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This is an extended version of pages 29, 30 and 31 of [KD®|
Require: Gis a connected graph witly nodes anang edges;
Gc.=G;
declare all nodes unlabeled;
initialize the basis to the empty set;
{letNe=mc—(nc—1)}
while G; is not a treedo
{G¢ is connected and not a trge
while G¢ has a node of degreedb
remove it and the incident edge; declare the removed edge &tige;
{m; andn. are decreased by one aNgdoes not change
end while
{G¢ is connected, not a tree and every node has degree at legst two
if every node of5. has degree two, i.eGc is a circuitthen
add this circuit to the basis, declare one of its edges remdand delete it frors;
{m¢ andN; went down by oneG. is now a treé
else
{G¢ is connected, not a tree, and there is a node of degree atheaet
construct an auxiliary graph; its nodes correspond to tlieaanG; of degree at least
three and its edges correspond to the maximal patf& wvith all internal edges having
degree two;
let C4 be a circuit in the auxiliary graph consisting of at most 2logng auxiliary edges;
add the underlying circuit i5; to the basis, and delete all edges comprising the heaviest
auxiliary edge on this circuit frors:; declare one of these edges non-tree and all others
tree;
{m. andN; went down by one and the weight of the circuit added to thestiasit most
(1+2logng) times the weight of the edges delejed
end if
end while {G.is a tree and hends; = 0}
declare all edges d@& tree edges and delete them from the graph;

Lemmal The total weight of the circuits is at mo&k+ 2logng)W where W= S w(e) is the
total weight of all edges.



Proof: For every circuit added to the basis, its weight is at nftst 2lognp) times the weight
of the edges deleted. Observe that this is also true for gheil@uit removed (one of its edges is
removed in the while-loop and the others are deleted afeewttile-loop). Thus the total weight
of all circuits added to the basis is at m¢$t+ 2logng)W. 1

Lemma?2 The number of circuits constructed and the number of edgelsree non-tree is
mp— (np—1).

Proof: Consider the quantiti. = m; — (nc — 1), wheren; andm are the number of nodes and
edges of the current graph, respectiveély.starts atmg — (np — 1) and ends at 0. Removal of a
vertex of degree one, does not chamgeaddition of a circuit to the basis decreases it by one.
Thus we add exactlyng — (ng — 1) circuits to the basis. For each circuit constructed, weatecl
one edge non-tree. |

Lemma3 Let I be the cycle matrix corresponding to the basis constructedrgvwe order
the circuits in their order of construction and the non-teegdges in the order in which they are
declared non-tree. Then the square submdtfiof ' selected by the non-tree edges is a lower
triangular matrix. Each diagonal entry is eitherl or —1. The determinant di’ is +1.

Proof: LetCq, ...,Cy be the circuits in the order in which they are constructedand. ., ey
the edges declared non-tree in the order in which they alamelcnon-tree. The@; usesg and
hence each diagonal entry is eithet or —1. Also, g is deleted after the construction@fand
henceCj(g) = 0 for j > i. Thus the elements above the diagonal are zero. 1

Lemma4 The edges designated as tree edges form a spanning tree.

Proof: Observe first that we designate — (ng — 1) edges as non-tree and hemge- 1 edges
as tree. The edges designated non-tree select a non-sisgblaatrix ofl. Hence the edges
designated tree form a spanning tree. |

Theorem 1 The algorithm constructs an integral basis of weiglftN\dogn).

Proof: We have already shown the weight bound.

Let C be any cycle. We need to show tl@is a integer linear combination of our circuits,
i.e.,C = I'xc for an integral vectoxc. LetC' andl™ be the restrictions to the non-tree edges.
ThenC’' = I'"xc. Cramer’s rule implies that the entriesxef are rational numbers whose entries
have denominator det. Thusxc is integral. |

How good is the bound of Theorem 1? Can we do better? We apptbecquestion from
several directions.



1. In the case of uniform weights, i.ev(e) = 1 for all e, we can improve upon the bound
for graphs with a non-linear number of edges. We will show &my graph has an integral
basis of total cardinalitp(m(logn)/ max1,log(m/n))).

2. We show that the bound in item 1 is optimal.
3. We show (exercise sheet 2) that a complete graph has adbagsghtO(W).

4. We pose an open problem.

Theorem 2 Any graph has an integral basis of total cardinalitj%)

Proof: We need the following lemma. A beautiful proof can be foun@RL02]. In exercise
sheet 2, we prove the result for regular graphs of degreent/«.
Lemma5 Let k> 2. Any graph with m> n1*%/k edges contains a circuit of length(i).

If m< 2n, Theorem 1 does the job. It yields a basis of len@timlogn). So assume that
m> 2n. Letk = 2logn/log(m/n). We proceed in two phases.

e As long asm> n**%/k we find a circuit of lengttD(k), add it to the basis and delete one
of its edges from the graph. The total length of the circuitdeal in phase | i©(mK).

e If m< n**%/% we apply Theorem 1 and obtain a basis of total ler@th'*1/klogn) for
the remaining graph.

The total length of the basis @(km+ n'*1/Klogn). Finally,

log(m/n) log(m/n)
nt+lklogn n2'°9"2egn lognlog(m/n) ~ n2 12 log(m/n)

km - m2logn N 2m
_ n\/’%ﬂog(m/n) _ m\/—r—nUOg(m/n) _ O(M) =0(1)
2m |

2m B m/n

Discussion: why this choice &? give upper bounds for special valuesmfsaym = O(n),
©(mlogn), and®(n*1/k),

Exercise 1 Consider arbitrary non- negatlve edge weights? Why dodke’proof above show

that any graph has a basis of Welgh(Wlogor%?n) )?

We next prove a lower bound.

Theorem 3 Let k> 2. For sufficiently large n, there is a graph witB(n’*%/(%)) edges (the
claim is actually true witi2k replaced by k) and no circuit of length shorter than k. Inlsac
graph any cycle basis has total Iengﬂﬂ{mlogor?;n))
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Proof: Assume first such a graph exists. In this graph any cycle basisength at leagin—
n+1)k = Q(mk). Also,m= O(nn%/ (&) or log(m/n) = ©((1/2k) logn) or 2k = O(Ioé‘(’%).

We next show the existence of the graph. We sketch a proof 8ysHrom 1957; it is one
of the first examples of the so-called probabilistic metha8E92]. We will NOT construct a
graph with the claimed properties, we will only show the tetige.

Let ¢ = 1/(2k) and consider a random gragin, p) with p=n?~1. In such a graph, each

of then(n—1)/2 potential edges is present with probabilityFor aG in G(n, p),
e the expected number of edgespis(n —1)/2 ~ 1/2n*%,

o for each node the expected degrep(is — 1) ~ n? = n/(%),

For almost all graphs i(n, p), all but a fractiorn(1/n), the number of edges is at leagth’*?
and the degree of every node is at mast .2
Let X be the number of circuits of length less tHanrhen

k
< (np)=n® = VA,

ex - 5 o< s ool - (0

3<i<k np—1

where the last inequality uses the fact that= n® > 2 for n large enough.
Thus there is a graph iB(n, p) satisfying the two items above and having ogin circuits
of length less thak. We remove one node from each such circuit and obtain a geaplith

e n’ nodes, where’ < n, and
o m edges, wherat > m— /m2n%/(%) > (1/4)n1*¢ —2nt/2+9 > 1/8n1+¢,

e no circuit of length less thak

Problem 1 Do sufficiently dense graphs always have a cycle basis ofhiveigVlogn)? Ob-
serve that complete graphs have cycle basis of weigiM)Jexercise sheet 2).

KM conjectures that the answer is yes.
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