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Abstract. We show that the abstract Voronoi diagram of n sites in the plane can be 
constructed in time O(n log n) by a randomized algorithm. This yields an alternative, 
but simpler, O(n log n) algorithm in many previously considered cases and the first 
O(n log n) algorithm in some cases, e.g., disjoint convex sites with the Euclidean 
distance function. Abstract Voronoi diagrams are given by a family of bisecting curves 
and were recently introduced by Klein [-13]. Our algorithm is based on Clarkson and 
Shor's randomized incremental construction technique [7]. 

I. Introduction 

The Voronoi  diagram of a set of sites in the plane partitions the plane into regions, 
called Voronoi  regions, one to a site. The Voronoi  region of a site s is the set of 
points in the plane for which s is the closest site among  all the sites. The Voronoi  
diagram has many applications in diverse fields, see 1-19] or I-3] for a list of 
applications and a history of  Voronoi  diagrams. Different types of diagrams result 
from considering different notions of distance, e.g., Euclidean or L f n o r m  or 
convex distance functions, and different sorts of sites, e.g., points, line segments, or 
circles; see also Section 4. For  many  types of  diagrams efficient construct ion 
algorithms have been found; these are either based on the divide-and-conquer 
technique due to Shamos and Hoey [22], the sweepline technique due to For tune  
[10], or  geometric transforms due to Brown [5] and Edelsbrunner and Seidel I-8]. 

A unifying approach  to Voronoi  diagrams was recently proposed by Klein [13]. 
He does not  use the concept  of  distance as the basic not ion but rather the concept  
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version of this paper has been presented at STACS '90, Rouen, France. 
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of bisecting curves, i.e., he assumes for each pair {p, q} of sites the existence of a 
bisecting curve J(p, q) which divides the plane into a p-region and a q-region. The 
intersection of all p-regions for different q's is then the Voronoi region of site p. He 
also postulates that Voronoi regions are simply connected and partition the plane. 
He shows that abstract Voronoi diagrams already have many of the properties of 
concrete Voronoi diagrams, see Section 2. He also shows that the divide-and- 
conquer technique can be used to construct abstract diagrams efficiently. More 
precisely, if the basic geometric operations on bisecting curves take time O(1) and if 
any set S of sites can be split in time O(]S]) into about equal-sized subsets L and R 
such that the bisector between L and R (=  the common boundary of regions in L 
with regions in R) is acyclic, then the Voronoi diagrams of L and R can be merged 
in time O(IS]) and hence the diagram of n sites can be constructed in time 
O(n log n). Klein's result subsumes many of the previous results and goes far 
beyond them. There are, however, situations, e.g., circle sites under Euclidean 
distance, where it is not known how to determine L and R in the divide-and- 
conquer algorithm such that their bisector is acyclic; see [23]. 

The purpose of this paper is to show that there is an O(n log n) randomized 
algorithm for constructing (a subset of Klein's) abstract Voronoi diagrams even 
without the acyclicity assumption. The subset is defined by the following two 
general position assumptions: we do not allow bisecting curves to touch but 
require that all intersections are crossings and that no four bisecting curves go 
through a common point. 

The algorithm is given in Section 3 and applications can be found in Section 4. 
In many concrete situations, e.g., point sites with Euclidean distance function, our 
algorithm is just another O(n log n) algorithm, albeit simpler. There are however at 
least two cases where we achieve O(n log n) for the first time: For disjoint convex 
sites the best deterministic algorithm runs in time O(n(log n) 2) [19] and for line 
segments under the Haussdorff metric, i.e., a point x and a line segment s = sl s2 
have distance max(]x - sl ], [x - s2]), an O(n log n) algorithm was only known in 
the special case of so-called a-disjoint segments [3]. We also want to stress that the 
new algorithm is uniform in the sense that only a small number of primitives, see 
Section 2, are problem specific. 

