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The Wetlab Experiment: Physarum Finds
Near-Shortest Paths

Physarum, a slime
mold,
single cell, several
nuclei
builds evolving net-
works
Nakagaki, Ya-
mada, Tóth,
Nature 2000

show video
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The Video of the Wetlab Experiment

|
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2008 Ig Nobel Prize

For achievements that first make people LAUGH
then make them THINK

COGNITIVE SCIENCE PRIZE: Toshiyuki Nakagaki, Ryo
Kobayashi, Atsushi Tero, Ágotá Tóth
for discovering that slime molds can solve puzzles.

REFERENCE: "Intelligence: Maze-Solving by an Amoeboid
Organism," Toshiyuki Nakagaki, Hiroyasu Yamada, and Ágota
Tóth, Nature, vol. 407, September 2000, p. 470.
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Outline of Talk

The maze experiment (Nakagaki, Yamada, Tóth). X
A mathematical model for the dynamics of Physarum (Tero
et al.).

Convergence against the shortest path.

Positive undirected linear programs.
Approach:

Analytical investigation of simple systems.
A simulator.
Formulizing conjectures and killing them.
Proving the surviving conjecture.
Generalizing to positive undirected linear programs.

Network formation.
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Mathematical Model (Tero et al.)

Physarum is a network of tubes (pipes);

Flow (of liquids and nutrients) through a tube is determined
by concentration differences at endpoints of a tube, length
of tube, and diameter of tube;

Tubes adapt to the flow through them: if flow through a tube
is high (low) relative to diameter of the tube, the tube grows
(shrinks) in diameter.

Mathematics is the same as for flows in an electrical
network with time-dependent resistors.

Tero et al., J. of Theoretical Biology, 553 – 564, 2007
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Mathematical Model (Tero et al.)

G = (V ,E) undirected graph, nodes s0 and s1.

Each edge e has a positive length ce (fixed) and a positive
diameter xe(t) (dynamic).

Initial state x(0) > 0.

Send one unit of current (flow) from s0 to s1 in an electrical
network where resistance of e equals

re(t) = ce/xe(t).

qe(t) is resulting flow across e at time t .

Dynamics:

ẋe(t) =
d
dt

xe(t) = |qe(t)| − xe(t).

We will write xe and qe instead of xe(t) and qe(t) from now on.
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The Questions

Does the system convergence for all (!!!) initial
conditions?

If so, what does it converge to? Fixpoints?

How fast does it converge?

Beyond shortest paths?

Inspiration for distributed algorithms?
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Convergence against Shortest Path

Theorem (Convergence (SODA 12, J. Theoretical
Biology), Bonifaci/M/Varma)

Dynamics converge against shortest path, i.e.,

potential difference between source and sink converges to
length of shortest source-sink path,
xe → 1 for edges on shortest source-sink path,
xe → 0 for edges not on shortest source sink path

this assumes that shortest path is unique; otherwise . . .

Miyaji/Onishi previously proved convergence
for parallel links and Wheatstone graph.
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Does the Dynamics Solve a Larger Class of
Problems?

What could this larger class of problems be?

How should we reinterpret q?
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Undirected Shortest Paths as an LP

Shortest path in an undirected graph is a min-cost flow problem
in an undirected graph with infinite edge capacities.

Recall min-cost flow in a directed graph
ce = cost of the edge e, ce > 0
fe = flow over the edge e, fe ≥ 0.
for all vertices v : outflowv − inflowv = supplyv .
minimize

∑
e cefe.

The LP for min-cost flow in a directed graph
minimize

∑
e cefe

subject to Af = b and f ≥ 0, where
A = node-arc incidence matrix, i.e., for e = (u, v), Ae = eu − ev

b = supply vector, i.e., b = esource − esink
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Undirected Shortest Paths as an LP

Modelling undirected edges
Make all edges bidirected.

Orient the edges of the graph arbitrarily and allow negative
flows. A negative flow across an edge (u, v) is really a
positive flow in the direction from v to u.

Undirected Shortest Paths as an LP
minimize

∑
e ce|fe|

subject to Af = b, where
A = node-arc incidence matrix, i.e., for e = (u, v), Ae = eu − ev
and
b = supply vector, i.e., b = esource − esink .
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The Generalization: Positive Undirected LPs

Modelling undirected edges
Make all edges bidirected.

