
Algorithms and Programs
Erasmus Lecture 2014

Kurt Mehlhorn∗

August 14, 2015

Abstract

This article is based on the Erasmus Lecture that I delivered at the 2014 Annual
Meeting of the Academia Europaea in Barcelona. I will discuss my early fascination for
the field, algorithms, programs, laws of computation, the double role of informatics as a
mathematical and engineering discipline, and my effort to teach informatics to non-majors
and the general public.

1 Introduction

Information technology (IT) has changed and will continue to change the world in profound
ways. Informatics (computer science) is the new science behind this revolution. I assume
that the reader is convinced of the usefulness and economic impact of information technology
and uses some of its amenities, e.g., computers, smartphones, the Internet, search engines,
navigation systems, and electronic banking. However, I also assume that most readers know
very little about Informatics as a scientific discipline. The main goal of this article is to
contribute to a better understanding of Informatics as a scientific discipline. The article is
based on the Erasmus Lecture that I delivered at the 2014 Annual Meeting of the Academia
Europaea in Barcelona. I created a companion webpage1 for this article, which contains
additional material.

This article is divided into four parts. First, I will discuss my early fascination for the
field: Why did I study informatics? Then, I will discuss algorithms, programs, and laws of
computation. Physicists discover laws of nature, informaticians discover laws of computation.
Informatics is a mathematical and an engineering discipline. In the third part, I will discuss the
interplay between theory and practice. Finally, I will report on my effort to teach informatics
to non-majors and the general public.

Information technology has revolutionized the world. IT is much more than Informatics.
It also rests on physics, electrical engineering, material science, chemistry, and mathematics.
Our daily lives are very different from what they were 20 years ago. We can now communicate
whenever and wherever we want. We get off a plane, turn on our phones, and we are reachable
again almost instantly. This is amazing. It means that the mobile phone system knows, at any
given time, the exact location of every mobile phone in the world. We use search engines to
find information. For example, when you type Kurt Mehlhorn into Google, it will return after

∗Max-Planck-Institut für Informatik, Saarbrücken, Germany
1http://people.mpi-inf.mpg.de/~mehlhorn/ErasmusLecture.html

1



less than half a second that it is aware of several hundred thousand documents containing
the words Kurt and Mehlhorn and that it “believes” that my homepage and the Wikipedia
entry about me are the most relevant documents for the query. This is amazing. Professions
such as type setters have disappeared, and professions such as web designer, have appeared.
There are many more examples of how IT has changed the world. In the future, we will see
autonomous robots, systems that can make inferences across documents, and machines that
can learn. Of course, IT also has its dark sides: IT-security and privacy are two of them.

2 Early Fascination

How did I get interested in Informatics? In a certain sense, I am the oldest German Infor-
matician. Informatics was introduced in Germany as a field of study in 1968, and I started my
university studies in 1968. So, I belong to the first group of Informaticians that were trained
as such. It has been clear to me since the age of 14 that I would study mathematics. Not that
I knew what a mathematician did for a living. The only mathematicians I knew were my high
school teachers. So, I started with mathematics and physics. One of my friends informed me
that there was also a new subject: Informatics. Since we had spare time, we also took this
course. I had no idea what Informatics was about. I had never seen a computer except in
pictures.

Figure 1: F.L. Bauer

The lectures in Mathematics and Informatics differed widely from
each other. The Math lectures were polished, the level of difficulty
was consistent, and it was clear that we were being introduced to the
foundations of a huge body of knowledge. Moreover, the lecturer had
the material at his fingertips.

F.L. Bauer, one of the founding fathers of German Informatics,
taught the Informatics course. It was very different. Some lectures
were trivial, some lectures were extremely challenging, some lectures,
I am still sure, not even the instructor understood. F.L. Bauer was
able to convince his audience that we were entering a new age. He
could not say what this world would look like; however, he was ab-
solutely convinced, and he convinced us, that this new age would be
full of opportunities and surprises. He convinced us that we had the

chance to be the pioneers in this new field.

Figure 2: Al-Khwarizmi,
780 – 850

What was it precisely, that fascinated me? I found the concept of a
formal language intriguing. Hermann Maurer, the former dean of the
Informatics Section of AE, had written an excellent textbook about
formal languages, which I studied very carefully. I was intrigued by
the fact that one can define languages in a precise way, by the fact
that these languages can be processed by machine, and by the fact
that one define languages in which one can tell machines what to do.
We call such languages programming languages.

