Data Structures and Algorithms

Kurt Mehlhorn
Peter Sanders

Organization

Instructors: Kurt Mehlhorn and Peter Sanders

want to know more about KM and his group: today, 1:30, MPI, room 024.
Tutors: Guido Sclfer and Manual Bodirsky

Media Support: XXX

Classes: Monday and Wednesday at 11:00. Classes that fall on holidays ar:
moved to Fridays.

Additional Classes (Schmankerl) on Fridays, about once a month

Exercises
— handed out on Monday, to be handed in on the following Monday

— Ubungsgruppen meet on TODO

Language: English

The grade for the course is a combination of three grades:

— exercises

— midterm exam (will take place on Wednesday, December 16th, 11am)
— final exam (will take place on Friday, March 2nd, 9am)

— details on web-page
WEB-page: seeww.mpi-sb.mpg.de/“mehlhorn or sanders

Prerequisites:
— Einfuhrung in Algorithmen und Datenstrukturen

— Softwarepraktikum
Course Notes and Books: see web-page
LEDA and my books: CD-ROM

Lectures will be recorded.

www.mpi-sb.mpg.de/~mehlhorn

Challenges

challenging tasks related to the course
outside grading scheme, but champagne prizes

Make LEDA look badchallenge (organized by Guido)

— construct difficult instances or instance families for some of the LEDA
algorithms

— prize for the instance family with the largest asymptotic growth

Programming Challenge: dynamic transitive closure
— maintain a graph under edge insertions and deletions
— answer reachability queries: is there a path froto w?

— there is a trivial solution (query = graph search frojntry to do better

Master topics can be found on my WEB page

Contents

Shortest Paths, Priority Queues, Amortization
Network Flow and Bipartite Matchings
Schmankerl: Min Cost Flow

Generic Methods: Local Search, Simulated Annealing, linear programming
Integer linear programming

Hashing: Perfect Hashing, Universal Hashing,

Computational Geometry: Convex Hulls, Delaunay Triangulations and Vorol
diagrams, augmented search trees

Strings: Pattern Matching, Suffix Trees,

Recent Developments |

e New Degree Programs
— Angewandte Informatik (50% CS, 50% Business Administration)
— Information und Kommunikation (50% CS, 50% EE)
— Bioinformatik (50% CS, 50% Life Sciences)
— PhD program (English language) BachelerMaster— PhD

e New Scholarship Programs
— Graduiertenkolleg (DFG)
— Max-Planck-Research School (MPG)
— Marie-Curie Training Site (EU)

e Center for Bioinformatics established (funded by DFG)

Recent Developments Il

e Changesin AG1

— Hans-Peter Lenhof: chair for bioinformatics (Uni des Saarlargietefeld,
Uni Miinchern)

— Job Sibeyn: Professor at Umea (Sweden)
— Susanne Albers: offer for full professorship in Freiburg
— Stefan Schirra: joined Think-and-Solve (SB)

— many new faces

e Prizes
— Hannah Bast: Otto Hahn Medalille
— Petra Mutzel: SEL-Alcatel Prize
— Wolfgang Wahlster: Beckurts Prize
— Reinhard Wilhelm: ACM Fellow

The Shortest Path Problem

given a directed grap& = (V, E), a cost functiorc on the edges, compute
e the shortest path between two given nogdasdt (single source, single sink)
e the shortest paths from a given nagi® all other nodessingle source

e the shortest paths between any pair of nodes (all pairs problem)

The Shortest Path Problem

given a directed grap& = (V, E), a cost functiorc on the edges, compute

the shortest path between two given nogdasdt (single source, single sink)
the shortest paths from a given nagl® all other nodesgingle source

the shortest paths between any pair of nodes (all pairs problem)

source nods = fat blue node
yellow node has distanceoo from s
blue nodes have finite distance fr@an

square blue node has distaned from s.
There are paths of lengthl, 4, 9,...

green nodes have distaneeco from s

Prequisites and Further Reading

please recapitulate graphs, DFS and BFS, shortest paths and heaps
main source for lectures on shortest path&:p9]
additional sources: Tarjan’s bookgr89, Cormen-Leiserson-Rivest] R9(.

