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Let G = (V,E) be an undirected graph. For a spanning re&f G and verticesi andv, let
dr (u,V) be the distance betweerandvin T and letP(T) = ¥,y dr(u,v) be the sum over all
distances. Here the sum is over all pairs of nodes.W€T) be the weight of the fundamental
cycle basis induced by.

Exact 3-Cover Given 3-element subse® to Ssof U = {1,...,3u}. Is there an index set
| such thal = Ui¢|S and|l| = u? We proved in Exercise Sheet 3 that Exact 3-Cover is NP-
complete.

Shortest Total Path Length Spanning Tree (STPLST)Given an undirected grapgh and a
boundB. Is there a spanning trdeof G with P(T) < B?

Minimum Fundamental Cycle Basis Problem (MFCB} Given an undirected grapB, a
non-negative weight functiow : E — N and a bound. Is there a spanning trék of G with
W(T) <B?

Theorem 1 ([JLK78]) Shortest Total Path Length Spanning Tree is NP-compl ete.

Proof: We show Exact 3-Covex STPLST. Consider an instan&g, ...,S;,U ={1,...,3u}
of Exact 3-Cover. Construct the following graph, see Fidgure

e V =RUSUU, whereR= {vg,v1,...,V }. We will fix r below.
e Edges

—Vpisconnectedtoallj, 1<i<randtoall§,1<i<s.
— each§ is connected to the € U with j € §.

Assume Exact 3-Cover has a soluticand consider the following spanning tféelt consists
of edgesyy; for 1 <i <r andyS for 1 <i <s. Eachj € U is connected to the uniqug with
j € § andi € I. The total path length of this solution is

B = Brr+ Brs+ Bru + Bss+ Bgy + Byu
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Figure 1: . Reduction of Exact 3-Cover to STPLST.

whereBrr =1+ 2r(r —1)/2 =12, Brgs =S+ 2rs, By =23t +3-r-3t = 6t 4+ 9rt, Bss =
2-5(s—1)/2=5’—s,Bgy =3u(s—1)3+3u-1-1= 9su—6u, andByy =4-3u(3u—1)/2—2u3=
18u% —12u.

So, if the instance of Exact 3-cover has a solution then tisexspanning tree witR(T) < B,
whereB is defined as above.

Assume now that there is a spanning tree A{fi ) < B. We will show that Exact 3-Cover
has a solution. FoX,Y € {R,S U } let Pxy be the cost of connecting andY in T. Clearly, all
edges(Vop, Vi) are inT. Also, Prr > Brr, Pru > Bry andPrs > Brs. Assume now that one of
the edgegvo,Sj) is NOT inT. ThenPrs > Brs+2(r +1). Forr > (Bss+ Bgy + Byu)/2 this
impliesP(T) > B. We fixr at (Bss+Bgy +Byu)/2. So(vp,Sj) € T for all j. ThenPrs = Bgrs
andPss = Bss.

For eachj € U, there is exactly on&§ with (S, j) € T. For 0< ¢ < 3, letk, be the number
of § that are connected if to exactly/ nodes inJ. Then

Riu =4-3u(3u—1)/2—2-3k3— 2k,

and hencé&yy = Byy only if k3 =u. If k3 =u, T encodes a solution to Exact 3-Cover. ]

Theorem 2 ([DPK82]) The Minimum Fundamental Cycle Basis Problemis NP-complete.

Proof: We show STPLSTK MFCB. LetG = (V,E) be an instance of STPLST. Consider the
following instance of MFCB. We augmef@to a complete grap®’ = (V,E’) and setw(e) = 1
forec E andw(e) =L for ec E’\ E. Herel is a large constant that we fix later. We call the
edges irE light and the edges i&’\ E heavy. We will show that a large value bfguarantees
that the solution to MFCB will use only light edges for the spig tree and that this spanning
tree will be a solution to STPLST.

Consider any spanning trdeof G’ and assume that it usgsheavy edges. Them—1—q
edges ofT are light. Among the co-tree edges,— (n— 1— q) are light andr — g are heavy,



wherer =n(n—1)/2—m. For a pair{u,v} € T, we havedr (u,v) = w(u,v). We have

W(T)= > (dr(uv)+w(u,v))

{uVv}eT

= dT(U,V) + W(U,V)
{uv}gT {uv}egT

=5 druv)— 5 wuv+ > wuv)
{uv} {uv}eT {uVv}eT

= Z dr(u,v) —2 Z w(u,v) + Z w(u, V)
{uyv} {uv}eT {uv}

=9T)+rL+m—-29L—-2(n—1—-Q)
=9T)+rL+m—-2(n—1)—29L+2q.

Assume we knew that an optimal solution for MFCB is guarahteéhaveq = 0. Then there
is a tree with§(T) < B iff there is a tree withV(T) < B+rL+m—2(n— 1) and we have the
desired reduction.

Consider now spanning treds and T,, whereT; uses only light edges an usesq > 1
heavy edges. We clai(T;) < W(T2). Indeed,

W(T) <W(To) iff S(T1)+rL+m—-2(n—1) < YT2) +rL+m—-2(n—1) —2gL+2q
iff S(T1)+29L—2g9< S(T>) .

Next observe thag(T;) < n’n=n°. We need a lower bound &T,). Removal of theq
heavy edges front, decomposes; into g+ 1 subtrees of sizes, s&j, to ky1. Then§Tp) >
Lyicjkiki > Lmax(ka(ko + ... +Kgs1), (+1)q/2) > Lmax(n—1,02/2). ForL = n?, the in-
equalityn® +2gL — 2q < Lmax(n — 1,¢°/2) holds for all values of. 1

There is no need for the use of weights in the proof of theore®imply replace the heavy
edges by chains of lengthand then the proof works for unweighted graphs.

The minimum fundamental cycle basis problem is not only MRwglete, it is also hard to
approximate. It is APX-hard and hence has no PTAS (polynbtinie approximation scheme)
unless P = NP. The APX-hardness proof can be found in [KIO®]. A polynomial time approx-
imation scheme for MFCB would have inp{\t, E,w) and parameteg > 0. It would produce a
fundamental cycle basis of cost no more tlianr- €) times the optimal value and, for any fixed
g, run in polynomial time. The degree of the polynomial mayetepone.

| close with two open problems:

e An approximation algorithm for the minimum fundamental leybasis problem with ap-
proximation guarante®(logn). See [KLM*09] for what is known.

e The complexity status of the minimum integral cycle bascpem.
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