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Abstract – Since new imaging and rendering systems com-
monly use physically accurate lighting information in the
form of High-Dynamic Range data, there is a need for an
automatic visual quality assessment of the resulting images.
In this work we extend the Visual Difference Predictor (VDP)
developed by Daly to handle HDR data. This let us predict if
a human observer is able to perceive differences for a pair of
HDR images under the adaptation conditions corresponding
to the real scene observation.
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1 Introduction
Mainstream imaging and rendering systems commonly

use physically accurate lighting information in the form of
High-Dynamic Range (HDR) images, textures, environment
maps, and light fields in order to capture accurate scene
appearance. Unlike their low-dynamic range counterparts,
HDR images can describe a full color gamut and entire range
of luminance that is visible to a human observer. HDR data
can be acquired even with a consumer camera, using multi-
exposure techniques [17], which involve taking several pic-
tures of different exposures and then combining them to-
gether into a single HDR image. Another source of HDR
data is realistic image synthesis software, which uses phys-
ical values of luminance or radiance to represent generated
images. Because HDR images can not be directly displayed
on conventional LCD or CRT monitors due to their limited
luminance range and gamut, methods of luminance compres-
sion (tone mapping) and gamut mapping are required [6].
Even if traditional monitors cannot accurately display HDR
data, new displays of extended contrast and maximum lu-
minance become available [18, 12]. To limit an additional
storage overhead for HDR images, efficient encodings for-
mats for HDR images [21, 23, 3, 22] and video [15] have
been proposed.

When designing an image synthesis or processing appli-
cation, it is desirable to measure the visual quality of the re-
sulting images. To avoid tedious subjective tests, where a

∗0-7803-8566-7/04/$20.00 c© 2004 IEEE.

group of people has to assess the quality degradation, objec-
tive visual quality metrics can be used. The most successful
objective metrics are based on models of the Human Visual
System (HVS) and can predict such effects as a non-linear
response to luminance, limited sensitivity to spatial and tem-
poral frequencies, and visual masking [16].

Most of the objective quality metrics have been designed
to operate on images or video that are to be displayed on CRT
or LCD displays. While this assumption seems to be clearly
justified in case of low-dynamic range images, it poses prob-
lems as new applications that operate on HDR data become
more common. A perceptual HDR quality metric could be
used for the validation of the aforementioned HDR image
and video encodings. Another application may involve steer-
ing the computation in a realistic image synthesis algorithm,
where the amount of computation devoted to a particular re-
gion of the scene would depend on the visibility of potential
artifacts.

In this paper we propose several modifications to Daly’s
Visual Difference Predicator. The modifications significantly
improve a prediction of perceivable differences in the full
visible range of luminance. This extends the applicability of
the original metric from a comparison of displayed images
(compressed luminance) to a comparison of real word scenes
of measured luminance (HDR images). The proposed metric
does not rely on the global state of eye adaptation to lumi-
nance, but rather assumes local adaptation to each fragment
of a scene. Such local adaptation is essential for a good pre-
diction of contrast visibility in High-Dynamic Range (HDR)
images, as a single HDR image can contain both dimly illu-
minated interior and strong sunlight. For such situations, the
assumption of global adaptation to luminance does not hold.

In the following sections we give a brief overview of the
objective quality metrics (Section 2), describe our modifica-
tions to the VDP (Section 3) and then show results of testing
the proposed metric on HDR images (Section 4).

2 Previous work
Several quality metrics for digital images have been pro-

posed in the literature [2, 5, 9, 14, 19, 20, 25]. They vary in
complexity and in the visual effects they can predict. How-
ever, no metric proposed so far was intended to predict vis-



ible differences in High-Dynamic Range images. If a single
metric can potentially predict differences for either very dim
or bright light conditions, there is no metric that can process
images that contain both very dark and very bright areas.

Two of the most popular metrics that are based on models
of the HVS are Daly’s Visual Difference Predicator (VDP)
[5] and Sarnoff Visual Discrimination Model [14]. Their
predictions were shown to be comparable and the results de-
pended on test images, therefore, on average, both metrics
performed equally well [13]. We chose the VDP as a base of
our HDR quality metric because of its modularity and thus
good extensibility.

