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Abstract

We give improved algorithms for constructing minimum dteztand undirected cycle
bases in graphs. For general graphs, the new algorithms anéeMCarlo and have running
time O(m®), wherew is the exponent of matrix multiplication. The previous bedgorithm
had running timeD(m?n). For planar graphs, the new algorithm is deterministic aasl h
running timeO(n?). The previous best algorithm had running ti@@?logn). A key ingre-
dient to our improved running times is the insight that thersk for minimum bases can be
restricted to a set of candidate cycles of total ler@thm).

1 Introduction

Cycles in graphs play an important role in many applicatiang., analysis of electrical net-
works, analysis of chemical and biological pathways, pidscheduling, and graph drawing,
see (KLM"™09, Section 7). Cycle bases are a compact description ofethef sl cycles of a
graph and cycle bases consisting of short cycles or, in veighraphs, of small weight cycles
are to be preferred. We give improved algorithms for conmuthinimum weight cycle bases.
The algorithms run in tim@®(m®) for general graphs an@(n?) for planar graphs; hene and

m denote the number of nodes and edges, respectivelywardhe exponent of matrix multi-
plication. For planar graphs, this is an improvement by gofaaf O(logn); our result implies a
similar improvement for the all-pairs minimum cut problemplanar graphs. For general graphs,
our algorithm is the first to run faster th@{rm?n). We mention that the previous best algorithms
already used fast matrix multiplication and our improveirismue to new structural and algo-
rithmic insights. A key ingredient to our improved runnimgés is the insight that the search for
minimum bases can be restricted to a set of candidate cytctetablengthO(nm).

Let G = (V,E) be a connected undirected graph. We orient the edg&abitrarily and
obtain a directed grapfV,A) which we denote by eithdd or G. We use the notatioa= uvto
denote both directed and undirected edges, i.e., the aotatands for the directed edge v)
and the undirected eddau,v}. We used(v) to denote the set of edges incidenwtandd (v)
andd~ (v) for the directed edges leaving and entenngespectively.
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Figure 1: The figure shows a directed grdphand four circuitsC; to C4 in D. The edges
of D aree; to eg. The circuitC; uses the edges, e, e3, andes in forward direction and the
edgeeg in backward direction. Thu€; = (1,1,1,0,1,0,0,—1). The circuitsC; to C4 form

a directed cycle basis db. The circuitC consisting of edges 1 to 4 is representedCas
(1,1,1,1,0,0,0,0) = (C; +C2 +C3+C4)/3. LetG be the underlying undirected graph, {&C;)

be the undirected circuit correspondin@toand letrr(C) be the undirected circuit corresponding
to C. Thenm(Cy) = (1,1,1,0,1,0,0,1) and r1(C) = 11(Cy) ® 11(Cy) @ m(Cs) @ 1(Cq), Where
@ is addition modulo 2. The circuitg(C,) to 11(C4) form an undirected cycle basis &.
The set{C;,C,,C3,2C,4 } is also a directed cycle basis bf However,1(2C,) = 0 and hence
{m(Cy), m(Cyp), m(Cs), (2C4) } is notan undirected cycle basis 6t

Let k be a field. Ak-cycle Cin D is a vector inkE such that for any vertex we have
Yecs+(v)Ce = Yecs-(v)Ce. In oOther contexts, cycles are sometimes referred toiraslations
and the constrainy e« 5+ (v) Ce = Y ecs-(v) Ce Is called flow conservation. Observe thaCifis a
cycle, then—C is also a cycle, though a different one. The set

{C; Cis ak-cycle of G}

forms a vector space over, thek-cycle spacef G. The support of a cycle is the set of edges
e with Ce # 0. A cycle issimpleif Cc € { —1,0,+1} for all e, and a simple cycle is @ircuit if
its support is connected and for amyhere are most two edges in the support incident té
k-cycle basigs a set of circuits forming a basis of the cycle space. Anyechasis consists of
V:=m-—n-+1 circuits.

