Data Structures and Algorithms

Kurt Mehlhorn Peter Sanders

Organization

- Instructors: Kurt Mehlhorn and Peter Sanders
- want to know more about KM and his group: today, 1:30, MPI, room 024.
- Tutors: Guido Schäfer and Manual Bodirsky
- Media Support: XXX
- Classes: Monday and Wednesday at 11:00. Classes that fall on holidays are moved to Fridays.
- Additional Classes (Schmankerl) on Fridays, about once a month
- Exercises
 - handed out on Monday, to be handed in on the following Monday
 - Übungsgruppen meet on TODO
- Language: English

- The grade for the course is a combination of three grades:
 - exercises
 - midterm exam (will take place on Wednesday, December 16th, 11am)
 - final exam (will take place on Friday, March 2nd, 9am)
 - details on web-page
- WEB-page: see www.mpi-sb.mpg.de/~mehlhorn or sanders
- Prerequisites:
 - Einführung in Algorithmen und Datenstrukturen
 - Softwarepraktikum
- Course Notes and Books: see web-page
- LEDA and my books: CD-ROM
- Lectures will be recorded.

Challenges

- challenging tasks related to the course
- outside grading scheme, but champagne prizes
- Make LEDA look bad challenge (organized by Guido)
 - construct difficult instances or instance families for some of the LEDA algorithms
 - prize for the instance family with the largest asymptotic growth
- Programming Challenge: dynamic transitive closure
 - maintain a graph under edge insertions and deletions
 - answer reachability queries: is there a path from v to w?
 - there is a trivial solution (query = graph search from v), try to do better
- Master topics can be found on my WEB page

Contents

- Shortest Paths, Priority Queues, Amortization
- Network Flow and Bipartite Matchings
- Schmankerl: Min Cost Flow
- Generic Methods: Local Search, Simulated Annealing, linear programming and integer linear programming
- Hashing: Perfect Hashing, Universal Hashing,
- Computational Geometry: Convex Hulls, Delaunay Triangulations and Voronoi diagrams, augmented search trees
- Strings: Pattern Matching, Suffix Trees,

. . .

Recent Developments I

- New Degree Programs
 - Angewandte Informatik (50% CS, 50% Business Administration)
 - Information und Kommunikation (50% CS, 50% EE)
 - Bioinformatik (50% CS, 50% Life Sciences)
 - PhD program (English language) Bachelor \rightarrow Master \rightarrow PhD
- New Scholarship Programs
 - Graduiertenkolleg (DFG)
 - Max-Planck-Research School (MPG)
 - Marie-Curie Training Site (EU)
- Center for Bioinformatics established (funded by DFG)

Recent Developments II

- Changes in AG1
 - Hans-Peter Lenhof: chair for bioinformatics (Uni des Saarlandes, Bielefeld, Uni München)
 - Job Sibeyn: Professor at Umea (Sweden)
 - Susanne Albers: offer for full professorship in Freiburg
 - Stefan Schirra: joined Think-and-Solve (SB)
 - many new faces
- Prizes
 - Hannah Bast: Otto Hahn Medaille
 - Petra Mutzel: SEL-Alcatel Prize
 - Wolfgang Wahlster: Beckurts Prize
 - Reinhard Wilhelm: ACM Fellow

The Shortest Path Problem

given a directed graph G = (V, E), a cost function c on the edges, compute

- the shortest path between two given nodes *s* and *t* (single source, single sink)
- the shortest paths from a given node *s* to all other nodes (single source)
- the shortest paths between any pair of nodes (all pairs problem)

The Shortest Path Problem

given a directed graph G = (V, E), a cost function c on the edges, compute

- the shortest path between two given nodes *s* and *t* (single source, single sink)
- the shortest paths from a given node *s* to all other nodes (single source)
- the shortest paths between any pair of nodes (all pairs problem)
- source node s = fat blue node
- yellow node has distance $+\infty$ from *s*
- blue nodes have finite distance from *s*
- square blue node has distance −1 from *s*.
 There are paths of length −1, 4, 9, ...
- green nodes have distance $-\infty$ from *s*