Our algorithm is based on Clarkson and Shor's randomized incremental 
construction technique [7]. The idea is to construct the abstract Voronoi diagram 
of a set S of sites incrementally by adding site after site in random order. When 
R __q S is the current set of sites, the Voronoi diagram V(R) and a conflict graph 
G(R) is maintained. The conflict graph contains all pairs {e, t}, where e is an edge of 
V(R) and t E S - R is a site still to be considered, such that addition of site t causes 
the edge e to be removed (either completely or partially) from the diagram. In order 
to make Clarkson and Shor's method applicable we have to show that for a site 
s~ S -  R the diagram V(R w {s}) and the conflict graph G(R w {s}) can be 
constructed from V(R) and G(R) in time 

o E ' 
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where degG(R~(e ) is the degree of e in G(R) and the summation is over all edges e of 
V(R) which conflict with new site s. This is the content of Theorem 1 of Section 3. If 
the method is applicable the expected running time is 

O(n+m(n)+n.  ~<_,<_./2 ~ m(r)/r2) ' 

where re(r) is the expected number of edges in V(R). For abstract diagrams 
re(r) < 3r and hence the algorithm runs in time O(n log n). 

Throughout  we use the following notation: For a subset X _ R 2 the closure, 
boundary, and interior of X are denoted by cl X, bd X, and int X, respectively. 

2. Abstract Voronoi Diagrams 

Let n e N, and for each pair of integers p, q such that 1 _< p 4= q < n let D(p, q) be 
either empty or an open unbounded subset of R 2 and let J(p, q) be the boundary of 
D(p, q). We postulate: 

(1) J(p, q) = J(q, p) and for each p, q such that p 4: q the regions D(p, q), J(p, q), 
and D(q, p) form a partition of N2 into three disjoint sets. 

(2) If ~ r D(p, q) r N2, then J(p, q) is homeomorphic to the open interval 
(0, 1). 

We call J(p, q) the bisecting curve for sites p and q. The abstract Voronoi diagram 
is now defined as follows: 

Definition [13]. 

(a) Let S = {1 . . . . .  n - 1} and 

~D(p, q) u J(p, q) 
R(p, q).= ( D(p, q) 

VR(p, S) ,= (-) R(p, q), 
q~S 
qC: p 

V(S) := U bd VR(p, S). 
pES 

if p<q, 
if p>q, 

VR(p, S) is called the Voronoi region of p with respect to S and V(S) is called 
the Voronoi diagram of S. 

(b) We postulate that the Voronoi regions and the bisecting curves satisfy the 
following two conditions: 
(1) Any two bisecting curves have only a finite number of points in 

common. Any point in common to two bisecting curves is a proper 
crossing between the two curves, see Fig. 1. 
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Fig. I. 
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A crossing and touching point. 

(2) For any nonempty subset S' of S 
(A) if VR(p, S') is nonempty, then VR(p, S') is path-connected and has 

nonempty interior for each p E S', 
(B) ~2 = ~pEs, VR(p, S') (disjoint) 

Remark. Klein's definition is actually more liberal. He allows that bisecting 
curves may touch and only requires that their intersection consists of finitely many 
connected components. In (2A) he postulates that each VR(p, S') is non empty. The 
weaker assumption made here does not harm his theory. 

Fact 1 

(a) 
(b) 

[15]. 

Voronoi regions are simply connected. 
The following holds for each point v ~ V(S): There are arbitrarily small 
neighborhoods U of v that have the following properties. Let VR(p 1, S), 
VR(p2, S) . . . . .  VR(pk, S) be the sequence of Voronoi regions traversed on a 
counterclockwise march around the boundary of U and let I1, 12 . . . . .  lk 
denote the corresponding intervals of bd U, where Ij = <wj, wr+l> ~_ 
VR(p r, S) for 1 < j < k (indices must be read mod k). The intervals may be 
open, half-open, or closed. We have w~ # wi+ 1 for 1 < j  < k. The common 
boundary of VR(pj_I, S) and VR(pj, S) defines a curve segment ~ir g 
J(Pi- 1, P~) connecting v and wj. F(S) ~ U is the union of the curve segments 
fir together with the point v. Each flj is contained in the Voronoi region of 
min{pj_ 1, P j}. The open "piece of pie" bordered by fir, fl~+ 1, and I~ belongs 
to VR(pj, S). The point v belongs to the region of min{pl . . . . .  Pk}" Finally, 
Pl # Pr for i # j. 

For the following it is helpful to restrict attention to the "finite part" of V(S). Let 
F be a simple closed curve such that all intersections between bisecting curves lie in 
the inner domain of F. We add a site ~ to S, define J(p, or) = J ( ~ ,  p) = F for all 
p, 1 < p < n, and D(ov, p) to be the outer domain of F for each p, 1 < p < n. 