Particularly interesting are the cases= GF(2), the field of two elements, ard = Q, the
field of rationals. In these cases, the cycle space and cyslis lare referred to asdirected
or directed cycle space and basrespectively. Lets be an undirected graph and [Btbe an
orientation of it. For any directed circu@ € { —1,0,+1}F of D, let 1(C) := (Ce mod 2)ecE.
Thenm(C) is an undirected circuit i, theprojectionof C. Figure 1 illustrates these definitions.
In addition, it provides an example showing that directedeypases do not necessarily project
onto undirected cycle bases. However, if a set @lirected circuits projects onto an undirected
basis, it forms a directed basis.

A weighted graplis a graph together with a non-negative weight functiarE — R>o. The
weight of a set of edges is the sum of the weights of its mem@@reweight wC) and length
|C| of a simple cycle Gre

WC):=Y [Ciw(e)  [Cl:= ICdl .
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and theweight of a cycle basis B the sum of the weights of its circuits, i.e.,

w(B) = chW(C) :

A minimalk-cycle basiof G is ak-cycle basis with minimum weight.

Horton (Hor87) gave the first polynomial time algorithm foinimum undirected cycle
bases. It had running timr@(m®n). In a sequence of papers (DP95; GH02; BGdV04; KMMPOS;
MMOQ7), the running time was improved (ND(mzn). Kavitha and Mehlhorn (KMO7) gave the first
polynomial time algorithm for minimum directed cycle basksiad running timeD(mn). In a
sequence of papers (LR05; Kav05; HKMO08; MMO7) the runnimgetivas improved t®(men)
deterministic time an®(m?n) Monte Carlo time. We improve the running time®m®) Monte
Carlo time for undirected and directed bases. For planghgrave improve the running time
from O(n?logn) (HM94) to O(n?); the algorithm is deterministic.

This paper is structured as follows. In Section 2 we imprq@ua result of Horton (Hor87)
and show that the search for cycle bases can be restrictedebad candidate circuits of total
lengthO(nm); Horton had shown that the search can be restricted to a g@troh) circuits.
In Section 3, we exploit this structural insight to derive ®&(m®) Monte Carlo algorithm for
minimum undirected and directed bases. In Section 4, weéxplo derive theO(n?) algorithm
for minimum bases in planar graphs.

2 Structural results

For any two nodes! andv, let pyy be a minimum weight path frora to v in G with respect
to weight functionw. We assume that the collection of minimum weight paths issistent,
i.e., if x andz lie on pyy then py; is a subpath opy,. This can be guaranteed for instance by
lexicographic ordering. Given an arbitrary numbering & tlodes from 1 to, a pathp between
two nodes is considered shorter than a pbfithe same total weight if the length pfis strictly
smaller than the length a@f. In case of ties, the shortest path betwgesndq will be the one
that contains the node with minimum index in the non-comman. g=or a modified minimum
weight path algorithm that ensures lex-shortest pathsrie @(mn-+ n?logn), see (HM94).

For any node, let Ty be the minimum weight path tree rootedxat.e., Ty is the union of the
pathspyy for all v. In (Hor87) Horton shows that a polynomial subset of all egak guaranteed
to contain a minimum cycle basis. The set of Horton candidgtées, denoted by#’, contains
all cycles of the fornCy e := pxuepix, for any possible choice of a nodeand an edge = uv
not in Ty, i.e., a co-tree edge. Among these cycles, we have to consider only the circuits,
discardingCy e if pxy andpyy have more than nodein common (see Figure 2(a)y# is a multi-
set because each circ@tcan have different representatiage for some of its nodex. Note
that there is no representation for a given nadeeC contains more than one co-tree edge with
respect toly. This is equivalent to the existence of a shortcut betweand another node G,
i.e., the shortest path joining them does not belong to tloelititself.

A circuit C is calledisometricif for any two nodess andv onC, pyy is contained irC. See
Figure 2 (b) and (c) for examples of non-isometric circuitbe set of isometric circuits will be
denoted by#. Clearly each isometric circuit is a Horton candidate cytflat is.7 C J7.
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(b)

Figure 2: Examples of non-isometric cycles. (&)(34; is not a circuit, becauspiz and pa4
have also node 2 in common. The contained circuit is obtaais€th (3 4. (b) The minimum
weight path connecting 1 and 3 consists of edffe2} and{2,3}. Cy (34, is a non-isometric
circuit because of the shortcut, depicted in dashed. Theather representation &3 (1 41. (C)
C1,145 is @ non-isometric circuit with two shortcuts and no repnéagons for any other node.

