Certifying Algorithms
An Attempt of a Theory

Kurt Mehlhorn

MPI für Informatik
Saarbrücken
Germany
Does every Program have a Certifying Counterpart?

- a formalization of certifying programs for programs computing functions
- Monte Carlo algs have no certifying counterpart
- every deterministic program has a certifying counterpart
- then formalization for programs with non-trivial preconditions
- there are programs which have certifying counterpart
Witness Predicates

$W : X \times Y \times W \rightarrow \{0, 1\}$ is a \textit{witness predicate} for $f : X \rightarrow Y$ if

1. W deserves its name:

 \[\forall x, y \quad (\exists w \ W(x, y, w)) \iff (y = f(x))\]

2. witness property is easy to understand, i.e., the implication

 \[W(x, y, w) \rightarrow (y = f(x))\]

 has an elementary proof.

3. given x, y, and w, it is trivial to decide whether $W(x, y, w)$ holds.

 - a program for W is called a \textit{checker}
 - checker has linear running time and simple structure
 - correctness of checker is obvious or can be established by an elementary proof

 no assumption about difficulty of proving

 \[(y = f(x)) \rightarrow \exists w \ W(x, y, w)\]
Does every Function have a Certifying Alg?

- let P be a program and let f be the function computed by P
- does there exist a program Q and a predicate W such that
 1. W is a witness predicate for f.
 2. On input x, Q computes a triple (x, y, w) with $W(x, y, w)$.
 3. the resource consumption (time, space) of Q on x is at most a constant factor larger than the resource consumption of P.

Thesis:
- Every deterministic algorithm can be made certifying
- Monte Carlo algorithms resist certification

Intuition:
- correctness proofs yield certifying algorithms
- a certifying Monte Carlo alg yields Las Vegas alg
Monte Carlo Algorithms resist Certification

- Assume we have a Monte Carlo algorithm for a function f, i.e.,
 - on input x it outputs $f(x)$ with probability at least $3/4$
 - the running time is bounded by $T(|x|)$.
- Assume Q is a certifying alg with the same complexity
 - on input x, Q outputs a witness triple (x, y, w) with probability at least $3/4$.
 - it has running time $O(T(|x|))$.
- This gives rise to a Las Vegas alg for f with the same complexity
 - run Q and apply W to the triple (x, y, w) returned by Q
 - if W holds, we return y. Otherwise, we rerun Q.
 - this outputs $f(x)$ in expected time $O(T(|x|))$.
Every Deterministic Program has a Certifying Counterpart

- let P be a program computing f.
- certifying Q outputs $f(x)$ and a witness $w = (w_1, w_2, w_3)$
 - w_1 is the program text P, w_2 is a proof (in some formal system) that P computes f, and w_3 is the computation of P on input x
 - $W(x, y, w)$ holds if $w = (w_1, w_2, w_3)$, where w_1 is the program text of some program P, w_2 is a proof (in some formal system) that P computes f, w_3 is the computation of P on input x, and y is the output of w_3.
- we have
 1. W is clearly a witness predicate
 2. W is trivial to decide
 3. the proof of $W(x, y, w) \rightarrow (y = f(x))$ is elementary
 4. Q has same space/time complexity as P.
- construction is artificial, but assuring: certifying algs exist
- the challenge is to find natural certifying algs
And with Non-Trivial Preconditions

\{ \phi(x) \} \quad P \quad \{ \psi(x, y) \}

- standard interpretation of total correctness: on an input \(x \) satisfying \(\phi \), the program \(P \) returns a \(y \) with \(\psi(x, y) \). If \(x \) does not satisfy \(\phi \), the program may do anything.

- certifying program: on an input \(x \), it either returns a proof for \(\neg \phi(x) \) or a \(y \) and a proof for \(\psi(x, y) \).

Example 1:
- Precondition: \(x \) is the description of a Turing Machine halting on empty input
- Output: the result of running \(x \) on empty input
- this behavior is easily realized: a universal Turing Machine
- formal correctness proof is feasible
- but behavior cannot be realized by a certifying algorithm
Verification of Checkers

- the checker should be so simple that its correctness is “obvious”.
- we may hope to formally verify the correctness of the implementation of the checker
 this is a much simpler task than verifying the solution algorithm
 - the mathematics required for the checker is usually much simpler that the one underlying the algorithm for finding solutions and witnesses
 - checkers are simple programs
 - algorithmicists may be willing to code the checkers in languages which ease verification
 - logicians may be willing to verify the checkers

- **Remark:** for a correct program, verification of the checker is as good as verification of the program itself
Cooperation of Verification and Checking

- a sorting routine working on a set S
 (a) must not change S and
 (b) must produce a sorted output.
- I learned the example from Gerhard Goos
- the first property is hard to check (provably as hard as sorting)
- but usually trivial to prove, e.g.,
 if the sorting algorithm uses a swap-subroutine to exchange items.
- the second property is easy to check by a linear scan over the output,
 but hard to prove (if the sorting algorithm is complex).
- second example in handout
Design of Certifying Algorithms

- general approaches
 - linear programming duality: primal and dual solution certify each other, e.g., matchings and covers, flows and cuts, shortest paths and potential functions
 - characterization theorem, e.g., non-planarity and Kuratowski subgraphs, convex bodies and certifying rays
- however, there is no “Königsweg”