
Data Structures and Algorithms

Kurt Mehlhorn

Peter Sanders

Organization

• Instructors: Kurt Mehlhorn and Peter Sanders

• want to know more about KM and his group: today, 1:30, MPI, room 024.

• Tutors: Guido Scḧafer and Manual Bodirsky

• Media Support: XXX

• Classes: Monday and Wednesday at 11:00. Classes that fall on holidays are

moved to Fridays.

• Additional Classes (Schmankerl) on Fridays, about once a month

• Exercises

– handed out on Monday, to be handed in on the following Monday

– Übungsgruppen meet on TODO

• Language: English

• The grade for the course is a combination of three grades:

– exercises

– midterm exam (will take place on Wednesday, December 16th, 11am)

– final exam (will take place on Friday, March 2nd, 9am)

– details on web-page

• WEB-page: seewww.mpi-sb.mpg.de/~mehlhorn or sanders

• Prerequisites:

– Einführung in Algorithmen und Datenstrukturen

– Softwarepraktikum

• Course Notes and Books: see web-page

• LEDA and my books: CD-ROM

• Lectures will be recorded.

www.mpi-sb.mpg.de/~mehlhorn

Challenges

• challenging tasks related to the course

• outside grading scheme, but champagne prizes

• Make LEDA look badchallenge (organized by Guido)

– construct difficult instances or instance families for some of the LEDA

algorithms

– prize for the instance family with the largest asymptotic growth

• Programming Challenge: dynamic transitive closure

– maintain a graph under edge insertions and deletions

– answer reachability queries: is there a path fromv tow?

– there is a trivial solution (query = graph search fromv), try to do better

• Master topics can be found on my WEB page

Contents

• Shortest Paths, Priority Queues, Amortization

• Network Flow and Bipartite Matchings

• Schmankerl: Min Cost Flow

• Generic Methods: Local Search, Simulated Annealing, linear programming and

integer linear programming

• Hashing: Perfect Hashing, Universal Hashing,

• Computational Geometry: Convex Hulls, Delaunay Triangulations and Voronoi

diagrams, augmented search trees

• Strings: Pattern Matching, Suffix Trees,

• . . .

Recent Developments I

• New Degree Programs

– Angewandte Informatik (50% CS, 50% Business Administration)

– Information und Kommunikation (50% CS, 50% EE)

– Bioinformatik (50% CS, 50% Life Sciences)

– PhD program (English language) Bachelor→ Master→ PhD

• New Scholarship Programs

– Graduiertenkolleg (DFG)

– Max-Planck-Research School (MPG)

– Marie-Curie Training Site (EU)

• Center for Bioinformatics established (funded by DFG)

Recent Developments II

• Changes in AG1

– Hans-Peter Lenhof: chair for bioinformatics (Uni des Saarlandes,Bielefeld,

Uni München)

– Job Sibeyn: Professor at Umea (Sweden)

– Susanne Albers: offer for full professorship in Freiburg

– Stefan Schirra: joined Think-and-Solve (SB)

– many new faces

• Prizes

– Hannah Bast: Otto Hahn Medaille

– Petra Mutzel: SEL-Alcatel Prize

– Wolfgang Wahlster: Beckurts Prize

– Reinhard Wilhelm: ACM Fellow

The Shortest Path Problem

given a directed graphG = (V, E), a cost functionc on the edges, compute

• the shortest path between two given nodess andt (single source, single sink)

• the shortest paths from a given nodes to all other nodes (single source)

• the shortest paths between any pair of nodes (all pairs problem)

The Shortest Path Problem

given a directed graphG = (V, E), a cost functionc on the edges, compute

• the shortest path between two given nodess andt (single source, single sink)

• the shortest paths from a given nodes to all other nodes (single source)

• the shortest paths between any pair of nodes (all pairs problem)

• source nodes = fat blue node

• yellow node has distance+∞ from s

• blue nodes have finite distance froms

• square blue node has distance−1 from s.