Orient the edges of the graph arbitrarily and allow negative
flows. A negative flow across an edge (u, v) is really a
positive flow in the direction from v to u.

Positive (c > 0) Undirected LPs
minimize

∑
e ce|fe|

subject to Af = b, where A and b are arbitrary.

Remark: Solution to Af = b of minimal weighted one-norm.
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What is the Proper Generalization of q?

Definition of q
q is the electrical flow that sends one unit of current from s0 to
s1 with respect to the resistances re = ce/xe.

Tomson’s principle
The electrical flow is a feasible flow f that minimizes the energy∑

e ref 2
e of the flow. It is unique.

q = argmin
f

{∑
e

ref 2
e ; f is a feasible flow

}

= argmin
f

{∑
e

ref 2
e ; Af = b

}
= R−1AT (AR−1AT )−1b where R−1 = diag(xe/ce).
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Theorem

Positive Undirected LP
Assume c > 0. Consider

(*) minimize
∑

e cexe, subject to Af = b and |f | ≤ x .

Convergence of the Physarum Dynamics
The Physarum dynamics

ẋ = |q| − x

with a positive start vector x(0) > 0 converges to an optimum
solution of (*). Here

q = argmin
f

{∑
e

ref 2
e ; Af = b

}
and re = ce/xe.
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Our Approach

Shortest Paths
Analytical investigation of simple systems, in particular,
parallel links, and
experimental investigation (computer simulation) of larger
systems,

to form intuition about the dynamics,
to kill conjectures,
to support conjectures.

Proof attempts for conjectures surviving the computer
experiments.

Positive Undirected LPs
Generalize the proofs. General structure unchanged, but
details very different.
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Computer Simulation (Discrete Time)

Discrete Dynamics (Euler discretization)
Compute

xe(t + 1) = xe(t) + h · (|qe(t)| − xe(t))

for t = 1,2,3, . . . and a small step-size h.

Computer Experiments
We simulated 1000 systems with up to 10000 nodes. Always
observed convergence to shortest path.

Speed of convergence is determined by ratio of length of
second shortest path to length of shortest path.
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Two Parallel Links (Miyaji/Ohnishi)

e1

s1s0

e2

ei has length ci , c1 < c2,
and diameter xi

A visualization of the dynamics.
Arrows show the vector (ẋ1, ẋ2).
Trajectories in black.
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Two Parallel Links (Miyaji/Ohnishi)
e1

s1s0

e2

ei has length ci , c1 < c2,
and diameter xi

∆ = ∆(t) = potential
difference between source
and sink

qi = xi
ci
·∆

ẋi = qi − xi = xi
ci

∆− xi

Fixpoints: ẋ1 = ẋ2 = 0:

ẋi = 0 iff xi = 0 or ∆ = ci .

Thus x2 = 0, ∆ = c1, and x1 = 1
or x1 = 0, ∆ = c2, and x2 = 1.

Fixpoints are the source-sink
paths.
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Two Parallel Links (Miyaji/Ohnishi)
e1

s1s0

e2

ei has length ci , c1 < c2,
and diameter xi

∆ = ∆(t) = potential
difference between source
and sink

qi = xi
ci
·∆

ẋi = qi − xi = xi
ci

∆− xi

Convergence

Consider V = c1x1+c2x2
x1+x2

.

Then
• V ≥ 0,
• V̇ ≤ 0, and
• V̇ < 0 if q 6= x .

Thus x converges to a fixpoint.

V is called a Lyapunov function.
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The Structure of the Convergence Proof

Fixpoints: The points x with ẋ = 0, i.e., |q| = x .
The fixpoints are exactly the source-sink paths. This assumes
that all paths have different length. Thus, if the system
converges, it converges against some source-sink path.

Convergence
In order to prove convergence, one needs to find a
Lyapunov function, i.e., a function L mapping x to real
numbers such that

L(x) ≥ 0 for all x ,
d
dt L(x) ≤ 0, and

L̇ = 0 if and only if ẋ = 0.

In order to prove convergence against the shortest path,
one needs some additional arguments.
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Lyapunov Functions?

First idea: the energy of the flow decreases over. time

Not true, even for parallel links.

Theorem
For the case of parallel links:∑

i≥2

ci ln xi − c1 ln x1,
∑

i

qici ,

∑
i xici∑
i xi

, and (ps − pt )
∑

i

xici

decrease over time

computer experiment: the obvious generalizations to general
graphs (replace i by e ) do not work.
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A not so Obvious Generalization

e1

s1

ek

s0 .
.