Prequisites and Further Reading

- please recapitulate graphs, DFS and BFS, shortest paths and heaps main source for lectures on shortest paths: [MN99] additional sources: Tarjan's book [Tar83], Cormen-Leiserson-Rivest [CLR90]. For the lectures on amortization, in addition [Tar85, Meh98].
- [CLR90] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. MIT Press/McGraw-Hill Book Company, 1990.
- [Meh98] K. Mehlhorn. Amortisierte Analyse. In Th. Ottmann, editor, Prinzipien des Algorithmenentwurfs. Spektrum Lehrbuch, 1998. www.mpi-sb.mpg.de/~{}mehlhorn/ftp/Amortization.ps.
- [MN99] K. Mehlhorn and S. Näher. The LEDA Platform for Combinatorial and Geometric Computing. Cambridge University Press, 1999. 1018 pages.
- [Tar83] R.E. Tarjan. Data Structures and Network Algorithms. SIAM, 1983.
- [Tar85] R.E. Tarjan. Amortized computational complexity. SIAM Journal on Algebraic and Discrete Methods, 6(2):306–318, 1985.

• path $p = [e_1, e_2, ..., e_k]$, sequence of edges with $target(e_i) = source(e_{i+1})$ for $1 \le i < k, p$ is a path from $source(e_1)$ to $target(e_k)$.

- path $p = [e_1, e_2, ..., e_k]$, sequence of edges with $target(e_i) = source(e_{i+1})$ for $1 \le i < k, p$ is a path from $source(e_1)$ to $target(e_k)$.
- for every node v, there is the empty path [] from v to itself.

- path $p = [e_1, e_2, ..., e_k]$, sequence of edges with $target(e_i) = source(e_{i+1})$ for $1 \le i < k, p$ is a path from $source(e_1)$ to $target(e_k)$.
- for every node v, there is the empty path [] from v to itself.
- cardinality of a path = number of edges

also called length

- path $p = [e_1, e_2, ..., e_k]$, sequence of edges with $target(e_i) = source(e_{i+1})$ for $1 \le i < k, p$ is a path from $source(e_1)$ to $target(e_k)$.
- for every node v, there is the empty path [] from v to itself.
- cardinality of a path = number of edges

also called length

- given $c: E \rightarrow I\!R$, a cost (or length) function on the edges
 - cost of a path is the sum of the cost of its edges, i.e., $c(p) = \sum_{1 \le i \le k} c(e_i)$
 - empty path has cost zero

- path $p = [e_1, e_2, ..., e_k]$, sequence of edges with $target(e_i) = source(e_{i+1})$ for $1 \le i < k, p$ is a path from $source(e_1)$ to $target(e_k)$.
- for every node v, there is the empty path [] from v to itself.
- cardinality of a path = number of edges

- also called length
- given $c: E \rightarrow I\!R$, a cost (or length) function on the edges
 - cost of a path is the sum of the cost of its edges, i.e., $c(p) = \sum_{1 \le i \le k} c(e_i)$
 - empty path has cost zero
- $\mu(v, w) = \inf \{ c(p) ; p \text{ is a path from } v \text{ to } w \} \in \mathbb{R} \cup \{ -\infty, +\infty \}.$
 - $-+\infty$, if there is no path from v to w
 - $-\infty$, if there are paths of arbitrarily small cost (min does not exist).
 - $\in I\!\!R$, otherwise

Lemma 2 (a) $\mu(v, w) = +\infty$ iff w is not reachable from v.

(b) $\mu(v, w) = -\infty$ iff there is a path from v to w containing a negative cycle.

(c) $-\infty < \mu(v, w) < +\infty$ otherwise (w is reachable from v and there is no path from v to w passing through a negative cycle). In this case, $\mu(v, w)$ is the length of a simple path from v to w.

Proof:

Lemma 3 (a) $\mu(v, w) = +\infty$ iff w is not reachable from v.

(b) $\mu(v, w) = -\infty$ iff there is a path from v to w containing a negative cycle.

(c) $-\infty < \mu(v, w) < +\infty$ otherwise (w is reachable from v and there is no path from v to w passing through a negative cycle). In this case, $\mu(v, w)$ is the length of a simple path from v to w.

Proof: Part (a) is true by definition.

Lemma 4 (a) $\mu(v, w) = +\infty$ iff w is not reachable from v.

(b) $\mu(v, w) = -\infty$ iff there is a path from v to w containing a negative cycle.