There are paths of length−1, 4, 9,. . .

• green nodes have distance−∞ from s

0

-

--

-1

-3

2

-3

+

0

-1

0

0

-1
-2

5
2

-2

Prequisites and Further Reading

please recapitulate graphs, DFS and BFS, shortest paths and heaps

main source for lectures on shortest paths: [MN99]

additional sources: Tarjan’s book [Tar83], Cormen-Leiserson-Rivest [CLR90].

For the lectures on amortization, in addition [Tar85, Meh98].

[CLR90] T.H. Cormen, C.E. Leiserson, and R.L. Rivest.Introduction to Algorithms. MIT

Press/McGraw-Hill Book Company, 1990.

[Meh98] K. Mehlhorn. Amortisierte Analyse. In Th. Ottmann, editor,Prinzipien des

Algorithmenentwurfs. Spektrum Lehrbuch, 1998.

www.mpi-sb.mpg.de/~{}mehlhorn/ftp/Amortization.ps.

[MN99] K. Mehlhorn and S. N̈aher.The LEDA Platform for Combinatorial and Geometric

Computing. Cambridge University Press, 1999. 1018 pages.

[Tar83] R.E. Tarjan.Data Structures and Network Algorithms. SIAM, 1983.

[Tar85] R.E. Tarjan. Amortized computational complexity.SIAM Journal on Algebraic and

Discrete Methods, 6(2):306–318, 1985.

www.mpi-sb.mpg.de/~{}mehlhorn/ftp/Amortization.ps
http://www.mpi-sb.mpg.de/~{}mehlhorn/ftp/Amortization.ps

Notation

• path p = [e1, e2, . . . , ek], sequence of edges withtarget(ei) = source(ei+1) for

1≤ i < k, p is a path fromsource(e1) to target(ek).

Notation

• path p = [e1, e2, . . . , ek], sequence of edges withtarget(ei) = source(ei+1) for

1≤ i < k, p is a path fromsource(e1) to target(ek).

• for every nodev, there is the empty path [] from v to itself.

Notation

• path p = [e1, e2, . . . , ek], sequence of edges withtarget(ei) = source(ei+1) for

1≤ i < k, p is a path fromsource(e1) to target(ek).

• for every nodev, there is the empty path [] from v to itself.

• cardinality of a path = number of edges also called length

Notation

• path p = [e1, e2, . . . , ek], sequence of edges withtarget(ei) = source(ei+1) for

1≤ i < k, p is a path fromsource(e1) to target(ek).

• for every nodev, there is the empty path [] from v to itself.

• cardinality of a path = number of edges also called length

• givenc : E → IR, a cost (or length) function on the edges

– cost of a path is the sum of the cost of its edges, i.e.,c(p) =∑1≤i≤k c(ei)

– empty path has cost zero

Notation

• path p = [e1, e2, . . . , ek], sequence of edges withtarget(ei) = source(ei+1) for

1≤ i < k, p is a path fromsource(e1) to target(ek).

• for every nodev, there is the empty path [] from v to itself.

• cardinality of a path = number of edges also called length

• givenc : E → IR, a cost (or length) function on the edges

– cost of a path is the sum of the cost of its edges, i.e.,c(p) =∑1≤i≤k c(ei)

– empty path has cost zero

• µ(v,w) = inf {c(p) ; p is a path fromv tow} ∈ IR ∪ {−∞,+∞}.
– +∞, if there is no path fromv tow

– −∞, if there are paths of arbitrarily small cost (min does not exist).

– ∈ IR, otherwise

Lemma 2 (a) µ(v,w) = +∞ iff w is not reachable fromv.

(b) µ(v,w) = −∞ iff there is a path fromv tow containing a negative cycle.

(c) −∞ < µ(v,w) < +∞ otherwise (w is reachable fromv and there is no path fromv to

w passing through a negative cycle). In this case,µ(v,w) is the length of a simple

path fromv tow.

Proof:

Lemma 3 (a) µ(v,w) = +∞ iff w is not reachable fromv.

