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Abstract
We give improved algorithms for constructing minimum directed and undirected cycle

bases in graphs. For general graphs, the new algorithms are Monte Carlo and have running
timeO(mω), whereω is the exponent of matrix multiplication. The previous bestalgorithm
had running timeÕ(m2n). For planar graphs, the new algorithm is deterministic and has
running timeO(n2). The previous best algorithm had running timeO(n2 logn). A key ingre-
dient to our improved running times is the insight that the search for minimum bases can be
restricted to a set of candidate cycles of total lengthO(nm).

1 Introduction

Cycles in graphs play an important role in many applications, e.g., analysis of electrical net-
works, analysis of chemical and biological pathways, periodic scheduling, and graph drawing,
see (KLM+09, Section 7). Cycle bases are a compact description of the set of all cycles of a
graph and cycle bases consisting of short cycles or, in weighted graphs, of small weight cycles
are to be preferred. We give improved algorithms for computing minimum weight cycle bases.
The algorithms run in timeO(mω) for general graphs andO(n2) for planar graphs; heren and
m denote the number of nodes and edges, respectively, andω is the exponent of matrix multi-
plication. For planar graphs, this is an improvement by a factor of O(logn); our result implies a
similar improvement for the all-pairs minimum cut problem in planar graphs. For general graphs,
our algorithm is the first to run faster thañO(m2n). We mention that the previous best algorithms
already used fast matrix multiplication and our improvement is due to new structural and algo-
rithmic insights. A key ingredient to our improved running times is the insight that the search for
minimum bases can be restricted to a set of candidate cycles of total lengthO(nm).

Let G = (V,E) be a connected undirected graph. We orient the edges ofG arbitrarily and
obtain a directed graph(V,A) which we denote by eitherD or G. We use the notatione= uv to
denote both directed and undirected edges, i.e., the notation stands for the directed edge(u,v)
and the undirected edge{u,v}. We useδ (v) to denote the set of edges incident tov andδ+(v)
andδ−(v) for the directed edges leaving and enteringv, respectively.
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Figure 1: The figure shows a directed graphD and four circuitsC1 to C4 in D. The edges
of D aree1 to e8. The circuitC1 uses the edgese1, e2, e3, ande5 in forward direction and the
edgee8 in backward direction. ThusC1 = (1,1,1,0,1,0,0,−1). The circuitsC1 to C4 form
a directed cycle basis ofG. The circuitC consisting of edges 1 to 4 is represented asC =
(1,1,1,1,0,0,0,0)= (C1+C2+C3+C4)/3. LetG be the underlying undirected graph, letπ(Ci)
be the undirected circuit corresponding toCi , and letπ(C) be the undirected circuit corresponding
to C. Thenπ(C1) = (1,1,1,0,1,0,0,1) and π(C) = π(C1)⊕ π(C2)⊕ π(C3)⊕ π(C4), where
⊕ is addition modulo 2. The circuitsπ(C1) to π(C4) form an undirected cycle basis ofG.
The set{C1,C2,C3,2C4} is also a directed cycle basis ofD. However,π(2C4) = 0 and hence
{π(C1),π(C2),π(C3),π(2C4)} is not an undirected cycle basis ofG.

Let κ be a field. Aκ-cycle C in D is a vector inκE such that for any vertexv we have
∑e∈δ+(v)Ce = ∑e∈δ−(v)Ce. In other contexts, cycles are sometimes referred to ascirculations
and the constraint∑e∈δ+(v)Ce = ∑e∈δ−(v)Ce is called flow conservation. Observe that ifC is a
cycle, then−C is also a cycle, though a different one. The set

{C; C is aκ-cycle ofG}

forms a vector space overκ, theκ-cycle spaceof G. The support of a cycle is the set of edges
e with Ce 6= 0. A cycle issimpleif Ce ∈ {−1,0,+1} for all e, and a simple cycle is acircuit if
its support is connected and for anyv there are most two edges in the support incident tov. A
κ-cycle basisis a set of circuits forming a basis of the cycle space. Any cycle basis consists of
ν :=m−n+1 circuits.