(c) $-\infty < \mu(v, w) < +\infty$ otherwise (w is reachable from v and there is no path from v to w passing through a negative cycle). In this case, $\mu(v, w)$ is the length of a simple path from v to w.

Proof: Part (a) is true by definition.

(b, \leftarrow): going around the cycle one more time yields a path of smaller cost. Thus $\mu(v, w) = -\infty$.

Lemma 5 (a) $\mu(v, w) = +\infty$ iff w is not reachable from v.

(b) $\mu(v, w) = -\infty$ iff there is a path from v to w containing a negative cycle.

(c) $-\infty < \mu(v, w) < +\infty$ otherwise (w is reachable from v and there is no path from v to w passing through a negative cycle). In this case, $\mu(v, w)$ is the length of a simple path from v to w.

Proof: Part (a) is true by definition.

(b, \leftarrow): going around the cycle one more time yields a path of smaller cost. Thus $\mu(v, w) = -\infty$.

(c, \leftarrow): Consider any path *p* from *v* to *w*. As long as *p* contains a cycle, remove it. Since *p* contains no negative cycle, the cost cannot go up. We obtain a simple path whose cost is at most the cost of *p*. Thus

 $\mu(v, w) = \inf \{ c(p) ; p \text{ is a simple path from } v \text{ to } w \}.$

The number of simple paths is finite and hence $\mu(v, w) = c(p)$ for some simple path *p*.

Lemma 6 (a) $\mu(v, w) = +\infty$ iff w is not reachable from v.

(b) $\mu(v, w) = -\infty$ iff there is a path from v to w containing a negative cycle.

(c) $-\infty < \mu(v, w) < +\infty$ otherwise (w is reachable from v and there is no path from v to w passing through a negative cycle). In this case, $\mu(v, w)$ is the length of a simple path from v to w.

Proof: Part (a) is true by definition.

(b, \leftarrow): going around the cycle one more time yields a path of smaller cost. Thus $\mu(v, w) = -\infty$.

(c, \leftarrow): Consider any path *p* from *v* to *w*. As long as *p* contains a cycle, remove it. Since *p* contains no negative cycle, the cost cannot go up. We obtain a simple path whose cost is at most the cost of *p*. Thus

 $\mu(v, w) = \inf \{ c(p) ; p \text{ is a simple path from } v \text{ to } w \}.$

The number of simple paths is finite and hence $\mu(v, w) = c(p)$ for some simple path p.

 (b,\rightarrow) and (c,\rightarrow) since (a), (b), and (c) are exhaustive.

From now on: single source problem with source *s*

 $\mu(v) = \mu(s, v)$, distance from s to v

Arithmetic and order on $\mathbb{R} \cup \{-\infty, +\infty\}$: $-\infty < x < +\infty, +\infty + x = +\infty$, and $-\infty + x = -\infty$ for all $x \in \mathbb{R}$.

Lemma 8 (Characterization of μ) μ satisfies the following equations:

$$\mu(s) = \min(0, \min\{\mu(u) + c(e); e = (u, s) \in E\})$$

$$\mu(v) = \min\{\mu(u) + c(e); e = (u, v) \in E\} \text{ for } v \neq s$$

From now on: single source problem with source *s* $\mu(v) = \mu(s, v)$, distance from *s* to *v* Arithmetic and order on $\mathbb{R} \cup \{-\infty, +\infty\}$: $-\infty < x < +\infty, +\infty + x = +\infty$, and $-\infty + x = -\infty$ for all $x \in \mathbb{R}$.

Lemma 9 (Characterization of μ) μ satisfies the following equations:

$$\mu(s) = \min(0, \min\{\mu(u) + c(e); e = (u, s) \in E\})$$

$$\mu(v) = \min\{\mu(u) + c(e); e = (u, v) \in E\} \text{ for } v \neq s$$

Proof: We only consider the case $v \neq s$ and leave the case v = s to the reader. Any path *p* from *s* to *v* consists of a path from *s* to some node *u* plus an edge from *u* to *v*. Thus

$$\mu(v) = \inf \{c(p) ; p \text{ is a path from } s \text{ to } v\}$$

=
$$\min_{u} \inf \{c(p') + c(e) ; p' \text{ is a path from } s \text{ to } u \text{ and } e = (u, v) \in E\}$$

=
$$\min \{\mu(u) + c(e) ; e = (u, v) \in E\}.$$

Lemma 10 (sufficient conditions for a function being equal to μ) If *d* is a function from *V* to $I\!\!R \cup \{-\infty, +\infty\}$ with

- $d(v) \ge \mu(v)$ for all $v \in V$,
- $d(s) \leq 0$, and
- $d(v) \le d(u) + c(u, v)$ for all $e = (u, v) \in E$

then $d(v) = \mu(v)$ for all $v \in V$.