(b) µ(v,w) = −∞ iff there is a path fromv tow containing a negative cycle.

(c) −∞ < µ(v,w) < +∞ otherwise (w is reachable fromv and there is no path fromv to

w passing through a negative cycle). In this case,µ(v,w) is the length of a simple

path fromv tow.

Proof: Part (a) is true by definition.

Lemma 4 (a) µ(v,w) = +∞ iff w is not reachable fromv.

(b) µ(v,w) = −∞ iff there is a path fromv tow containing a negative cycle.

(c) −∞ < µ(v,w) < +∞ otherwise (w is reachable fromv and there is no path fromv to

w passing through a negative cycle). In this case,µ(v,w) is the length of a simple

path fromv tow.

Proof: Part (a) is true by definition.

(b,←): going around the cycle one more time yields a path of smaller cost. Thus

µ(v,w) = −∞.

Lemma 5 (a) µ(v,w) = +∞ iff w is not reachable fromv.

(b) µ(v,w) = −∞ iff there is a path fromv tow containing a negative cycle.

(c) −∞ < µ(v,w) < +∞ otherwise (w is reachable fromv and there is no path fromv to

w passing through a negative cycle). In this case,µ(v,w) is the length of a simple

path fromv tow.

Proof: Part (a) is true by definition.

(b,←): going around the cycle one more time yields a path of smaller cost. Thus

µ(v,w) = −∞.

(c,←): Consider any pathp from v tow. As long asp contains a cycle, remove it.

Sincep contains no negative cycle, the cost cannot go up. We obtain a simple path

whose cost is at most the cost ofp. Thus

µ(v,w) = inf {c(p) ; p is a simple path fromv tow} .

The number of simple paths is finite and henceµ(v,w) = c(p) for some simple path

p.

Lemma 6 (a) µ(v,w) = +∞ iff w is not reachable fromv.

(b) µ(v,w) = −∞ iff there is a path fromv tow containing a negative cycle.

(c) −∞ < µ(v,w) < +∞ otherwise (w is reachable fromv and there is no path fromv to

w passing through a negative cycle). In this case,µ(v,w) is the length of a simple

path fromv tow.

Proof: Part (a) is true by definition.

(b,←): going around the cycle one more time yields a path of smaller cost. Thus

µ(v,w) = −∞.

(c,←): Consider any pathp from v tow. As long asp contains a cycle, remove it.

Sincep contains no negative cycle, the cost cannot go up. We obtain a simple path

whose cost is at most the cost ofp. Thus

µ(v,w) = inf {c(p) ; p is a simple path fromv tow} .

The number of simple paths is finite and henceµ(v,w) = c(p) for some simple path

p.

(b,→) and (c,→) since (a), (b), and (c) are exhaustive.

From now on: single source problem with sources

µ(v) = µ(s, v), distance froms to v

Arithmetic and order onIR ∪ {−∞,+∞}: −∞ < x < +∞,+∞+ x = +∞, and

−∞+ x = −∞ for all x ∈ IR.

Lemma 8 (Characterization ofµ) µ satisfies the following equations:

µ(s) = min(0,min {µ(u)+ c(e) ; e = (u, s) ∈ E })
µ(v) = min {µ(u)+ c(e) ; e = (u, v) ∈ E } for v 6= s

From now on: single source problem with sources

µ(v) = µ(s, v), distance froms to v

Arithmetic and order onIR ∪ {−∞,+∞}: −∞ < x < +∞,+∞+ x = +∞, and

−∞+ x = −∞ for all x ∈ IR.

Lemma 9 (Characterization ofµ) µ satisfies the following equations:

µ(s) = min(0,min {µ(u)+ c(e) ; e = (u, s) ∈ E })
µ(v) = min {µ(u)+ c(e) ; e = (u, v) ∈ E } for v 6= s

Proof: We only consider the casev 6= s and leave the casev = s to the reader. Any

path p from s to v consists of a path froms to some nodeu plus an edge fromu to v.