Fact 2 [15-1. The boundary of each nonempty Voronoi region is a simple closed 
curve. Moreover, the closure of each nonempty Voronoi region VR(p, S), p # ~ ,  is 
homomorphic to a closed disc. A Voronoi diagram can be represented as a planar 
graph in a natural way. The vertices of the graph are the points of I/(S) which 
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belong to the boundary  of three or more  Voronoi  regions and the edges of the 
graph correspond to the maximal  connected subsets of V(S) belonging to the 
boundary  of exactly two Voronoi  regions. The faces of  the graph correspond to the 
nonempty  Voronoi  regions. We use V(S) to denote  this graph also. Fo r  the 
algori thmic t rea tment  of Voronoi  diagrams we also need to make  a feasibility 
assumpt ion  abou t  the bisecting curves. 

Definition [15]. The  following opera t ions  on bisecting curves are assumed to take 
time O(1). 

(1) Given J(p, q) and a point  v, determine if v ~ D(p, q) holds. 
(2) Given a point  v in c o m m o n  to three bisecting curves, determine the 

clockwise order  of the curves a round  v. 
(3) Given points v ~ J(p, q) and w e J(p, r) and orientat ions of these curves, 

determine the first point  of J(p, r)[tw, o~1 crossed by J(p, q)[t~, ~ r  
(4) Given J(p, q) with an orientat ion,  and points v, w, x on J(p, q), determine if v 

comes before w on J(p, q)l~x, ~ r  

Fo r  simplicity we also make  the following general posit ion assumption.  

General  Position Assumption: N o  four bisecting curves have a point  in common .  

The general posi t ion assumpt ion  and Fact  1 imply that  each vertex of the 
Voronoi  d iagram has degree three. It  lies at the intersection of three bisecting 
curves as shown in Fig. 2. 

Remark .  The requirement  that  the Voronoi  regions par t i t ion the plane is a severe 
restriction on the family of  bisecting curves. Consider  a crossing of J(r, p) and 
J(r, q) as in Fig. 3. Then  J(p, q) must  also pass through v with D(q, p) on its right. 

We close this section with a simple but  impor t an t  p roper ty  of Voronoi  edges: 

L e m m a  1. Let R ~_ S and t ~ S - R. Let e be an edge of V(R) which separates the 
regions VR(p, R) and VR(q, R) of the two sites p, q ~ R. Then e n VR(t, R • {t}) = 
e c~ VR(t, {p, q, t}). 

\ Pl  q I" 

i" 

Fig. 2. The bisecting curves J~, q), J(p, r), J(r, q) intersect at v. The domains D(p, q) and D(q, p) are 
indicated by the letters p and q on the two sides of the bisecting curve J(p, q). The parts of the bisecting 
curves which define region boundaries are shown as solid lines. 
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Fig. 3. 

Proof. (c_) This follows immediately from VR(t, R w {t}) c_ VR(t, {p, q, t}). 
( _ )  Let x~ec~VR( t , {p ,q , t } ) .  From x E e  we conclude x ~ V R ( p , R )  w 

VR(q,R)  and hence x e V R ( r , R ) _ ~ V R ( r ,  R w { t } )  for any r ~ R - { p , q } .  
From x E VR(t, {p, q, t}) we conclude x ~ VR(p, {p, q, t}) u VR(q, {p, q, t}) _~ 
VR(p, R w {t}) w VR(q, R u {t}). Thus x r VR(r, R w {t}) for any r E R and hence 
x ~ VR(t, R ~ {t}). [] 

Informally, Lemma 1 states that the influence of a site on a given edge depends 
only on the sites defining this particular edge. 

3. Incremental Construction of Abstract Voronoi Diagrams 

In this section we describe the incremental construction algorithm. We start with 
three sites oo, p, q where p and q are chosen at random and then add the remaining 
sites in random order. At the general step we have to consider a set R ~_ S of sites 
with oo e R and [R[ _> 3. We maintain the following data structures. 

(1) The Voronoi diagram V(R): It is stored as a planar graph as described in the 
previous section. 

(2) The conflict graph G(R): The vertices of the conflict graph G(R) are the 
edges of V(R) and the sites in S -  R. There is an edge (read: conflict) 
between the edge e of V(R) and the site s ~ S - R iff e c~ VR(s, R u {s}) 

Remark. Recall that an edge of a Voronoi diagram is an open set and that a 
Voronoi region may contain part of its boundary. For the definition of conflict 
graph it is however immaterial whether we intersect open sets or their closures. 

