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Emergent Behavior in Flocks
Felipe Cucker and Steve Smale

Abstract—We provide a model (for both continuous and discrete
time) describing the evolution of a flock. Our model is parameter-
ized by a constant capturing the rate of decay—which in our
model is polynomial—of the influence between birds in the flock as
they separate in space. Our main result shows that when 1 2

convergence of the flock to a common velocity is guaranteed, while
for 1 2 convergence is guaranteed under some condition on
the initial positions and velocities of the birds only.

Index Terms—Consensus reaching problem, emergence,
flocking.

I. INTRODUCTION

AGENERAL theme underlying the ideas in this paper is
the reaching of consensus without a central direction.

A common example of this situation is the emergence of a
common belief in a price system when activity takes place in a
given market. Another example is the emergence of common
languages in primitive societies, or the dawn of vowel systems.
As a motivating example in this paper we consider a population,
say of birds or fish, whose members are moving in . It has
been observed that under some initial conditions, for example
on their positions and velocities, the state of the flock converges
to one in which all birds fly with the same velocity. A goal of
this paper is to provide some justification of this observation.
To do so, we will postulate a model for the evolution of the
flock and exhibit conditions on the initial state under which a
convergence as above is established. In case these conditions
are not satisfied, dispersion of the flock may occur. Several
parameters give flexibility to our model. A remarkable feature
is the existence of critical values for some of these parameters
below which convergence is guaranteed. While we focus on
this example, our treatment will be abstract enough to provide
general insight in other situations.

There has been a large amount of literature on flocking,
herding and schooling. Much of it is descriptive, most of the re-
maining proposes models, which are then studied via computer
simulations, e.g., [1] and [2]. A starting point for this paper is
the model proposed in the latter of these references which, for
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convenience, we will call Vicsek’s model. Its analytic behavior
was subsequently studied in [3] (but convergence could be
simply deduced from previous work [4], [5, Lemma 2.1]) and
this paper, brought to our attention by Ali Jadbabaie, has been
helpful for us. Other work related to ours is [6]–[9]. We note,
however, and we will return to this in Remark 1, that conver-
gence results in these references rely on an assumption on the
infinite time-sequence of states. In contrast with the above, our
convergence results depend on conditions on the initial state
only. That is a main virtue of our work. On the other hand,
our hypothesis implies that each bird influences all of the other
through the adjacency matrix, no matter what the configuration
of the birds. Of course, we are making idealizations in this
hypothesis. The literature suggests many interpretations for our
set up. For example, the distance funtion could be the usual dis-
tance in Euclidean space and over large distances the influences
could become negligible as in gravity. In another interpretation,
the distance function could be interpreted as a visual distance
and the euclidean space could be interpreted so that as the norm
of goes to infinity, the ability to communicate visually goes
to zero. The methods in this paper can be extended to cover
flocking situations where the complete weighted graph is no
longer assumed and where symmetry is relaxed. A manuscript
is being prepared.

Our model postulates the following behavior: Every bird ad-
justs its velocity by adding to it a weighted average of the dif-
ferences of its velocity with those of the other birds. That is, at
time , and for bird

(1)

Here, the weights quantify the way the birds influence
each other. It is reasonable to assume that this influence is a
function of the distance between birds. We give form to this
assumption via a nonincreasing function such
that the adjacency matrix has entries

(2)

In this paper we will take, for some fixed , and ,

(3)

We can write the set of equalities (1) in a more concise form.
Let be the matrix with entries , be the
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diagonal matrix whose th diagonal entry is and
. Then

Note that the matrix notation does not have the
usual meaning of a matrix acting on . Instead, the
matrix is acting on by mapping to

. The same applies to .
Adding a natural equation for the change of positions we ob-

tain the system

(4)

We also consider evolution for continuous time. The cor-
responding model can be given by the system of differential
equations

(5)

Our two main results give conditions to ensure that the birds’
velocities converge to a common one and the distance between
birds remain bounded, for both continuous and discrete time.
They can be stated as follows (more precise statements are in
Theorems 2 and 3).