Thus

µ(v) = inf {c(p) ; p is a path froms to v}
= min

u
inf
{

c(p′)+ c(e) ; p′ is a path froms to u ande = (u, v) ∈ E
}

= min {µ(u)+ c(e) ; e = (u, v) ∈ E } .

Lemma 10 (sufficient conditions for a function being equal toµ)

If d is a function fromV to IR ∪ {−∞,+∞} with

• d(v) ≥ µ(v) for all v ∈ V ,

• d(s) ≤ 0, and

• d(v) ≤ d(u)+ c(u, v) for all e = (u, v) ∈ E

thend(v) = µ(v) for all v ∈ V .

Lemma 10 (sufficient conditions for a function being equal toµ)

If d is a function fromV to IR ∪ {−∞,+∞} with

• d(v) ≥ µ(v) for all v ∈ V ,

• d(s) ≤ 0, and

• d(v) ≤ d(u)+ c(u, v) for all e = (u, v) ∈ E

thend(v) = µ(v) for all v ∈ V .

Proof: Assume otherwise and letv be such thatd(v) > µ(v). Thenµ(v) < +∞.

We distinguish two cases:µ(v) > −∞ and= −∞.

Lemma 10 (sufficient conditions for a function being equal toµ)

If d is a function fromV to IR ∪ {−∞,+∞} with

• d(v) ≥ µ(v) for all v ∈ V ,

• d(s) ≤ 0, and

• d(v) ≤ d(u)+ c(u, v) for all e = (u, v) ∈ E

thend(v) = µ(v) for all v ∈ V .

Proof: Assume otherwise and letv be such thatd(v) > µ(v). Thenµ(v) < +∞.

We distinguish two cases:µ(v) > −∞ and= −∞.

If µ(v) > −∞, let [s = v0, v1, . . . , vk = v] be a shortest path froms to v. We have

µ(s) = 0= d(s), µ(vi) = µ(vi−1)+ c(vi−1, vi) for i > 0, andµ(v) < d(v). Thus,

there is a leasti > 0 withµ(vi) < d(vi) and hence

d(vi) > µ(vi) = µ(vi−1)+ c(vi , vi−1) = d(vi−1)+ c(vi , vi−1),

a contradiction.

If µ(v) = −∞, let [s = v0, v1, . . . , vi , . . . , v j , . . . , vk = v] be a path froms to v

containing a negative cycle. Such a path exists by Lemma 6. Assume that the

sub-path fromvi to v j is a negative cycle. Ifd(v) > µ(v) thend(v) > −∞ and

henced(vl) > −∞ for all l, 0≤ l ≤ k.

If µ(v) = −∞, let [s = v0, v1, . . . , vi , . . . , v j , . . . , vk = v] be a path froms to v

containing a negative cycle. Such a path exists by Lemma 6. Assume that the

sub-path fromvi to v j is a negative cycle. Ifd(v) > µ(v) thend(v) > −∞ and

henced(vl) > −∞ for all l, 0≤ l ≤ k.

Thus,

d(vi) = d(v j) sincevi = v j

≤ d(v j−1)+ c(v j−1, v j)

≤ d(v j−2)+ c(v j−2, v j−1)+ c(v j−1, v j)

...

≤ d(vi)+
∑ j−1

l=i c(vl, vl+1),

and hence
∑ j−1

l=i c(vl, vl+1) ≥ 0, a contradiction to the fact that the sub-path fromvi

to v j is a negative cycle.

Call an edgee = (u, v) redif d(u)+ c(e) < d(v) and call it black otherwise.

Argument above shows that negative cycles contain at least one red edge.

Generic Shortest Path Algorithm

Recall: If d satisfies (1)d(v) ≥ µ(v) for all v ∈ V , (2) d(s) ≤ 0, and (3)

d(v) ≤ d(u)+ c(u, v) for all e = (u, v) ∈ E , thend(v) = µ(v) for all v ∈ V .