3 Visual Difference Predicator
In this section we describe our modifications to Daly’s

VDP, which enable prediction of the visible differences in
High-Dynamic Range images. The major difference between
our HDR VDP and Daly’s VDP is that the latter one assumes
a global level of adaptation to luminance. In case of VDP for
HDR images, we assume that an observer can adapt to every
pixel of an image. This makes our predicator more conser-
vative but also more reliable when scenes with significant
differences of luminance are analyzed. In this paper we give
only a brief overview of the VDP and focus on the extension
to high-dynamic range images. For detailed description of
the VDP, refer to [5].

The data flow diagram of the VDP is shown in Figure 1.
The VDP receives a pair of images as an input and gener-
ates a map of probability values, which indicates how the
differences between those images are perceived. The first
(mask) image of that pair contains an original scene and the
second one (target) contains the same scene but with the ar-
tifacts whose visibility we want to estimate. The both im-
ages should be scaled in the units of luminance. In case
of LDR images, pixel values should be inverse gamma cor-
rected and calibrated according to the maximum luminance
of the display device. In case of HDR images no such pro-
cessing is necessary, however luminance should be given in
cd/m2. The first two stages of the VDP – amplitude com-
pensation and CSF filtering (see Figure 1) – compensate for
a non-linear response of the human eye to luminance and the
loss of sensitivity at high and very low spatial frequencies.
Those two stages are heavily modified in our HDR extension
and are discussed in Sections 3.1 and 3.2. The next two com-
putational blocks – the cortex transform and visual masking
– decompose the image into spatial and orientational chan-
nels and predict perceivable differences in each channel sep-
arately. Since the visual masking does not depend on lumi-
nance of a stimuli, this part of the VDP is left unchanged,
except for a minor modification in the normalization of units
(details in Section 3.3). In the final error pooling stage the
probabilities of visible differences are summed up for all
channels and a map of detection probabilities is generated.
This step is the same in both versions of the VDP.
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Figure 1: Data flow diagram of the Visible Difference Predi-
cator (VDP)

3.1 Amplitude Nonlinearity
Daly’s VDP utilizes a model of the photoreceptor to ac-

count for non-linear response of HVS to luminance. Per-
ceivable differences in bright regions of a scene would be
overestimated without taking into account this non-linearity.
The drawback of using the model of the photoreceptor is that
it gives arbitrary units of response, which are loosely related
to the threshold values of contrast sensitivity studies. The
Contrast Sensitivity Function (CSF), which is responsible for
the normalization of contrast values to JND units in Daly’s
VDP, is scaled in physical units of luminance. Therefore us-
ing a physical threshold contrast to normalize response val-
ues of the photoreceptor may give an inaccurate estimate of
the visibility threshold. Note that the response values are
non-linearly related to luminance. Moreover, the model of
photoreceptor, which is modeled as a sigmoidal function (see
Figure 2), assumes equal loss of sensitivity for low and high
luminance levels, while it is known that loss of sensitivity is
observed only for low luminance levels (see Figure 3). Even
if the above simplifications are acceptable for low-dynamic
range images, they may lead to significant inaccuracies in
case of HDR data.

Instead of modeling the photoreceptor we propose con-
verting luminance values to a non-linear space that is scaled
in JND units [1, 15]. Such space should have the following
property: Adding or subtracting a value of 1 in this space
results in a just perceivable change of relative contrast. To
find a proper transformation from luminance to such JND-
scaled space, we follow a similar approach as in [15]. Let the
threshold contrast be given by the threshold versus intensity
(tvi) function [10]. If y = ψ(l) is a function that converts
values in JND-scaled space to luminance, we can rewrite our
property as:

ψ(l + 1) − ψ(l) = tvi(yadapt) (1)

where tvi is a threshold versus intensity function and yadapt

is adaptation luminance. A value of the tvi function is a
minimum difference of luminance that is visible to a human
observer. From the first-order Taylor series expansion of the
above equation, we get:

dψ(l)

dl
= tvi(yadapt) (2)

Assuming that the eye can adapt to a single pixel of lumi-
nance y as in [5], that is yadapt = y = ψ(l), the equation can



be rewritten as:

dψ(l)

dl
= tvi(ψ(l)) (3)

Finally, the function ψ(l) can be found by solving the above
differential equation. In the VDP for HDR images we have
to find a value of l for each pixel of luminance y, thus we do
not need function ψ, but its inverse ψ−1. This can be easily
found since the function ψ is strictly monotonic.

