next up previous
Next: About this document ... Up: Effective Computational Geometry Previous: Basics of Differential Geometry,

Bibliography

BBP98
H. Brönnimann, C. Burnikel, and S. Pion.
Internal arithmetic yields efficient arithmetic filters for computational geometry.
In Proceedings of the 14th Annual Symposium on Computational Geometry (SCG'98), pages 165-174, 1998.

BFM+01
C. Burnikel, S. Funke, K. Mehlhorn, S. Schirra, and S. Schmitt.
A separation bound for real algebraic expressions.
In ESA 2001, Lecture Notes in Computer Science, page ???, 2001.
http://www.mpi-sb.mpg.de/~mehlhorn/ftp/ImprovedSe pBounds.ps.gz.

BFMS00
C. Burnikel, R. Fleischer, K. Mehlhorn, and S. Schirra.
A strong and easily computable separation bound for arithmetic expressions involving radicals.
Algorithmica, 27:87-99, 2000.

BFS98
C. Burnikel, S. Funke, and M. Seel.
Exact arithmetic using cascaded computation.
In Proceedings of the 14th Annual Symposium on Computational Geometry (SCG'98), pages 175-183, 1998.

BMS96
C. Burnikel, K. Mehlhorn, and S. Schirra.
The LEDA class real number.
Technical Report MPI-I-96-1-001, Max-Planck-Institut für Informatik, January 1996.
A more recent documentation of the implementation is available at http://www.mpi-sb.mpg.de/ burnikel/reports/real.ps.gz.

DH91
P. Deuflhard and A. Hohmann.
Numerische Mathematik: Eine algorithmisch orientierte Einführung.
Walter de Gruyter, 1991.

Fun97
S. Funke.
Exact arithmetic using cascaded computation.
Master's thesis, Fachbereich Informatik, Universität des Saarlandes, Saarbrücken, 1997.

MN99
K. Mehlhorn and S. Näher.
The LEDA Platform for Combinatorial and Geometric Computing.
Cambridge University Press, 1999.
1018 pages.



Kurt Mehlhorn
2001-11-21