The generic algorithm maintains a functiond satisfying (1) and (2) and aims at

establishing (3). We calld(v) thetentative distance labelof v.

Generic Shortest Path Algorithm

Recall: If d satisfies (1)d(v) ≥ µ(v) for all v ∈ V , (2) d(s) ≤ 0, and (3)

d(v) ≤ d(u)+ c(u, v) for all e = (u, v) ∈ E , thend(v) = µ(v) for all v ∈ V .

The generic algorithm maintains a functiond satisfying (1) and (2) and aims at

establishing (3). We calld(v) thetentative distance labelof v.

d(s) = 0; d(v) = ∞ for v 6= s;

while there is an edgee = (u, v) ∈ E with d(v) > d(u)+ c(e) e is red

{ // relaxe (view e as a rubber band which wants to keepd(v) below or atd(u)+ c(e).

d(v) = d(u)+ c(e); relax it to make it black
}

Generic Shortest Path Algorithm

Recall: If d satisfies (1)d(v) ≥ µ(v) for all v ∈ V , (2) d(s) ≤ 0, and (3)

d(v) ≤ d(u)+ c(u, v) for all e = (u, v) ∈ E , thend(v) = µ(v) for all v ∈ V .

The generic algorithm maintains a functiond satisfying (1) and (2) and aims at

establishing (3). We calld(v) thetentative distance labelof v.

d(s) = 0; d(v) = ∞ for v 6= s;

while there is an edgee = (u, v) ∈ E with d(v) > d(u)+ c(e) e is red

{ // relaxe (view e as a rubber band which wants to keepd(v) below or atd(u)+ c(e).

d(v) = d(u)+ c(e); relax it to make it black
}

(1) and (2) are invariants of the algorithm:

d(s) never increases and henced(s) ≤ 0 always and

If d(v) < +∞, d(v) is the length of some path froms to v and henced(v) ≥ µ(v)
always.

Generic Shortest Path Algorithm

Recall: If d satisfies (1)d(v) ≥ µ(v) for all v ∈ V , (2) d(s) ≤ 0, and (3)

d(v) ≤ d(u)+ c(u, v) for all e = (u, v) ∈ E , thend(v) = µ(v) for all v ∈ V .

The generic algorithm maintains a functiond satisfying (1) and (2) and aims at

establishing (3). We calld(v) thetentative distance labelof v.

d(s) = 0; d(v) = ∞ for v 6= s;

while there is an edgee = (u, v) ∈ E with d(v) > d(u)+ c(e) e is red

{ // relaxe (view e as a rubber band which wants to keepd(v) below or atd(u)+ c(e).

d(v) = d(u)+ c(e); relax it to make it black
}

(1) and (2) are invariants of the algorithm:

d(s) never increases and henced(s) ≤ 0 always and

If d(v) < +∞, d(v) is the length of some path froms to v and henced(v) ≥ µ(v)
always.

When the algorithm terminates, we also have (3). GREAT

Problems:
1. GA does not determinate in the presence of negative cycles

2. GA may have exponential running time even without negative cycles

Problems:
1. GA does not determinate in the presence of negative cycles

2. GA may have exponential running time even without negative cycles

Observation (addresses second item): Whend(v) is decreased, the edges out ofv

may turn red.

Idea: Maintain a setU with U ⊇ {u ; there is arededge out ofu} and rewrite the

generic algorithm as:

d(s) = 0; d(v) = ∞ for v 6= s; U = {s};
while U 6= ∅
{ selectu ∈ U and remove it;

forall edgese = (u, v)
{ if d(u)+ c(e) < d(v)

{ addv to U ;

d(v) = d(u)+ c(e);
}
}
}

Idea: Maintain a setU with U ⊇ {u ; ∃(u, v) ∈ E with d(u)+ c(u, v) < d(v)} and

rewrite the generic algorithm as:

d(s) = 0; d(v) = ∞ for v 6= s; U = {s};
while U 6= ∅
{ selectu ∈ U and remove it;

forall edgese = (u, v)
{ if d(u)+ c(e) < d(v)

{ addv to U ;

d(v) = d(u)+ c(e);
}
}
}

Question: Which u do we select fromU?