In fact, we just need to consider isometric circuits.
Proposition 2.1 ((Hor87)) .# contains a minimum undirected (directed) basis.

Moreover, isometric circuits can be characterized in teahaumber of representations,
namely every isometric circu@ has exactlyC| representations ig?.

Property 2.2 (Isometric circuits (Hor87)) Let C be any isometric circuit and let x be an arbi-
trary node of C. Then there is an edge-auv on C such that G= py,epix. Conversely, if for
every xe C there is such an edge, then C is isometric.

Proof: LetC= (X=wo, V1, ...,V = X). Since the empty path is the minimum weight path
from x to x andC is not the minimum weight path from to x, there must be ansuch that
Pxv = (VO,V1, - .-, Vi) but pwy,; # (Vo,V1, - -, Vi, Vig1). Thenpyy,; = (Vk, Vk—1, - - -, Vi+1) and hence
e= (Vj,Vi+1) is the desired edge.

For the converse, consider any two nodesndzonC and lete= uvbe such that = pxuepix;
zlies on one of the paths and hence the minimum weight path frtoz is contained irC. 1

By considering the set of isometric circuitg instead of#” we have the following simple
but fundamental property.

Property 2.3 The total length of the isometric circuits is at most n

Proof: An isometric circuitC occurs|C| times in the Horton multi-set and hen§e. ~ |C| can
be no larger than the size of the Horton multi-set. 1

Note that we sum only over the isometric circuits, as we haveamtrol over the number of
appearances of non-isometric cycles.



The upper bound of Property 2.3 is tight for instance for theplete graptK, with n ver-
tices and equal weight on the edges. For any nqdée cycle obtained by adding I any
co-tree edge is a triangleZ” consists ohv triangles that are clearly isometric. Since there are
three representations of each possible triangle, obtdigadking asx each one of its 3 nodes,
- consists ohv /3 triangles. Therefore, the total length of the isometricuiis is exactlynv.

The total length of the isometric circuits may be much smahannv. Consider ars x s
grid with equal weights on the edges. Sinte- s> andm= 2s(s— 1), we havev = (s— 1)?,
andmandv areO(n). The isometric circuits are exactly the grid squares anc&dneir total
Iengthzis 4s—1)?, that isO(n), whereas the upper bound of Property 2.8us= s?(s—1)2, that
isO(n%).

We will now show that we can extract from the Horton multi-set in tim&©(nm).

For every nodey # X, let s¢(v) be the child ofx in T containingv in its subtree. In other
words, s¢(Vv) is the first node on the minimum weight path fronto v. The vectorss, for all
x €V can be the computed in tin@(n?). Note that a candidate cyo= Cye, for e= uv, is a
circuit only whenpy, and pxy have only nodexin common, i.e.sc(u) # sx(Vv) (see Figure 2(a)).
The next Lemma shows how to identify different represeatettiof the same isometric circuit
and how to discover non-isometric circuits. Given a cir€lit,, the idea is to check for two
specific nodes’ andx” of C whether the minimum weight pathy,» between them belongs to
C. The nodesx’ andx” are chosen so that a negative answer obviously implieshbatitcuit is
non-isometric whereas a positive answer gives a differgmtasentation of for one ofx’ and
X". This is achieved by taking = s,(u) andx” = v. In fact, if py, belongs tdC there are only
two possibilities:pyy = Xxpyw and the other representation foiis for the nodex and is given
by Cx uv: Pxv = VUp,x and the other representation foiis for the nodev and is given byC,yy .
When noded does not exist because nadeoincides with node, the other representation is for
nodev and is given byC,,v. Lemma 2.4 explains how to check (in constant time) the dard
that allow to identify the different cases, which are ilhaséd in Figure 3.

Lemma 2.4 Let C=Cyg, let u be an endpoint of e, and let v be the other endpoint.
1. If s¢(u) # s¢(v) and x= u then x# v and C= ep,y = Cye.