Particularly interesting are the casesκ = GF(2), the field of two elements, andκ = Q, the
field of rationals. In these cases, the cycle space and cycle basis are referred to asundirected
or directed cycle space and basis, respectively. LetG be an undirected graph and letD be an
orientation of it. For any directed circuitC ∈ {−1,0,+1}E of D, let π(C) :=(Ce mod 2)e∈E.
Thenπ(C) is an undirected circuit inG, theprojectionof C. Figure 1 illustrates these definitions.
In addition, it provides an example showing that directed cycle bases do not necessarily project
onto undirected cycle bases. However, if a set ofν directed circuits projects onto an undirected
basis, it forms a directed basis.

A weighted graphis a graph together with a non-negative weight functionw : E→R≥0. The
weight of a set of edges is the sum of the weights of its members. Theweight w(C) and length
|C| of a simple cycle Care

w(C) :=∑
e
|Ce|w(e) |C| :=∑

e
|Ce| ,
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and theweight of a cycle basis Bis the sum of the weights of its circuits, i.e.,

w(B) = ∑
C∈B

w(C) .

A minimalκ-cycle basisof G is aκ-cycle basis with minimum weight.
Horton (Hor87) gave the first polynomial time algorithm for minimum undirected cycle

bases. It had running timeO(m3n). In a sequence of papers (DP95; GH02; BGdV04; KMMP08;
MM07), the running time was improved tõO(m2n). Kavitha and Mehlhorn (KM07) gave the first
polynomial time algorithm for minimum directed cycle bases. It had running timeO(m4n). In a
sequence of papers (LR05; Kav05; HKM08; MM07) the running time was improved toO(m3n)
deterministic time and̃O(m2n) Monte Carlo time. We improve the running time toO(mω) Monte
Carlo time for undirected and directed bases. For planar graphs, we improve the running time
from O(n2 logn) (HM94) toO(n2); the algorithm is deterministic.

This paper is structured as follows. In Section 2 we improve upon a result of Horton (Hor87)
and show that the search for cycle bases can be restricted to aset of candidate circuits of total
lengthO(nm); Horton had shown that the search can be restricted to a set ofO(nm) circuits.
In Section 3, we exploit this structural insight to derive the O(mω) Monte Carlo algorithm for
minimum undirected and directed bases. In Section 4, we exploit it to derive theO(n2) algorithm
for minimum bases in planar graphs.

2 Structural results

For any two nodesu andv, let puv be a minimum weight path fromu to v in G with respect
to weight functionw. We assume that the collection of minimum weight paths is consistent,
i.e., if x andz lie on puv then pxz is a subpath ofpuv. This can be guaranteed for instance by
lexicographic ordering. Given an arbitrary numbering of the nodes from 1 ton, a pathp between
two nodes is considered shorter than a pathq of the same total weight if the length ofp is strictly
smaller than the length ofq. In case of ties, the shortest path betweenp andq will be the one
that contains the node with minimum index in the non-common part. For a modified minimum
weight path algorithm that ensures lex-shortest paths in timeO(mn+n2 logn), see (HM94).

For any nodex, let Tx be the minimum weight path tree rooted atx, i.e.,Tx is the union of the
pathspxv for all v. In (Hor87) Horton shows that a polynomial subset of all cycles is guaranteed
to contain a minimum cycle basis. The set of Horton candidatecycles, denoted byH , contains
all cycles of the formCx,e := pxuepvx, for any possible choice of a nodex and an edgee = uv
not in Tx, i.e., a co-tree edge. Among thesenν cycles, we have to consider only the circuits,
discardingCx,e if pxu andpxv have more than nodex in common (see Figure 2(a)).H is a multi-
set because each circuitC can have different representationsCx,e for some of its nodesx. Note
that there is no representation for a given nodex if C contains more than one co-tree edge with
respect toTx. This is equivalent to the existence of a shortcut betweenx and another node inC,
i.e., the shortest path joining them does not belong to the circuit itself.

A circuit C is calledisometricif for any two nodesu andv onC, puv is contained inC. See
Figure 2 (b) and (c) for examples of non-isometric circuits.The set of isometric circuits will be
denoted byI . Clearly each isometric circuit is a Horton candidate cycle, that isI ⊆H .
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Figure 2: Examples of non-isometric cycles. (a)C1,{3,4} is not a circuit, becausep13 and p14

have also node 2 in common. The contained circuit is obtainedasC2,{3,4}. (b) The minimum
weight path connecting 1 and 3 consists of edges{1,2} and{2,3}. C1,{3,4} is a non-isometric
circuit because of the shortcut, depicted in dashed. The only other representation isC3,{1,4}. (c)
C1,{4,5} is a non-isometric circuit with two shortcuts and no representations for any other node.

