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= Gradient Domain Methods
Operate on pixel gradients instead of pixel values
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Gradient Domain: applications

= Tone Mapping

log—Linear Sealing Y Sy
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Gradient Domain: applications

= Compositing [Wang et al. 2004]

images from [Drori at al. 2004]
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Gradient Domain: applications

= More applications:
Lightness perception (Retinex) [Horn 1974]
Matting [Sun et al. 2004]
Color to gray mapping [Gooch et al. 2005]

Video Editing [Perez at al. 2003, Agarwala et al.
2004]

Photoshop’s Healing Brush [Georgiev 2005]

27.08.2005 APGV 05



Drawbacks of gradient methods

= Only local

Consider only differences
between neighboring pixels

Low spatial frequencies can
be distorted

Artifacts in the resulting
Images
= Perceptually implausible

Are there any perceptual
basis for gradients?
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Contrast Processing Framework
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Contrast in Complex Images

= Contrast in psychophysics:

Michaelson’s contrast, Weber fraction, Westheimer’s
contrast, ... and many more

Applicable only to simple stimuli
= Contrast in Complex Images [Peli 1990]

Center-surround structures in retina

Can introduce since contrast measure is band-
pass limited ‘

= Wavelets
Efficient to compute
May introduce halos
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Low-pass Contrast in Images

= Logarithmic domain

A ratio becomes a difference:
Y4/y, = 109401 — 10g40Y
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Low-pass Contrast in Images

= |[ogarithmic domain

A ratio becomes a
difference: y./y, = log,,y —

log0Y-
= Difference between a
AR pixel and its neighbors
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Low-pass Contrast in Images

= [ogarithmic domain

A ratio becomes a
difference: y./y, = log,,y —

log,,Y-
= Difference between a
.:-'"'H .,-F’f .,-F"f .,a-"f d-r"f _,.ﬂ'f _,.ﬂ'f;— . . .
e pixel and its neighbors
P — = For each level of
R Gaussian pyramid
e
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Bridging two Approaches
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Contrast in Images — Summary

* Properties
Low-pass contrast
Multiple pyramids
Over-determined
Analogy to receptive fields

Not an accurate model of retina — intended for image
processing

Halo artifacts can be easily avoided
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Contrast Processing Framework
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Transformation to Luminance

= Restoring the image, X, from contrast, G, values can be
formulated as a '

K N M
f(X1. X2, ... Xn) = > > Y (G — Gf)?
k=1i=1 j=1
where:
X1.X2, ..., Xy pixel values

GF; desired contrast
Gy, realized contrast

= |f only one level of Gaussian pyramid (k = 1) and only
four neighboring pixels are considered - the same
problem as in Gradient methods, e.g. [Fattal et al. 2002].
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Numerical Solution

= Numerical solution of the minimization problem
Biconjugate Gradient Method
Very efficient multiplication of a semi-sparse matrix
and a vector

= Performance
Converges fast

But computationally expensive
O(nlog(n)) with large coefficients
Suitable only for off-line processing
Below one minute for 1-5MPixel image
GPU implementation possible
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Contrast Discrimination

2 - The smallest
visible difference between two nearly identical signals

Luminance
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Contrast Discrimination Function
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= Data from [Whittle 1986]
= Very high contrast (important for HDR images)

= Measure of contrast;: Weber fraction rather the
Michelson’s contrast
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Transducer Function

= Response of the HVS
= Derived by summing up thresholds AW
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Transducer Function
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Application 1: Contrast Mapping

= Tone mapping in contrast domain
Map contrast rather than luminance

= Reduce contrast proportionally to its visibility

= Qperation: multiply contrast response, R, by a
constant value, I

sk pk
Rij=Rij-!
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Contrast Mapping: the effect of ‘I
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Contrast Mapping: the effect of ‘I

| = 0.7

27.08.2005 APGV 05



. IO UL
Contrast Mapping: the effect of ‘I

1=0.4
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Contrast Mapping: the effect of ‘I

| =0.1
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Application 2: mpe

Contrast Equalization

informatik

= High contrast regions:

Occupy only small part on an image

But are responsible for excessive dynamic range
= Contrast equalization

Redistribute contrast values across an image

Emphasize contrast that dominates in the image

Reduce contrast that occupy only small part of an
iImage

= Algorithm

Histogram equalization of contrast magnitudes
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Contrast Equalization: Examples

Contrast equalization
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Contrast Equalization: Examples

log—Linear Scaling Contrast Mapping |1=0.4

Log-Linear S¢;

Coat eualization
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Conclusions

= A framework for image processing
Operations on contrast rather than pixel values
Low-pass contrast to avoid halos
All spatial frequencies taken into account
Contrast rescaled to the response of the HVS

= Applications
Tone mapping: Contrast mapping

Tone mapping: Contrast equalization

Others...

Lightness perception
Color to gray mapping
Video/Image editing
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Thank you

More information and examples:
http://www.mpi-sb.mpg.de/~mantiuk/contrast_domain/
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