The inverse function l = ψ−1(y) is plotted in Figure 2
together with the original model of photoreceptor. The func-
tion properly simulates loss of sensitivity for scotopic levels
of luminance (compare with Figure 3). For the photopic lu-
minance, the function has logarithmic response, which cor-
responds to Weber’s law. Ashikhmin [1] derived a similar
function for the tone mapping purpose and called it the ca-
pacity function.

The actual shape of the threshold versus intensity (tvi)
function has been extensively studied and several models
have been proposed [8, 4]. To be consistent with Daly’s
VDP, we derive a tvi function from the CSF used there. We
find values of the tvi function for each adaptation luminance
yadapt by looking for the peak sensitivity of the CSF at each
yadapt:

tvi(yadapt) = P ·
yadapt

maxρCSF (ρ, yadapt)
(4)

where ρ denotes spatial frequency. Similar as in the Daly’s
VDP, parameter P is used to adjust the absolute peak thresh-
old. We adjusted the value of P in our implementation, so
that the minimum relative contrast is 1% – a commonly as-
sumed visibility threshold [10, Section 3.2.1]. A function of
relative contrast – contrast versus intensity cvi = tvi/yadapt

– is often used instead of tvi for a better data presentation.
The cvi function for our derived tvi is plotted in Figure 3.

In our HDR VDP we use a numerical solution of Equa-
tion 3 and a binary search on this discrete solution to convert
luminance values y to l in JND-scaled space. The subsequent
parts of the HDR VDP operate on l values.

3.2 Contrast Sensitivity Function
The Contrast Sensitivity Function (CSF) describes loss of

sensitivity of the eye as a function of spatial frequency and
adaptation luminance. It was used in the previous section to
derive the tvi function. In Daly’s VDP, the CSF is respon-
sible for both modeling loss of sensitivity and normalizing
contrast to JND units. In our HDR VDP, normalization to
units of JND at the CSF filtering stage is no longer neces-
sary as the non-linearity step has already scaled an image to
JND units (refer to the previous section). Therefore the CSF
should predict only loss of sensitivity for low and high spa-
tial frequencies. Loss of sensitivity in JND-scaled space can
be modeled by a CSF that is normalized by peak sensitivity
for particular adaptation luminance:

CSFnorm(ρ, yadapt) =
CSF (ρ, yadapt)

maxρCSF (ρ, yadapt)
(5)
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Figure 2: Response curve of the receptor model used in
Daly’s VDP (red) and mapping to JND-scaled space used
in our HDR extension of the VDP (green). The sigmoidal re-
sponse of Daly’s receptor model (adaptation to a single pixel)
overestimates contrast at luminance levels above 10 cd/m2

and compresses contrast above 10000 cd/m2. Psychophys-
ical findings do not confirm such luminance compression at
high levels of luminance. Another drawback of the recep-
tor model is that the response is not scaled in JND units, so
that CSF must be responsible for proper scaling of luminance
contrast.

Unfortunately, in case of HDR images, a single CSF can
not be used for filtering an entire image since the shape of
the CSF significantly changes with adaptation luminance.
The peak sensitivity shifts from about 2 cycles/degree to
7 cycles/degree as adaptation luminance changes from sco-
topic to photopic, see Figure 4. To account for this, to filter
an image, a separate convolution kernel should be used for
each pixel. Because the support of such convolution kernel
can be rather large, we use a computationally more effec-
tive approach in our implementation of the VDP for HDR
images: We filter an image in FFT space several times, each
time using CSF for different adaptation luminance. Then, we
convert all the filtered images to the spatial domain and use
them to linearly interpolate pixel values. We use luminance
values from the original image to determine the adaptation
luminance for each pixel (assuming adaptation to a single
pixel) and thus to choose filtered images that should be used
for interpolation. A more accurate approach would be to
compute the adaptation map [24], which would consider the
fact that the eye can not adapt to a single pixel. A similar
approach to non-linear filtering, in case of a bilateral filter,
was proposed in [7]. The process of filtering using multiple
CSFs is shown in Figure 5.