Lemma 2. cl e r~ cl VR(s, R • {s}) #: ~Z~ implies e ~ VR(s, R • {s}) 4: ~ .  

Proof. Let x ec l  e n cl VR(s, R u {s}). Assume first that x is an endpoint of e. 
Then x lies at the intersection of three bisecting curves of sites in R. Hence no 
bisecting curve J(s, r), r e R, can go through x and therefore an entire neighbor- 
hood of x must belong to VR(s, R w {s}). Thus e c~ VR(s, R u {s}) #: ~ .  Assume 
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next that x ~ e c ~ b d V R ( s ,  R u { s } ) .  Then x ~ J ( p , q ) ~ J ( s , r )  for some sites 
p, q, r ~ R. The bisecting curves J(p, q) and J(s, r) cross at point x and hence there is 
a point y ~ e in the ne ighborhood of x such that y E VR(s, R w {s}). [ ]  

We next discuss how to update the data structures after the addit ion of a site 
s e S - R to R. We first concentrate on the construct ion of the Voronoi  diagram 
V(R u {s}) from V(R) and G(R). 

Let ,9 ~ = VR(s, R w {s}). We proceed in several steps. Lemma 3 deals with the 
case ,~ = ~ .  The case 5~ ~ ~3 is dealt with in Lemmas 4 and 5. We show that  the 
intersection of  the current diagram V(R) with the region ow is a connected set 
(Lemma 4) and that the intersection e c~ ow for an edge e of V(R) consists of at most  
two components  (Lemma 5). F rom Lemmas 4 and 5 we derive the update 
algorithm. 

Lemma 3. 5 ~ = ~Z~/ff deg6tR)(S) = 0. 

Proof If 5f = ~ ,  then clearly degG~m(s ) = 0. So let us assume 5P 4: ~Z~. If 
degGtR)(S) = 0, then c15 P_~ int VR(r ,R)  for some r ER. Next observe that 
VR(r, R w {s}) = VR(r, R) - ,9 ~ Also r 4: ~ since V R ( ~ ,  P) is the outer domain  
of the closed curve F for all P, oo E P _ S. Thus VR(r, R w {s}) is bounded but not 
simply connected. This contradicts Fact l(a). [ ]  

If 5 ~ = ~ ,  then V ( R w { s } ) =  V(R). So let us assume 5 # r  and hence 
deg~tR)(S) 4: 0. Let I = V(R) c~ cl 5 ~. 

Lemma 4. I is a connected set which intersects bd ~ in at least two points. 

Proof The boundary  bd 5 P is a simple closed curve which does not  go through 
any vertex of V(R). This follows from Fact  2 and the general position assumption. 
Also I 4: ~ by Lemma 2. Let 11, 12 . . . . .  Ik be the connected components  of I. 

Claim. Each l j, 1 < j <_ k, contains two points of bd 5 p. 

Proof Assume first that Ij  contains no points of  bd 5g, i.e., Ij ~_ int 5~. Then there 
is a simple closed curve C c i n t  5 ~ such that I~ is contained in the inner domain  of 
C and C does not intersect V(R). Thus C c_ int VR(r, R) for some r e R. Since 
Voronoi  regions are simply connected, C and its interior must  belong to VR(r, R) 
and hence C cannot  contain a componen t  I~ in its interior. Assume next that I~ 
intersects bd 5g in exactly one point, say x. Then there is a simple closed curve C 
containing I~ in its inner domain  such that  x e C, C - {x} _ int 5e and C - {x} 
does not intersect V(R). Thus C - {x} _~ VR(r, R) for some r e R and hence x is a 
point on an edge of V(R) such that both  sides of the edge belong to the same 
Voronoi  region. This contradicts Fact  1. [ ]  

Assume now that  k >_ 2. Then there is a path P _  cl 5 ~ - ( I 1  u ... u lk) 
connecting two points on the boundary  bd S such that one componen t  of 5g - P 
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bd 

Fig. 4. 

bd 5e 

Two possible cases of Lemma 5. 

contains 11 and the other componen t  contains 12 . Let x and y be the endpoints  of P 
and let r �9 R be such that  P ~_ VR(r, R). Since x, y ~ V(R)  we conclude that 
VR(r, R u {s}) = VR(r, R) - 5 e # ~ .  Thus x, y �9 cl VR(r, R u {s}) and hence 
there is a simple path Q ~_ el VR(r, R w {s}) with endpoints  x and y. The cycle 
P o Q is then contained in cl VR(r, R) and contains either 11 or 12 in its interior. 
Thus VR(r, R) is not  simply connected, a contradict ion to Fact  2. []  

Lemma 5. Let  e be an edge o f  V(R). If e n 5e # ~ ,  then either e n 6e = V(R) n 5# 
and e n 5r is a single component or e - 5 ~ is a single component; see Fig. 4. 