2. If s¢(u) # s(V), X# u, and X = s(u) is the first node on the minimum weight path from x
to u then:
(@) if x=s¢(v), thenC=Cy g,
(b) if x# s¢(v) and u= s,(X) then C= C,xy, and
(c) if x#£ s¢(v) and u#£ s,(X') then C is not isometric.
Proof:
If x=u, C=uvpy = pwuVv=Cye. This proves the first statement.

If x# uandx is the first vertex on the minimum weight path fronto u, we havepy, =
XX Py u-
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Figure 3: Examples for the different cases of Lemma 2.4.C¢1) 4y wherex =u=1. (2a),
(2b) and (2c) are three different representations of theesarauit. (2a)Cy 45, Wheres;(5) = 1

and we obtairC; 14 5,. (2b)Cy 145, wheresz(5) # 2 butss(3) = 4 and we obtailCs (5 3). (2€)

Cs (2,3y Wheresg(3) # 5 andss(6) # 2, because the minimum weight path connecting 3 and 6
consists of edge§3,4} and{4,6}. This implies that the circuit is not isometric. The shottisu

in dashed line.

If xis the first vertex on the minimum weight path frofrto v, thenpyy pyv = PuxPxv- Thus
C =Cy e This establishes 2a.

If xis not the first vertex on the minimum weight path frafrto v andu is the first node on
the minimum weight path frond to x’ thenC = pyxxX pyy = C,xx. This establishes 2b.

If x is not the first vertex on the minimum weight path frofrto v andC is isometric, the
minimum weight path fromx' to v must bep,, followed bye. Thenu is the first vertex on the
minimum weight path fronv to X'. This establishes 2c. 1

Lemma 2.4 allows us to identify different representatiohthe same isometric circuit. It
also allows to exclude some circuits as non-isometric.

We next show that all representations of an isometric dinili be identified and all non-
isometric circuits will be discovered. We set up a graph vehastices are the paifsg,e), x€V,
ec E, if (x,e) is a circuit. We labe(x,e) asbadif condition 2c holds. We connect two pairs if
they satisfy condition 1 or 2a or 2b, see Figure 4.

Lemma 2.5 All representations of an isometric circuit belong to theneaconnected component.

Proof: LetC = (vo,v1,...,Vk = Vp) be an isometric circuit, lety = v;vi 1, and for anyi, 0 <

i <Kk, letj(i) be such tha€ = Cuei)- Figure 4 shows how the different representationS afe
linked together. In this Figure, a representa@pej(i) is indicated as a dashed arrow frato

€ji). In cases 1 and 2& andvi.1 point to the same edge, i.e., the tail of the arrow advances
by one position. In case 2b, we replace the arrow frerto e;;) = vj()Vj(i)+1 by the arrow
from Vi(i)+1 tO ViVit1, i.e., we reverse the direction of the arrow and it now poirdm the tail

of ;) to the edge out of;. In this way, the arrow sweeps around the circuit once aric ladl
representations of the same circuit. 1

Lemma 2.6 If Cye is non-isometric then the component®fe) contains a bad component.
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(Les) (3€5)

(2/4) — (4&1) (2:€3) — (4&2)

Figure 4: In the graph on the left all edges have cost one; \eetsge, as the minimum weight
path connecting 1 and 3. The circullge, andCze, are bad by condition 2c. For the former
circuit letx =1, u= 3,v=4, thens; (3) = 2 andsy(4) # 1 ands4(2) # 3. The other circuits are
connected as shown below the graph.

The figure on the right shows an isometric ciréiémbedded on a circle. The edges correspond
to the circular arcs between the vertices and the length af@ars proportional to the weight of
the corresponding edge. For any veriexve haveC = C, ¢ Wheree contains the mirror image

of x with respect to the center of the circle. We have the follgxdonnectionsCy g, andCse,

are connected by condition 233 ¢, andCs ¢, are connected by condition 2b, and so on.

