i∈[n]

(1− pi) =: ∆(p),

where the probability goes only over the randomness of the query algorithm, not the preprocessing.
If µp ≤ 1

2 , since pi ≤ µ one can easily check that 1− pi ≥ 4−pi , which yields

∆(p) ≥ 4−µp ≥ 4−1/2 ≥ 1
2 .

Let P ⊆ [n] be the positions i ∈ [n] at which the preprocessing reads the value pi during the
computation of D, note that |P| ≤ tp = tp(n). Without loss of generality, we can assume that
1, n ∈ P, i.e., that the preprocessing reads p1 and pn, as this adjustment of the algorithm does not
increase its runtime asymptotically.

For an instance p and Q ⊆ [n], let ∆(p,Q) be the probability that query algorithm Q (with
input p, D) reads exactly the values pi with i ∈ Q before returning ∅. We clearly have∑

Q⊆[n]

∆(p,Q) = ∆(p). (1)

Furthermore, if µp ≤ 1
2 and the expected query time is at most tq = tq(n, µ), we have∑

Q⊆[n]
|Q|≤4tq

∆(p,Q) ≥ 1

4
. (2)

Indeed, since |Q| is a lower bound on the runtime of the query algorithm, denoting by E the event
that algorithm Q on input p, D runs for time at most 4tq we have∑

Q⊆[n]
|Q|≤4tq

∆(p,Q) ≥ Pr[Q(p, D) = ∅ and E] ≥ Pr[Q(p, D) = ∅] + Pr[E]− 1.

Since Pr[Q(p, D) = ∅] = ∆(p) ≥ 1
2 and Pr[not E] ≤ 1

4 by Markov’s inequality, we obtain (2).

By (2) and since the number of subsets of [n] of size at most 4tq is
∑4tq

s=0

(
n
s

)
≤
(
en/4tq

)4tq ≤
n4tq/4, there exists a set Q∗ ⊆ [n], |Q∗| ≤ 4tq, with

∆(p,Q∗) ≥ 1

4
·
(4tq∑
s=0

(
n

s

))−1

≥ n−4tq . (3)

13

Now we fix the instance p = (p1, . . . , pn) by setting

pi :=
α

i
,

for a parameter α > 0 chosen such that
∑n

i=1 pi = αHn = µ = µ(n), implying α = Θ(µ/ log n).
Fixing a set Q∗ as above for this instance p, we define a second instance p′ = (p′1, . . . , p

′
n) by setting

p′i := min{pj | i ≥ j ∈ Q∗ ∪ P}.

That is, p and p′ agree on the read positions Q∗ and P, and at all other positions p′i is as large
as possible with p′ still being sorted. This means that the prepocessing and the query algorithm
cannot distinguish between both instances, implying a critical property we will use,

∆(p′,Q∗) = ∆(p,Q∗).

With this, we obtain

∆(p′)
(1)

≥ ∆(p′,Q∗) = ∆(p,Q∗)
(3)

≥ n−4tq . (4)

We next bound ∆(p′). Denote the read positions by Q∗ ∪P = {i1, . . . , ik} with i1 ≤ . . . ≤ ik. Note
that k ≤ tp + 4tq. By assumption, we have i1 = 1, ik = n, and we define ik+1 := n+ 1. We obtain

∆(p′) =
∏
i∈[n]

(1− p′i) =

k∏
`=1

(1− pi`)
i`+1−i` .

Using 1− x ≤ e−x for x ≥ 0 this yields

∆(p′) ≤ exp

(
−

k∑
`=1

pi`(i`+1 − i`)

)
= exp

(
−α

k∑
`=1

(
i`+1

i`
− 1

))
.

Using the arithmetic-geometric mean inequality we obtain

1

k

k∑
`=1

i`+1

i`
≥

(
k∏
`=1

i`+1

i`

)1/k

≥ n1/k,

which yields ∆(p′) ≤ exp
(
−αk(n1/k − 1)

)
≤ exp(−α(n1/k − 1)). Combining this with (4),

exp
(
−α(n1/k − 1)

)
≥ n−4tq ≥ exp

(
−O(log2 n)

)
,

as tq = O(log n) (otherwise the claim follows directly). Taking the logarithm twice and rearranging,

k ≥ log n

log(1 +O(log2(n)/α))
.