F.L. Bauer used Algol 68 as the programming language in his
lectures. As the name reveals, the language was designed in 1968
and the language report [vWMPK69], i.e., the document defining the
syntax and the semantics of the languages, was completed in the fall of
’68. The syntax defines which sentences belong to the language. The

2



Algorithm Sample Execution

write the equation as x2 + bx+ c = 0 x2 + 8x− 9 = 0

move the constant term to the other side x2 + 8x = 9

add (b/2)2 on both sides x2 + 8x+ 42 = 9 + 42

write LHS as (x+ b/2)2, simplify RHS (x+ 4)2 = 25

if RHS is negative, STOP (no solution)
remove 2 on LHS, replace RHS by ±

√
RHS x+ 4 = ±

√
25

move constant term from LHS to RHS x = −4±
√
25

Figure 3: An algorithm for solving quadratic equations. The left column shows the steps of the algorithm.
The right column shows a sample execution. LHS abbreviates left-hand side and RHS abbreviates right-hand
side.

semantics defines the meaning of well-formed sentences. F.L. Bauer
gave us the language report to read in the spring of 1969, at the end of my first semester.
The language report is the most complicated book that I have ever tried to read. I tried very
hard, but never finished reading it. The experience made clear that entering the new world
would be a demanding task.

I was also intrigued by algorithm design and programming. What is an algorithm? An
algorithm is a step-by-step procedure for solving a certain class of problems. For every instance
of the problem, the execution of the algorithm must yield a solution for the instance. There
is no thinking required when one executes an algorithm; it is purely mechanical. The name
goes back to Al-Khwarizmi, a Persian mathematician, who lived in the 8th and 9th centuries.
He wrote a book in which he discusses algorithms for doing calculations with numbers (The
Compendious Book on Calculation by Completion and Balancing).

I give two examples to make the concepts algorithm and program more concrete. You
all know programs in the form of cooking recipes. The author/inventor of the recipe is the
programmer. The cook is the machine that executes the program. Of course, programmer
and machine may be one and the same person.

My second example comes from Al-Khwarizmi’s book: an algorithm for solving quadratic
equations. See Figure 3. Many readers will have learned this algorithm in high school, probably
without being told that it is an algorithm.

Figure 4: The PERM

What is the difference between a program and an algorithm? A
program is intended for execution by a computer. It specifies all de-
tails and is formulated in a programming language. It is completely
clear what every step means, and there is no intelligence needed to
execute the program. On the other hand, algorithms are intended for
human consumption. My examples above are algorithms, not pro-
grams. For example, the formulation of the algorithm in Figure 3
assumes that you understand the concept of left- and right-hand side
of an equation and that you know that a term changes signs when

it is moved from one side of the equation to the other.
Computers were huge in 1968. Figure 4 shows the PERM, the programmierbare elektronis-

che Rechenanlage München (programmable electronic computer Munich), on which I learned
to program. It is now at the technical museum in Munich. The technical advancement since

3



’68 is well-illustrated by the fact that the speed and storage capacity of today’s notebooks is
about one hundred thousand times that of the PERM. At the same time, the size and cost
have also been reduced by orders of magnitude.

I close this part by highlighting three formative insights from my first years of studying
informatics.

First, there are algorithms for intellectually demanding tasks. For example, we learned an
algorithm for computing shortest paths between any two locations on a map. An instance of
this problem would be to find the shortest path from here to my home in Saarbrücken. I had
planned routes for vacation trips and found it challenging. Now, I learned that this task can
be mechanized and performed by a machine, an eye-opening experience.

The second insight was that computers amplify brainpower. Mankind has always built
machines to ease everyday life. All machines existing before computers amplify only muscular
power. We use cranes to lift heavy items, and we use cars to go faster than we could with
bicycles. Computers amplify brainpower, and it was immediately clear that this would open
up a new world.

Finally, designing algorithms and writing programs is an act of creation. It is not just a
creative activity, it is more. It creates an object that “lives”, interacts with its environment by
consuming inputs and producing outputs, and that performs, on its own, computations that
the programmer could never do on his/her own.

3 Laws of Computation

Physicists discover laws of nature, informaticians discover laws of computation.