Idea: Maintain a setU with U ⊇ {u ; ∃(u, v) ∈ E with d(u)+ c(u, v) < d(v)} and

rewrite the generic algorithm as:

d(s) = 0; d(v) = ∞ for v 6= s; U = {s};
while U 6= ∅
{ selectu ∈ U and remove it;

forall edgese = (u, v)
{ if d(u)+ c(e) < d(v)

{ addv to U ;

d(v) = d(u)+ c(e);
}
}
}

Question: Which u do we select fromU?

Answer: • There is always an optimal choice

• In some situations, the optimal choice can be made efficiently.

Let V f = {v ∈ V ; −∞ < µ(v) <∞} nodes inV f have shortest paths

Lemma 12 (Existence of Optimal Choice)

(a) When a nodeu is removed fromU with d(u) = µ(u), it is never added toU

again.

Let V f = {v ∈ V ; −∞ < µ(v) <∞} nodes inV f have shortest paths

Lemma 13 (Existence of Optimal Choice)

(a) When a nodeu is removed fromU with d(u) = µ(u), it is never added toU

again. (it is an optimal choice)

Let V f = {v ∈ V ; −∞ < µ(v) <∞} nodes inV f have shortest paths

Lemma 14 (Existence of Optimal Choice)

(a) When a nodeu is removed fromU with d(u) = µ(u), it is never added toU

again. (it is an optimal choice)

(b) As long asd(v) > µ(v) for somev ∈ V f : for anyv ∈ V f with d(v) > µ(v)

there is au ∈ U with d(u) = µ(u) and lying on a shortest path froms to v.

Let V f = {v ∈ V ; −∞ < µ(v) <∞} nodes inV f have shortest paths

Lemma 15 (Existence of Optimal Choice)

(a) When a nodeu is removed fromU with d(u) = µ(u), it is never added toU

again. (it is an optimal choice)

(b) As long asd(v) > µ(v) for somev ∈ V f : for anyv ∈ V f with d(v) > µ(v)

there is au ∈ U with d(u) = µ(u) and lying on a shortest path froms to v.

Proof: (a) We haved(u) ≥ µ(u) always. Also, whenu is added toU , its tentative

distance valued(u) has just been decreased. Thus, if a nodeu is removed fromU

with d(u) = µ(u), it will never be added toU at a later time.

(b) Let [s = v0, v1, . . . , vk = v] be a shortest path froms to v. Then

µ(s) = 0= d(s) andd(vk) > µ(vk). Let i be minimal such thatd(vi) > µ(vi).

Theni > 0, d(vi−1) = µ(vi−1) and

d(vi) > µ(vi) = µ(vi−1)+ c(vi−1, vi) = d(vi−1)+ c(vi−1, vi).

Thus,vi−1 ∈ U .

Lemma 16 (Algorithmic optimal choice)

non-negative costs: If c(e) ≥ 0 for all e ∈ E thend(u) = µ(u) for the node

u ∈ U with minimald(u).

acyclic graphs: If G is acyclic andu0, u1, . . . , un−1 is a topological order of the

nodes ofG, i.e., if (ui , u j) ∈ E theni < j , thend(u) = µ(u) for the node

u = ui ∈ U with i minimal.

Lemma 16 (Algorithmic optimal choice)

non-negative costs: If c(e) ≥ 0 for all e ∈ E thend(u) = µ(u) for the node

u ∈ U with minimald(u).

acyclic graphs: If G is acyclic andu0, u1, . . . , un−1 is a topological order of the

nodes ofG, i.e., if (ui , u j) ∈ E theni < j , thend(u) = µ(u) for the node

u = ui ∈ U with i minimal.

Proof: Assume otherwise, i.e.,d(u) > µ(u) for the nodeu specified. By the

preceding lemma there is a nodez ∈ U lying on a shortest path froms to u with

d(z) = µ(z). We now distinguish cases.