Lemma 10 (sufficient conditions for a function being equal to μ) If *d* is a function from *V* to $I\!\!R \cup \{-\infty, +\infty\}$ with

- $d(v) \ge \mu(v)$ for all $v \in V$,
- $d(s) \leq 0$, and
- $d(v) \le d(u) + c(u, v)$ for all $e = (u, v) \in E$

then $d(v) = \mu(v)$ for all $v \in V$.

Proof: Assume otherwise and let v be such that $d(v) > \mu(v)$. Then $\mu(v) < +\infty$. We distinguish two cases: $\mu(v) > -\infty$ and $= -\infty$. **Lemma 10 (sufficient conditions for a function being equal to** μ) If *d* is a function from *V* to $I\!\!R \cup \{-\infty, +\infty\}$ with

- $d(v) \ge \mu(v)$ for all $v \in V$,
- $d(s) \leq 0$, and

•
$$d(v) \le d(u) + c(u, v)$$
 for all $e = (u, v) \in E$

then $d(v) = \mu(v)$ for all $v \in V$.

Proof: Assume otherwise and let *v* be such that $d(v) > \mu(v)$. Then $\mu(v) < +\infty$. We distinguish two cases: $\mu(v) > -\infty$ and $= -\infty$.

If $\mu(v) > -\infty$, let $[s = v_0, v_1, \dots, v_k = v]$ be a shortest path from *s* to *v*. We have $\mu(s) = 0 = d(s), \mu(v_i) = \mu(v_{i-1}) + c(v_{i-1}, v_i)$ for i > 0, and $\mu(v) < d(v)$. Thus, there is a least i > 0 with $\mu(v_i) < d(v_i)$ and hence

$$d(v_i) > \mu(v_i) = \mu(v_{i-1}) + c(v_i, v_{i-1}) = d(v_{i-1}) + c(v_i, v_{i-1}),$$

a contradiction.

If $\mu(v) = -\infty$, let $[s = v_0, v_1, \dots, v_i, \dots, v_j, \dots, v_k = v]$ be a path from *s* to *v* containing a negative cycle. Such a path exists by Lemma 6. Assume that the sub-path from v_i to v_j is a negative cycle. If $d(v) > \mu(v)$ then $d(v) > -\infty$ and hence $d(v_l) > -\infty$ for all $l, 0 \le l \le k$.

If $\mu(v) = -\infty$, let $[s = v_0, v_1, \dots, v_i, \dots, v_j, \dots, v_k = v]$ be a path from *s* to *v* containing a negative cycle. Such a path exists by Lemma 6. Assume that the sub-path from v_i to v_j is a negative cycle. If $d(v) > \mu(v)$ then $d(v) > -\infty$ and hence $d(v_l) > -\infty$ for all $l, 0 \le l \le k$.

Thus,

$$d(v_i) = d(v_j) \qquad \text{since } v_i = v_j$$

$$\leq d(v_{j-1}) + c(v_{j-1}, v_j)$$

$$\leq d(v_{j-2}) + c(v_{j-2}, v_{j-1}) + c(v_{j-1}, v_j)$$

$$\vdots$$

$$\leq d(v_i) + \sum_{l=i}^{j-1} c(v_l, v_{l+1}),$$

and hence $\sum_{l=i}^{j-1} c(v_l, v_{l+1}) \ge 0$, a contradiction to the fact that the sub-path from v_i to v_j is a negative cycle.

Call an edge e = (u, v) red if d(u) + c(e) < d(v) and call it black otherwise.

Argument above shows that negative cycles contain at least one red edge.