For the lectures on amortization, in additiora[85 Meh9q.

[CLR90] T.H. Cormen, C.E. Leiserson, and R.L. Rivdstroduction to Algorithms MIT
Press/McGraw-Hill Book Company, 1990.

[Meh98] K. Mehlhorn. Amortisierte Analyse. In Th. Ottmann, ediférinzipien des
AlgorithmenentwurfsSpektrum Lehrbuch, 1998.
www.mpi-sb.mpg.de/ " {}mehlhorn/ftp/Amortization.ps.

[IMN99] K. Mehlhorn and S. ldher.The LEDA Platform for Combinatorial and Geometric
Computing Cambridge University Press, 1999. 1018 pages.

[Tar83] R.E. TarjanData Structures and Network AlgorithmSIAM, 1983.

[Tar85] R.E. Tarjan. Amortized computational complexiBIAM Journal on Algebraic and
Discrete Methods6(2):306—318, 1985.

www.mpi-sb.mpg.de/~{}mehlhorn/ftp/Amortization.ps
http://www.mpi-sb.mpg.de/~{}mehlhorn/ftp/Amortization.ps

Notation

e pathp =[ey, e, ..., &, sequence of edges withrget(g) = sourceée 1) for
1 <1 <k, pis a path fronmsourcee,) to target(e).

Notation

e pathp =[ey, e, ..., &, sequence of edges withrget(g) = sourceée 1) for
1 <1 <k, pis a path fronmsourcee,) to target(e).

e for every nodev, there is the empty paf | from v to itself.

Notation

e pathp =[ey, e, ..., &, sequence of edges withrget(g) = sourceée 1) for
1 <1 <k, pis a path fronmsourcee,) to target(e).

e for every nodev, there is the empty paf | from v to itself.

e cardinality of a path = number of edges also called leng

Notation

pathp =[e;, e, ..., &], sequence of edges withrget(e) = sourcee 1) for
1 <1 <k, pis a path fronmsourcee,) to target(e).

for every nodev, there is the empty plaf | from v to itself.
cardinality of a path = number of edges also called len

givenc : E — IR, a cost (or length) function on the edges
— cost of a path is the sum of the cost of its edges,¢@@) = > ;. C(&)
— empty path has cost zero

Notation

pathp =[e;, e, ..., &], sequence of edges withrget(e) = sourcee 1) for

1 <1 <k, pis a path fronmsourcee,) to target(e).
for every nodev, there is the empty plaf | from v to itself.
cardinality of a path = number of edges

givenc : E — IR, a cost (or length) function on the edges

— cost of a path is the sum of the cost of its edges,¢@) =

— empty path has cost zero

also called len

> 1<i<k C(&)

w(v, w) =Inf{c(p); pisapathfromvtow} € IRU {—o0, +00}.

— 400, If there is no path from to w
— —o0, If there are paths of arbitrarily small cost
— € IR, otherwise

(min does not exi

Lemma 2 (a) u(v, w) = +o0 iff w is not reachable from.
(b) (v, w) = —oc iff there is a path from to w containing a negative cycle.

(c) —o0 < u(v, w) < +0o otherwise { is reachable from and there is no path from to

w passing through a negative cygldn this caseu (v, w) is the length of a simple
path fromv to w.

Proof:

Lemma 3 (a) u(v, w) = +oco iff wis not reachable from.
(b) (v, w) = —oc iff there is a path from to w containing a negative cycle.

(c) —o0 < u(v, w) < +0o otherwise { is reachable from and there is no path from to

w passing through a negative cygldn this caseu (v, w) is the length of a simple
path fromv to w.

Proof. Part (a) is true by definition.

Lemma4 (a) u(v, w) = +o0 iff w is not reachable from.
(b) (v, w) = —oc iff there is a path from to w containing a negative cycle.

(c) —o0 < u(v, w) < +0o otherwise { is reachable from and there is no path from to
w passing through a negative cygldn this caseu (v, w) is the length of a simple
path fromv to w.

Proof. Part (a) is true by definition.
(b,<-): going around the cycle one more time yields a path of smaller cost. Thus

u(v, w) = —oQ.