In fact, we just need to consider isometric circuits.

Proposition 2.1 ((Hor87)) I contains a minimum undirected (directed) basis.

Moreover, isometric circuits can be characterized in termsof number of representations,
namely every isometric circuitC has exactly|C| representations inH .

Property 2.2 (Isometric circuits (Hor87)) Let C be any isometric circuit and let x be an arbi-
trary node of C. Then there is an edge e= uv on C such that C= pxuepvx. Conversely, if for
every x∈C there is such an edge, then C is isometric.

Proof: Let C = (x = v0, v1, . . . , vk = x). Since the empty path is the minimum weight path
from x to x andC is not the minimum weight path fromx to x, there must be ani such that
pxvi =(v0,v1, . . . ,vi) but pxvi+1 6= (v0,v1, . . . ,vi ,vi+1). Thenpxvi+1 = (vk,vk−1, . . . ,vi+1) and hence
e= (vi ,vi+1) is the desired edge.

For the converse, consider any two nodesx andzonC and lete= uvbe such thatC= pxuepvx;
z lies on one of the paths and hence the minimum weight path fromx to z is contained inC.

By considering the set of isometric circuitsI instead ofH we have the following simple
but fundamental property.

Property 2.3 The total length of the isometric circuits is at most nν.

Proof: An isometric circuitC occurs|C| times in the Horton multi-set and hence∑C∈I |C| can
be no larger than the size of the Horton multi-set.

Note that we sum only over the isometric circuits, as we have no control over the number of
appearances of non-isometric cycles.
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The upper bound of Property 2.3 is tight for instance for the complete graphKn with n ver-
tices and equal weight on the edges. For any nodex, the cycle obtained by adding toTx any
co-tree edge is a triangle.H consists ofnν triangles that are clearly isometric. Since there are
three representations of each possible triangle, obtainedby taking asx each one of its 3 nodes,
I consists ofnν/3 triangles. Therefore, the total length of the isometric circuits is exactlynν.

The total length of the isometric circuits may be much smaller thannν. Consider ans× s
grid with equal weights on the edges. Sincen = s2 andm= 2s(s−1), we haveν = (s−1)2,
andm andν areO(n). The isometric circuits are exactly the grid squares and hence their total
length is 4(s−1)2, that isO(n), whereas the upper bound of Property 2.3 isnν = s2(s−1)2, that
is O(n2).

We will now show that we can extractI from the Horton multi-set in timeO(nm).
For every nodev 6= x, let sx(v) be the child ofx in Tx containingv in its subtree. In other

words,sx(v) is the first node on the minimum weight path fromx to v. The vectorssx for all
x∈V can be the computed in timeO(n2). Note that a candidate cycleC = Cx,e, for e= uv, is a
circuit only whenpxu andpxv have only nodex in common, i.e.,sx(u) 6= sx(v) (see Figure 2(a)).
The next Lemma shows how to identify different representations of the same isometric circuit
and how to discover non-isometric circuits. Given a circuitCx,uv, the idea is to check for two
specific nodesx′ andx′′ of C whether the minimum weight pathpx′x′′ between them belongs to
C. The nodesx′ andx′′ are chosen so that a negative answer obviously implies that the circuit is
non-isometric whereas a positive answer gives a different representation ofC for one ofx′ and
x′′. This is achieved by takingx′ = sx(u) andx′′ = v. In fact, if px′v belongs toC there are only
two possibilities:px′v = x′xpxv and the other representation forC is for the nodex′ and is given
by Cx′,uv; px′v = vupux′ and the other representation forC is for the nodev and is given byCv,xx′ .
When nodex′ does not exist because nodex coincides with nodeu, the other representation is for
nodev and is given byCv,uv. Lemma 2.4 explains how to check (in constant time) the conditions
that allow to identify the different cases, which are illustrated in Figure 3.

Lemma 2.4 Let C= Cx,e, let u be an endpoint of e, and let v be the other endpoint.