Proof: LetC = (v,Vv1,...,Vk = Vp) be a non-isometric circuit and lef = v;vi1. For some,
but not all,i, 0 <i < k, there will be aj(i) such thatC = Cvi,e,-<i>- Observe, that i€ = CVhej(i)’
the minimum weight paths fromg to the vertices ofC are initial segments of eithep\,i\,j(i) or
Pviv ) 1 Also, if the minimum weight path fromi. 1 to vj;),1 is contained irC, then either
C= CVi+lvej(i) orC= CVj(i)+17a-

Thus if C is non-isometric, there must besuch that the minimum weight path from, ;
to Vj(i)+1 is not contained irC. For any such, Cuie will be declared bad. Any non-bad

representation dE will be linked to a bad one as described in the preceding Lemma 1

Note that checking the conditions of Lemma 2.4 is needed foraach circuit ins?.
We summarize the discussion.

Theorem 2.7 In time Q(nm) we can extract for each isometric circuit one péx; e) with C =
Cxe-

3 Improved algorithmsfor general graphs

We refine de Pina’s approach (DP95; KE9) for computing minimum cycle bases, see Fig-
ure 5. It operates in phases. In each phase, one circuit edaddhe basis. The algorithm also
maintains a basis of the orthogonal space; more precidetlgedeginning of thé-th iteration
is has a sefS,...,S, } of linearly independent vecto®; € k& with (C;,S;) = 0, where(_,_)
is the inner product of vectors over Throughout this sections = GF(p) for a primep with



1: Initialize Sj to the j-th unit vector for 1< j <.

2: fori—1,...,vdo

3 Compute a minimum weight isometric circdi with (C;, S) # 0.
4 for j«—i+1,...,vdo

5: S5 =S5 — (G.5)
6
7
8

G
end for
: end for
: Output{Cy,...,Cy }.

Figure 5: De Pina’s algorithm for computing a minimum cycésis.

p = O(mlogm). In particular, arithmetic irfGF(p) takes constant time. At the start of the com-
putationSj is initialized to thej-th unit vector for 1< j < v, where the numbering of the edges
is such that edges, ;1 to e, form a spanning tree d@b.

Steps (4) and (5) of the algorithm make e j > i, orthogonal taC; and maintain orthog-
onality of C; to Gi_;. Updating the vectorS; as shown takes tim@(n?) per phase and hence
total timeO(m?). In (KMMPO8), this was improved to tim&(m®). The best known realization
of step (3) takes tim&(mn) per phase and hence total titdém?n). We describe a Monte Carlo
algorithm that improves the total time for step (3)don®). The improved algorithm exploits
the new structural result presented in the preceding sectio

We start with a simple technical lemma.

Lemma 3.1 Let% be a collection of circuits. For each circuit €%, let Ac € GF(p) be chosen
randomly and let D= Sc. AcC. Let S be a nonzero vector in GBE. If all circuits in ¢ are
orthogonal to S, D is orthogonal to S. # contains a circuit that is non-orthogonalto S, D is
orthogonal to S with probability at mo&y p.

Proof: Clearly, if every circuit in% is orthogonal td5, thenD is.

So assume th&’ € ¥ is non-orthogonal t& and consider a fixed choice of coefficiernts
for the circuitsC € ¢, C # C'. Also assume that there are two distinct choigesnd 3 for Ac/
such thaty cc¢ AcC are orthogonal t& ThenaC’ + Y ey ccr AcC andBC' + S cep c2c AcC
are orthogonal t& Thus( —a)C' is orthogonal td5, a contradiction. Thus the probability that
(D,S) =0is at most Ip. 1

Consider thd.#| < nmisometric circuits. We sort them by nondecreasing weight@ut a
binary tree (of depth at most logn, that isO(logn)) on top of the sorted list. For each node of
the tree, we preparerandom linear combinations of the circuits below the node fid the
cheapest circuit that has nonzero inner product &its follows. Assume the search has arrived
in some node of the tree. We compute the inner produ§ efith the k linear combinations
associated with the left child. If one inner product is nonzeve proceed to the left child. If
all kiinner products are zero, we proceed to the right child. Theeno the left child is always
correct. However, the move to the right child may be incdtr&ébe probability that any specific
decision is incorrect is at mogt ¥. In any search, we make lbg’| decisions, and we need to
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find v circuits. Thus the total number of decisiongikg|.# | and hence the total probability of
error is bounded bylog|.7|p~X.