Lemma5 (a) u(v, w) = +oco iff wis not reachable from.
(b) (v, w) = —oc iff there is a path from to w containing a negative cycle.

(c) —o0 < u(v, w) < +0o otherwise { is reachable from and there is no path from to
w passing through a negative cygldn this caseu (v, w) is the length of a simple
path fromv to w.
Proof. Part (a) is true by definition.
(b,<-): going around the cycle one more time yields a path of smaller cost. Thus
u(v, w) = —oQ.
(c, «<-): Consider any patip from v to w. As long asp contains a cycle, remove lit.
Sincep contains no negative cycle, the cost cannot go up. We obtain a simple p:
whose cost is at most the costf Thus

w(v, w) = Inf{c(p); pis asimple path from tow} .

The number of simple paths is finite and hepge, w) = c(p) for some simple path
P.

Lemma 6 (a) u(v, w) = +oco iff wis not reachable from.
(b) (v, w) = —oc iff there is a path from to w containing a negative cycle.

(c) —o0 < u(v, w) < +0o otherwise { is reachable from and there is no path from to
w passing through a negative cygldn this caseu (v, w) is the length of a simple
path fromv to w.
Proof. Part (a) is true by definition.
(b,<-): going around the cycle one more time yields a path of smaller cost. Thus
u(v, w) = —oQ.
(c, «<-): Consider any patip from v to w. As long asp contains a cycle, remove lit.
Sincep contains no negative cycle, the cost cannot go up. We obtain a simple p:
whose cost is at most the costf Thus

w(v, w) = Inf{c(p); pis asimple path from tow} .

The number of simple paths is finite and hepge, w) = c(p) for some simple path

P.
(b,—) and (c~) since (a), (b), and (c) are exhaustive. i

From now on: single source problem with sousce

w(v) = u(s, v), distance frons to v

Arithmetic and order otR U { —o0, +00}: —00 < X < 400, +00 + X = 400, and
—o0+ X =—ocforall x € IR.

Lemma 8 (Characterization of 1) satisfies the following equations:

w(s) = min0, min{u(u) +c(e);e=(u,s) e E})
w) = min{u(u) +ce);e=(Uu,v) e E} forv#s

From now on: single source problem with sousce

w(v) = u(s, v), distance frons to v

Arithmetic and order otR U { —o0, +00}: —00 < X < 400, +00 + X = 400, and
—o0+ X =—ocforall x € IR.

Lemma 9 (Characterization of) u satisfies the following equations:

u(s) = min(0, min{u(u) +c(e); e=(u,s) € E})
w) = min{u(u) +ce);e=(Uu,v) e E} forv#s
Proof: We only consider the case# s and leave the case= s to the reader. Any

path p from s to v consists of a path frormto some node plus an edge from to v.
Thus

nw() = inf{c(p); pisa path fronsto v}
= muininf {c(p) +c(e); p'is a path froms to u ande = (u, v) € E}

= min{u(u) +c(e);e=(u,v) € E}.

Lemma 10 (sufficient conditions for a function being equal tou)
If d is a function fromV to IRU {—o0, +00} with

e d(v) > u(v) forall v eV,
e d(s) <0,and
e d(v) <d(u)+c(u,v)foralle=(u,v) € E

thend(v) = u(v) forall v € V.

Lemma 10 (sufficient conditions for a function being equal tou)
If d is a function fromV to IRU {—o0, +00} with

e d(v) > u(v) forall v eV,

e d(s) <0,and

e d(v) <d(u)+c(u,v)foralle=(u,v) € E
thend(v) = u(v) forall v € V.

Proof: Assume otherwise and letbe such thatl(v) > u(v). Thenu(v) < +o0.
We distinguish two casegi(v) > —oo and= —o0.

Lemma 10 (sufficient conditions for a function being equal tou)
If d is a function fromV to IRU {—o0, +00} with

e d(v) > u(v) forall v eV,

e d(s) <0,and

e d(v) <d(u)+c(u,v)foralle= (u,v) € E
thend(v) = u(v) forall v € V.

Proof: Assume otherwise and letbe such thatl(v) > u(v). Thenu(v) < +o0.
We distinguish two casegi(v) > —oo and= —oc.