In the case of non-negative edge costs, we haveµ(z) ≤ µ(u). Thus,d(z) < d(u),

contradicting the choice ofu.

In the case of acyclic graphs, we havez = u j for somej < i , contradicting the

choice ofu.

Lemma 16 (Algorithmic optimal choice)

non-negative costs: If c(e) ≥ 0 for all e ∈ E thend(u) = µ(u) for the node

u ∈ U with minimald(u).

acyclic graphs: If G is acyclic andu0, u1, . . . , un−1 is a topological order of the

nodes ofG, i.e., if (ui , u j) ∈ E theni < j , thend(u) = µ(u) for the node

u = ui ∈ U with i minimal.

Proof: Assume otherwise, i.e.,d(u) > µ(u) for the nodeu specified. By the

preceding lemma there is a nodez ∈ U lying on a shortest path froms to u with

d(z) = µ(z). We now distinguish cases.

In the case of non-negative edge costs, we haveµ(z) ≤ µ(u). Thus,d(z) < d(u),

contradicting the choice ofu.

In the case of acyclic graphs, we havez = u j for somej < i , contradicting the

choice ofu.

Lemma is basis for Dijkstra’s algorithm for graphs with non-negative edge costs and

for a linear time algorithm for acyclic graphs.

Topologically Sorting Acyclic Graphs (Review)

DFS computes a topological order in linear timeO(n + m).

Topologically Sorting Acyclic Graphs (Review)

DFS computes a topological order in linear timeO(n + m).

• G is acyclic iff DFS produces no back edges

• tree, forward and cross edges go from larger to smaller completion number

• back edges go from smaller to larger completion number

• (negative of) completion numbers are a topological order

Topologically Sorting Acyclic Graphs (Review)

DFS computes a topological order in linear timeO(n + m).

• G is acyclic iff DFS produces no back edges

• tree, forward and cross edges go from larger to smaller completion number

• back edges go from smaller to larger completion number

• (negative of) completion numbers are a topological order

calls to DFS are either nested or disjoint, consider callsDFS(v) andDFS(w).

[v. . .]v . . . [w. . .]w or [w. . .]w . . . [v. . .]v or [w. . . [v. . .]v . . .]w or [v. . . [w. . .]w . . .]v

Topologically Sorting Acyclic Graphs (Review)

DFS computes a topological order in linear timeO(n + m).

• G is acyclic iff DFS produces no back edges

• tree, forward and cross edges go from larger to smaller completion number

• back edges go from smaller to larger completion number

• (negative of) completion numbers are a topological order

calls to DFS are either nested or disjoint, consider callsDFS(v) andDFS(w).

[v. . .]v . . . [w. . .]w or [w. . .]w . . . [v. . .]v or [w. . . [v. . .]v . . .]w or [v. . . [w. . .]w . . .]v

• If (v,w) ∈ E , DFS(w) must start beforeDFS(v) ends; exludes first poss.

• If (v,w) ∈ E , there is no path fromw to v and henceDFS(v) cannot be nested

in DFS(w); excludes third possibility.

• second and the fourth poss. remain. Thuscompnum[w] < compnum[v].

Acyclic Graphs

Let G be an acyclic graph,v1, v2, . . . , vn be an ordering of the nodes such that

(vi , v j) ∈ E impliesi ≤ j .

The Algorithm:

Compute topological ordering;

Let s = vk ; (nodesv j with j < k are not reachable froms)

forall (i , k ≤ i ≤ n, in increasing order)

{ if (d(vi) <∞)

{ propagated(vi) over all edges out ofvi ; }
}

Acyclic Graphs

Let G be an acyclic graph,v1, v2, . . . , vn be an ordering of the nodes such that

(vi , v j) ∈ E impliesi ≤ j .