Theorem 1: Let be a solution of (4) with ini-
tial conditions and . Assume that

. If then, when the velocities
tend to a common limit and the vectors

tend to a limit vector , for all . The same happens if
provided the initial values and satisfy a given,

explicit, relation.
The same holds for a solution of (5) (but in this case the as-

sumption on is not necessary).
Remark 1: Although our model (4) is related to Vicsek’s,

there are some differences which stand out. Vicsek’s model is
motivated by the idea that bird has a velocity with constant
magnitude, adjusts its heading (or angular velocity) towards the
average of its neighbors’ headings, and uses a different way of
averaging. Actually, Vicsek’s model supposes that the heading

is updated according with the law

(6)

where and
for some . That is, the updated heading of a bird

is the average of the headings of those birds at a distance at most
.

System (6) can be written in a form similar to (4). To do so,
consider again the adjacency matrix with

but where now

if
otherwise.

(7)

It is not difficult to check that (6) takes the matrix form

(8)

Note that, in contrast with the abrupt behavior of the function
in (7), the function in (3) decreases continuously with and the
rate of decay is given by .

This contrast is at the heart of one of the main differences
between Vicsek’s model and ours. The adjacency matrix asso-
ciated to Vicsek’s model corresponds to a simple graph. Con-
vergence to a common heading will thus depend on connec-
tivity properties of the successive configurations of the birds and
proofs of convergence make assumptions on the infinite time-se-
quence of these configurations. The adjacency matrix associ-
ated to our model corresponds, instead, to a complete weighted
graph, with weights decreasing to zero as birds separate. A key
feature is now that if the decay of is polynomial but moder-
ately fast (i.e., if is at least 0.5) convergence is guaranteed
under some condition on the initial values and only. We
believe this is a distinct feature of our analysis as compared with
the literature on flocking.

In the original model proposed by Vicsek the magnitude of
the bird’s velocities is constrained to be constant. That is, the
model is nonholonomic, and the control is in changing the an-
gular velocity. In our model, each agent has inertia and the
system is fully actuated. In other words, Vicsek’s model is kine-
matic whereas our is dynamic.

II. SOME PRELIMINARIES

Given a nonnegative, symmetric, matrix the Lapla-
cian of is defined to be

where and . Some fea-
tures of are immediate. It is symmetric and it does not depend
on the diagonal entries of . The Laplacian as just defined has
its origins in graph theory where the matrix is the adjacency
matrix of a graph and many of the properties of can be read
out from (see [10]).

The matrix in (4) and (5) is thus the Laplacian of .
Denote 3-dimensional Euclidean space by and let
be its -fold product endowed with the induced inner product
structure. Then acts on and satisfies the following.

a) For all , .
b) If are the eigenvalues of , then
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c) For all ,

A proof for c) can be found in [11]. The other two properties are
easy to prove. Note that b) implies is positive semidefinite.

The quantity is the energy of
the flock (at a position and a velocity ).
Note that when all birds are flying with the same
velocity. That is, they fly with the same heading and at the same
speed.

The matrix in (4) acts on . The fixed points for
this action are easily characterized.

Proposition 1: Let . The following are equivalent.
1) is a fixed point (i.e., ).
2) .
3) .

Proof: The equivalence between 1) and 2) is obvious. The
implication is trivial. Finally, note that 3) implies
that for all and this, together with a) above,
implies 2).

The second eigenvalue of is called the Fiedler number
of . We denote the Fiedler number of by .

We end these preliminaries introducing some concepts which
will be useful in this paper.

Let be the diagonal of , i.e.,

and be the orthogonal complement of in . Then,
every point decomposes in a unique way as

with and . Note that if
then . Similarly,

if then

since and . Finally, note that for all
the matrices and are equal. It follows that

the projections over of the solutions of (4) are the solutions
of the restriction of (4) to . A similar remark holds for (5).