Figure 5: MIPS R10K

A law of nature connects basic physical quantities,
e.g., acceleration, mass, and force. A law of compu-
tation connects basic computational quantities, e.g.,
the amount of resources needed to perform a certain
computational task. The most important resources
are time and space: time measures the number of el-
ementary steps needed for a task and space measures
the amount of storage needed for intermediate results.
Time and space are different in the sense that time
passes and space can be reused.

I next discuss a particular law of computation in
more detail. I have selected it because it is easily ex-
plained pictorially and because I had a part in its dis-
covery. Figure 5 shows the MIPS-1000, a vintage 1995
microprocessor. In the bottom left corner, there is a
block called FP-Mult. It multiplies numbers; more
precisely, it multiplies numbers with 52 binary digits.
It occupies about 3 by 4 mm of space and performs a
multiplication in about five microseconds.

Is this good?

Should we be impressed by the design of the multiplier? We next perform an abstraction.
This is standard when we want to discover fundamental laws. For example, Newton’s law of
motion ignores friction.

4



How Hard is it to Multiply Numbers? We study the problem of multiplying numbers
with n digits by integrated circuits for large n. Considering only large n allows us to concen-
trate on the essence of the problem. We measure the complexity of a design by two quantities,
namely

A = the area of the circuit, and
T = the execution time of the circuit.

IMPOSSIBLE

small/fast

large/fast

small/slow

POSSIBLE

Area A of circuit

Time T required for multiplication

Figure 6: Area-time tradeoff: Every com-
bination of A and T in the red region is im-
possible, and every combination of A and T
in the green region can be realized.

Since multiplication is a fundamental computa-
tional problem, there are many different circuit designs
for it. There are fast circuits, but all of them are large
in area. There are small circuits, but all of them are
slow in computation time. It is natural to ask whether
there is a circuit that is small and fast? The answer
is NO ! There can be no such circuit. Figure 6 illus-
trates the design space. Each design corresponds to
a point in this space. The x-coordinate of the point
is the area of the circuit, and the y-coordinate of the
point is given by the execution time of the circuit. De-
signs that are fast and small would sit in the bottom
left corner, designs that are large are located on the
right, and designs that are slow are located at the top.
The red region indicates designs that are impossible,

namely, there is a constant c depending only on the technology such that AT 2 ≥ cn2 and
T ≥ c log n for any circuit that multiplies n-digit numbers. There is another constant C de-
pending only on the technology such that any pair (A, T ) with AT 2 ≤ Cn2 and T ≥ C log n
can be realized. The green region comprises all these designs. Since C is larger than c, there
is a white area between the red and green regions, where we do not know, whether designs
exist or not.

4 Mathematician in the Morning, Engineer in the Afternoon

Figure 7: The LEDA
book

I like to characterize myself as a mathematician in the morning and an
engineer in the afternoon. This reflects the double nature of computer
science. It is a mathematical as well as an engineering discipline. As a
mathematician, I work on problems of a fundamental nature that are
intrinsic to the field, e.g. laws of computation or new algorithms, or on
abstracted versions of problems that come up in applications and are
too hard for engineers. As an engineer, I turn algorithms in programs,
design and build systems, and turn ideas into working and useful
systems, a task too mundane for mathematicians. I also identify
shortcomings in theories and the need for further theory building.

I next discuss some of my work where this interplay between the-
ory and practice has played an important role, the Library of Efficient
Data Structures and Algorithms (LEDA) project. I started teaching
algorithms and data structures in the mid ’70s. I wrote a widely used
three-volume book on the subject in the mid 80s. Yet, when I asked

5



former students whether they had implemented any of the solutions that I taught them, I
always got polite answers along the lines of: “Yes, the problems that you discussed do come
up. However, my boss has never given me the time to implement any of the complex solu-
tions that you taught us. We always settle for the simplest solution that requires the smallest
implementation effort.” By ’85, I had reached the conclusion that writing books and articles
does not suffice. In 1988, Stefan Näher and I started the LEDA project. We wanted to make
the knowledge of the field available in the form of easy-to-use, efficient, and correct software
modules. Our hope was that in this way, we would make the results of the field accessible
to non-experts. Our dream came true. Ten years later, LEDA was in use at thousands of
academic and industrial sites. Algorithmic Solutions GmbH, which Stefan and I founded to-
gether with Christian Uhrig, marketed the library, and LEDA became a role model for other
algorithmic library projects such as CGAL, STXXL, and BALL.