Recall: If *d* satisfies (1) $d(v) \ge \mu(v)$ for all $v \in V$, (2) $d(s) \le 0$, and (3) $d(v) \le d(u) + c(u, v)$ for all $e = (u, v) \in E$, then $d(v) = \mu(v)$ for all $v \in V$.

The generic algorithm maintains a function d satisfying (1) and (2) and aims at establishing (3). We call d(v) the tentative distance label of v.

Recall: If *d* satisfies (1) $d(v) \ge \mu(v)$ for all $v \in V$, (2) $d(s) \le 0$, and (3) $d(v) \le d(u) + c(u, v)$ for all $e = (u, v) \in E$, then $d(v) = \mu(v)$ for all $v \in V$.

The generic algorithm maintains a function d satisfying (1) and (2) and aims at establishing (3). We call d(v) the tentative distance label of v.

 $d(s) = 0; d(v) = \infty \text{ for } v \neq s;$ while there is an edge $e = (u, v) \in E$ with d(v) > d(u) + c(e) e is red $\{ // \text{ relax } e \text{ (view } e \text{ as a rubber band which wants to keep } d(v) \text{ below or at } d(u) + c(e).$ d(v) = d(u) + c(e);relax it to make it black $\{ d(v) = d(u) + c(e);$

Recall: If *d* satisfies (1) $d(v) \ge \mu(v)$ for all $v \in V$, (2) $d(s) \le 0$, and (3) $d(v) \le d(u) + c(u, v)$ for all $e = (u, v) \in E$, then $d(v) = \mu(v)$ for all $v \in V$.

The generic algorithm maintains a function d satisfying (1) and (2) and aims at establishing (3). We call d(v) the tentative distance label of v.

 $d(s) = 0; d(v) = \infty \text{ for } v \neq s;$ while there is an edge $e = (u, v) \in E$ with d(v) > d(u) + c(e) e is red $\{ // \text{ relax } e \text{ (view } e \text{ as a rubber band which wants to keep } d(v) \text{ below or at } d(u) + c(e).$ d(v) = d(u) + c(e);relax it to make it black $\}$

(1) and (2) are invariants of the algorithm:

d(s) never increases and hence $d(s) \le 0$ always and

If $d(v) < +\infty$, d(v) is the length of some path from *s* to *v* and hence $d(v) \ge \mu(v)$ always.

Recall: If *d* satisfies (1) $d(v) \ge \mu(v)$ for all $v \in V$, (2) $d(s) \le 0$, and (3) $d(v) \le d(u) + c(u, v)$ for all $e = (u, v) \in E$, then $d(v) = \mu(v)$ for all $v \in V$.

The generic algorithm maintains a function d satisfying (1) and (2) and aims at establishing (3). We call d(v) the tentative distance label of v.

 $d(s) = 0; d(v) = \infty \text{ for } v \neq s;$ while there is an edge $e = (u, v) \in E$ with d(v) > d(u) + c(e) e is red $\{ // \text{ relax } e \text{ (view } e \text{ as a rubber band which wants to keep } d(v) \text{ below or at } d(u) + c(e).$ d(v) = d(u) + c(e);relax it to make it black $\}$

(1) and (2) are invariants of the algorithm:

d(s) never increases and hence $d(s) \le 0$ always and

If $d(v) < +\infty$, d(v) is the length of some path from *s* to *v* and hence $d(v) \ge \mu(v)$ always.

GREAT

When the algorithm terminates, we also have (3).

Problems:

1. GA does not determinate in the presence of negative cycles

2. GA may have exponential running time even without negative cycles

Problems:

1. GA does not determinate in the presence of negative cycles

2. GA may have exponential running time even without negative cycles **Observation** (addresses second item): When d(v) is decreased, the edges out of v may turn red.

Idea: Maintain a set *U* with $U \supseteq \{u : \text{there is a red edge out of } u\}$ and rewrite the generic algorithm as:

 $d(s) = 0; d(v) = \infty \text{ for } v \neq s; U = \{s\};$ while $U \neq \emptyset$ $\{ \text{ select } u \in U \text{ and remove it;}$ forall edges e = (u, v) $\{ \text{ if } d(u) + c(e) < d(v)$ $\{ \text{ add } v \text{ to } U;$ d(v) = d(u) + c(e); $\}$ $\}$

Idea: Maintain a set *U* with $U \supseteq \{u ; \exists (u, v) \in E \text{ with } d(u) + c(u, v) < d(v)\}$ and rewrite the generic algorithm as:

```
d(s) = 0; d(v) = \infty for v \neq s; U = \{s\};
while U \neq \emptyset
{ select u \in U and remove it;
  forall edges e = (u, v)
  { if d(u) + c(e) < d(v)
     { add v to U;
       d(v) = d(u) + c(e);
```

Question: Which *u* do we select from *U*?