Proof  Assume first that  e now = V ( R ) ~  5r Since V ( R ) n  Sf is connected by 
Lemma 4 we conclude that  e now is connected. Assume next that e n 5 e v L 
V(R)  n 5 e. Then with every point x �9 e n 5 e one of the subpaths of e connect- 
ing x to an endpoint  of e must  be contained in 5C Hence e -  ,9O is a single 
component .  [ ]  

Let L = {eedge of V(R); {e,s} �9 G(R)}. For  e � 9  L let e' = e now. Note  that 
e' = e n VR(s, {p, q, s}) by Lemma 1 where e separates the regions of sites p and q; 
hence e' can be computed  from e in time O(1). We have shown above that the 
set N e l l  cl e' = V(R)  n cl ,9 ~ is connected. Let B = {x; x is an endpoint  o fe '  which 
is not  an endpoint  of e for some e �9 L} = V(R) n bd 5#. Since bd SP is a simple 
closed curve by Fact  2, bd ~ induces a cyclic ordering on the points in B. Since 
V(R) n cl 6e is connected this cyclic ordering can be determined by a traversal of 
the planar graph V(R)  ~ cl 6e. It is now easy to update  the Voronoi  diagrams as 
follows: 

Step 1. Compute  e' for each e �9 L. Remove e' from V(R) for each e �9 L. 

Step 2. Compute  B and the cyclic ordering on B induced by bd 5g. 

Step 3. Let x l  . . . . .  x k be the set B in its cyclic ordering and let r i �9 R be such that 
{xi, xi+ 1 } -- bd VR(rl, R). 

(I)  for i from 1 to k 
(2) do add the par t  of  J ( r .  s) with endpoints  x i and x~+ 1 to the Voronoi  diagram 
(3) od 
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For  the time bound  we only have to observe that steps 1 and 2 take time O(ILI)  and 
that step 3 takes time O(k) = 0(ILl). This proves the following 

Lemma 6. Let s ~ S - R. Then V(R u {s}) can be constructed f rom V(R) and G(R) 
in time O(degt;tRl(s) + 1). 

We now turn to the update of the conflict graph. 

Let s E S - R. Then G(R u {s}) can be constructed f rom V(R) and G(R) Lemma 7. 
in time 

o y (,e. G,R, deg6'R'(e))" 

Proof  In this proof  we distinguish three cases: edges of V(R n {s}) which were 
already edges of V(R),  edges which are part  of edges of  V(R), and edges which are 
completely new. The only difficult case is the third one; it is dealt with in Lemma 8. 

As above let L = { e ; e  is an edge of  V(R)  and e n 6  a r  where 6 e =  
VR(s, R w {s}). For  e ~ L the conflict information does not change. This follows 
from 

e n VR(t, R u {s, t}) = e n (VR(t, R u {t}) - VR(s, R u {s, t})) 

and 

(e n VR(t, R w {t})) - (e n VR(s, R u {s, t})) = e n VR(t, R u {t}). 

Let us next consider an edge e e L. If e ~_ ~ ,  then e has to be deleted from the 
conflict graph. This certainly takes time O(dego~s~(e)). If e ~ ~ ,  then e -  
consists of at most  two subsegments by Lemma 5. Let e' be one of  those 
subsegments and let t e S - R - { s } .  Then e ' n V R ( t ,  R w { s } u { t } ) =  
e' n NrER R(t, r) n R(t, s) = e' n VR(t, R u {t}) n R(t, s) _ e n VR(t, R u {t})and 
hence any site t in conflict with e' must  be in conflict with e. 