However, the road to success was not smooth. In fact, the project almost ruined my
reputation. We had widely announced that the programs in LEDA would be easy-to-use,
efficient, and correct. They were easy-to-use and efficient; however, some of our programs for
problems on graphs and most of our programs for geometric computations were incorrect. What
had gone wrong? We had followed the state of the art in program development. However,
there was no scientific basis for exact geometric computation at the time. We and others have
only created it over the past 20 years. I refer to [KMP+08] and [MN99, Chapter 9] for more
information. In the case of our programs for graphs, we had made programming mistakes and
turned correct algorithms into incorrect programs. Some of these errors were quite subtle and
showed up only rarely so that testing would not reveal them. Also, for some problems, we had
only a quite limited number of examples for which we knew the correct output. What did we
do about it? By 1995, we had adopted a new design principle, certifying algorithms, and this
decision was the turning point. Today, LEDA is a major source of my reputation.

x program

for a certain task

y

Figure 8: The correctness problem. How
can a user be sure that y is the correct result
for input x?

Figure 8 illustrates the problem. We have a pro-
gram that allegedly computes a certain function f . A
user feeds an input x to the program, and the program
returns y. How can the user be sure that y is indeed
the correct output for input x? In general, the user has
no way to know. He may know the developer of the
program to be reliable person. However, I am gener-
ally accepted to be a reliable person, and nevertheless
I have put incorrect programs into LEDA. Assume for

the moment that you are the boss of a construction company (or any other business) and want
to bid for a contract. You ask your team to work out a bid. Some time later, the team comes
back with a number. You should charge 5,345,124 euros, and this will guarantee a 10% profit.
Of course, you would not accept this number at face value, but you would ask the team to
justify its result. This is exactly the principle that we adopted for LEDA.

Design Principle for LEDA: Programs must justify (prove) their answers in a way that can
easily be checked by their users.

Figure 9 illustrates the technical realization of this principle. A certifying program for a
function f takes an input x and produces the function value y and a witness (certificate,
proof) w; w should be convincing evidence that y is indeed equal to the value of f at input
x. The witness can be inspected by the user of the program or, more elegantly, by a checker

6



Certifying
program Checker C

x

x y

w

accept y

reject

Figure 9: Certifying program and accompanying checker.

program C. The checker program C receives x, y, and w and accepts if w proves the equality
y = f(x). Otherwise, it rejects and declares an error.

A certifying program for the planarity test of graphs. A graph consists of a set of
nodes and edges connecting them. Think of cities with roads connecting them. A graph is
planar if it can be drawn in the plane without edge crossings. Figure 10 shows four drawings
of graphs. The left-most picture shows a planar drawing; there are four nodes and six edges
connecting them. The edges are drawn such that no two of them cross. The second picture
shows a nonplanar drawing of a planar graph. In this drawing, the edges that connect opposite
corners of the square cross. However, there is an alternative drawing of the same graph, namely
the drawing on the left, in which no edges cross. Thus, the graph is planar. The two graphs
on the right are the complete graph K5 on five nodes and the complete bipartite graph K3,3

with three nodes on each side. Every pair of nodes is connected in the K5, and every pair with
nodes on different sides is connected in the K3,3. The drawings are nonplanar and it is not too
hard to show that these graphs cannot be drawn without crossing. In a video accompanying
this paper, I convince you that the K5 is not planar.

K3,3

planar drawing planar graph nonplanar graphs

K5

Figure 10: Four graphs.

We added a planarity test to LEDA in 1994. I had asked one of my students to implement
an algorithm by Hopcroft and Tarjan. A French mathematician (unfortunately, I do not recall
the name) used our program to determine the value of the planarity threshold. It was known
at the time that if the ratio of the number of edges and the number of nodes in a random
graph is above a certain threshold, the graph is likely to be non planar, and if the ratio is
below the threshold, the graph is likely to be planar. It was known that the threshold exists,
but its value was not known. Since our program could test very large graphs for planarity, it
was natural to use our program to determine the value of the threshold experimentally. This
is what was done. Then, somebody proved by mathematical proof that the threshold value