1. If sx(u) 6= sx(v) and x= u then x6= v and C= epvu = Cv,e.

2. If sx(u) 6= sx(v), x 6= u, and x′ = sx(u) is the first node on the minimum weight path from x
to u then:

(a) if x = sx′(v), then C= Cx′,e,

(b) if x 6= sx′(v) and u= sv(x′) then C= Cv,xx′ , and

(c) if x 6= sx′(v) and u6= sv(x′) then C is not isometric.

Proof:
If x = u, C = uvpvu = pvuuv= Cv,e. This proves the first statement.
If x 6= u andx′ is the first vertex on the minimum weight path fromx to u, we havepxu =

xx′px′u.
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Figure 3: Examples for the different cases of Lemma 2.4. (1)C1,{1,4} wherex = u = 1. (2a),
(2b) and (2c) are three different representations of the same circuit. (2a)C1,{4,5} wheres2(5) = 1
and we obtainC2,{4,5}. (2b)C2,{4,5} wheres3(5) 6= 2 buts5(3) = 4 and we obtainC5,{2,3}. (2c)
C5,{2,3} wheres6(3) 6= 5 ands3(6) 6= 2, because the minimum weight path connecting 3 and 6
consists of edges{3,4} and{4,6}. This implies that the circuit is not isometric. The shortcut is
in dashed line.

If x is the first vertex on the minimum weight path fromx′ to v, thenpux′px′v = puxpxv. Thus
C = Cx′,e. This establishes 2a.

If x is not the first vertex on the minimum weight path fromx′ to v andu is the first node on
the minimum weight path fromv to x′ thenC = pvxxx′px′v = Cv,xx′ . This establishes 2b.

If x is not the first vertex on the minimum weight path fromx′ to v andC is isometric, the
minimum weight path fromx′ to v must bepx′u followed bye. Thenu is the first vertex on the
minimum weight path fromv to x′. This establishes 2c.

Lemma 2.4 allows us to identify different representations of the same isometric circuit. It
also allows to exclude some circuits as non-isometric.

We next show that all representations of an isometric circuit will be identified and all non-
isometric circuits will be discovered. We set up a graph whose vertices are the pairs(x,e), x∈V,
e∈ E, if (x,e) is a circuit. We label(x,e) asbad if condition 2c holds. We connect two pairs if
they satisfy condition 1 or 2a or 2b, see Figure 4.

Lemma 2.5 All representations of an isometric circuit belong to the same connected component.

Proof: Let C = (v0,v1, . . . ,vk = v0) be an isometric circuit, letei = vivi+1, and for anyi, 0≤
i < k, let j(i) be such thatC = Cvi ,ej(i)

. Figure 4 shows how the different representations ofC are
linked together. In this Figure, a representationCvi ,ej(i)

is indicated as a dashed arrow fromvi to
ej(i). In cases 1 and 2a,vi andvi+1 point to the same edge, i.e., the tail of the arrow advances
by one position. In case 2b, we replace the arrow fromvi to ej(i) = v j(i)v j(i)+1 by the arrow
from v j(i)+1 to vivi+1, i.e., we reverse the direction of the arrow and it now pointsfrom the tail
of ej(i) to the edge out ofvi . In this way, the arrow sweeps around the circuit once and links all
representations of the same circuit.

Lemma 2.6 If Cx,e is non-isometric then the component of(x,e) contains a bad component.
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Figure 4: In the graph on the left all edges have cost one; we selecte1e2 as the minimum weight
path connecting 1 and 3. The circuitsC1,e3 andC3,e4 are bad by condition 2c. For the former
circuit letx = 1, u = 3, v = 4; thens1(3) = 2 ands2(4) 6= 1 ands4(2) 6= 3. The other circuits are
connected as shown below the graph.
The figure on the right shows an isometric circuitC embedded on a circle. The edges correspond
to the circular arcs between the vertices and the length of anarc is proportional to the weight of
the corresponding edge. For any vertexx, we haveC = Cx,e wheree contains the mirror image
of x with respect to the center of the circle. We have the following connections:C1,e4 andC2,e4

are connected by condition 2a,C2,e4 andC5,e2 are connected by condition 2b, and so on.