Using tp + 4tq ≥ k and α = Θ(µ/ log n), we obtain

tp + 4tq ≥
log n

log(O(log3(n)/µ))
,

and thus tp + tq = Ω(logn
log(log(n)/µ)).

14

A tedious case distinction now shows that the lower bound of Theorem 1.5 follows from the
above two lemmas.

Proof of Theorem 1.5, lower bound. We prove that any data structure for SortedSubsetSam-
pling with ε logβ n preprocessing time (where ε > 0 is a sufficiently small constant) needs query

time Ω(tβq (n, µ)) for any µ = µ(n), where

tβq (n, µ) =


µ, if µ ≥ 1

2 log n,

1 + βµ, if µ < 1
β logβ n,

logn

log(logn
µ

)
, otherwise.

We consider six (sub-)cases depending on µ and β, in each case reducing the claim to Lemma 3.3
or 3.4.

Case 1, µ ≥ 1
2 : We split this into 3 subcases as follows.

Case 1.1, µ ≥ 1
2 log n: As the expected output size is µ, the expected query time is always Ω(µ),

which is tight in this case.
Case 1.2, µ ≥ 1

2 and 1
β logβ n ≤ µ < 1

2 log n: In this case, we can choose 2 ≤ γ ≤ β such that

µ = Θ(1
γ logγ n). Solving for γ yields γ = Θ

(logn
µ

/
log logn

µ

)
. We have γ ≤ 2γµ ≤ O(logγ n), so

Lemma 3.3 (applied with β replaced by γ) yields a lower bound of Ω(γµ) = Ω
(logn

log logn
µ

)
for any data

structure with preprocessing time O(logβ n) ≤ O(logγ n).

Case 1.3, 1
2 ≤ µ < 1

β logβ n: These inequalities imply β ≤ 2βµ ≤ 2 logβ n. Thus, Lemma 3.3
applies, showing that the query time is Ω(βµ). As any algorithm takes time Ω(1), the query time
is also bounded by Ω(1 + βµ), as desired.

Case 2, µ < 1
2 : We split this into three subcases as follows.

Case 2.1, 1
β logβ n ≤ µ < 1

2 : Note that µ ≥ 1
β logβ n implies β2 ≥ β log β ≥ 1

µ log n so that

log β = Ω
(

log logn
µ

)
. Hence, the preprocessing time is ε logβ n = O

(
ε logn

log logn
µ

)
. For sufficiently small

ε > 0, Lemma 3.4 now implies tq(n, µ) = Ω
(logn

log logn
µ

)
, as desired.

Case 2.2, µ < 1
2 and 1

β3 log n ≤ µ < 1
β logβ n: Then log β = Ω

(
log logn

µ

)
and logβ n = O

(logn

log logn
µ

)
.

Hence, with ε logβ n preprocessing time and sufficiently small ε > 0, Lemma 3.4 implies that

tq(n, µ) = Ω
(logn

log logn
µ

)
≥ Ω(logβ n) ≥ Ω(βµ), where the last inequality follows from µ < 1

β logβ n.

Since any algorithm takes time Ω(1), this yields a lower bound of Ω(1 + βµ), as desired.
Case 2.3, µ < 1

2 and µ < 1
β3 log n: Note that µ < 1

β3 log n implies µ < 1
β logβ n. Thus, if

βµ < 1 then our query time is O(1 + βµ) = O(1), which is clearly optimal. Hence, assume βµ ≥ 1.
Together with µ < 1

β3 log n this implies β ≤
√

log n. Hence,

logβ n ≥ Ω(logn
log logn)� O(

√
log n) ≥ β ≥ Ω(β(1 + µ)),

where the last inequality uses µ < 1
2 . Thus, Lemma 3.3 is applicable and we obtain a lower bound

of tq(n, µ) = Ω(βµ) = Ω(1 + βµ), as desired.