Idea: Maintain a set *U* with $U \supseteq \{u ; \exists (u, v) \in E \text{ with } d(u) + c(u, v) < d(v)\}$ and rewrite the generic algorithm as:

```
d(s) = 0; d(v) = \infty for v \neq s; U = \{s\};
while U \neq \emptyset
{ select u \in U and remove it;
  forall edges e = (u, v)
  { if d(u) + c(e) < d(v)
     { add v to U;
       d(v) = d(u) + c(e);
```

Question: Which *u* do we select from *U*?

- **Answer:** There is always an optimal choice
 - In some situations, the optimal choice can be made efficiently.

nodes in V_f have shortest paths

Lemma 12 (Existence of Optimal Choice)

(a) When a node u is removed from U with $d(u) = \mu(u)$, it is never added to U again.

nodes in V_f have shortest paths

Lemma 13 (Existence of Optimal Choice)

(a) When a node u is removed from U with $d(u) = \mu(u)$, it is never added to U again. (it is an optimal choice)

nodes in V_f have shortest paths

Lemma 14 (Existence of Optimal Choice)

- (a) When a node u is removed from U with $d(u) = \mu(u)$, it is never added to U again. (it is an optimal choice)
- **(b)** As long as $d(v) > \mu(v)$ for some $v \in V_f$: for any $v \in V_f$ with $d(v) > \mu(v)$ there is a $u \in U$ with $d(u) = \mu(u)$ and lying on a shortest path from s to v.

nodes in V_f have shortest paths

Lemma 15 (Existence of Optimal Choice)

- (a) When a node u is removed from U with $d(u) = \mu(u)$, it is never added to U again. (it is an optimal choice)
- **(b)** As long as $d(v) > \mu(v)$ for some $v \in V_f$: for any $v \in V_f$ with $d(v) > \mu(v)$ there is a $u \in U$ with $d(u) = \mu(u)$ and lying on a shortest path from s to v.

Proof: (a) We have $d(u) \ge \mu(u)$ always. Also, when *u* is added to *U*, its tentative distance value d(u) has just been decreased. Thus, if a node *u* is removed from *U* with $d(u) = \mu(u)$, it will never be added to *U* at a later time. (b) Let $[s = v_0, v_1, \dots, v_k = v]$ be a shortest path from *s* to *v*. Then $\mu(s) = 0 = d(s)$ and $d(v_k) > \mu(v_k)$. Let *i* be minimal such that $d(v_i) > \mu(v_i)$. Then i > 0, $d(v_{i-1}) = \mu(v_{i-1})$ and

$$d(v_i) > \mu(v_i) = \mu(v_{i-1}) + c(v_{i-1}, v_i) = d(v_{i-1}) + c(v_{i-1}, v_i).$$

Thus, $v_{i-1} \in U$.

Lemma 16 (Algorithmic optimal choice)

non-negative costs: If $c(e) \ge 0$ for all $e \in E$ then $d(u) = \mu(u)$ for the node $u \in U$ with minimal d(u).

acyclic graphs: If G is acyclic and $u_0, u_1, \ldots, u_{n-1}$ is a topological order of the nodes of G, i.e., if $(u_i, u_j) \in E$ then i < j, then $d(u) = \mu(u)$ for the node $u = u_i \in U$ with i minimal.

Lemma 16 (Algorithmic optimal choice)

non-negative costs: If $c(e) \ge 0$ for all $e \in E$ then $d(u) = \mu(u)$ for the node $u \in U$ with minimal d(u).

acyclic graphs: If G is acyclic and $u_0, u_1, \ldots, u_{n-1}$ is a topological order of the nodes of G, i.e., if $(u_i, u_j) \in E$ then i < j, then $d(u) = \mu(u)$ for the node $u = u_i \in U$ with i minimal.

