
Certifying Algorithms
An Attempt of a Theory

Kurt Mehlhorn

MPI für Informatik
Saarbrücken

Germany

Kurt Mehlhorn, MPI für Informatik Certifying AlgorithmsAn Attempt of a Theory – p.1/10



Does every Program have a Certifying Counterpart?

� a formalization of certifying programs for programs computing functions

� Monte Carlo algs have no certifying counterpart

� every deterministic program has a certifying counterpart

� then formalization for programs with non-trivial preconditions

� there are programs which have certifying counterpart

Kurt Mehlhorn, MPI für Informatik Certifying AlgorithmsAn Attempt of a Theory – p.2/10



Witness Predicates
W : X � Y � W � � �

0 � 1

�

is a witness predicate for f : X � � Y if

1. W deserves is name:

�

x � y

�	

w W

�

x � y � w


 


iff

�

y � f

�

x

 


2. witness property is easy to understand, i.e., the implication

W

�

x � y � w


 � �

y � f
�

x

 


has an elementary proof.

3. given x, y, and w, it is trivial to decide whether W

�

x � y � w




holds.

� a program for W is called a checker

� checker has linear running time and simple structure

� correctness of checker is obvious or can be established by an
elementary proof

no assumption about difficulty of proving

�

y � f

�

x


 
 � 	

w W

�

x � y � w




Kurt Mehlhorn, MPI für Informatik Certifying AlgorithmsAn Attempt of a Theory – p.3/10



Does every Function have a Certifying Alg?

� let P be a program and let f be the function computed by P

� does there exist a program Q and a predicate W such that

1. W is a witness predicate for f .

2. On input x, Q computes a triple

�

x � y � w




with W
�

x � y � w




.

3. the resource consumption (time, space) of Q on x is at most a
constant factor larger than the resource consumption of P.

Thesis:

� Every deterministic algorithm can be made certifying

� Monte Carlo algorithms resist certification

Intuition:

� correctness proofs yield certifying algorithms

� a certifying Monte Carlo alg yields Las Vegas alg

Kurt Mehlhorn, MPI für Informatik Certifying AlgorithmsAn Attempt of a Theory – p.4/10



Monte Carlo Algorithms resist Certification

� assume we have a Monte Carlo algorithm for a function f , i.e.,

� on input x it outputs f

�

x




with probability at least 3

�

4

� the running time is bounded by T

�


x


 


.

� assume Q is a certifying alg with the same complexity

� on input x, Q outputs a witness triple

�

x � y � w



with probability at
least 3

�

4.

� it has running time O

�

T

� 


x


 
 


.

� this gives rise to a Las Vegas alg for f with the same complexity

� run Q and apply W to the triple
�

x � y � w




returned by Q

� if W holds, we return y. Otherwise, we rerun Q.

� this outputs f

�

x




in expected time O

�

T

�


x


 
 


.

Kurt Mehlhorn, MPI für Informatik Certifying AlgorithmsAn Attempt of a Theory – p.5/10



Every Deterministic Program has a Certifying Counterpart

� let P be a program computing f .

� certifying Q outputs f

�

x




and a witness w � �

w1 � w2 � w3




� w1 is the program text P, w2 is a proof (in some formal system) that
P computes f , and w3 is the computation of P on input x

� W

�

x � y � w




holds if w � �

w1 � w2 � w3




, where w1 is the program text of
some program P, w2 is a proof (in some formal system) that P
computes f , w3 is the computation of P on input x, and y is the
output of w3.

� we have
1. W is clearly a witness predicate
2. W is trivial to decide
3. the proof of W

�

x � y � w

 � �

y � f

�

x


 


is elementary
4. Q has same space/time complexity as P.

� construction is artificial, but assuring: certifying algs exist

� the challenge is to find natural certifying algs
Kurt Mehlhorn, MPI für Informatik Certifying AlgorithmsAn Attempt of a Theory – p.6/10



And with Non-Trivial Preconditions

�

ϕ

�

x


 �

P

�

ψ

�

x � y


 �

� standard interpretation of total correctness: on an input x satisfying ϕ ,
the program P returns a y with ψ

�

x � y




. If x does not satisfy ϕ , the
program may do anything.

� certifying program: on an input x, it either returns a proof for �ϕ

�

x




or a
y and a proof for ψ

�

x � y




.

� Example 1:

� Precondition: x is the description of a Turing Machine halting on
empty input

� Output: the result of running x on empty input

� this behavior is easily realized: a universal Turing Machine

� formal correctness proof is feasible

� but behavior cannot be realized by a certifying algorithm

Kurt Mehlhorn, MPI für Informatik Certifying AlgorithmsAn Attempt of a Theory – p.7/10



Verification of Checkers

� the checker should be so simple that its correctness is “obvious”.

� we may hope to formally verify the correctness of the implementation of
the checker
this is a much simpler task than verifying the solution algorithm

� the mathematics required for the checker is usually much simpler
that the one underlying the algorithm for finding solutions and
witnesses

� checkers are simple programs

� algorithmicists may be willing to code the checkers in languages
which ease verification

� logicians may be willing to verify the checkers

� Remark: for a correct program, verification of the checker is as good as
verification of the program itself

Kurt Mehlhorn, MPI für Informatik Certifying AlgorithmsAn Attempt of a Theory – p.8/10



Cooperation of Verification and Checking

� a sorting routine working on a set S
(a) must not change S and
(b) must produce a sorted output.

� I learned the example from Gerhard Goos

� the first property is hard to check (provably as hard as sorting)

� but usually trivial to prove, e.g.,
if the sorting algorithm uses a swap-subroutine to exchange items.

� the second property is easy to check by a linear scan over the output,
but hard to prove (if the sorting algorithm is complex).

� second example in handout

Kurt Mehlhorn, MPI für Informatik Certifying AlgorithmsAn Attempt of a Theory – p.9/10



Design of Certifying Algorithms

� general approaches

� linear programming duality: primal and dual solution certify each
other, e.g.,
matchings and covers, flows and cuts, shortest paths and potential
functions

� characterization theorem, e.g.,
non-planarity and Kuratowski subgraphs, convex bodies and
certifying rays

� however, there is no “Königsweg”

Kurt Mehlhorn, MPI für Informatik Certifying AlgorithmsAn Attempt of a Theory – p.10/10


	Does every Program have a Certifying Counterpart?
	Witness Predicates
	Does every Function have a Certifying Alg?
	Monte Carlo Algorithms resist Certification
	Every Deterministic Program has a Certifying Counterpart
	And with Non-Trivial Preconditions
	Verification of Checkers
	Cooperation of Verification and Checking
	Design of Certifying Algorithms

