Certification of Data Structures

Kurt Mehlhorn

MPI für Informatik
Saarbrücken
Germany
reactive programs run forever, receive stimuli and respond to them. Algorithms community calls them data structures. Data structures implement abstract data types.

an abstract data type has an (usually infinite) set S of states; input x leads to a change of state and maybe also an output in Y

$$\delta : S \times X \mapsto S \times Y \cup \{\varepsilon\}$$

query: no change of state update: change of state

an implementation also has a set S' of states and a transition function δ'

implementation is correct (Hoare) if there is a function $rep : S' \mapsto S$ s.t. for all x, s', y, t' with $\delta'(s', x) = (t', y)$ we have $\delta(rep(s'), x) = (rep(t'), y)$
Monitoring Data Structures

- D is the implementation of some abstract data type A'
- C monitors its behavior.
- Any input from the environment is passed to C which then forwards it, maybe in modified form, to D. D reacts to it, C inspects the reaction of D and returns an answer to the environment.
- If D is correct, the combination of C and D realizes the abstract data type A, if D is incorrect, C catches the error.

- immediately (fail-stop) or ultimately
- $A' = A$ or A' more powerful than A.
- want C to be less complex than D (simpler, faster)
The dictionary problem for a universe U and a set I of informations asks to maintain a set S of pairs $(x, i) \in U \times I$ with pairwise-distinct keys (= first elements) under operations $\text{insert}(x, i)$, $\text{delete}(h)$, and $\text{find}(x)$. Here, h is a handle to a pair in the dictionary. $\text{insert}(x, i)$ returns a handle.

$\text{locate}(x)$ returns a handle to a pair $(y, _) \in S$ with $y \leq x$ and y maximal.

- C maintains a sorted list, one for each item in S. Information is pointer to the corresponding pair in the dictionary implementation.
- C requires constant time per operation
- without locate, C requires logarithmic time per operation
Monitoring Priority Queues I

a PQ maintains a set \(S \) (of real numbers) under the operations insert and delete\(_{\text{min}}\)

\[
\text{insert}(5), \quad \text{insert}(2), \quad \text{insert}(4), \quad \text{delete\textunderscore \text{min}}, \quad \text{insert}(7), \quad \text{delete\textunderscore \text{min}}
\]
a priority queue maintains a set S (of real numbers) under the operations insert and delete_min

insert(5), insert(2), insert(4), delete_min, insert(7), delete_min
must return 2 must return 4
a PQ maintains a set S (of real numbers) under the operations insert and delete_min

- $insert(5)$, $insert(2)$, $insert(4)$, $delete_min$, $insert(7)$, $delete_min$
 - must return 2
 - returns 2
 - must return 4
 - return 5
Monitoring Priority Queues I

A PQ maintains a set S (of real numbers) under the operations insert and delete_min

$\text{insert}(5), \text{insert}(2), \text{insert}(4), \text{delete_min}, \text{insert}(7), \text{delete_min}$

must return 2
returns 2

must return 4
return 5

A checker wraps around any priority queue PQ and monitors its behavior.

- It offers the functionality of a priority queue
- It complains if PQ does not behave like a priority queue.
 - immediately
 - ultimately
Monitoring Priority Queues II

Fact: Priority queue implementations with logarithmic running time per operation exist.

Fact:

- There is a checker with additional constant amortized running time per operation. It catches errors ultimately, namely with linear delay.
- Immediate error catching requires $\Omega(\log n)$ additional time per operation.

Finkler/Mehlhorn, SODA 99
Monitoring Priority Queues: The Upper Bound

- Checker maintains elements in queue in linear list ordered by time of insertion

- `deletemin:`
 - check, whether the element returned by the oracle, has required minimal value
 - if so, lift the step containing it and all steps to the right to the new minimal value

- `insert:`
 - extend linear list by one element

- `efficient implementation: union-find`