Each step of the binary search is a scalar product and helextisg one circuit takes time
O(kmlogn). Selecting all circuits takes tim@(kn?logn).

How much time does it take to prepare the random linear coatioins? We maintain them
as sparse vectors, i.e., as the ordered list of their norezgrees. In order to prepare one linear
combination for each node of the search tree, we choose amanalltiplier Ac € k for each
isometric circuitC. We then sum the sparse vectors as indicated by the tree.nbaekro entry
of a circuit contributes co$d(1) for each level of the tree and hence the total time to prepage o
random linear combination for each node of the search tr€¢risnlogn) by Property 2.3. We
wantk linear combinations for each node and hence require @g@mlogn) to prepare all of
them.

Theorem 3.2 There is a Monte Carlo algorithm for finding a minimum @¥-basis that works
in time Qnm+n?logn+m® + kn?logn) and errs with probability at mostlog(nm)p—K. For
k = mP1, this is exponentially small, and the running time i®).

Undirected bases af@F(2)-bases and hence we are done. For directed cycle bases we use
an observation in (KLM 09, Section 3.5), namely that a minimua(p)-basis for a randonp
with p = ©(mlogm) is a minimum directed basis with probability at leagP1

Theorem 3.3 There is a Monte Carlo algorithm for finding a minimum direttg/cle basis that
works in time @m®) and errs with probability at most/2.

4 Planar graphs

Hartvigsen and Mardon (HM94) have shown that minimum urtié@ cycle bases in planar
graphs can be computed in tir@n?logn). In this section, we summarize their result, improve
the running time t®(n?), and also show that for planar graphs, the notions of minirdinected,
undirected, integral, weakly fundamental, and totallynmdular bases coincide, see (K9,
Section 3) and the proof of Theorem 4.2 for a definition of #ieek terms.

Let G be a plane graph, a planar graph embedded into the plane.n& gtaph divides the
plane into maximal open connected sets of points that weaadls Any circuit C divides the
plane into two maximal open connected sets of points, onadruiand one unbounded. We use
interior(C) to denote the bounded set.ititerior(C) agrees with one of the faces Gf we call
C aface circuit Note that the number of edges and the number of face ciratgtdothO(n).

A collection of circuits is calledhestedf for any two circuits in the collection, the interiors are
either disjoint or the interior of one is contained in theemar of the other.

For a collectiorB of circuits, letFg be the face circuits that do not belonggoWe define the
directed inclusion grapBg with vertex seBU Fg as follows. LeiC andC’ be circuits inBU Fg.

We have an edge frofd to C' if interior(C) D interior(C’) and there is no circul€” € BUFg
such thainterior(C) D interior(C”) O interior(C'). The inclusion graph is acyclic; the nodes of



Dg with no outgoing edges are precisely the face circuit.of he inclusion graph is a forest if
and only ifB is nested.

In (HM94) Hartvigsen and Mardon show that the number of isimeircuits is at most
twice the number of face circuits of any planar grapland there is at least a minimum cycle
basis (directed or undirected) that is nested. Moreovegsted collection of cycleB is a mini-
mum cycle basis ifB is a minimum weight collection of circuits satisfying thneeperties: (1)
every non-leaf irDg has exactly one child iRg, (2) the circuits inFg have parents iDg, (3) the
inclusion graplDg is a forest.

Our algorithm for finding a minimum weight basis differs frahat of (HM94) in two points.
First, we use the all-pairs minimum weight paths method fanar graph inO(n?) proposed
in (Fre87). Then, the main improvement is to exploit the pthae implied by Theorem 2.7 to
obtain the set of isometric circuits @(n?). This way, the bottleneck dd(n?logn) decreases to
O(n?). The rest of the algorithm proceeds as in (HM94) and we suramirbelow for com-
pleteness. Recall that the number of isometric circui@®(is) and that sorting by nondecreasing
weight isO(nlogn).