If w(v) > —o0, let[s = vg, v1, ..., vk = v] be a shortest path fromto v. We have
w(s) =0=d(s), u(vi) = u(vi_1) + c(vj_1, vi) fori > 0, andu(v) < d(v). Thus,
there is a leagt > 0 with x(vi) < d(vj) and hence

d(vi) > w(vi) = n(vi—1) + c(vi, vi—1) = d(vi_1) + c(vi, vi_1),

a contradiction.

If w(v) =—o0,let[s=vwvg, v1,...,vi,...,vj,..., v = v] be apath fronstov
containing a negative cycle. Such a path exists by Lemma 6. Assume that the
sub-path fromy; to v; Is a negative cycle. Ifi(v) > w(v) thend(v) > —oo and
henced(v)) > —oo foralll, 0 < | < k.

If w(v) =—o0,let[s=vwvg, v1,...,vi,...,vj,..., v = v] be apath fronstov
containing a negative cycle. Such a path exists by Lemma 6. Assume that the
sub-path fromy; to v; Is a negative cycle. Ifi(v) > w(v) thend(v) > —oo and
henced(v)) > —oo foralll,0 < | < k.

Thus,

d(vi) d(vj) sincev; = Vj

I\

d(vj-1) + C(vj—-1, vj)

< d(vj_2) +c(vj_2, vj_1) + C(vj_1, Vj)

d(vi) + ngl c(vr, Vi4+1),

A

and henc{jﬂ;l c(v, vi+1) > 0, a contradiction to the fact that the sub-path fram
to v; is a negative cycle. 0

Call an edges = (u, v) redif d(u) + c(e) < d(v) and call it black otherwise.

Argument above shows that negative cycles contain at least one red edge.

Generic Shortest Path Algorithm
Recall: If d satisfies (1d(v) > u(v) forallv e V, (2)d(s) < 0, and (3)
d(v) <d(u) + c(u, v) foralle= (u, v) € E, thend(v) = u(v) forallv e V.

The generic algorithm maintains a functidrsatisfying (1) and (2) and aims at
establishing (3). We call (v) thetentative distance labefF v.

Generic Shortest Path Algorithm

Recall: If d satisfies (1d(v) > u(v) forallv e V, (2)d(s) < 0, and (3)
d(v) <d(u) + c(u, v) foralle= (u, v) € E, thend(v) = u(v) forallv e V.

The generic algorithm maintains a functidrsatisfying (1) and (2) and aims at
establishing (3). We call (v) thetentative distance labefF v.

d(s) =0;d(v) = oo forv #5;

while thereis an edge = (u, v) € E withd(v) > d(u) + c(e) elis red
{ I/ relaxe (view e as a rubber band which wants to kes) below or atd(u) + c(e).
d(v) = d(u) + c(e); relax it to make it black

}

Generic Shortest Path Algorithm

Recall: If d satisfies (1d(v) > u(v) forallv e V, (2)d(s) < 0, and (3)
d(v) <d(u) + c(u, v) foralle= (u, v) € E, thend(v) = u(v) forallv e V.

The generic algorithm maintains a functidrsatisfying (1) and (2) and aims at
establishing (3). We call (v) thetentative distance labefF v.

d(s) =0;d(v) = oo forv #5;

while thereis an edge = (u, v) € E withd(v) > d(u) + c(e) elis red
{ I/ relaxe (view e as a rubber band which wants to kes) below or atd(u) + c(e).

d(v) = d(u) + c(e); relax it to make it black
f

(1) and (2) are invariants of the algorithm:

d(s) never increases and hermies) < 0 always and

If d(v) < +o00, d(v) is the length of some path froeito v and hencal(v) > u(v)
always.

Generic Shortest Path Algorithm

Recall: If d satisfies (1d(v) > u(v) forallv e V, (2)d(s) < 0, and (3)
d(v) <d(u) + c(u, v) foralle= (u, v) € E, thend(v) = u(v) forallv e V.

