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ABSTRACT 

I n  the network design problem we are given a weighted un- 
We wish t o  find a subgraph which connects a l l  directed graph. 

the original vertices and minimizes the sum of the shortest 
path weights between a l l  vertex pairs, subject t o  a budget con- 
s t ra in t  on the sum of i t s  edge weights. I n  t h i s  note Me estab- 
l i s h  NP-completeness for  the nekwork design problem, even for  
the simple case where a l l  edge weights are equal and the budget 
r e s t r i c t s  the choice t o  spanning trees .  
the development of enumerative optimization methods and of 
approximation algorithms, such as those described i n  a recent 
paper by R. Dionne and M .  Florian. 

This resu l t  j u s t i f i e s  

INTRODUCTION 

In the network design problem we are given a weighted un- 
We wish to find a subgraph which connects all directed graph. 

the original vertices and minimizes the sum of the shortest 
path weights between all vertex pairs, subject to a budget con- 
straint on the sum of its edge weights. In this note we estab- 
lish NP-completeness [7,81 for the network design problem. 
Briefly, this result implies that a polynomial-bounded method 
for its solution could be used to construct similar algorithms 
for a large number of combinatorial problems which are notorious 
for their computational intractability, such as the travelling 
salesman problem and the multicommodity network flow problem. 
Since none of these problems are known to be solvable in poly- 
nomial time, NF-completeness of the network design problem 
justifies the development of enumerative optimization methods 
and of approximation algorithms, such as those described by 
R. Dionne and M. Florian [ 2 ] .  
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For our purposes, we formulate the problem in the follow- 
ing way. 

NETWORK DESIGN PROBLEM (NDP): Given an undirected graph 
G = (V,E), a weight function L: E + EJ,a budget B and a 
critericn threshold C (B,C ~lN),does there exist a sub- 

graph G' = (V,E') of G with weight 1 L({i,j)) B 
{it j )EE ' 

and criterion value F(G') 5 C, where F(G') denotes the 
sum of the weights of the shortest paths in G' between 
all vertex pairs? 

By way of introduction to a quite involved NP-completeness 
proof for a simplified version of NDP, we shall first present a 
simple proof establishing NP-completeness for the general NDP. 

Theorem 1: NDP is NP-compZete. 

Proof: Consider the following problem. 

KNAPSACK: 

there exist a subset S C T = 11,. . . ,t3 such that 
isS 

Given positive integers t,al, ..., a ,b, does t 

1 ai = b? 

We will show that KNAPSACK is reducible to NDP, i.e., that 
for any instance of KNAPSACK an instance of NDP can be con- 
structed in polynomial-bounded time such that solving the in- 
stance of NDP solves the instance of KNAPSACK as well. The 
theorem then follows from the NP-completeness of KNAPSACK [71 
and the fact that NDP belongs to NP, since any feasible subgraph 
can be recognized as such in polynomial time. 

fine an instance of NDP as follows: 

Given any instance of KNAPSACK, we write A = 1 ai and de- 
iET 

Figure 1 illustrates this reduction. We claim that KNAPSACK 
has a solution if and only if G = (V,E) contains a subgraphwith 
weight at most B and criterion value at most C. 
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KNAPSACK: t = 4, al = 2 ,  a = 3 ,  a 3 - =  5, a 2 4 = 6 ,  b = 7.  

NDP: G & L :  q7-p 

B = 39, C = 249.  

Fig. 1 Equivalent instances of KNAPSACK and NDP. 

It is easily seen that any feasible NDP solution can be 
* 

assumed to contain a star graph G = (V,{{O,i>,{O,i'>: iET}); 

G 

an edge {i, i' } to G 

the criterion value by ai, since {i,i'} will appear only in 

the shortest path between i and i'. 
lows in a straightforward way. 0 

* 
has weight 2A = B-b and criterion value 4 tA  = C+b. Adding 

increases the weight by a and decreases 
* 

i 

The equivalence now fol- 

However, since KNAPSACK can be solved in O(tb) time [ l l  , 
Theorem 1 does not exclude the existence of a similar pseudo- 
pozynomiaz algorithm [41 for NDP; the above construction cru- 
cially depends on allowing arbitrary positive integers as edge 
weights and budget. As a stronger result, we shall now prove 
that NDP is NP-complete even in the simple case where all edge 
weights are equal and the budget restricts the choice to span- 
ning trees. 