7



must lie in a certain interval. However, the experimentally determined value did not lie in
this interval. Either our program had to be incorrect, or the proof had to be fallacious. The
author of the proof was convinced of the former and found a planar graph which our program
declared nonplanar. He sent a drawing of the graph to Stefan Näher. Stefan came to my
office, told me the story, and concluded with the remark: “This program was written by one of
your students”. I answered that I would fix the error. I found an error after a day of work and
fixed it. The program now worked correctly on all test cases including the example provided
by the French mathematician. However, Stefan and I were not satisfied with the situation.
Could we be sure that I had removed the last bug? Not really. After long discussions, we
concluded that is had not been my student who was to blame for making the mistake, but
my specification of his task. One should not ask for a program that gives a Yes/No-answer to
a complex question such as “Is a given graph G planar?” One should ask for a program that
justifies its answers. What does this mean for the planarity test?

• If the program declares a graph planar, it should also output a planar drawing.

• If the program declares a graph nonplanar, it should also output an obstacle to planarity.
Kuratowski, a Polish mathematician, showed in 1910 that every nonplanar graph con-
tains a Kuratowski graph K5 or K3,3.

This is exactly what the planarity test in LEDA does. If the input graph is planar, it returns
a planar drawing, and if the input graph is nonplanar, it exhibits a Kuratowski graph. Please
have a look at the accompanying video for a demonstration.

History of certifying programs. The concept of a certifying algorithm is by no means
new. AL-Khwarizmi (780 – 850) already described casting-out-nines as a method for partially
checking multiplications of integers. In the 18th century, Euclid’s algorithm for computing the
greatest common divisor of two integers was generalized to the extended Euclidean algorithm.
This algorithm is certifying. All primal-dual algorithms in combinatorial optimization are
certifying. Manuel Blum and co-workers [BK95, Blu93] wrote a sequence of papers in the ’90s
about programs that check their work.

Stefan Näher and I were the first to adopt the concept as the design principle for a software
project. We adopted the principle for LEDA in 1995, and by early 2000, we had made almost
all of the algorithms in the library certifying. We refer the reader to the LEDA-book [MN99]
and the survey [MMNS11] for details.

Who checks the checker? The output of a certifying program is inspected by a checker
program C. It receives x, y, and w and accepts if w proves that y is equal to f(x). Otherwise,
it rejects and declares the triple as faulty. How can one be sure that the checker program is
correct? Have we not replaced the problem of getting the original program correct by the
equally hard problem of getting the checker program correct? No, because checkers are simple
and short programs, and hence, getting them correct is a lot easier. Note that this answer is
not completely satisfactory as it only says that checkers are simpler and therefore the hope
of getting them correct is larger. Since about a year, we can give a much more satisfactory
answer: We can prove the correctness of checker programs using formal mathematics.

What is formal mathematics? It is mathematics carried out in a formal language without
any ambiguities. Figure 11 shows an example. Because the syntax and the semantics of the
language are well-defined, proofs and arguments can be machine-checked. We use the system

8



definition disjoint-edges :: (α, β) pre-graph ⇒ β ⇒ β ⇒ bool where
disjoint-edges G e1 e2 = (

start G e1 6= start G e2 ∧ start G e1 6= target G e2 ∧
target G e1 6= start G e2 ∧ target G e1 6= target G e2)

definition matching :: (α, β) pre-graph ⇒ β set ⇒ bool where
matching G M = (

M ⊆ edges G ∧
(∀e1 ∈ M . ∀e2 ∈ M . e1 6= e2 −→ disjoint-edges G e1 e2))

definition edge-as-set :: β ⇒ α set where
edge-as-set e ≡ {tail G e, head G e}

lemma matching_disjointness:
assumes matching G M
assumes e1 ∈ M assumes e2 ∈ M assumes e1 6= e2
shows edge-as-set e1 ∩ edge-as-set e2 = {}
using assms
by (auto simp add: edge-as-set_def disjoint-edges_def matching_def)

Figure 11: Formal mathematics in Isabelle/HOL

Isabelle/HOL developed by L. Paulson and T. Nipkow [NPW02]. We [ABMR14, NRM14]
formally verify

• the witness property, i.e., the mathematical theorem underlying certification, e.g., the
fact that the existence of a Kuratowski subgraph implies nonplanarity,

• the termination of the checker program, i.e., the checker program halts for every input
after a finite time and gives either the answer “accept” or “reject”, and

• the correctness of the checker program, i.e., the checker accepts if and only if w certifies
the correctness of y as an output for x in the sense of the first item.