The Algorithm:

Compute topological ordering; takes timeO(n + m)

Let s = vk ; (nodesv j with j < k are not reachable froms)

forall (i , k ≤ i ≤ n, in increasing order)

{ if (d(vi) <∞)

{ propagated(vi) over all edges out ofvi ; }
}

Acyclic Graphs

Let G be an acyclic graph,v1, v2, . . . , vn be an ordering of the nodes such that

(vi , v j) ∈ E impliesi ≤ j .

The Algorithm:

Compute topological ordering; takes timeO(n + m)

Let s = vk ; (nodesv j with j < k are not reachable froms)

forall (i , k ≤ i ≤ n, in increasing order)

{ if (d(vi) <∞)

{ propagated(vi) over all edges out ofvi ; takes timeO(outdeg(vi)) }
}

Acyclic Graphs

Let G be an acyclic graph,v1, v2, . . . , vn be an ordering of the nodes such that

(vi , v j) ∈ E impliesi ≤ j .

The Algorithm:

Compute topological ordering; takes timeO(n + m)

Let s = vk ; (nodesv j with j < k are not reachable froms)

forall (i , k ≤ i ≤ n, in increasing order)

{ if (d(vi) <∞)

{ propagated(vi) over all edges out ofvi ; takes timeO(outdeg(vi)) }
}

total time =O(n + m)+ O(n)+∑1≤i≤n outdeg(vi) = O(n + m)

Acyclic Graphs

Let G be an acyclic graph,v1, v2, . . . , vn be an ordering of the nodes such that

(vi , v j) ∈ E impliesi ≤ j .

The Algorithm:

Compute topological ordering; takes timeO(n + m)

Let s = vk ; (nodesv j with j < k are not reachable froms)

forall (i , k ≤ i ≤ n, in increasing order)

{ if (d(vi) <∞)

{ propagated(vi) over all edges out ofvi ; takes timeO(outdeg(vi)) }
}

total time =O(n + m)+ O(n)+∑1≤i≤n outdeg(vi) = O(n + m)

Theorem 2 Shortest paths in acyclic graphs can be computed in timeO(n + m).

An Implementation Issue

How can we represent+∞?

Some number types have a represention for+∞:

doubledoes andint does not.

Warning: Do not useMAXINT for +∞, sinceMAXINT+ 1 6= MAXINT.

An Implementation Issue

How can we represent+∞?

Some number types have a represention for+∞:

doubledoes andint does not.

Warning: Do not useMAXINT for +∞, sinceMAXINT+ 1 6= MAXINT.

Solution: (used in LEDA)

Maintain for each nodev, the edgepred[v] into v which definesd[v].

pred[v] is initialized tonil and updated wheneverd[v] is changed.

An Implementation Issue

How can we represent+∞?

Some number types have a represention for+∞:

doubledoes andint does not.

Warning: Do not useMAXINT for +∞, sinceMAXINT+ 1 6= MAXINT.

Solution: (used in LEDA)

Maintain for each nodev, the edgepred[v] into v which definesd[v].

pred[v] is initialized tonil and updated wheneverd[v] is changed.

we have theinvariant: d(v) = +∞ iff v 6= s andpred(v) = nil

template <class NT>

void ACYCLIC_SHORTEST_PATH_T(const graph& G, node s, const edge_array

node_array<NT>& dist, node_array<edge>&

{ node_array<int> top_ord(G); node w; edge e;

TOPSORT(G,top_ord); // top_ord is now a topological ordering of G

array<node> v(1,G.number_of_nodes());

forall_nodes(w,G) v[top_ord[w]] = w; // top_ord[v[i]] == i fo

dist[s] = 0;

forall_nodes(w,G) pred[w] = nil;

for (int i = top_ord[s]; i <= G.number_of_nodes(); i++)

{ node u = v[i];

if (pred[u] == nil && u != s) continue; // dist[u] is plus inf

forall_out_edges(e,u)

{ node w = G.target(e);

if (pred[w] == nil || dist[u] + c[e] < dist[w])

{ pred[w] = e; dist[w] = dist[u] + c[e]; }

}

}

}