.

∑
i xici∑
i xi

⇒
∑

e xece

minimum total x-value of a s0-s1 cut

LEDA came handy.
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Lyapunov Functions?

Computer experiment:

V :=
∑

e xece

minimum total x-value of a s0-s1 cut
decreases

Theorem (Lyapunov Function)

V +
(∑

e∈δ({ s0 }) xe − 1
)2

decreases.
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Generalization of the Scaling Factor

scaling factor = minimum total x-value of a s0-s1 cut

Min-Cut = Max-Flow
Interpret the x-values as edge capacities

minimum total x-value . . . = minimum capacity of a s0-s1 cut
= maximum flow from s0 to s1

Scaling Factor: sf = max {α; Af = αb; |f | ≤ x }.
LP-duality: There are vectors d1 to dK that only depend on A
and b but are independent of x such that sf = mini dT

i x .

Then V becomes
∑

e xece

mini dT
i x
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Convergence against Optimum Solution

Theorem (Convergence)

Assume c ≥ 0 and cT |f | > 0 for every f with Af = 0.
Assume min cT |f | subject to Af = b has a unique solution.

The Physarum dynamics

ẋ = |q| − x ,

where

q = argmin
f

{∑
e

ref 2
e ; Af = b

}
and re = ce/xe,

converges against the optimal solution of the linear program
above.

If the optimum solution is not unique, . . .
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Convergence against Optimum Solution

Theorem (Convergence)

Assume c ≥ 0 and cT |f | > 0 for every f with Af = 0.
Assume min cT |f | subject to Af = b has a unique solution.

The Physarum dynamics

ẋ = |q| − x ,

where

q = argmin
f

{∑
e

ref 2
e ; Af = b

}
and re = ce/xe,

converges against the optimal solution of the linear program
above.

Convergence of discretization (c = 1), Straszak and Vishnoi.
Physarum Kurt Mehlhorn 23



Discretization and Speed of Convergence

xe(t + 1) = xe(t) + h(|qe(t)| − xe(t))

Theorem (Epsilon-Approximation of Shortest Path),
Bechetti/Bonifaci/Dirnberger/Karrenbauer/M, ICALP 13
Let opt be the length of the shortest source-sink path.

Let ε > 0 be arbitrary. Set h = ε/(2mL), where L is largest
edge length and m is the number of edges.

After Õ(nmL2/ε3) iterations, solution is (1 + ε) optimal, i.e.,
V =

∑
e cexe is at most (1 + ε)opt .

Arithmetic with O(log(nL/ε)) bits suffices.
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Related Work: Directed Physarum

ẋe(t) = qe(t)− xe(t)

No biological significance is claimed.

Ito/Johansson/Nakagaki/Tero (2011)
prove convergence to shortest directed source-sink path.

Johannson/Zou (2012) and D. Straszak/N. Vishnoi (2016)
prove that directed dynamics solves any linear program with
monotone objective function (all coefficients of c are positive)

max cT x subject to Ax = b and x ≥ 0.

Becker/Bonifaci/Karrenbauer/Kolev/M
established an improved convergence result.
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Adamatzky’s Book

many examples of Physarum
computations

shortest paths

network design

Delaunay diagrams

puzzles

also Youtube-videos: search for
Physarum
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Open Problems
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Nonuniform Physarum

ẋe(t) = ae(|qe(t)| − xe(t))

ae reactivity of e

We have a heuristic ar-
gument for the details
of the convergence pro-
cess. Have verified them
in computer simulations.

No convergence proof

Becchetti/Bonifaci/Karrenbauer/M (ICALP 13) incorrectly
claimed a convergence proof.
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Network Design: Science 2010
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test
|
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Observables (Wet-Lab Experiments)

Histogram for edge lengths.
Abscissa shows values in pixel.

Have verified experimentally
that cut capacity orthogonal to
growing direction is constant.

Dirnberger/Mehlhorn/Mehlhorn, J. Phys. D, 2017, Dirnberger/Mehlhorn, J. Phys. D, 2017.
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My Current Projects

Understand the principles of network formation. What does the
network optimize?

Nonuniform Versions of Physarum.

Can I use Physarum as an inspiration for approximation
algorithms?
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