These projections over are of the essence since we are
interested on the differences and , for ,
rather than on the or themselves.

We denote and
. To better deal with these functions

consider defined by

Then, is bilinear, symmetric, and, when restricted to
, positive definite. It follows that it defines an inner product

on . Now note that and
and that and .

Let , be such that, restricted to ,

Note that , depend only on . We now show bounds for them
in terms of .

Lemma 1: For all , and
.

Proof: By definition, . Since ,

for and, therefore, for
all . This implies

Also by definition, . Let such

that . We claim that, for all and ,
. Assume the contrary. Then there exists and such that

. Without loss of generality, . Since
, there exists such that . However, then

contradicting . So, the claim is proved. Finally

which shows .
Remark 2: The condition “the velocities tend to a

common limit ” in Theorem 1 is equivalent to the con-
dition “ .” Also, the condition “the vectors
tend to a limit vector , for all ” is equivalent to
“ tend to a limit vector in .” This suggests that we
are actually interested on the solutions of the systems induced
by (4) and (5), respectively, on the space . Since, as
we mentioned, these induced systems have the same form as
(4) and (5), we will keep referring to them but we will consider
them on . Actually, we will consider positions in

and velocities in

III. CONVERGENCE IN CONTINUOUS TIME

In the following, we fix a solution of (5). At a time
, and are elements in and , respectively.

In particular, determines an adjacency matrix . For
notational simplicity, we will denote this matrix by and its
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Laplacian and Fiedler number by and , respectively. Sim-
ilarly, we will write and for the values of and ,
respectively, at . Finally, we will write for
and similarly for .

The main result in this section is the following.
Theorem 2: Assume that, for some constants , and

Assume also that one of the three following hypothesis hold.
i) .

ii) and .
iii) and

Then there exists a constant (independent of , made explicit
in the proof of each of the three cases) such that for
all . In addition, when . Finally, there
exists such that when .

We next prove some stepping stones towards the proof of The-
orem 2. Denote .

Proposition 2: For all

Proof: Let . Then

Here, we have used that is symmetric positive definite on .
Using this inequality

i.e.,

from which the statement follows.
Proposition 3: For

Proof: We have
. But and

, by Proposition 2. Therefore

(9)

and, using that is nonincreasing

which implies

from which it follows that

The statement now follows from the elementary inequality
.

Proposition 4: Let be a nonnegative, symmetric matrix,
its Laplacian, its Fiedler number, and

. Then, . In particular, if
then

Proof: For all

It follows that and thus the statement.
A proof of the following lemma is in [12, Lemma 7].
Lemma 2: Let , and . Then the equation

has a unique positive zero . In addition

and for .
Proof of Theorem 2: By Proposition 4, for all ,
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Let be the point maximizing in . Then

By Proposition 3

(10)

Since maximizes in it also does so in . Thus, for
, (10) takes the form

(11)

Let ,

Then (11) can be rewritten as with

i) Assume . By Lemma 2, implies that
with

That is . Since is independent
of , we deduce that, for all , . How-
ever, this implies that for all

and, therefore, the same bound holds for . By
Proposition 2

(12)

which shows that when . Finally, for all

Fig. 1. Shape of F .

Since the last tends to zero with and is independent of
we deduce that there exists such that, .

ii) Assume now . Then (11) takes the form

which implies that

Note that since . We now pro-
ceed as in case i).

iii) Assume finally and let so that
. The derivative has a

unique zero at and

the last by our hypothesis. Since and
when we deduce that the shape of

is as shown in Fig. 1.
Even though is not continuous as a function of , the map-

ping is continuous and, therefore, so is the map-
ping . This fact, together with (11), shows
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that, for all , . In addition, when
we have as well and

This implies that (the latter being the smallest
zero of on , see the previous figure) and the continuity of
the map implies that, for all ,

Therefore

We now proceed as in case i).
Remark 3:
i) In Theorem 2, the condition that

may be relaxed to .
ii) The bound for unconditional convergence in

Theorem 2 is essentially sharp. We will indicate this in
Remark 4 by studying the special case of a flock with two
birds flying on a line.