As can be seen in Figure 4, the CSF changes its shape
significantly for scotopic and mesopic adaptation luminance
and remains constant above 1000 cd/m2. Therefore it is usu-
ally enough to filter the image using a CSF for yadapt =
{0.0001, 0.01, ..., 1000} cd/m2. The number of filters can
be further limited if the image has a lower range of lumi-
nance.
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Figure 3: Contrast versus intensity cvi function predicts the
minimum distinguishable contrast at a particular adaptation
level. It is also a conservative estimate of a contrast that in-
troduces a Just Noticeable Difference (JND). The higher val-
ues of the cvi function at low luminance levels indicate loss
of sensitivity of the human eye for low light conditions. The
cvi curve shown in this figure was used to derive a function
that maps luminance to JND-scaled space.

3.3 Other Modifications
An important difference between Daly’s VDP and the pro-

posed extension for HDR images is that the first one oper-
ates on CSF normalized values and the latter one represents
channel data in JND-scaled space. Therefore, in case of the
VDP for HDR images, original and distorted images can be
compared without any additional normalization and scaling.
This is possible because a difference between the images that
equals one unit in JND-scaled space gives a probability of
detection equal to one JND, which is exactly what this step
of the VDP assumes. Therefore the contrast difference in
Daly’s VDP:

∆Ck,l(i, j) =
B1k,l(i, j)

BK

−
B2k,l(i, j)

BK

(6)

in case of the VDP for HDR images becomes:

∆Ck,l(i, j) = B1k,l(i, j) −B2k,l(i, j) (7)

where k, l are channel indices, i, j pixel coordinates and
B1, B2 are corresponding channel values for the target and
mask images.

4 Results
To test how our modifications for HDR images affected a

prediction of the visible differences, we compared the results
of Daly’s VDP and our modified HDR VDP.

The first pair of images contained a luminance ramp and
the same ramp distorted by a sinusoidal grating (see Fig-
ure 6). The probability map of Daly’s VDP (Figure 6(c))
shows lack of visible differences for high luminance area
(bottom of the image). This is due to the luminance compres-
sion of the photoreceptor model (compare with Figure 2).
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Figure 4: Family of normalized Contrast Sensitivity Func-
tions (CSF) for different adaptation levels. The peak sensi-
tivity shifts towards lower frequencies as the luminance of
adaptation decreases. Shape of the CSF does not change sig-
nificantly for adaptation luminance above 1000 cd/m2.

The HDR VDP does not predict loss of visibility for high lu-
minance (Figure 6(d)), but it does for lower luminance levels,
which is in agreement with the contrast versus intensity char-
acteristic of the HVS. The visibility threshold for average
and low luminance is also lowered by the CSF, which sup-
presses the grating of 5 cycles/degree for luminance lower
than 1 cd/m2 (see Figure 4). Because Daly’s VDP filters im-
ages using the CSF for a single adaptation level, there is no
difference in the grating suppression for both low and high
luminance regions of the image.

The next set of experiments was performed on HDR im-
ages, which are commonly used for testing tone mapping
operators. The first row of Figure 7 shows a prediction of
contouring artifacts in the Memorial Church image. Both
VDPs predicted properly visibility of the artifacts in the non-
masked areas (floor and columns). However, Daly’s VDP
failed to predict distortions in the bright highlight on the floor
(bottom right of the image), which can be caused by exces-
sive luminance compression at high luminance levels. Daly’s
metric also overestimated visible differences in dark regions
of the scene. Similar results were obtained for the Design
Center image distorted by a sinusoidal grating of different
frequencies (the second and third row of Figure 7). High
frequency noise (the third row) was suppressed for the low
luminance region of the image (the right bottom corner) only
in case of the HDR VDP. Such noise is mostly visible in the
brighter parts of the image – the ceiling lamp and the areas
near the window – for which the CSF predicts higher sensi-
tivity at high frequencies.