4 Reduction from Proportional Sampling to Subset Sampling

In this section, we present a reduction from (Sorted or Unsorted) ProportionalSampling to
(Sorted or Unsorted) SubsetSampling. This yields an alternative proof of the upper bounds

15

for ProportionalSampling (Theorems 1.2 and 1.3) using the upper bounds for SubsetSam-
pling (Theorems 1.5 and 1.6). Moreover, it shows that the classic ProportionalSampling
problem is easier than SubsetSampling (or the former can be seen as a special case of the latter).

We first present a reduction that works for µ ≤ 1 and yields a query time proportional to 1/µ.
Then we show how to ensure 1/β ≤ µ ≤ 1 after O(logβ n) preprocessing, which together with the
first reduction shows the main result of this section, Proposition 4.5.

4.1 Special Case

Let p be an instance to SortedProportionalSampling or UnsortedProportionalSam-
pling. We assume µ ≤ 1 and will obtain a running time proportional to 1

µ , which is most reason-

able when µ comes from a small interval [1/β, 1]. Instead of p we consider p′ = (p′1, . . . , p
′
n) with

p′i := pi/(1 + pi). Note that if p is sorted then p′ is also sorted. Moreover, µ′ :=
∑n

i=1 p
′
i is in the

range [µ/2, µ].
Let Y = ProportionalSampling(p) be the random variable denoting proportional sampling

on input p, and X = SubsetSampling(p′) be the random variable denoting subset sampling on
input p′. Then conditioned on sampling exactly one element X = {i}, this element i is distributed
exactly as Y , as formulated by the following lemma.

Lemma 4.1. We have for all i ∈ [n]

Pr[X = {i} | |X| = 1] = Pr[Y = i].

Proof. By applying Bayes’ rule we infer that

Pr [X = {i} | |X| = 1] = Pr[X = {i}]/Pr[|X| = 1]

=

(
p′i

1− p′i

n∏
k=1

(1− p′k)

)
/

 n∑
j=1

p′j
1− p′j

n∏
k=1

(1− p′k)


=

(
p′i

1− p′i

)
/

 n∑
j=1

p′j
1− p′j


Plugging in the definition of p′i yields

Pr[X = {i} | |X| = 1] =
pi∑n
j=1 pj

= Pr[Y = i].

and the statement is shown.

Moreover, the probability of sampling exactly one element is not too small, as shown in the
following lemma. This bound is not best possible but sufficient for our purposes.

Lemma 4.2. If µ ≤ 1 then we have

Pr[|X| = 1] ≥ µ/4.

Proof. First, observe that by Markov’s inequality

Pr[|X| ≥ 2] ≤ E[|X|]/2 = µ′/2 ≤ 1/2,

16

and thus, Pr[|X| ∈ {0, 1}] ≥ 1/2. Moreover, the definition of X implies that

Pr[|X| = 0] =
n∏
k=1

(1− p′k) and Pr[|X| = 1] =
n∑
j=1

p′j
1− p′j

n∏
k=1

(1− p′k) = µ · Pr[|X| = 0].

By putting everything together we obtain that Pr[|X| = 1](1 + 1
µ) ≥ 1/2, and thus

Pr[|X| = 1] ≥ µ · 1

2(1 + µ)
≥ µ

4
,

as claimed.

We put these facts together to show the following result. We need µ ≤ 1, and we want µ as
large as possible, since the obtained running time is proportional to 1

µ . In the next section we will

see that we can assume 1
β ≤ µ ≤ 1 after preprocessing O(logβ n).

Lemma 4.3. Assume that (Sorted or Unsorted) SubsetSampling can be solved in prepro-
cessing time tp(n, µ) and expected query time tq(n, µ), where tp and tq are monotonically increasing
in n and µ. Then (Sorted or Unsorted, respectively) ProportionalSampling on instances
with µ ≤ 1 can be solved in preprocessing time O(tp(n, µ)) and expected query time O(1

µ · tq(n, µ)).