The generic algorithm maintains a functidrsatisfying (1) and (2) and aims at
establishing (3). We call (v) thetentative distance labefF v.

d(s) =0;d(v) = oo forv #5;

while thereis an edge = (u, v) € E withd(v) > d(u) + c(e) elis red
{ I/ relaxe (view e as a rubber band which wants to kes) below or atd(u) + c(e).

d(v) = d(u) + c(e); relax it to make it black
f

(1) and (2) are invariants of the algorithm:

d(s) never increases and hermies) < 0 always and

If d(v) < +o00, d(v) is the length of some path froeito v and hencal(v) > u(v)
always.

When the algorithm terminates, we also have (3). GREAT

Problems: . . .
1. GA does not determinate in the presence of negative cycles

2. GA may have exponential running time even without negative cyc

Problems: . . .
1. GA does not determinate in the presence of negative cycles

2. GA may have exponential running time even without negative cyc

Observation (addresses second item): Whe) Is decreased, the edges outvof
may turn red.

ldea: Maintain a setJ with U D {u ; there is aededge out olu} and rewrite the
generic algorithm as:

d(s) =0;d(v) = oo forv #s;U = {s};
while U #£ ¢
{ selectu € U and remove it;
forall edges = (u, v)
{ if d(u)+c(e) <d()
{ addv to U;

\ d(v) =d(u) + c(e);

}
}

ldea: Maintain a setJ with U 2 {u; 3(u, v) € E with d(u) + c(u, v) < d(v)} and
rewrite the generic algorithm as:

d(s) =0;d(v) = oo forv #£s;U = {s};
while U #£ ¢
{ selectu € U and remove it;
forall edgese = (u, v)
{ if d(u)+c(e) < d(v)
{ addv toU;
\ d(v) =d(u) + c(e);

b
}

Question: Which u do we select frontJ ?

ldea: Maintain a setJ with U 2 {u; 3(u, v) € E with d(u) + c(u, v) < d(v)} and
rewrite the generic algorithm as:

d(s) =0;d(v) = oo forv #£s;U = {s};
while U #£ ¢
{ selectu € U and remove it;
forall edgese = (u, v)
{ if d(u)+c(e) < d(v)
{ addv toU;
\ d(v) =d(u) + c(e);

b
}

Question: Which u do we select frontJ ?

Answer. e There is always an optimal choice
¢ In some situations, the optimal choice can be made efficiently.

LetVi ={veV;, —oo < u(v) < oo} nodes inV; have shortest path

Lemma 12 (Existence of Optimal Choice)

(a) When a nodel is removed fronJ with d(u) = w(u), it is never added t&J
again.

LetVi ={veV;, —oo < u(v) < oo} nodes inV; have shortest path

Lemma 13 (Existence of Optimal Choice)

(a) When a node! is removed front with d(u) = u(u), itis never added ttJ
again. (it is an optimal choice)

LetVi ={veV;, —oo < u(v) < oo} nodes inV; have shortest path

Lemma 14 (Existence of Optimal Choice)

(a) When a node! is removed front with d(u) = u(u), itis never added ttJ
again. (it is an optimal choice)
(b) Aslong agd(v) > u(v) for somev € V;: foranyv € V¢ withd(v) > u(v)
there is au € U withd(u) = x(u) and lying on a shortest path froeto v.

LetVi ={veV;, —oo < u(v) < oo} nodes inV; have shortest path

Lemma 15 (Existence of Optimal Choice)

(a) When a nodel is removed fronJ with d(u) = w(u), it is never added t&J
again. (it is an optimal choice)

(b) Aslong agd(v) > u(v) for somev € V¢: foranyv € V¢ withd(v) > u(v)
there is au € U withd(u) = x(u) and lying on a shortest path froeto v.

Proof: (a) We havad(u) > u(u) always. Also, whem is added tdJ, its tentative
distance valuel(u) has just been decreased. Thus, if a nogeremoved fronu
with d(u) = w(u), it will never be added ttJ at a later time.

(b) Let[S = vg, v1, ..., vx = v] be a shortest path fromto v. Then

w(s) = 0=d(s) andd(vk) > u(vk). Leti be minimal such thad(vi) > w(vi).
Theni > 0,d(vj_-1) = n(vi_1) and

d(vi) > p(vi) = pn(vi—1) + c(vi—1, vi) = d(vi—1) + c(vi_1, vi).