It remains to consider those edges of V(R u {s}) which are not  fragments of 
edges of V(R). Let e12 be one of those edges. The endpoints  Xl and x2 of e12 lie in 
the interior of edges el and e 2 on bd VR(p, R) for some p e R. Also e12 is part  of  the 
bisecting curve J(p, s). Note  that p r ~ since J(oo, s) = F _ V(R). Let P be that 
part  of bd VR(p, R) which connects Xl and xz and is contained in 6e in all 
sufficiently small ne ighborhoods  of  x 1 and x 2. 

Claim. p c_ ~ .  

Proof. bd VR(p, R) is a simple closed curve and int VR(p, R) is the bounded  
domain  defined by this curve. Assume now that P crosses bd ~9 ~ Then 
VR(p, R u {s}) = VR(p, R) - o~ is not  connected, a contradiction. [ ]  

Lemma 8. Let t e S - R - {s}, and let t conflict with e12 in V(R  u {s}). Then t 

conflicts in V(R)  with either e 1 or e 2 or one o f  the edges o f  P. 
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/ ~ -  ........ ~ v R ( v , n )  

\ / 
'\ / 

Xl Z X2 

b d ~  

Fig. 5. 

Proof Consider  VR(p, R) (Fig. 5). By the definition of conflict a point  x e e 12 
exists such that  x e VR(t, R u {s, t}) _ VR(t, R u {t}). Since we claim a contradic-  
t ion we assume that  t is not  in conflict with P, el ,  or e 2 in V(R). Thus, 
VR(t, R w {s, t}) c~ U(x~) ~ VR(t, R u {t}) c~ U(x 0 = ~ for any sufficiently small 
ne ighborhood  U(x 0 of Xl. N o w  consider in any such ne ighborhood  of Xl the 
wedge spanned by e12 and the par t  of e 1 outside 6 e. The points  in this wedge all 
belong to VR(p, R w {s, t}). The same is true for any sufficiently small neighbor-  
hood  of x 2 with e 2 instead of e~. Since VR(p, R u {s, t}) is connected, there is a 
pa th  Q from xl to x2 running completely inside VR(p, R w {s, t}) ~_ VR(p, R w {t}) 
except at the endpoints  (see Fig. 6). By definition of P and Q the Voronoi  region 
VR(t, R u {t}) cannot  intersect these two paths. Moreover ,  x lies in the interior of 
the cycle xl  o P o x 2 o Q; otherwise VR(p, R) would not  be simply connected. F rom 
x l ,  x2 ~ VR(t, R w {t}) and x e VR(t, R w {t}) we conclude that  VR(t, R w {t}) lies 
in the interior of the cycle. This is a contradict ion to the fact that  VR(p, R ~ {t}) is 
s imply connected.  []  

L e m m a s  8 and 1 together  allow us to compu te  the conflict informat ion for the 
new edges. Let e~2 g J(p, s) be any new edge. A site t in conflict with edge e12 must  
have conflicted in G(R) with either e l, e 2 or  one of the edges on the pa th  P by 
L e m m a  8. Also for any such site t we can compute  the conflict informat ion 
e12 c~ VR(t, R w {s, t}) in t ime O(1) by L e m m a  1. Thus  the set of  neighbors of edge 

Xl ~ X 2  
el .~ e2 

Fig. 6. 
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el2 in G(R w {s}) can be computed  in time 

O ( ~ P ~ e  .... I deg~tRl(e)) ' 

where the sum is over  all edges in P w {e 1, e2}. Next  observe that  every edge 
e �9 V(R) with e c~ VR(s, R w {s}) ~ ~ can belong at most  twice to a pa th  P for 
some new edge by planarity.  Thus  G(R u {s}) can be obtained from G(R) in t ime 

o Z s, G,R, degG'R'(e))" 

This proves L e m m a  7. [ ]  

Theorem 1. 

(a) Let s E S - R. Then the data structures G(R u {s}) and V(R u {s}) can be 
obtained from G(R) and V(R) in time 

o y (,e, o(R, dego(m(e))" 

(b) For R c_ S, I R I = 3, and ~ �9 R the data structures V(R) and G(R) can be set 
up in time O(n) where n = [S[. 

Proof (a) This point  summarizes  Lemmas  6 and 7. 
(b) The Voronoi  d iagram V(R) for three sites oo, p, and q has the structure 

shown in Fig. 7 and can certainly be set up in time O(1). Also for each of the edges e 
of V(R) and each of the n - 3 sites in S - R we can test e ~ VR(t, R w {t}) 4: ~ in 
O(1) by L e m m a  1. This proves (b). []  

L e m m a  9. 7he number of edges of V(R) is at most 3IRI. 