Proof: Let C = (v0,v1, . . . ,vk = v0) be a non-isometric circuit and letei = vivi+1. For some,
but not all,i, 0≤ i < k, there will be aj(i) such thatC = Cvi ,ej(i)

. Observe, that ifC = Cvi ,ej(i)
,

the minimum weight paths fromvi to the vertices ofC are initial segments of eitherpviv j(i)
or

pviv j(i)+1
. Also, if the minimum weight path fromvi+1 to v j(i)+1 is contained inC, then either

C = Cvi+1,ej(i)
or C = Cv j(i)+1,ei .

Thus if C is non-isometric, there must bei such that the minimum weight path fromvi+1
to v j(i)+1 is not contained inC. For any suchi, Cvi ,ej(i)

will be declared bad. Any non-bad

representation ofC will be linked to a bad one as described in the preceding Lemma.

Note that checking the conditions of Lemma 2.4 is needed oncefor each circuit inH .
We summarize the discussion.

Theorem 2.7 In time O(nm) we can extract for each isometric circuit one pair(x,e) with C =
Cx,e.

3 Improved algorithms for general graphs

We refine de Pina’s approach (DP95; KLM+09) for computing minimum cycle bases, see Fig-
ure 5. It operates in phases. In each phase, one circuit is added to the basis. The algorithm also
maintains a basis of the orthogonal space; more precisely, at the beginning of thei-th iteration
is has a set{Si , . . . ,Sν } of linearly independent vectorsSj ∈ κE with 〈Cj ,Sj〉= 0, where〈_,_〉
is the inner product of vectors overκ . Throughout this section,κ = GF(p) for a primep with

7



1: Initialize Sj to the j-th unit vector for 1≤ j ≤ ν.
2: for i← 1, . . . ,ν do
3: Compute a minimum weight isometric circuitCi with 〈Ci,Si〉 6= 0.
4: for j ← i +1, . . . ,ν do
5: Sj = Sj −

〈Ci ,Sj 〉
〈Ci ,Si〉

Si

6: end for
7: end for
8: Output{C1, . . . ,Cν }.

Figure 5: De Pina’s algorithm for computing a minimum cycle basis.

p = O(mlogm). In particular, arithmetic inGF(p) takes constant time. At the start of the com-
putationSj is initialized to thej-th unit vector for 1≤ j ≤ ν, where the numbering of the edges
is such that edgeseν+1 to em form a spanning tree ofG.

Steps (4) and (5) of the algorithm make theSj , j > i, orthogonal toCi and maintain orthog-
onality ofC1 to Ci−1. Updating the vectorsSj as shown takes timeO(m2) per phase and hence
total timeO(m3). In (KMMP08), this was improved to timeO(mω). The best known realization
of step (3) takes timẽO(mn) per phase and hence total timeÕ(m2n). We describe a Monte Carlo
algorithm that improves the total time for step (3) too(mω). The improved algorithm exploits
the new structural result presented in the preceding section.

We start with a simple technical lemma.

Lemma 3.1 LetC be a collection of circuits. For each circuit C∈ C , let λC ∈GF(p) be chosen
randomly and let D= ∑C∈C λCC. Let S be a nonzero vector in GF(p)E. If all circuits in C are
orthogonal to S, D is orthogonal to S. IfC contains a circuit that is non-orthogonal to S, D is
orthogonal to S with probability at most1/p.

Proof: Clearly, if every circuit inC is orthogonal toS, thenD is.
So assume thatC′ ∈ C is non-orthogonal toSand consider a fixed choice of coefficientsλC

for the circuitsC ∈ C , C 6= C′. Also assume that there are two distinct choicesα andβ for λC′

such that∑C∈C λCC are orthogonal toS. ThenαC′+∑C∈C ,C6=C′ λCC andβC′+∑C∈C ,C6=C′ λCC
are orthogonal toS. Thus(β −α)C′ is orthogonal toS, a contradiction. Thus the probability that
〈D,S〉= 0 is at most 1/p.

Consider the|I | ≤ nm isometric circuits. We sort them by nondecreasing weight and put a
binary tree (of depth at most lognm, that isO(logn)) on top of the sorted list. For each node of
the tree, we preparek random linear combinations of the circuits below the node. We find the
cheapest circuit that has nonzero inner product withSi as follows. Assume the search has arrived
in some node of the tree. We compute the inner product ofSi with the k linear combinations
associated with the left child. If one inner product is nonzero, we proceed to the left child. If
all k inner products are zero, we proceed to the right child. The move to the left child is always
correct. However, the move to the right child may be incorrect. The probability that any specific
decision is incorrect is at mostp−k. In any search, we make log|I | decisions, and we need to

8



find ν circuits. Thus the total number of decisions isν log|I | and hence the total probability of
error is bounded byν log|I |p−k.