More tests should be performed in the future to test the
prediction of masking. The validation done in this work con-
firmed a better prediction of HDR VDP at high luminance
levels (in accordance with the cvi) and at low luminance lev-
els in the presence of high frequency patterns (in accordance
with the CSF).



(a) Mask (b) Target (c) Daly’s VDP (d) HDR VDP

Figure 6: A logarithmic luminance ramp (a) from 10−4 cd/m2 (top of the image) to 106 cd/m2 (bottom of the image) was
distorted with a sinusoidal grating of contrast 10% and frequency 5 cycles/degree (b). The original and the distorted image
was compared using both versions of the VDP and the resulting probability map was shown in subfigures c and d, where
brighter gray-levels denote higher probability.

5 Conclusion
In this paper we derive several extensions to Daly’s Visual

Difference Predicator from psychophysical data. The exten-
sions enable the comparison of High-Dynamic Range im-
ages. The proposed JND-scaled space is used to predict a just
noticeable differences at luminance adaptation levels rang-
ing from dark scotopic to extremely bright photopic. The
extended CSF filtering stage can predict loss of sensitivity
for high frequency patterns at scotopic conditions and at the
same time high sensitivity for those patterns in bright parts of
the image. We also verified integrity of the HDR VDP and
made adjustments, where differences to Daly’s VDP were
caused by using different units to represent contrast.

In future work we would like to further extend the VDP to
handle color images in a similar way as it was done in [11],
but also take into consideration extended color gamut. A
more extensive validation of HDR VDP predictions, possibly
using a HDR display, is necessary to confirm good correla-
tion between the predicted distortions and the actual quality
degradation as perceived by a human observer.
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[17] M. Robertson, S. Borman, and R. Stevenson. Dy-
namic range improvement through multiple exposures.
In Proceedings of the 1999 International Conference
on Image Processing (ICIP-99), pages 159–163, Los
Alamitos, CA, Oct. 24–28 1999.

[18] H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward,
L. Whitehead, M. Trentacoste, A. Ghosh, and
A. Vorozcovs. High dynamic range display systems.
ACM Transactions on Graphics, 23(3):757–765, 2004.

[19] C. Taylor, Z. Pizlo, J. P. Allebach, and C. Bouman. Im-
age quality assessment with a Gabor pyramid model
of the Human Visual System. In Hum. Vis. and Elect.
Imaging, pages 58–69. SPIE Vol. 3016, 1997.

[20] Z. Wang and A. Bovik. A universal image quality
index. IEEE Signal Processing Letters, 9(3):81–84,
2002.

[21] G. Ward. Real pixels. Graphics Gems II, pages 80–83,
1991.

[22] G. Ward and M. Simmons. Subband encoding of high
dynamic range imagery. In Proceedings of the 1st Sym-
posium on Applied Perception in Graphics and Visual-
ization, 2004.

[23] G. Ward Larson. Logluv encoding for full-gamut, high-
dynamic range images. Journal of Graphics Tools,
3(1):815–30, 1998.

[24] H. Yee and S. Pattanaik. Segmentation and adap-
tive assimilation for detail-preserving display of high-
dynamic range images. The Visual Computer, 19:457–
466, 2003.

[25] C. Zetzsche and G. Hauske. Multiple channel model for
the prediction of subjective image quality. In Human
Vision, Visual Processing, and Digital Display, pages
209–216. SPIE Vol. 1077, 1989.



(a) Mask (b) Target (c) Daly’s VDP (d) HDR VDP
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Figure 7: Several test images (a) were distorted by quantization in log domain (first row), 5 cycles/degree 10% contrast
sinusoidal noise (second row), and 2 cycles/degree 10% contrast sinusoidal noise (third row). The last two columns show
results of both Daly’s VDP (c) and HDR VDP (d) using color-coded probability scale (e).
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