Next: About this document ...
Up: Effective Computational Geometry
Previous: Basics of Differential Geometry,
- BBP98
-
H. Brönnimann, C. Burnikel, and S. Pion.
Internal arithmetic yields efficient arithmetic filters for
computational geometry.
In Proceedings of the 14th Annual Symposium on Computational
Geometry (SCG'98), pages 165-174, 1998.
- BFM+01
-
C. Burnikel, S. Funke, K. Mehlhorn, S. Schirra, and S. Schmitt.
A separation bound for real algebraic expressions.
In ESA 2001, Lecture Notes in Computer Science, page ???, 2001.
http://www.mpi-sb.mpg.de/~mehlhorn/ftp/ImprovedSe
pBounds.ps.gz.
- BFMS00
-
C. Burnikel, R. Fleischer, K. Mehlhorn, and S. Schirra.
A strong and easily computable separation bound for arithmetic
expressions involving radicals.
Algorithmica, 27:87-99, 2000.
- BFS98
-
C. Burnikel, S. Funke, and M. Seel.
Exact arithmetic using cascaded computation.
In Proceedings of the 14th Annual Symposium on Computational
Geometry (SCG'98), pages 175-183, 1998.
- BMS96
-
C. Burnikel, K. Mehlhorn, and S. Schirra.
The LEDA class real number.
Technical Report MPI-I-96-1-001, Max-Planck-Institut für
Informatik, January 1996.
A more recent documentation of the implementation is available at
http://www.mpi-sb.mpg.de/ burnikel/reports/real.ps.gz.
- DH91
-
P. Deuflhard and A. Hohmann.
Numerische Mathematik: Eine algorithmisch orientierte
Einführung.
Walter de Gruyter, 1991.
- Fun97
-
S. Funke.
Exact arithmetic using cascaded computation.
Master's thesis, Fachbereich Informatik, Universität des
Saarlandes, Saarbrücken, 1997.
- MN99
-
K. Mehlhorn and S. Näher.
The LEDA Platform for Combinatorial and Geometric
Computing.
Cambridge University Press, 1999.
1018 pages.
Kurt Mehlhorn
2001-11-21