Proof. For preprocessing, given input p, we run the preprocessing of SubsetSampling on input p′.
This does not mean that we compute the vector p′ beforehand, but if the preprocessing algorithm
of SubsetSampling reads the i-th input value, we compute p′i = pi/(1 + pi) on the fly, so that
preprocessing needs runtime O(tp(n, µ)) (recall that µ′ ≤ µ). It allows to sample X later on in
expected runtime O(tq(n, µ)) using the same trick of computing p′ on the fly.

For querying, we repeatedly sample X until we sample a set S of size one. Returning the
unique element of S results in a proper sample according to SortedProportionalSampling by
Lemma 4.1. Moreover, by Lemma 4.2 and the fact that sampling X needs expected time O(tq(n, µ))
after our preprocessing, the total expected query time is O(1

µ · tq(n, µ)).

4.2 General Case

In this subsection we reduce the general case with arbitrary µ to the special case 1/β ≤ µ ≤ 1. In the
unsorted case, we simply compute µ exactly in time O(n), which shows the following proposition.
In the sorted case, we approximate µ using an idea of Section 2.1, see Proposition 4.5.

Proposition 4.4. Assume that UnsortedSubsetSampling can be solved in preprocessing time
tp(n, µ) and expected query time tq(n, µ), where tp and tq are monotonically increasing in n and µ.
Then UnsortedProportionalSampling can be solved in preprocessing time O(n+ tp(n, 1)) and
expected query time O(tq(n, 1)).

Note that plugging Theorem 1.6 into the above proposition yields the upper bound of Theo-
rem 1.3.

Proof. In the preprocessing we compute µ in timeO(n), and set p̃i := pi/µ for i ∈ [n]. This rescaling
ensures µ̃ =

∑
i p̃i = 1. Then we run the algorithm guaranteed by Lemma 4.3 on p̃1, . . . , p̃n.

Proposition 4.5. Let β ∈ {2, . . . , n}. Assume that SortedSubsetSampling can be solved in
preprocessing time tp(n, µ) and expected query time tq(n, µ), where tp and tq are monotonically
increasing in n and µ. Then SortedProportionalSampling can be solved in preprocessing
time O(logβ n+ tp(n, 1)) and expected query time O(max1/β≤ν≤1

1
ν tq(n, ν)).

17

Note that plugging Theorem 1.5 into the above proposition yields the upper bound of The-
orem 1.2 (to see the bound on the query time, note that we can set tq(n, µ) = O(1 + βµ) by
Theorem 1.5 or Lemma 2.5, so that max1/β≤ν≤1

1
ν tq(n, ν) = O(max1/β≤ν≤1

1
ν (1 + βν)) = O(β)).

Proof. Let p be an instance of SortedProportionalSampling with µ =
∑n

i=1 pi. As in Sec-
tion 2.1 we consider the blocks Bk := {i ∈ [n] | βk ≤ i < βk+1} with 0 ≤ k ≤ L := blogβ nc and set
pi := pβk for i ∈ Bk. Then for µ :=

∑n
i=1 pi we have µ ≤ µ ≤ β · µ by Lemma 2.1. Note that we

can compute µ in time O(logβ n), as

µ =
L∑
k=0

pβk ·
(
min(βk+1, n+ 1)− βk

)
.

With these observations at hand, for preprocessing, we compute µ and consider p′ = (p′1, . . . , p
′
n)

with p′i := pi/µ. Since µ ≤ µ ≤ β · µ we have µ′ :=
∑n

i=1 p
′
i in the range [1/β, 1]. Thus, we can

run the preprocessing of SortedProportionalSampling on p′; Lemma 4.3 is applicable since p′

has µ′ ∈ [1/β, 1]. We do this without computing the whole vector p′. Instead, if the preprocessing
algorithm reads the i-th input value, we compute p′i on the fly. This way we need a total runtime
for preprocessing of O(logβ n+ tp(n, 1)).