IV. A FLOCK OF TWO BIRDS

We give here a more detailed analysis of the case of two birds
flying on a line (i.e., we take instead of for both positions
and velocities).

We define and and assume that the
state of the pair satisfies the system of ODE’s

(13)

This is not exactly (5) but it is easier to dealt with and, we will
see below, it is close to this system.

The arguments used in the preceding section show that when
, for all initial and , we have that is bounded and
when . The next proposition gives conditions on

and for such a convergence to hold when .
Proposition 5: Let . Assume that and

and that

Then, is bounded and increasing. In addition, when ,
and

Proof: It follows from the system (13) that, for all ,

and therefore, integrating both sides between 0 and , that

or yet, that

(14)

where since .
If, for some , then . But then the pair

defined by , and ,
for all , is a solution of (13) satisfying the conditions

and . By the unicity of the solutions of (13)
it follows that and hence that in contradiction
with our assumptions. We conclude that for all .
However, then

implies that

Thus, remains bounded on . Furthermore is increasing
since . This implies that there exists such that

and when . It follows from
and (14) that is as claimed.

Remark 4: It follows from the proof of Proposition 5 that, for
all , fails to converge if . Also, for and
since

the system (5) is tightly bounded in between two versions of
(13) differing only by a constant factor. This indicates that con-
vergence may fail as well in (5) for .

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 13, 2009 at 07:38 from IEEE Xplore.  Restrictions apply.



858 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 52, NO. 5, MAY 2007

V. CONVERGENCE IN DISCRETE TIME

We now focus on discrete time. The model is thus (4). A mo-
tivation to consider discrete time is that we want to derive (pos-
sibly a small variation of) our model from a mechanism based on
exchanges of signals. The techniques to do so, learning theory,
are better adapted to discrete time. Also, we want our model to
include noisy environments and this issue becomes more tech-
nically involved in continuous time.

We assume as before that there are constants , and
such that

Note that, by Proposition 4, this implies that for all
. This, in turn, shows that is a self-adjoint, positive

definite linear map, whose smallest eigenvalue is .
Lemma 3: For all

In particular, if , then .
Proof: For all , . Therefore

Now use that [13, Table 6.2] to deduce the
result.

In what follows, we assume that and,
therefore, that .

We also fix a solution of (4). At a time , and
are elements in and , respectively. The meaning of ex-

pressions like , , , or is as described in Section III.
Proposition 6: For all ,

with

In particular, is decreasing as a function of .
Proof: The linear map is self-adjoint and its eigen-

values are in the interval ( ). Its largest (in absolute value)
eigenvalue is . Therefore

Corollary 1: For all ,
.

Theorem 3: Assume that, for some constants , ,
and ,

Assume also that one of the three following hypothesis hold.
i) .

ii) and .
iii) and

Here, , ,

Then there exists a constant (independent of , made explicit
in the proof of each of the three cases) such that
for all . In addition, when . Finally,
there exists such that when .

Proof: We divide the proof in two cases.
Case I. There exists such that .
Let be the first for which . For ,

, let be the point maximizing in . Then,
by Proposition 4 for ,

In particular, . Therefore

the last since . Using Corollary 1 we
obtain, for all ,
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For , the previous inequality takes then the following
equivalent form:

which implies

(15)

Let

Then, (15) can be rewritten as with

i) Assume . By Lemma 2, implies that
with

Since is independent of we deduce that, for all

and, therefore

Also, since for , we deduce that
holds for all and it readily follows that
for all . By Corollary 1, for ,

and this expression tends to zero when .
Finally, for , reasoning as before, we have

Since tends to zero, we deduce that
is a Cauchy sequence and there exists such that

.
ii) Assume now . Then (15) takes the form

which implies that

which is positive since
, by hypothesis. We now proceed as in case i).

iii) Assume finally . Letting as in the
proof of Theorem 2, the arguments therein show
that the derivative has a
unique zero at and

. Our
hypothesis then implies that . This shows that
the graph of is as in Fig. 1.