Proof: Assume otherwise, i.e., $d(u) > \mu(u)$ for the node *u* specified. By the preceding lemma there is a node $z \in U$ lying on a shortest path from *s* to *u* with $d(z) = \mu(z)$. We now distinguish cases.

In the case of non-negative edge costs, we have $\mu(z) \le \mu(u)$. Thus, d(z) < d(u), contradicting the choice of u.

In the case of acyclic graphs, we have $z = u_j$ for some j < i, contradicting the choice of u.

Lemma 16 (Algorithmic optimal choice)

non-negative costs: If $c(e) \ge 0$ for all $e \in E$ then $d(u) = \mu(u)$ for the node $u \in U$ with minimal d(u).

acyclic graphs: If G is acyclic and $u_0, u_1, \ldots, u_{n-1}$ is a topological order of the nodes of G, i.e., if $(u_i, u_j) \in E$ then i < j, then $d(u) = \mu(u)$ for the node $u = u_i \in U$ with i minimal.

Proof: Assume otherwise, i.e., $d(u) > \mu(u)$ for the node *u* specified. By the preceding lemma there is a node $z \in U$ lying on a shortest path from *s* to *u* with $d(z) = \mu(z)$. We now distinguish cases.

In the case of non-negative edge costs, we have $\mu(z) \le \mu(u)$. Thus, d(z) < d(u), contradicting the choice of u.

In the case of acyclic graphs, we have $z = u_j$ for some j < i, contradicting the choice of u.

Lemma is basis for Dijkstra's algorithm for graphs with non-negative edge costs and for a linear time algorithm for acyclic graphs.

DFS computes a topological order in linear time O(n + m).

DFS computes a topological order in linear time O(n + m).

- *G* is acyclic iff DFS produces no back edges
- tree, forward and cross edges go from larger to smaller completion number
- back edges go from smaller to larger completion number
- (negative of) completion numbers are a topological order

DFS computes a topological order in linear time O(n + m).

- *G* is acyclic iff DFS produces no back edges
- tree, forward and cross edges go from larger to smaller completion number
- back edges go from smaller to larger completion number
- (negative of) completion numbers are a topological order

calls to DFS are either nested or disjoint, consider calls DFS(v) and DFS(w).

 $[v \dots]_v \dots [w \dots]_w$ or $[w \dots]_v \dots [v \dots]_v$ or $[w \dots [v \dots]_v \dots]_w$ or $[v \dots [w \dots]_w \dots]_v$

DFS computes a topological order in linear time O(n + m).

- *G* is acyclic iff DFS produces no back edges
- tree, forward and cross edges go from larger to smaller completion number
- back edges go from smaller to larger completion number
- (negative of) completion numbers are a topological order

calls to DFS are either nested or disjoint, consider calls DFS(v) and DFS(w).

 $[v \dots]_v \dots [w \dots]_w$ or $[w \dots]_w \dots [v \dots]_v$ or $[w \dots [v \dots]_v \dots]_w$ or $[v \dots [w \dots]_w \dots]_v$

- If $(v, w) \in E$, DFS(w) must start before DFS(v) ends; exludes first poss.
- If (v, w) ∈ E, there is no path from w to v and hence DFS(v) cannot be nested in DFS(w); excludes third possibility.
- second and the fourth poss. remain. Thus compnum[w] < compnum[v].

Let *G* be an acyclic graph, $v_1, v_2, ..., v_n$ be an ordering of the nodes such that $(v_i, v_j) \in E$ implies $i \leq j$.

The Algorithm:

Compute topological ordering;

Let $s = v_k$; (nodes v_j with j < k are not reachable from s) forall $(i, k \le i \le n, \text{ in increasing order})$ { if $(d(v_i) < \infty)$ { propagate $d(v_i)$ over all edges out of v_i ; } }

Let *G* be an acyclic graph, $v_1, v_2, ..., v_n$ be an ordering of the nodes such that $(v_i, v_j) \in E$ implies $i \leq j$.

