



Algorithms and Data Structures K. Mehlhorn and R. Seidel Exercises 34 and 35 Summer 2008 Friday, Sept. 26th morning and afternoon

## Motivation

We fill in the missing details of the min-cut algorithm and develop our first geometric algorithms.

The discussion of the min-cut algorithm was based on Section 10.2 in the book by Motwani and Raghavan: Randomized Algorithms. The treatment of geometric algorithms follows the books by de Berg, van Kreveld, Overmars and Schwarzkopf: Computational Geometry, by Mehlhorn and Näher: LEDA and the article Four Results on Randomized Incremental Constructions by K. Clarkson, K. Mehlhorn and R. Seidel (CGTA, 1993, 185–212). You can download the article from www.mpi-sb.mpg.de/~mehlhorn/ftp/CMS-FourResults.ps. Only the first 14 pages are relevant for class.

1. In class, we analyzed a randomized algorithm for finding a minimum cut in a multi-graph. We left an efficient implementation to the exercises.

Let G = (V, E) be a multi-graph with *n* nodes and *m* edges; *m* might be much larger than  $n^2$ . We have a procedure *random* to our avail that on input *N*, an integer, produces a random integer in  $[1 \dots N]$ 

In each iteration of the min-cut algorithm, one chooses an edge uniformly at random and contracts it.

Design a representation for multi-graphs so that an iteration can be carried out in time O(n).

- 2. Consider the following variant of the min-cut algorithm.
  - (a) we reduce the number of nodes from *n* to  $\lceil 1 + \sqrt{n}/2 \rceil$  nodes by random contractions. Let *H* be the resulting graph.
  - (b) We make two copies  $H_1$  and  $H_2$  of H and reply the algorithm recursively to  $H_1$  and  $H_2$ .

In class, we obtained  $H_1$  and  $H_2$  by independent sequences of contractions. Now we obtain them by the same sequence.

(a) Derive a recurrence for the success probability.

- (b) Does the analysis of the success probability given in class stay valid?
- 3. Let *p*, *q*, and *r* be points in the plane. Proof that the determinant of the matrix below is twice the signed area of the triangle formed by the three points.

$$\left(\begin{array}{rrrr}1&1&1\\p_x&q_x&r_x\\p_y&q_y&r_y\end{array}\right)$$

4. The diameter of a point set is the width of a minimum width slab containing the point set. Design an algorithm for computing the diameter of a finite point set. What is the running time of your algorithm.

A slab is the region between two parallel lines. The width of a slab is the distance of the lines.

Hint: compute the convex hull first.

- 5. Consider the following point set. It consists of the points (0, -1) and (0, +1) and the points (i, 0),  $1 \le i \le n$ . What is the running time of the incremental algorithms, if the points are inserted in the following order?
  - (a) First the points (0, -1) and (0, +1) and then the points (i, 0),  $1 \le i \le n$ , in this order.
  - (b) First the points (0, -1) and (0, +1) and then the points (i, 0),  $1 \le i \le n$ , in reversed order.
  - (c) First the points (0, -1) and (0, +1) and then the points (i, 0),  $1 \le i \le n$ , in random order.

Have fun with the solutions.