Thus,vi_1 € U. i

Lemma 16 (Algorithmic optimal choice)

non-negative costs: If c(e) > Ofor all e € E thend(u) = w(u) for the node
u e U with minimald(u).

acyclic graphs: If Gis acyclic andug, uq, ..., Uh_1 IS a topological order of the
nodes ofG, I.e., Iif (uj, uj) € E theni < |, thend(u) = w(u) for the node
u=u; € U withi minimal.

Lemma 16 (Algorithmic optimal choice)

non-negative costs: If c(e) > Ofor all e € E thend(u) = w(u) for the node
u e U with minimald(u).

acyclic graphs: If Gis acyclic andug, uq, ..., Uh_1 IS a topological order of the
nodes ofG, I.e., Iif (uj, uj) € E theni < |, thend(u) = w(u) for the node
u=u; € U withi minimal.

Proof: Assume otherwise, i.ed(u) > u(u) for the nodeu specified. By the
preceding lemma there is a node U lying on a shortest path fromto u with
d(2) = nu(z). We now distinguish cases.

In the case of non-negative edge costs, we haz < u(u). Thus,d(z) < d(u),
contradicting the choice af.

In the case of acyclic graphs, we have- u; for some| < I, contradicting the
choice ofu. [

Lemma 16 (Algorithmic optimal choice)

non-negative costs: If c(e) > Ofor all e € E thend(u) = w(u) for the node
u e U with minimald(u).

acyclic graphs: If Gis acyclic andug, uq, ..., Uh_1 IS a topological order of the
nodes ofG, I.e., Iif (uj, uj) € E theni < |, thend(u) = w(u) for the node
u=u; € U withi minimal.

Proof: Assume otherwise, i.ed(u) > u(u) for the nodeu specified. By the
preceding lemma there is a node U lying on a shortest path fromto u with
d(2) = nu(z). We now distinguish cases.

In the case of non-negative edge costs, we haz < u(u). Thus,d(z) < d(u),
contradicting the choice af.

In the case of acyclic graphs, we have- u; for some| < I, contradicting the
choice ofu. [

Lemma is basis for Dijkstra’s algorithm for graphs with non-negative edge costs
for a linear time algorithm for acyclic graphs.

Topologically Sorting Acyclic Graphs (Review)

DFS computes a topological order in linear ti@én + m).

Topologically Sorting Acyclic Graphs (Review)
DFS computes a topological order in linear ti@én + m).
e G is acyclic iff DFS produces no back edges
e tree, forward and cross edges go from larger to smaller completion number

e back edges go from smaller to larger completion number

¢ (negative of) completion numbers are a topological order

Topologically Sorting Acyclic Graphs (Review)

DFS computes a topological order in linear ti@én + m).
e G is acyclic iff DFS produces no back edges
e tree, forward and cross edges go from larger to smaller completion number
e back edges go from smaller to larger completion number

¢ (negative of) completion numbers are a topological order

calls to DFS are either nested or disjoint, consider daHS(v) andDFS(w).

oo Lo 1w O Lo Twe e Loe o100 Lo oo To oo 1w OF Loe e Lo 2T 1o

Topologically Sorting Acyclic Graphs (Review)

DFS computes a topological order in linear ti@én + m).
e G is acyclic iff DFS produces no back edges
e tree, forward and cross edges go from larger to smaller completion number
e back edges go from smaller to larger completion number

¢ (negative of) completion numbers are a topological order

calls to DFS are either nested or disjoint, consider daHS(v) andDFS(w).
[o- - 1o Jw- - JwOr [we-dw. - [o---JvOor[w. o [v-- 1o JwOr [ve s Jw - Jw -+ 1o
o If (v, w) € E, DFS(w) must start befor®FS(v) ends; exludes first poss.

o If (v, w) € E, there is no path fromw to v and henc®FS(v) cannot be nested
INn DFS(w); excludes third possibility.

e second and the fourth poss. remain. Thampnurfw] < compnunfw].

