

Certifying Algorithms An Attempt of a Theory

Kurt Mehlhorn

MPI für Informatik Saarbrücken Germany

Does every Program have a Certifying Counterpart?

- a formalization of certifying programs for programs computing functions
- Monte Carlo algs have no certifying counterpart
- every deterministic program has a certifying counterpart
- then formalization for programs with non-trivial preconditions
- there are programs which have certifying counterpart

Witness Predicates

 $W: X \times Y \times W \mapsto \{0, 1\}$ is a *witness predicate* for $f: X \mapsto Y$ if

1. W deserves is name:

 $\forall x, y \quad (\exists w \ W(x, y, w)) \quad \text{iff} \quad (y = f(x))$

2. witness property is easy to understand, i.e., the implication

$$W(x, y, w) \to (y = f(x))$$

has an elementary proof.

- 3. given x, y, and w, it is trivial to decide whether W(x, y, w) holds.
 - a program for W is called a checker
 - checker has linear running time and simple structure
 - correctness of checker is obvious or can be established by an elementary proof

no assumption about difficulty of proving

$$(y = f(x)) \to \exists w \ W(x, y, w)$$

Kurt Mehlhorn, MPI für Informatik

Does every Function have a Certifying Alg?

- let P be a program and let f be the function computed by P
- does there exist a program Q and a predicate W such that
 - 1. W is a witness predicate for f.
 - 2. On input *x*, *Q* computes a triple (x, y, w) with W(x, y, w).
 - 3. the resource consumption (time, space) of Q on x is at most a constant factor larger than the resource consumption of P.

Thesis:

- Every deterministic algorithm can be made certifying
- Monte Carlo algorithms resist certification

Intuition:

- correctness proofs yield certifying algorithms
- a certifying Monte Carlo alg yields Las Vegas alg

Monte Carlo Algorithms resist Certification

- assume we have a Monte Carlo algorithm for a function f, i.e.,
 - on input x it outputs f(x) with probability at least 3/4
 - the running time is bounded by T(|x|).
- assume Q is a certifying alg with the same complexity
 - on input x, Q outputs a witness triple (x, y, w) with probability at least 3/4.
 - it has running time O(T(|x|)).
- this gives rise to a Las Vegas alg for f with the same complexity
 - run Q and apply W to the triple (x, y, w) returned by Q
 - if W holds, we return y. Otherwise, we rerun Q.
 - this outputs f(x) in expected time O(T(|x|)).

Every Deterministic Program has a Certifying Counterpart

- let *P* be a program computing *f*.
- certifying *Q* outputs f(x) and a witness $w = (w_1, w_2, w_3)$
 - w_1 is the program text *P*, w_2 is a proof (in some formal system) that *P* computes *f*, and w_3 is the computation of *P* on input *x*
 - W(x, y, w) holds if w = (w₁, w₂, w₃), where w₁ is the program text of some program P, w₂ is a proof (in some formal system) that P computes f, w₃ is the computation of P on input x, and y is the output of w₃.
- we have
 - 1. W is clearly a witness predicate
 - 2. W is trivial to decide
 - 3. the proof of $W(x, y, w) \rightarrow (y = f(x))$ is elementary
 - 4. *Q* has same space/time complexity as *P*.
- construction is artificial, but assuring:
- the challenge is to find natural certifying algs

Kurt Mehlhorn, MPI für Informatik

certifying algs exist

And with Non-Trivial Preconditions

$\{\varphi(x)\} \quad P \quad \{\psi(x,y)\}$

- standard interpretation of total correctness: on an input *x* satisfying φ, the program *P* returns a *y* with ψ(*x*, *y*). If *x* does not satisfy φ, the program may do anything.
- certifying program: on an input *x*, it either returns a proof for ¬φ(x) or a y and a proof for ψ(x, y).
- Example 1:
 - Precondition: *x* is the description of a Turing Machine halting on empty input
 - Output: the result of running *x* on empty input
 - this behavior is easily realized: a universal Turing Machine
 - formal correctness proof is feasible
 - but behavior cannot be realized by a certifying algorithm

Verification of Checkers

- the checker should be so simple that its correctness is "obvious".
- we may hope to formally verify the correctness of the implementation of the checker
 - this is a much simpler task than verifying the solution algorithm
 - the mathematics required for the checker is usually much simpler that the one underlying the algorithm for finding solutions and witnesses
 - checkers are simple programs
 - algorithmicists may be willing to code the checkers in languages which ease verification
 - logicians may be willing to verify the checkers
- **Remark:** for a correct program, verification of the checker is as good as verification of the program itself

Cooperation of Verification and Checking

- a sorting routine working on a set *S*
 - (a) must not change S and
 - (b) must produce a sorted output.
- I learned the example from Gerhard Goos
- the first property is hard to check (provably as hard as sorting)
- but usually trivial to prove, e.g., if the sorting algorithm uses a *swap*-subroutine to exchange items.
- the second property is easy to check by a linear scan over the output, but hard to prove (if the sorting algorithm is complex).
- second example in handout

Design of Certifying Algorithms

- general approaches
 - linear programming duality: primal and dual solution certify each other, e.g., matchings and covers, flows and cuts, shortest paths and potential functions
 - characterization theorem, e.g., non-planarity and Kuratowski subgraphs, convex bodies and certifying rays
- however, there is no "Königsweg"