For querying, Lemma 4.3 allows us to query according to p′ in expected runtimeO(1
µ′ tq(n, µ

′)) ≤
O(max1/β≤ν≤1

1
ν tq(n, ν)), where we again compute values of p′ on the fly as needed. As we want

to sample proportionally to the input distribution, a sample with respect to p′ has the same
distribution as a sample with respect to p, so that we simply return the sampled number.

5 Relaxations

In this section we describe some natural relaxations for the input and machine model studied so
far in this paper.

Large Deviations for the Running Times. The query runtimes in Theorems 1.2, 1.5 and 1.6
are, in fact, not only small in expectation, but they are also concentrated, i.e., they satisfy large
deviation estimates in the following sense. Let t be the expected runtime bound and T the actual
runtime. Then

Pr[T > kt] = e−Ω(k),

where the asymptotics are with respect to k. This is shown rather straightforwardly along the lines
of our proofs of these theorems, except the fact that the size of the random set X in SubsetSam-
pling is concentrated. Note that for any a > 1 the Chernoff bound shows that

Pr[|X| > aµ] <

(
ea−1

aa

)µ
≤
(e
a

)aµ
.

For µ � 1 this inequality does not show a tail bound of e−Ω(k) for Pr[|X| > kµ], and in fact such
a tail bound does not hold. However, it suffices that |X| is not much larger than 1 + µ to bound
our algorithms’ running times, and this indeed has an exponential tail bound, since by setting
a = k(µ+ 1)/µ we obtain

Pr[|X| > k(µ+ 1)] <
(eµ

k(µ+ 1)

)k(µ+1)
≤
(k
e

)−k
.

18

Partially Sorted Input. The condition of sorted input for SortedSubsetSampling and Sort-
edProportionalSampling can easily be relaxed, as long as we have sorted upper bounds of the
probabilities. Given input p and sorted p with pi ≤ pi for all i ∈ [n], we simply sample according
to p and use rejection to get down to the probabilities p. This allows for the optimal query time
O(1 + µ) as long as µ =

∑n
i=1 pi = O(1 + µ), where µ =

∑n
i=1 pi.

Unimodular Input. Many natural distributions p are not sorted, but unimodular, meaning
that pi is monotonically increasing for 1 ≤ i ≤ m and monotonically decreasing for m ≤ i ≤ n (or
the other way round). Knowing m, we can run the algorithms developed in this paper on both
sorted halfs, and combine the return values, which gives an optimal query algorithm for unimodular
inputs. Alternatively, if we have strong monotonicity, we can search for m in time O(log n) using
ternary search.

This can be naturally generalized to k-modular inputs, where the monotonicity changes k times.

Approximate Input. In some applications it may be costly to compute the probabilities pi
exactly, but we are able to compute approximations pi(ε) ≥ pi ≥ p

i
(ε), with relative error at

most ε, where the cost of computing these approximations depends on ε. We can still guarantee
optimal query time, if the costs of computing these approximations are small enough, see e.g. [12].

We sketch this for SubsetSampling. We can surely sample a superset S with respect to the
probabilities pi(

1
2). Then we want to use rejection, i.e., for each element i ∈ S we want to compute

a random number r := rand() and delete i from S if r · pi(1
2) > pi, to get a sample set S. This

check can be performed as follows. We initialize k := 1. If r · pi(1
2) > pi(2

−k) we delete i from S.
If r · pi(1

2) ≤ p
i
(2−k) we keep i and are done. Otherwise, we increase k by 1. This method needs

an expected number of O(1) rounds of increasing k; the probability of needing k rounds is O(2−k).
Hence, if the cost of computing pi(ε) and p

i
(ε) is O(ε−c) with c < 1, the expected overall cost is

constant, and we get an optimal expected query time of O(1 + µ).

