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M otivation

We learn more about algorithmic strategies in computatigeametry. | indicates the relative
difficult level of the exercises by numbers in the range frdmd.30.

1. Ask questions about the material presented in class.

2. (convex hulls by circular sweep, 10) L8tbe a set of points in the plane. Choose the
lexicographically smallest point i§ and make it the origi©. Then all points ofSlie in
the first and fourth quadrant. Sort the other points by thegle (for a pointp different
from the origin, its angle is the angle between the posiieais and the vector fror® to
p). Process the points in order.

3. (Pareto-optima). For two poingsandq in the plane, we say thatdominates if px < Ox
andpy < qy. For a point se6, let P(S) be the points irSthat are not dominated by any
other point inS. The points inP(S) are also called the Pareto-optimaf

¢ (5) Draw a seof 10 points in the plane and indicate the Pareto-optima. rié/ban
points lie that are not dominated by any poinSh

e (10) Show that the set of Pareto-optima has a staircasestikpe, i.e., ifp; to p
are the Pareto-optima in order of increasiagpordinate, theg(p1) > y(p2) > ... >
Y(Px)-

¢ (10) Design a sweep algorithm for computing the ParetormgtiWWhat is its running
time?

e (15) Design a divide-and-conquer algorithm for computimg Pareto-optima. What
is its running time?



4. (hierarchical representation of upper convex hulls) Ujyger convex hull is the part of the
convex hull that is visible frony = 4. Let Sbe a point set in upper convex position, i.e.,
Sis the vertex set dJCH(S). Let S= (vy,...,Vyn), where the points are sorted according
to x-coordinate. A stratification dbis a sequencg,;, S, ..., S such that

e S=5 andS = (v1,Vn)
e fori > 2,5 is aproper subsequence®f 1 with the property that the first and the last

element of§_; are in§ and that in any subsequence of four consecutive elements of
S_1 at least one and at most three occu§in

e EachS§ is represented as a linked list of its elements. We also miairctross links
between th&§’s. More precisely, each list item also has an up- and a dogvnter.
Let v be an item inS§. The up-pointer points to the occurencevah S_1 and the
down-pointer points to the occurencewvah S 1, if any.

(a) (10) Give an example.

(b) (10) Draw the pointer structure for your example.

(c) (15) Prove thak = O(logn).

(d) (15) Letp be an arbitrary point in the plane. Show how to determine drgh ¢
UCH(S)? What is the running time of your method?
Hint: Explore the hierarchy. Solve the problem 1d€CH(S;) and work your way
backwards.

(e) (15) Letp be a point withp ¢ UCH(S). Show how to construct the tangents frgm
onUCH(S).

() (20) (incremental hulls) We want to maintain upper hwlieder insertions. Assume
p ¢ UCH(S). Show how to construct a hierarchical representationtf@H(SuU
{p}). Observe thaBuU{ p} is not necessarily in convex position. A solution consists
of several steps. (1) Determine the tangents. (2) Deleterdhiices between the
tangents. (3) Adg. (4) Determine the neWg’s.

What is the complexity of your method? Aim for
O(logn+ number of points that are no longer vertex of the uppern hull
What is the amortized cost of an insertion?

5. (weight-balanced search trees) Recall that in searel teery node has either two chil-
dren or no children. Nodes with no children are called leakes a nodey, letw(v) be the
number of leaves in the subtree rooted &t the size of the subtree rootedwat For an
internal node, let(v) andr(v) be the left and right child, respectively.

Call a tree weight-balanced, if for every internal naglere have
w(l(v)) >w(v)/4 and w(r(v)) >w(v)/4.
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We call a tree well-balanced if for every node the sizes ofsihigtrees differ by at most
one.

(a) (10) Consider a weight-balanced tree with 10 nodes. \ighhie range of sizes for
the left subtree?

(b) (15) What is the maximal depth of a tree of sive
(c) Consider the following insertion/deletion proceduresery node stores its size.

i. In order to add a leaf, replace a leaf by a subtree with t\awds.

ii. In order to remove a leaf, make the other child of the le@irent a child of the
leaf’'s grandparent.

iii. Update the sizes of all nodes.

iv. Walk back to the root and determine the highest node (sedbto the rooty, if
any, that is out of balance, i.e., for which one of the chidoév has less than
one-fourth the weight o¥. Replace the subtree rootedvaby a well-balanced
tree.

(20 — 25) How many nodes are affected in step (iii)? How muasdbcost to update
the weights? Assume that step (iv) takes ti@@v(v)). What is the amortized cost
of ninsertions and deletions starting with an empty tree.

Hint: recall the analysis of dynamic arrays.

6. (dynamic Pareto-optima) We want to maintain the Paretov@ of a point se under
insertions and deletions. We store the Seéh the leaves of a weight-balanced tree and
mimick the divide and conquer algorithm. Consider a nedad suppose we have com-
puted the staircases for the two childgrandyv;. The staircase atconsists of an initial
part of the staircase &t plus the staircase &. We store the final segment of the staircase
of v, that does not make it to v at.vWe also store a pointer into the merged staircase to
indicate the position where the two staircases were glugdtteer

Globally, the effect is as follows: We mimick the divide-aodnquer algorithm, but we do
not throw information away, when parts of a staircase areowen. Rather, we keep the
part at the highest node of the tree where it was still relevan



(&) (20) How long does it take to build a tree fompoints? You may assume that the
points are sorted by-coordinate.

(b) (20) Consider a path from the root to a leaf. Show how yeuwao the merge steps
along this path. Can you do in tin@@1) per node?

(c) (25) Insert a new point. This corresponds to the inseioca leaf. Undo the merges
(as in the preceding item) along the path to the new leaf, lagldetaf, and then work
your way back up to the root. How much time does the remergikg2

(d) (25) Delete a point. Proceed as in the preceeding item.

(e) (30) Can you reduce the time required for items (c) andq@)(logn) per node on
the path.?

(M (3)) Maintain the underlying tree as a weight-balanaeet Use item (a) to estimate
the time required for rebuilding a subtree.

7. (convex hulls by divide-and-conquer, 15) Design a diade-conquer algorithm for the
upper convex hull problem (= the part of the hull that is Visisom y = +o) for points
sets in the plane. Assume for simplicity that no two pointashiie same-coordinate.

Hint: Sort the points lexicographically, compute the hiltiee first and the second half of
the points recursively, and then merge the hulls by constgitheir common tangents.

How much time can you allow yourself for constructing thegamts if you aim for an
O(nlogn) algorithm? Show how to find the tangents.

Hint: For the merge step, we have two upper convex HallandPr. We also know a
vertical lineV that separated from Pr. Letu be a vertex oR. andv be a vertex oF; and

let (u,v) be the directed line from to v. ¢(u,v) either is tangent t& or intersects the
boundary ofR_ twice. Similarly, forPr. Thus there are 4 possible cases. Discuss them and
show that in each case, some parts of at least one of the pay@m be discarded from
further consideration.

Have fun with the solutions.