For let . When we
have as well and

This actually implies that . Assume that there exists
such that and let be the first such . Then,

and, for all

This shows that, for all

In particular

For instead, we have

This implies

(16)
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From the intermediate value theorem, there is such
that . But and

. Therefore,

and it follows from (16) that

(17)

However

the last since is decreasing. Therefore

Putting this inequality together with (17) shows that

or, equivalently

which contradicts our hypothesis.
We conclude that, for all , and, hence,

. We now proceed as in case i).
Case II. For all , .
Note that in this case . Moreover, for all

and

The result now trivially follows.
Remark 5: In the proof of Theorem 3, we could have used the

bounds for and exhibited in Lemma 1 and, in case iii) the

trivial bound . Recall,
. Denoting as well and

the sufficiency condition for convergence in case iii) becomes

It is apparent from the previous expression that this condition is
satisfied when is sufficiently small. It is also apparent that the
larger is, the smaller needs to be to satisfy the condition.

We note also that, for , we have and that
when .

We end this section with a short discussion on our assumption
on . We made this assumption to ensure that for all

. Note that we did not need this condition for continuous
time. The next example shows that we do need it with discrete
time since otherwise convergence may fail.

Example 1: For , let be arbitrary and let

so that . For we let and
be arbitrary. Finally, let .

Now, consider the situation of two birds flying on a line. That
is, and instead of we take . Let and

. Then

It is easy to check that . In addition,

and

We see that, for all , , and
while and

. Thus, keeps constant (with value ) and
does not converge to 0.

VI. LANGUAGE EVOLUTION

We now consider a linguistic population with agents
evolving with time. At time , the state of the population is
given by . Here is interpreted
as the space of positions and as the space of languages of
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[14]. Thus, unlike the development in Section III, the functions
and do not belong to the same space.
We model the evolution of the population with the system of

differential equations

Again, is the Laplacian of the matrix given by
for some function . Similarly

with for some function . The distance
between languages in is defined as in [14].

A rationale for this model could be the following. Agents tend
to move towards other agents using languages close to theirs
(and therefore, communicating better). Hence, the first equation.
Also, languages evolve by the influence from other agents’ lan-
guages and this influence decrease with distance (for instance,
because of a decrease in the frequency of linguistic encounters).
Hence, the second equation.

Theorem 4: Let be non-increasing.
Then, when , the state tends to a point in the
diagonal of .

Proof: We use the ideas and notations from Section III. In
particular, we denote and and
we denote by and the Fiedler numbers of and ,
respectively. Reasoning as in Proposition 2 we obtain, for all

and

This shows that both and are decreasing func-
tions on and satisfy

and

However, since both and are nonincreasing, by Propo-
sition 4

Thus

and . This shows the conver-
gence to 0 of . That of is similar.

Remark 6:
i) We interpret the convergence of to a fixed

as the formation of a tribe and the convergence of to
a fixed as the emergence of a common language
as in Examples 2 and 3 of [14]. The first such example is
taken from [15] were models are proposed (and studied
via simulation) for the origins of language. The second, is
a modification of it proposed in [14] for the emergence of
common vowel sounds.

ii) The assumption of symmetry is plausible in contexts
where (unlike the Mother/Baby case discussed in [14,
Ex. 4]) there are no leaders in the liguistic population.

iii) Detailed learning mechanisms could be introduced by first
deriving a result akin to Proposition 3 for discrete time and
then follow [14].

iv) We have not used any argument as those in the proof
of Proposition 3. These arguments involved expressions
like which, in the situation at hand, would be
meaningless.
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