(X3 

Fig. 7. The Voronoi diagram for sites ~,  p, and q. 
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Proof. V(R) is a planar graph with at most I RI regions. Also, each vertex 
has degree three. The number of edges is therefore at most 31R[ by Euler's 
formula. [] 

Theorem 2. The abstract l/oronoi diagram V(S) of n sites can be constructed by a 
randomized algorithm in time O(n log n). 

Proof. In [7] Clarkson and Shor show that randomized incremental construction 
has expected running time 

O(m(n) + n. 1<_,<_n/2 ~" m(r)/r2 + n) 

provided that initialization takes time O(n) and addition of an object (here site) s to 
the set R takes time proportional to 

degGtR)(e), 
{e, s} e G(R) 

where the summation is over all regions (here edges) of the current structure (here 
Voronoi diagram V(R)) which conflict with site s. Also m(r) is the expected size of 
the structure for a random subset R _ S of r elements. In our case we have 
m(r) < 3r by Lemma 9. Finally, the assumptions of Clarkson's theorem are satisfied 
by Theorem 1. The time bound follows. [] 

Remark. In our alogorithm ~ ~ R always. An inspection of Clarkson's argument 
shows that this minor deviation from randomness does not change the time bound. 

4. Applications 

Many previously considered types of Voronoi diagrams fall under the framework 
described above. 

1. Point Sites. In their pioneering paper Shamos and Hoey [22] showed how to 
construct the Voronoi diagram for point sites under the Euclidean metric in 
time O(n log n). This was later extended to arbitrary Lp-metrics, 1 < p < ~ ,  by Lee 
[18], to the L2-metric with additive weights by Sharir [23] and Fortune [10], to the 
so-called Moscow-metric by Klein [14], to convex distance functions by Chew and 
Drysdale 1-6] and Fortune [9], and to abstract Voronoi diagrams by Klein and 
Wood [17] and Klein 1-13]. The previous algorithms for abstract diagrams had to 
assume, as they were based on the divide-and-conquer approach, that the set of 
sites S can be partitioned into about equal-sized subsets L and R such that the 
bisector between L and R is acyclic. This assumption is crucial for the efficiency of 
the merging step. For all cases mentioned our algorithm gives an alternative 



On the Construction of Abstract Voronoi Diagrams 

Fig. 8. The bisector for a point and a circular arc. 
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O(n log n) solution, albeit randomized. For  abstract diagrams [13] we do not need 
the acyclicity assumption, however, and for the L f n o r m  we may also add additive 
weights. 

2. Beyond Point Sites. Point and line sites were considered by Kirkpatrick [12] 
and Fortune [10], and disjoint convex objects were considered by Leven and 
Sharir [19]. In the latter case, the running time is O(n(log n) 2) since the Leven- 
-Sharir algorithm uses divide-and-conquer and the bisector between the subsets L 
and R of S mentioned above is not necessarily acyclic. Our algorithm runs in 
time O(n log n). Other applications are the Voronoi diagrams for circles under the 
Laguerre distance [11], [1], [2] and for disjoint convex polygons under a convex 
distance function [20]. 

Of course, there are also types of Voronoi diagrams which do not fall under the 
framework, e.g., the diagram for points under the Euclidean metric with multiplica- 
tive weight [4], the diagram for points and circular arcs, and the diagram for points 
under metrics which arise from weighted partitions of the plane [21]. In all three 
cases the bisector J(p, q) of two sites may be a closed curve, see Fig. 8. 

5. Conclusions and Open Problems 

We showed that Clarkson and Shor's randomized incremental construction 
method works for (a subset of) Klein's abstract Voronoi diagrams. Many pre- 
viously considered types of Voronoi diagrams can thus be handled by the same 
simple algorithm. In [16] the results of this paper are extended in two ways. We 
show that the algorithm can be programmed on a schema level such that specific 
Voronoi diagram algorithms can be derived in a simple way; we also drop the 
general position assumption and the assumption that bisecting curves may not 
touch. Nevertheless, many open problems remain: 

(1) Can the concept of abstract Voronoi diagram be generalized to higher 
dimensions? 

(2) What can be done in two dimensions without the assumption that bisectors 
are nonclosed curves? 

(3) Can the algorithm be modified in order to handle higher-order Voronoi 
diagrams? 
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