We construct the incidence matéxbetween isometric circuits and the facesofThe entry
corresponding to a circu@@ and a faceR is one ifR C interior(C). This matrix can clearly be
computed in timed(n?).

We initialize the basi® to the empty set and set up the corresponding inclusion gbgph
The vertices oDg are the face circuits and there are no edges. As lorgjges not have the
right number of circuits and hen@&g does not satisfy properties (1) and (2), we do the following.

If there is a non-leaf nod€ that has more than one child i (case 1), leR; andR; be
two faces ofG limited by two face circuits irFg havingC as their common parent. If there is
no such non-leaf node, there must be a face circltiiwithout a parent (case 2). LB be the
face limited by this face circuit and |& be the unbounded face. In either case, we find the least
weight circuitD containing exactly one d&; or Ry in its interior. We can find in time O(n) by
scanning the columns @f{.

We addD to B and updat®sg. If D is a face circuit, we only have to remof2efrom Fg. The
inclusion graph stays the same. So assumeDlhiatnot a face circuit. Starting from the face
circuits ininterior(D) (we can find them in matriR), we determine the maximal subtree<yf
that are contained imterior(D). They become children @. D either becomes a root (in case
2) or a child ofC (in case 1). Updatin®g takes timeO(n).

We conclude that we spend tind¥n) per base circuit for a total @(n?).

Theorem 4.1 A minimum (directed or undirected) circuit basis of a plaggaph can be found
in time Q(n?).

(HM94) observed that the minimum cycle basis problem is tlu#ie all-pairs minimum cut
problem. Hence the all-pairs minimum cut problem in plarrap@s can also be solved in time
o(n?).

Theorem 4.2 Every planar graph has a minimum directed cycle basis thatakly fundamen-
tal, totally unimodular, and integral.
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Proof: Every planar graph has a minimum directed cycle basis tha¢ssed. LeB be such
a basis. We first show th&tis totally unimodular. We need to show that any circuit isreedr
combination of the circuits itB with coefficients in{ —1,0,+1}. LetC be any circuit. Then,
C can be obtained as the sum of the face circuits that limitsfacénterior(C). A face circuit
either belongs t® or is equal to the difference of its pargp(t-) in Dg and the sum of the other
children ofp(F) in Dg. Thus

C=Y% F+ p(F) — D) :
FgB FEZ:B < DeBandDis a%]ild ofp(F) in Dg

If a circuit D occurs twice in the representation ©f it occurs once as a parent and once as
a child. As a parent, its coefficient is1, and as a child, its coefficient is1 and hence the
two occurrences cancel. Thus every circuit is a linear caatibn of the circuits irB with
coefficients in{ —1,0,+1}.

We next show thaB is weakly fundamental. We need to exhibit an ordeig ..., C,
of the circuits inB such thaC; \ (C;U...UCi_1) # 0 for all i. Let Dg be the inclusion graph
corresponding td. If Fg is empty, every face circuit belongs B> We determine a reverse
ordering of the circuitE€,, ...,C; as described in (LRO7). Starting from the ciraithat limits
the unbounded face, we add the face circuits with an edgenmmam withC. After removing
the edges o€ from G, we proceed in the same way. We now extend the previous testiie
general case whefs is not empty. Since every face circuit g has a parent, we have a non-
leaf nodeD in Dg whose children are all face circuits. One of these face tgcsayF, belongs
to Fg and all the others belong 8. The same idea for constructing a reverse ordering is then
applied to the circuits i corresponding to the children &f starting fromF. The face circuits
among these with an edge in common withare added and the edgesfofthat are not irD
are removed. Then we proceed in the same way consideringrtog ¢hat limits the new face.
After that all children ofD are added, we delete them frddg. We repeat this until all nodes
in Dg are isolated. By applying the procedure in the remaininglgfar the case where there
are only face circuits, we find a reverse ordering of the discurhus, the same result holds for
general cycle bases.

The proof is completed by the fact that any weakly fundamidaasis is integral. 1

5 Conclusion

We have shown that minimum cycle bases can be computed inQ{m&) by a Monte Carlo
algorithm. A further improvement would have to do away whk taintenance of a basis of the
orthogonal subspace.
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