Acyclic Graphs

Let G be an acyclic graphyi, vo, ... , vy be an ordering of the nodes such that
(vi, vj) € Eimpliesi < J.
The Algorithm:

Compute topological ordering;

Lets = vy; (nodesv; with | < k are not reachable fros)
forall (i,k <1 <n,inincreasing order)

{ if (d(vi) < 00)

{ propagatel(v;) over all edges out of;; }
|

Acyclic Graphs

Let G be an acyclic graphyi, vo, ... , vy be an ordering of the nodes such that
(vi, vj) € Eimpliesi < J.

The Algorithm:

Compute topological ordering; takes timeO(n + m)
Lets = vy; (nodesv; with | < k are not reachable fros)

forall (i,k <1 <n,inincreasing order)
{ if (d(vi) < 00)

{ propagatel(v;) over all edges out of;; }
|

Acyclic Graphs

Let G be an acyclic graphyi, vo, ... , vy be an ordering of the nodes such that
(vi, vj) € Eimpliesi < |.

The Algorithm:

Compute topological ordering; takes timeO(n + m)
Lets = vy; (nodesv; with | < k are not reachable fros)

forall (i,k <1 <n,inincreasing order)
{ if (d(vi) < 00)
{ propagatel(v;) over all edges out of;; takes timeO (outdedv;)) }

}

Acyclic Graphs

Let G be an acyclic graphyi, vo, ... , vy be an ordering of the nodes such that
(vi, vj) € Eimpliesi < |.

The Algorithm:

Compute topological ordering; takes timeO(n + m)
Lets = vy; (nodesv; with | < k are not reachable fros)

forall (i,k <1 <n,inincreasing order)
{ if (d(vi) < 00)
{ propagatel(v;) over all edges out of;; takes timeO (outdedv;)) }

}

total time =O(n+m) + O(n) + » ,_;_, outdedv;) = O(n + m)

Acyclic Graphs

Let G be an acyclic graphyi, vo, ... , vy be an ordering of the nodes such that
(vi, vj) € Eimpliesi < |.

The Algorithm:

Compute topological ordering; takes timeO(n + m)
Lets = vy; (nodesv; with | < k are not reachable fros)

forall (i,k <1 <n,inincreasing order)
{ if (d(vi) < 00)
{ propagatel(v;) over all edges out of;; takes timeO (outdedv;)) }

}

total time =O(n+m) + O(n) + » ,_;_, outdedv;) = O(n + m)
Theorem 2 Shortest paths in acyclic graphs can be computed in thae + m).

An Implementation Issue

How can we representoo?

Some number types have a representionHos:
doubledoes andnt does not.

Warning: Do not useMAXINT for +oo, SiInceMAXINT + 1 # MAXINT.

An Implementation Issue

How can we representoo?

Some number types have a representionHos:
doubledoes andnt does not.

Warning: Do not useMAXINT for +oo, SiInceMAXINT + 1 # MAXINT.

Solution: (used in LEDA)
Maintain for each node, the edgeredv] into v which defined[v].

predv] is initialized tonil and updated whenevdfv] is changed.

An Implementation Issue

How can we representoo?

Some number types have a representionHos:
doubledoes andnt does not.

Warning: Do not useMAXINT for +oo, SiInceMAXINT + 1 # MAXINT.

Solution: (used in LEDA)
Maintain for each node, the edgeredv] into v which defined[v].

predv] is initialized tonil and updated whenevdfv] is changed.

we have thenvariant d(v) = +oo Iff v # sandpred(v) = nil

template <class NT>
void ACYCLIC_SHORTEST_PATH_T(const graph& G, node s, const edge_arraj
node_array<NT>& dist, node_array<edge>&
{ node_array<int> top_ord(G); node w; edge e;
TOPSORT (G,top_ord); // top_ord is now a topological ordering of G

array<node> v(1,G.number_of_nodes());
forall_nodes(w,G) v[top_ord[w]] = w; // top_ord[v[i]] == 1 fc

dist[s] = 0;
forall_nodes(w,G) pred[w] = nil;

for (int i = top_ord[s]; i <= G.number_of_nodes(); i++)
{ node u = vl[il;
if (pred[u] == nil && u != s) continue; // dist[u] is plus inf
forall_out_edges(e,u)
{ node w = G.target(e);
if (pred[w] == nil || dist[u] + cle] < distl[w])
{ pred[w] = e; distl[w] = dist[u] + clel; }
}