Each step of the binary search is a scalar product and hence selecting one circuit takes time
O(kmlogn). Selecting all circuits takes timeO(km2 logn).

How much time does it take to prepare the random linear combinations? We maintain them
as sparse vectors, i.e., as the ordered list of their nonzeroentries. In order to prepare one linear
combination for each node of the search tree, we choose a random multiplier λC ∈ k for each
isometric circuitC. We then sum the sparse vectors as indicated by the tree. Eachnonzero entry
of a circuit contributes costO(1) for each level of the tree and hence the total time to prepare one
random linear combination for each node of the search tree isO(nmlogn) by Property 2.3. We
wantk linear combinations for each node and hence require timeO(knmlogn) to prepare all of
them.

Theorem 3.2 There is a Monte Carlo algorithm for finding a minimum GF(p)-basis that works
in time O(nm+n2 logn+mω +km2 logn) and errs with probability at mostν log(nm)p−k. For
k = m0.1, this is exponentially small, and the running time is O(mω).

Undirected bases areGF(2)-bases and hence we are done. For directed cycle bases we use
an observation in (KLM+09, Section 3.5), namely that a minimumGF(p)-basis for a randomp
with p = Θ(mlogm) is a minimum directed basis with probability at least 1/2.

Theorem 3.3 There is a Monte Carlo algorithm for finding a minimum directed cycle basis that
works in time O(mω) and errs with probability at most1/2.

4 Planar graphs

Hartvigsen and Mardon (HM94) have shown that minimum undirected cycle bases in planar
graphs can be computed in timeO(n2 logn). In this section, we summarize their result, improve
the running time toO(n2), and also show that for planar graphs, the notions of minimumdirected,
undirected, integral, weakly fundamental, and totally unimodular bases coincide, see (KLM+09,
Section 3) and the proof of Theorem 4.2 for a definition of the latter terms.

Let G be a plane graph, a planar graph embedded into the plane. A plane graph divides the
plane into maximal open connected sets of points that we callfaces. Any circuit C divides the
plane into two maximal open connected sets of points, one bounded and one unbounded. We use
interior(C) to denote the bounded set. Ifinterior(C) agrees with one of the faces ofG, we call
C a face circuit. Note that the number of edges and the number of face circuitsare bothO(n).
A collection of circuits is callednestedif for any two circuits in the collection, the interiors are
either disjoint or the interior of one is contained in the interior of the other.

For a collectionB of circuits, letFB be the face circuits that do not belong toB. We define the
directed inclusion graphDB with vertex setB∪FB as follows. LetC andC′ be circuits inB∪FB.
We have an edge fromC to C′ if interior(C) ⊃ interior(C′) and there is no circuitC′′ ∈ B∪FB

such thatinterior(C)⊃ interior(C′′)⊃ interior(C′). The inclusion graph is acyclic; the nodes of

9



DB with no outgoing edges are precisely the face circuits ofG. The inclusion graph is a forest if
and only ifB is nested.

In (HM94) Hartvigsen and Mardon show that the number of isometric circuits is at most
twice the number of face circuits of any planar graphG and there is at least a minimum cycle
basis (directed or undirected) that is nested. Moreover, a nested collection of cyclesB is a mini-
mum cycle basis iffB is a minimum weight collection of circuits satisfying threeproperties: (1)
every non-leaf inDB has exactly one child inFB, (2) the circuits inFB have parents inDB, (3) the
inclusion graphDB is a forest.

Our algorithm for finding a minimum weight basis differs fromthat of (HM94) in two points.
First, we use the all-pairs minimum weight paths method for planar graph inO(n2) proposed
in (Fre87). Then, the main improvement is to exploit the procedure implied by Theorem 2.7 to
obtain the set of isometric circuits inO(n2). This way, the bottleneck ofO(n2 logn) decreases to
O(n2). The rest of the algorithm proceeds as in (HM94) and we summarize it below for com-
pleteness. Recall that the number of isometric circuits isO(n) and that sorting by nondecreasing
weight isO(nlogn).