The Algorithm:

```
Compute topological ordering;
```

```
takes time O(n+m)
```

Let $s = v_k$; (nodes v_j with j < k are not reachable from s)

forall $(i, k \le i \le n, \text{ in increasing order})$

```
\{ \text{ if } (d(v_i) < \infty) \}
```

}

```
{ propagate d(v_i) over all edges out of v_i;
```

Let *G* be an acyclic graph, $v_1, v_2, ..., v_n$ be an ordering of the nodes such that $(v_i, v_j) \in E$ implies $i \leq j$.

The Algorithm:

Compute topological ordering; takes time O(n + m)Let $s = v_k$; (nodes v_j with j < k are not reachable from s) **forall** $(i, k \le i \le n, \text{ in increasing order})$ { **if** $(d(v_i) < \infty)$ { propagate $d(v_i)$ over all edges out of v_i ; takes time $O(outdeg(v_i))$ } }

Let *G* be an acyclic graph, $v_1, v_2, ..., v_n$ be an ordering of the nodes such that $(v_i, v_j) \in E$ implies $i \leq j$.

The Algorithm:

Compute topological ordering; takes time O(n + m)Let $s = v_k$; (nodes v_j with j < k are not reachable from s) **forall** $(i, k \le i \le n, \text{ in increasing order})$ { **if** $(d(v_i) < \infty)$ { propagate $d(v_i)$ over all edges out of v_i ; takes time $O(outdeg(v_i))$ }

total time = $O(n+m) + O(n) + \sum_{1 \le i \le n} outdeg(v_i) = O(n+m)$

Let *G* be an acyclic graph, $v_1, v_2, ..., v_n$ be an ordering of the nodes such that $(v_i, v_j) \in E$ implies $i \leq j$.

The Algorithm:

Compute topological ordering; takes time O(n + m)Let $s = v_k$; (nodes v_j with j < k are not reachable from s) **forall** $(i, k \le i \le n, \text{ in increasing order})$ { **if** $(d(v_i) < \infty)$ { propagate $d(v_i)$ over all edges out of v_i ; takes time $O(outdeg(v_i))$ } }

total time = $O(n+m) + O(n) + \sum_{1 \le i \le n} outdeg(v_i) = O(n+m)$

Theorem 2 Shortest paths in acyclic graphs can be computed in time O(n + m).

An Implementation Issue

How can we represent $+\infty$?

Some number types have a represention for $+\infty$:

double does and int does not.

Warning: Do not use *MAXINT* for $+\infty$, since *MAXINT* + $1 \neq MAXINT$.

An Implementation Issue

- How can we represent $+\infty$?
- Some number types have a represention for $+\infty$: double does and *int* does not.
- **Warning:** Do not use *MAXINT* for $+\infty$, since *MAXINT* + $1 \neq MAXINT$.
- **Solution:** (used in LEDA)
- Maintain for each node v, the edge pred[v] into v which defines d[v].
- pred[v] is initialized to *nil* and updated whenever d[v] is changed.

An Implementation Issue

- How can we represent $+\infty$?
- Some number types have a represention for $+\infty$: double does and *int* does not.
- **Warning:** Do not use *MAXINT* for $+\infty$, since *MAXINT* + $1 \neq MAXINT$.
- **Solution:** (used in LEDA)
- Maintain for each node v, the edge pred[v] into v which defines d[v].
- pred[v] is initialized to *nil* and updated whenever d[v] is changed.
- we have the invariant: $d(v) = +\infty$ iff $v \neq s$ and pred(v) = nil

```
template <class NT>
void ACYCLIC_SHORTEST_PATH_T(const graph& G, node s, const edge_array
                             node_array<NT>& dist, node_array<edge>&
{ node_array<int> top_ord(G); node w; edge e;
  TOPSORT(G,top_ord); // top_ord is now a topological ordering of G
  array<node> v(1,G.number_of_nodes());
  forall_nodes(w,G) v[ top_ord[w] ] = w; // top_ord[ v[i] ] == i for
 dist[s] = 0;
  forall_nodes(w,G) pred[w] = nil;
  for (int i = top_ord[s]; i <= G.number_of_nodes(); i++)</pre>
  { node u = v[i];
    if ( pred[u] == nil && u != s ) continue; // dist[u] is plus inf
    forall_out_edges(e,u)
    { node w = G.target(e);
      if (pred[w] == nil || dist[u] + c[e] < dist[w])
      { pred[w] = e; dist[w] = dist[u] + c[e]; }
    }
  }
}
```