

Summer 2008 Monday, Sept. 22nd

Algorithms and Data Structures K. Mehlhorn and R. Seidel Exercises 27 and 28

Motivation

We study variants of the maximum flow problem and applications of it. The book by Ahuja, Magnanti, and Orlin is a rich source for material about flows.

In class, the maximum flow problem was defined as follows. We are given a directed graph G = (V, E), a nonnegative capacity function $cap : E \to \mathbb{R}_{\geq 0}$, and two special vertices *s* and *t*. An (s,t)-flow is a function $f : E \to \mathbb{R}$ such that

$$0 \le f(e) \le cap(e)$$
 for all $e \in E$

and

$$excess(v) = 0$$
 for all $v \in V \setminus \{s, t\}$,

where $excess(v) = \text{flow into } v - \text{flow out of } v = \sum_{e=(u,v)} f(e) - \sum_{e=(v,w)} f(e)$. The value val(f) of the flow is the excess of t. A maximum flow is a flow of maximum value. An (s, t) cut is a set S of nodes with $s \in S$ and $t \notin S$. The constitution con(S) of the cut is defined as

An (s,t)-cut is a set *S* of nodes with $s \in S$ and $t \notin S$. The capacity cap(S) of the cut is defined as $cap(S) = \sum_{e=(u,v); u \in S, v \notin S} cap(e)$. Then $val(f) \leq cap(S)$ for any flow *f* and any (s,t)-cut *S*. If *f* is a maximum flow, then there is a cut *S* with val(f) = cap(S).

- 1. (integral flows) Show: If the capacities are integral, i.e., in \mathbb{N} , there is an integral maximum flow, i.e., $f(e) \in \mathbb{N}_0$ for all e. Hint: show that all augmentations increase the flow by an integral value.
- 2. (supplies and demands) Instead of the special vertices *s* and *t*, we have a function $b: V \to \mathbb{R}$ with $\sum_{v} b(e) = 0$. We call nodes *v* with b(v) > 0 supply nodes and nodes *v* with b(v) < 0, *demand nodes*. Instead of the flow conservation condition, we now have the modified flow conservation condition

$$excess(v) + b(v) = 0$$
 for all $v \in V$.

Show how to decide, whether a feasible flow exists? A flow is called feasible if it satisfies the capacity constraints and the modified flow conservation conditions. Hint: Add two new vertices *a* and *t*, an edge (s, v) of capacity b(v) for any supply node, ...

Formulate a cut-theorem. It should read something like the following. For a set *S* of nodes, let $b(S) := \sum_{v \in S} b(v)$ be the aggregated supply/demand of *S*. A feasible flow exists iff there is no set *S* of nodes with b(S) > cap(S).

3. (lower and upper bounds) We now have in addition a lower capacity function l : E → IR≥0. We require that the flow f satisfies l(e) ≤ f(e) ≤ u(e) for all e ∈ E. Show how to decide, whether a feasible flow exists. Hint: Use supplies and demands and modify upper and lower bounds.

Formulate a cut theorem.

Show: if all lower and upper bounds and all supply/demands are integral and there is a feasible flow, then there is an integral feasible flow.

4. (matrix rounding) We are given a $n \times m$ matrix M with nonnegative real entries. We want to round each entry to M_{ij} to either $\lceil M_{ij} \rceil$ or $\lfloor M_{ij} \rfloor$ such that all row and column sums are also rounded to an adjacent integer. For example,

1.3	2.4	could be rounded to	1	3	but not to	2	3
2.9	1.7		3	1		3	1

since in the latter array the sum of the first row 5. However, it should be either $\lceil 1.3 + 2.4 \rceil$ or $\lfloor 1.3 + 2.4 \rfloor$. For a given matrix, find such a rounding if it exists. Does such a rounding always exist?

Hint: Set up a flow problem with two special vertices *s* and *t*, one vertex for each row and one vertex for each column.

Have fun with the solutions.