We construct the incidence matrixA between isometric circuits and the faces ofG. The entry
corresponding to a circuitC and a faceR is one ifR⊆ interior(C). This matrix can clearly be
computed in timeO(n2).

We initialize the basisB to the empty set and set up the corresponding inclusion graphDB.
The vertices ofDB are the face circuits and there are no edges. As long asB does not have the
right number of circuits and henceDB does not satisfy properties (1) and (2), we do the following.

If there is a non-leaf nodeC that has more than one child inFB (case 1), letR1 andR2 be
two faces ofG limited by two face circuits inFB havingC as their common parent. If there is
no such non-leaf node, there must be a face circuit inFB without a parent (case 2). LetR1 be the
face limited by this face circuit and letR2 be the unbounded face. In either case, we find the least
weight circuitD containing exactly one ofR1 or R2 in its interior. We can findD in timeO(n) by
scanning the columns ofA.

We addD to B and updateDB. If D is a face circuit, we only have to removeD from FB. The
inclusion graph stays the same. So assume thatD is not a face circuit. Starting from the face
circuits in interior(D) (we can find them in matrixA), we determine the maximal subtrees ofDB

that are contained ininterior(D). They become children ofD. D either becomes a root (in case
2) or a child ofC (in case 1). UpdatingDB takes timeO(n).

We conclude that we spend timeO(n) per base circuit for a total ofO(n2).

Theorem 4.1 A minimum (directed or undirected) circuit basis of a planargraph can be found
in time O(n2).

(HM94) observed that the minimum cycle basis problem is dualto the all-pairs minimum cut
problem. Hence the all-pairs minimum cut problem in planar graphs can also be solved in time
O(n2).

Theorem 4.2 Every planar graph has a minimum directed cycle basis that isweakly fundamen-
tal, totally unimodular, and integral.
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Proof: Every planar graph has a minimum directed cycle basis that isnested. LetB be such
a basis. We first show thatB is totally unimodular. We need to show that any circuit is a linear
combination of the circuits inB with coefficients in{−1,0,+1}. Let C be any circuit. Then,
C can be obtained as the sum of the face circuits that limit faces in interior(C). A face circuit
either belongs toB or is equal to the difference of its parentp(F) in DB and the sum of the other
children ofp(F) in DB. Thus

C = ∑
F∈B

F + ∑
F∈FB

(

p(F)− ∑
D ∈ B andD is a child ofp(F) in DB

D

)

.

If a circuit D occurs twice in the representation ofC, it occurs once as a parent and once as
a child. As a parent, its coefficient is+1, and as a child, its coefficient is−1 and hence the
two occurrences cancel. Thus every circuit is a linear combination of the circuits inB with
coefficients in{−1,0,+1}.

We next show thatB is weakly fundamental. We need to exhibit an orderingC1, . . . , Cν
of the circuits inB such thatCi \ (C1∪ . . .∪Ci−1) 6= /0 for all i. Let DB be the inclusion graph
corresponding toB. If FB is empty, every face circuit belongs toB. We determine a reverse
ordering of the circuitsCν , . . . ,C1 as described in (LR07). Starting from the circuitC that limits
the unbounded face, we add the face circuits with an edge in common withC. After removing
the edges ofC from G, we proceed in the same way. We now extend the previous resultto the
general case whenFB is not empty. Since every face circuit inFB has a parent, we have a non-
leaf nodeD in DB whose children are all face circuits. One of these face circuits, sayF, belongs
to FB and all the others belong toB. The same idea for constructing a reverse ordering is then
applied to the circuits inB corresponding to the children ofD starting fromF. The face circuits
among these with an edge in common withF are added and the edges ofF that are not inD
are removed. Then we proceed in the same way considering the circuit that limits the new face.
After that all children ofD are added, we delete them fromDB. We repeat this until all nodes
in DB are isolated. By applying the procedure in the remaining graph for the case where there
are only face circuits, we find a reverse ordering of the circuits. Thus, the same result holds for
general cycle bases.

The proof is completed by the fact that any weakly fundamental basis is integral.

5 Conclusion

We have shown that minimum cycle bases can be computed in timeO(mω) by a Monte Carlo
algorithm. A further improvement would have to do away with the maintenance of a basis of the
orthogonal subspace.
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