Word RAM. Throughout the paper we worked in the Real RAM model of computation, where
every memory cell can store a real number. In the more realistic Word RAM model each cell
consists of w = Ω(log n) bits and any reasonable operation on two words can be performed in
constant time. Additionally to the standard repertoire of operations, we assume that we can
generate a uniformly random word in constant time. It is known that in this model Bernoulli
and geometric random variates can be drawn in constant time [2] and the classic aliasing method
for UnsortedProportionalSampling still works [3]. This already allows one to translate large
parts of the algorithms of this paper to the Word RAM. Unfortunately, terms like

∏
1≤k≤n(1− pk)

(see Section 2.2) cannot be evaluated exactly on the Word RAM, as the result would need at least
n bits. This difficulty can be solved by working with O(log n) bit approximations and increasing
the precision as needed, similarly to the generalization to approximate input that we discussed in
the last paragraph. This way one can obtain a complete translation of our algorithms to the Word
RAM. We omit the details.

References

[1] A. Borodin and I. Munro. The computational complexity of algebraic and numeric problems.
Elsevier Publishing Company, 1975.

19

[2] K. Bringmann and T. Friedrich. Exact and efficient generation of geometric random variates
and random graphs. In Proc. 40th International Colloquium on Automata, Languages, and
Programming (ICALP’13), pages 267–278. 2013.

[3] K. Bringmann and K. Green Larsen. Succinct sampling from discrete distributions. In Proc.
45th Annual ACM Symposium on Theory of Computing (STOC’13), pages 775–782, 2013.

[4] Fan Chung and Linyuan Lu. The average distance in a random graph with given expected
degrees. Internet Mathematics, 1(1):91–113, 2004.

[5] L. Devroye. Nonuniform random variate generation. Springer, New York, 1986.

[6] P. Flajolet and N. Saheb. The complexity of generating an exponentially distributed variate.
Journal of Algorithms, 7(4):463–488, 1986.

[7] T. Hagerup, K. Mehlhorn, and I. Munro. Maintaining discrete probability distributions op-
timally. In Proc. 20th International Colloquium on Automata, Languages, and Programming
(ICALP ’93), pages 253–264, 1993.

[8] D. E. Knuth. The Art of Computer Programming. Vol. 2: Seminumerical Algorithms. Addison-
Wesley Publishing Company, 3rd edition, 2009.

[9] D. E. Knuth and A. C. Yao. The complexity of nonuniform random number generation.
Algorithms and Complexity: New Directions and Recent Results, pages 357–428, 1976.

[10] Y. Matias, J. S. Vitter, and W.-C. Ni. Dynamic generation of discrete random variates. Theory
of Computing Systems, 36(4):329–358, 2003.

[11] Joel C. Miller and Aric A. Hagberg. Efficient generation of networks with given expected
degrees. In Proc. 8th International Workshop Algorithms and Models for the Web Graph
(WAW’11), pages 115–126, 2011.

[12] Ş. Nacu and Y. Peres. Fast simulation of new coins from old. The Annals of Applied Probability,
15(1A):93–115, 2005.

[13] F. P. Preparata and M. I. Shamos. Computational Geometry. Texts and Monographs in
Computer Science. Springer, New York, 1985.

[14] M. Pătraşcu. WebDiarios de Motocicleta, Sampling a discrete distribution.
infoweekly.blogspot. com/2011/09/sampling-discrete-distribution.html, 2011.

[15] M.-T. Tsai, D.-W. Wang, C.-J. Liau, and T.-S. Hsu. Heterogeneous subset sampling. In Proc.
16th Annual International Computing and Combinatorics Conference (COCOON ’10), pages
500–509, 2010.

[16] J. S. Vitter. Random sampling with a reservoir. ACM Transactions on Mathematical Software,
11(1):37–57, March 1985.

[17] A. J. Walker. New fast method for generating discrete random numbers with arbitrary distri-
butions. Electronic Letters, 10:127–128, 1974.

[18] A. C. Yao. Context-free grammars and random number generation. In Combinatorial algo-
rithms on words, volume 12, pages 357–361. 1985.

20