SIMPLE NETWORK DESIGN PROBLEM (SNDP): NDP with 
L({i,j)) = 1 for all {i,j) E E and B = IVI-1. 

Theorem 2: SNDP i s  NP-compZete. 
Proof: 
problem [3,61. 

As a starting point we take the following NP-complete 
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We 

of 

EXACT 3-COVER: 

3-element subsets of a set T = { T ~ ,  ..., T 
there exist a subfamily S' C S of pairwise disjoint 
sets such that u U = T? 

will show that EXACT 3-COVER is reducible to SNDP. 

SNDP as follows: 

Given a family S = Cu l,...,u 1 of 
S 

1 ,  does 3t 

UES'  

Given any instance of EXACT 3-COVER, we define an instance 

V = R u S u T, 
R = {Po,P1,. . . ,P 1: 1, 
r = Css + CST + CTT, 
E = I{pi,p01: i=l, ..., rlu{Epo,ul: U E S I U { { U , T ~ :  T E U E S ~ ,  

+ 'ST 'TT' c = cRR + CRS + CRT + css 
2 2 where C = r , CRs = 2rs+s, C = 9rt+6t, Css = s -s, 

'ST 

RR RT 
= 9st-6t, CTT = 18t2-12t. 

Figure 2 illustrates this reduction. We will prove that 
EXACT 3-COVER has a solution if and only if G =  (V,E) contains 
a spanning tree with criterion value at most C. 
that G is connected, i . e . ,  

We assume 
u u = T. 

UES 

SNDP : G: 

C = 17656. 

Fig. 2 Equivalent instances of EXACT 3-COVER and SNDP. 
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Let G' = (V,E') be some spanning tree of G and let F (GI) PQ 
denote the sum of the weights of all shortest paths in G' be- 
tween vertex sets P and Q (P,QCV). 

for all i = 1,. . -,re If {p  ,a) jf E' for some u E S, then 
We clearly have {pi,Po) EE' 

0 

F(G') > FRR(G') + FRS(G') + FRT(G') 

?. ''RR + 'RS + 2(r+l) + CRT 

> c; 
therefore, we may assume that {P  ,U) E E' for all U E S. It 

follows that in G' each vertex in T is adjacent to exactly one 
vertex in S. Straightforward calculations show that we now 
have 

0 

F (G') = C for P = R,S and Q = R,S,T. 
PQ PQ 

Denoting the number of vertices in S being adjacent in G' to 
exactly h vertices in T by s (h=0,1,2,3), we have h 

(GI ) = 4 (3t (3t-1)/2) F~~ 

- 2 ] { { ~ , - r l I :  T + T I ,  {{u,TI,{u,T~IIcE* for some u esI[  
2 = (18t -6t) - (2s +6s3) 

2 

- - CTT + 6(t-s3) - 2s2. 

if and only if s = t, = 'TT 3 It is easily seen that FTT(G') 
s 

to F(G') < C, the second one to the existence of an EXACT 
3-COVER solution. This completes the proof. 0 

= s1 = 0, so = s-t. The first condition is now equivalent 2 

Various related types of network design problems have been 
discussed in the literature; an excellent survey has been given 
by R. T. Wong [lo]. For instance, the problems dealt with by 
A. J. Scott [9] are generalizations of NDP and hence NP-complete. 

Another variation has been introduced by T. C. Hu 151. 
Given a complete graph with a distance and a requirement for 
each vertex pair, we wish to find a spanning tree which minimizes 
the total cost of communication, where the cost of communication 
for a pair of vertices is the distance of the path between them 
multiplied by their requirement. The case where all distances 



284 JOHNSON, LENSTRA AND RINNOOY KAN 

are equal can be solved by polynomial time [SI; for the case 
where all requirements are equal, NP-completeness follows 
easily as a corollary to Theorem 2. 

Finally, we mention some results with respect to the com- 
plexity of a network design problem due to F. Maffioli. Given 
a weighted graph with a specific vertex p and an integer k, we 
wish to find a spanning tree of minimum total weight subject 
to the constraint that each subtree incident with p contains 
at most k other vertices. The case k = 2 can be formulated as 
a matching problem; the case k = 3 can be proved NP-complete 
by a reduction of 3-DIMENSIONAL MATCHING, even if all edge 
weights are equal. 
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