max planck institut
informatik

Algorithmsand Data Structures Summer 2008
K. Mehlhorn and R. Seidel We. Sept 3rd, morning
Exercise5

M otivation

We study an optimized version of quicksort (Section 5.4.®l@hlhorn/Sanders). It works in-
place, and is fast and space-efficient. Figure 1 shows thedpsede, and Figure 2 shows a
sample execution. The refinements are nontrivial and we teegidcuss them carefully.

Procedure gSort(a: Array of Element; ¢,r : N) /I Sort the subarrag[¢..r]
whiler — ¢+ 1> ng do /I Use divide-and-conquer.
j :=pickPivotPos(a, ,r) /I Pick a pivot element and
swap(al/],a[j]) /1 bring it to the first position.
p:=a[/] Il pis the pivot now.
= j.=r
repeat INaly i—] r]
whileafi] < pdoi++ /I Skip over elements
whilealj] > pdoj- - /I already in the correct subarray.
ifi <jthen /I If partitioning is not yet complete,
swap(ali],a[j]);i++; j- - Il (*) swap misplaced elements and go on.
until i > j /I Partitioning is complete.
ifi<({+r)/2then qSort(a,?,j); ¢:=i /I Recurse on
else gSort(a,i,r); r:=j /I smaller subproblem.
endwhile
insertionSort(af¢..r)) Il faster for small — ¢

Figure 1: Refined quicksort for arrays

The functiongsort operates on an arrag. The argumentg andr specify the subarray to be
sorted. The outermost call gsort(a,1,n). If the size of the subproblem is smaller than some
constaning, we resort to a simple algorithhsuch as insertion sort. The best choicerigde-
pends on many details of the machine and compiler and nedmsdetermined experimentally;
a value somewhere between 10 and 40 should work fine undeiegyval conditions.

1Some authors propose leaving small pieces unsorted angirogeap at the end using a single insertion sort.
Although this trick reduces the number of instructions exed, the solution shown is faster on modern machines
because the subarray to be sorted will already be in cache.

i -] 36810724509
36 81072459 201/86734509
2 6 81 0734 5 9 10/2/567 3 4[809
2 0 8167 34 5 09 01| |4 3/7 65809
2 01867345 9 3 4|5 6|7
i 56‘

Figure 2: Execution ofiSort (Fig. 1) on(3,6,8,1,0,7,2,4,5,9) using the first element as the
pivot andng = 1. Theleft-hand side illustrates the first partitioning step, showing elements
in bold that have just been swapped. Thght-hand side shows the result of the recursive
partitioning operations

The pivot element is chosen by a functipitkPivotPos that we shall not specify further. The
correctness does not depend on the choice of the pivot, e@fticiency does. Possible choices
are the first element; a random element; the median (“midldiEEment of the first, middle,
and last elements; and the median of a random sample cogsatk elements, wherd is
either a small constant, say three, or a number dependirtieqorbblem size, saj/r — ¢+ 1].
The first choice requires the least amount of work, but giitéle kontrol over the size of the
subproblems; the last choice requires a nontrivial butsiiblinear amount of work, but yields
balanced subproblems with high probability. After selegtihe pivotp, we swap it into the first
position of the subarray (= positidiof the full array).

The repeat—until loop partitions the subarray into two profgmaller) subarrays. It maintains
two indicesi and . Initially, i is at the left end of the subarray apds at the right endi scans
to the right, and scans to the left. After termination of the loop, we havej+1 ori=j+2,

all elements in the subarray/.. j] are no larger thap, all elements in the subarrayi..r| are no
smaller thanp, each subarray is a proper subarray, and=fj + 2, afi + 1] is equal top. So,
recursive callgiSort(a,/, j) andgsort(a,i,r) will complete the sort. We make these recursive
calls in a nonstandard fashion; this is discussed below.

1. Is it OK to change the scan loops into

whileali] < pdoi++
whilealj] > pdoj- -

Be aware that array elements are allowed to be equal.
2. Argue correctness of the partitioning step.

3. Is the change in the scan loops OK if array elements are kiowe distinct.

The refined quicksort handles recursion in a seemingly geramay. Recall that we need to
make the recursive caltgSort(a, /, j) andgSort(a,i,r). We may make these calls in either order.
We exploit this flexibility by making the call for the smalleubproblem first. The call for the

larger subproblem would then be the last thing dongSort. This situation is known atail

2

recursion in the programming-language literature. Tail recursion ba eliminated by setting
the parameterd (@ndr) to the right values and jumping to the first line of the praged This

is precisely what the while loop does. Why is this manipolatiseful? Because it guarantees
that the recursion stack stays logarithmically bounded;ptecise bound iflog(n/ng)]. This
follows from the fact that we make a single recursive calld@ubproblem which is at most half
the size.

1. What is the maximal depth of the recursion stack withoat“8maller subproblem first”
strategy? Give a worst-case example.

Have fun with the solution!

