Certifying Algorithms
An Attempt of a Theory

Kurt Mehlhorn

MPI fiir Informatik
Saarbriicken
Germany

Kurt Mehlhorn, MPI fiir Informatik Certifying AlgorithmsAn Attempt of a Theory — p.1/10

Does every Program have a Certifying Counterp

a formalization of certifying programs for programs computing functlons
Monte Carlo algs have no certifying counterpart

every deterministic program has a certifying counterpart

then formalization for programs with non-trivial preconditions

there are programs which have certifying counterpart

Kurt Mehlhorn, MPI fiir Informatik Certifying AlgorithmsAn Attempt of a Theory — p.2/10

Witness Predicates

WX xY xW—{0,1} is a witness predicate for f : X — Y if
1. W deserves is name:

v,y (GwW(x,yw)) iff (y=f(x))

2. witness property is easy to understand, i.e., the implication

W(X,y,W) — (y — f(X))

has an elementary proof.

3. given x, y, and w, it is trivial to decide whether W (x,y,w) holds.
a program for W is called a checker
checker has linear running time and simple structure

correctness of checker is obvious or can be established by an
elementary proof

no assumption about difficulty of proving (y= f(x)) = 3w W(x,y,w)

Kurt Mehlhorn, MPI fiir Informatik Certifying AlgorithmsAn Attempt of a Theory — p.3/10

Does every Function have a Certifying Alg? (-

let P be a program and let f be the function computed by P

does there exist a program Q and a predicate W such that
1. W is a witness predicate for f.
2. Oninput x, O computes a triple (x,y,w) with W (x,y,w).

3. the resource consumption (time, space) of Q on x is at most a
constant factor larger than the resource consumption of P.

Thesis:
Every deterministic algorithm can be made certifying
Monte Carlo algorithms resist certification

Intuition:
correctness proofs yield certifying algorithms
a certifying Monte Carlo alg yields Las Vegas alg

Kurt Mehlhorn, MPI fiir Informatik Certifying AlgorithmsAn Attempt of a Theory — p.4/10

Monte Carlo Algorithms resist Certification

assume we have a Monte Carlo algorithm for a function f, i.e.,
on input x it outputs f(x) with probability at least 3 /4
the running time is bounded by T'(|x|).

assume Q is a certifying alg with the same complexity

on input x, Q outputs a witness triple (x,y,w) with probability at
least 3/4.

it has running time O(T (|x|)).

this gives rise to a Las Vegas alg for f with the same complexity
run Q and apply W to the triple (x,y,w) returned by Q
if W holds, we return y. Otherwise, we rerun Q.
this outputs f(x) in expected time O(T (|x|)).

Kurt Mehlhorn, MPI fiir Informatik Certifying AlgorithmsAn Attempt of a Theory — p.5/10

Every Deterministic Program has a Certifying Counter

let P be a program computing f.
certifying Q outputs f(x) and a withess w = (w, w,,w;)
w, Is the program text P, w, is a proof (in some formal system) that
P computes f, and w, is the computation of P on input x
W (x,y,w) holds if w = (w,w,,w;), where w, is the program text of
some program P, w, is a proof (in some formal system) that P
computes f, w, is the computation of P on input x, and y is the
output of wj.
we have
1. W is clearly a witness predicate
2. W is trivial to decide
3. the proofof W(x,y,w)— (y= f(x)) is elementary
4. (Q has same space/time complexity as P.

construction is artificial, but assuring: certifying algs exist
the challenge is to find natural certifying algs

Kurt Mehlhorn, MPI fiir Informatik Certifying AlgorithmsAn Attempt of a Theory — p.6/10

And with Non-Trivial Preconditions

{o(x)} P A{w(x,y)}

standard interpretation of total correctness: on an input x satisfying o,
the program P returns a y with y(x,y). If x does not satisfy ¢, the
program may do anything.

certifying program: on an input x, it either returns a proof for —¢(x) or a
y and a proof for y(x,y).

Example 1:
Precondition: x is the description of a Turing Machine halting on
empty input
Output: the result of running x on empty input

this behavior is easily realized: a universal Turing Machine
formal correctness proof is feasible
but behavior cannot be realized by a certifying algorithm

Kurt Mehlhorn, MPI fiir Informatik Certifying AlgorithmsAn Attempt of a Theory — p.7/10

Verification of Checkers

the checker should be so simple that its correctness is “obvious”.

we may hope to formally verify the correctness of the implementation of
the checker

this is a much simpler task than verifying the solution algorithm

the mathematics required for the checker is usually much simpler
that the one underlying the algorithm for finding solutions and
witnesses

checkers are simple programs

algorithmicists may be willing to code the checkers in languages
which ease verification

logicians may be willing to verify the checkers

Remark: for a correct program, verification of the checker is as good as
verification of the program itself

Kurt Mehlhorn, MPI fiir Informatik Certifying AlgorithmsAn Attempt of a Theory — p.8/10

Cooperation of Verification and Checking (.~

a sorting routine working on a set S
(a) must not change § and
(b) must produce a sorted output.

| learned the example from Gerhard Goos
the first property is hard to check (provably as hard as sorting)

but usually trivial to prove, e.g.,
If the sorting algorithm uses a swap-subroutine to exchange items.

the second property is easy to check by a linear scan over the output,
but hard to prove (if the sorting algorithm is complex).

second example in handout

Kurt Mehlhorn, MPI fiir Informatik Certifying AlgorithmsAn Attempt of a Theory — p.9/10

Design of Certifying Algorithms

general approaches

linear programming duality: primal and dual solution certify each
other, e.g.,

matchings and covers, flows and cuts, shortest paths and potential
functions

characterization theorem, e.g.,

non-planarity and Kuratowski subgraphs, convex bodies and
certifying rays

however, there is no “Konigsweg”

Kurt Mehlhorn, MPI fiir Informatik Certifying AlgorithmsAn Attempt of a Theory — p.10/10

	Does every Program have a Certifying Counterpart?
	Witness Predicates
	Does every Function have a Certifying Alg?
	Monte Carlo Algorithms resist Certification
	Every Deterministic Program has a Certifying Counterpart
	And with Non-Trivial Preconditions
	Verification of Checkers
	Cooperation of Verification and Checking
	Design of Certifying Algorithms