What does this give us? We have now reached formal instance correctness: If a formally
verified checker accepts a triple (x, y, w), we have a formal proof that y is the correct output
for input x. The formal verification of checkers has lifted the trust in our implementations to
a new level. It is a way to build large libraries of trusted algorithms.

5 Ideas and Concepts of Informatics

Since 2012, I have been teaching a course called Ideen und Konzepte der Informatik for non-
majors (Studium Generale), first together with Kosta Panagiotou and now with Adrian Neu-
mann. We pursue three goals.

First, an understanding of fundamental concepts of informatics: What is an algorithm?
What is a computer? Are all computers equal? Are there tasks that cannot be solved by a
machine?

9



Wa
s is
t In
for
ma
tik
?

Wi
e f
un
kti
on
ier
t d
as 
Int
ern
et?

Wi
e l
ös
en
 Al
go
rith
me
n P
rob
lem
e?

Vo
rle
su
ng
 +
 Ü
bu
ng
, W
S 2
01
2/2
01
3, 
5 E
CT
S c
red
its

Be
gin
n: 
Mo
 15
.10
. 1
6:0
0-1
8:0
0 U
hr,
 G
eb
 E1
.3 
HS
 2

Second, the familiarization with basic techniques of informatics,
such as searching and sorting, data bases, the Internet, cryptography,
web search, machine learning, and computer vision, and also their
applications, such as search engines, navigation systems, electronic
banking, electronic mail, automatic face recognition, and social net-
works.

Finally, we hope that our students acquire sufficient knowledge
in informatics so that they can discuss societal and ethical conse-
quences of information technology on a sound basis. We discuss
some of these issues: IT-security, threats to privacy, the disappear-
ance of professions and the appearance of new ones, and the liability
of autonomous systems.

We also discuss how Informatics has changed the scientific view of the world. What is
intelligence? Will social networks become the experimental playground for the social sci-
ences? What does big data mean for the sciences? The reader can find more information
about the course at http://resources.mpi-inf.mpg.de/departments/d1/teaching/ws14/
Ideen-der-Informatik/. In the fall term 2015–2016, I will offer the course as a massive open
online course (MOOC).

References

[ABMR14] E. Alkassar, S. Böhme, K. Mehlhorn, and Ch. Rizkallah. A Framework for
the Verification of Certifying Computations. Journal of Automated Reasoning
(JAR), 52(3):241–273, 2014. A preliminary version appeared under the title
“Verification of Certifying Computations” in CAV 2011, LCNS Vol 6806, pages
67 – 82.

[BK95] M. Blum and S. Kannan. Designing programs that check their work. J. ACM,
42(1):269–291, 1995. preliminary version in STOC’89.

[Blu93] Manuel Blum. Program result checking: A new approach to making programs
more reliable. In ICALP, pages 1–14, 1993.

[KMP+08] L. Kettner, K. Mehlhorn, S. Pion, S. Schirra, and C. Yap. Classroom Examples
of Robustness Problems in Geometric Computations. Computational Geome-
try: Theory and Applications (CGTA), 40:61–78, 2008. a preliminary version
appeared in ESA 2004, LNCS 3221, pages 702 – 713.

[MMNS11] R.M. McConnell, K. Mehlhorn, S. Näher, and P. Schweitzer. Certifying algo-
rithms. Computer Science Review, 5(2):119–161, 2011.

[MN99] K. Mehlhorn and S. Näher. The LEDA Platform for Combinatorial and Geo-
metric Computing. Cambridge University Press, 1999.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL—
A Proof Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in
Computer Science. Springer, 2002.

10



[NRM14] Lars Noschinski, Christine Rizkallah, and Kurt Mehlhorn. Verification of cer-
tifying computations through autocorres and simpl. In Julia M. Badger and
Kristin Yvonne Rozier, editors, NASA Formal Methods, volume 8430 of Lec-
ture Notes in Computer Science, pages 46–61. Springer International Publishing,
2014.

[vWMPK69] A. van Wijngaarden, B.J. Mailloux, J.E.L. Peck, and C.H.A. Koster. Report on
the algorithmic language 68. Numerische Mathematik, 14:79–218, 1969.

11


