Data Structures and Graph Algorithms

Shortest Paths

Kurt Mehlhorn
Max-Planck-Institut für Informatik
Contents

1. the worst case running time of many graph algorithms can be improved by clever data structures
 - priority queues for Dijkstra’s shortest path algorithm \(O(n^2) \rightarrow O(m + n \log n) \)
 - dynamic trees for maxflow algorithms \(O(n^2 \sqrt{m}) \rightarrow O(nm) \)
 - mergeable priority queues for general weighted matchings \(O(n^3) \rightarrow O(nm \log n) \)

2. what is the effect on “actual” running times on synthetic and real inputs
 - priority queues for Dijkstra’s shortest path algorithm
 - dynamic trees for maxflow algorithms
 - mergeable priority queues for general weighted matchings

3. how large are the gains and can we explain them ???
Dijkstra’s Single Source Shortest Path Algorithm

$G = (V, E)$ directed graph, $s \in V$ source node, $c : E \mapsto \mathbb{R}_{\geq 0}$ edge costs

Dijkstra’s Algorithm

$d(s) = 0$ and $d(v) = \infty$ for $v \neq s$; tentative distances
declare all nodes unscanned;

while there is an unscanned node

{ let u be the unscanned node with minimal tentative distance;
 forall edges $e = (u, v)$ out of u
 { $C = d(u) + c(e)$;
 if ($C < d(v)$) set $d(v) = C$;
 }
 declare u scanned;
}

Dijkstra iterated over all nodes to find the unscanned u with minimal $d(u)$

running time $\Theta(n^2 + m)$ it is Θ and not just O !!!!!!
Dijkstra’s Algorithm with Priority Queues

the unscanned nodes \(u \) with \(d(u) < \infty \) are stored in a priority queue

define a priority queue for the nodes of \(G \);
set \(d(s) = 0 \) and \(d(v) = \infty \) for \(v \neq s \) and declare all nodes unscanned

\[
PQ.insert(s, 0);
\]

while (! \(PQ.is_empty() \))
{
 select \(u \in PQ \) with \(d(u) \) minimal and remove it; declare \(u \) scanned
 forall edges \(e = (u, v) \)
 {
 if \((D = d(u) + c(e) < d(v)) \)
 {
 if \((d(v) == \infty) \)
 {
 \(PQ.insert(v, D) \); // v has been reached
 }
 } else
 {
 \(PQ.decrease_p(v, D) \);
 }
 \(d(v) = D; \)
 }
}

Dijkstra’s Algorithm with Priority Queues

define a priority queue for the nodes of G; \hspace{1cm} \textit{init}
set $d(s) = 0$ and $d(v) = \infty$ for $v \neq s$ and declare all nodes unscanned
$PQ.insert(s, 0)$; \hspace{1cm} \textit{1 insert}
\hspace{1cm} \textbf{while} (! PQ.is_empty()) \hspace{1cm} \textit{n is_empty}
\hspace{1cm} \{ select $u \in PQ$ with $d(u)$ minimal and remove it; declare u scanned \hspace{1cm} \textit{n extract_min}
\hspace{1cm} \hspace{1cm} \textbf{forall} edges $e = (u, v)$ \hspace{1cm} \textit{n insert}
\hspace{1cm} \hspace{1cm} \hspace{1cm} \{ if $(D = d(u) + c(e) < d(v))$ \hspace{1cm} \textit{up to m − (n − 1) decrease_p}
\hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} \{ if $(d(v) == \infty)$ \hspace{1cm} \textit{n − 1 insert}
\hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} \{ PQ.insert(v, D); // v has been reached \} \hspace{1cm} \textit{n − 1 insert}
\hspace{1cm} \hspace{1cm} \hspace{1cm} \{ else \hspace{1cm} \textit{up to m − (n − 1) decrease_p}
\hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} \{ PQ.decrease_p(v, D); \} \hspace{1cm} \textit{up to m − (n − 1) decrease_p}
\hspace{1cm} \hspace{1cm} \hspace{1cm} $d(v) = D$; \} \} \} \} \}

\text{time} = \Theta(n + m + T_{init} + n \cdot (T_{is_empty} + T_{extract_min} + T_{insert})) + O(m \cdot T_{decrease_p})
Priority Queue Implementations

\[\text{time} = \Theta(n + m + T_{\text{init}} + n \cdot (T_{\text{empty}} + T_{\text{extract_min}} + T_{\text{insert}})) + O(m \cdot T_{\text{decrease_p}}) \]

<table>
<thead>
<tr>
<th></th>
<th>insert</th>
<th>extract_min</th>
<th>decrease_p</th>
<th>worst-case T</th>
</tr>
</thead>
<tbody>
<tr>
<td>no data structure</td>
<td>1</td>
<td>n</td>
<td>1</td>
<td>$\Theta(n^2 + m)$</td>
</tr>
<tr>
<td>binary heaps</td>
<td>$\log n$</td>
<td>$\log n$</td>
<td>$\log n$</td>
<td>$\Theta(n \log n) + O(m \log n)$</td>
</tr>
<tr>
<td>Fib heaps</td>
<td>$\log n$</td>
<td>$\log n$</td>
<td>1</td>
<td>$\Theta(n \log + m)$</td>
</tr>
</tbody>
</table>

Fib heaps have larger constant factors than bin heaps
A worst case graph for Dijkstra’s algorithm. All edges \((i, i+1)\) have cost \(c\) and an edge \((i, j)\) with \(i + 1 < j\) has cost \(c_{i,j}\). The \(c_{i,j}\) are chosen such that the shortest path tree with root 0 is the path 0, 1, \ldots, \(n - 1\) and such that the shortest path tree that is known after removing node \(i - 1\) from the queue is as shown. Among the edges out of node \(i - 1\) the edge \((i - 1, i)\) is the shortest, the edge \((i - 1, n - 1)\) is the second shortest, and the edge \((i - 1, i + 1)\) is the longest. Every decrease prio makes smallest key in PQ.

source: LEDA book, Section on priority queues
Experiments [Cherkassky-Goldberg-Radzik, LEDAbook]

<table>
<thead>
<tr>
<th>Instance</th>
<th>(f_{heap})</th>
<th>(p_{heap})</th>
<th>(k_{heap})</th>
<th>(bin_{heap})</th>
<th>(list_{pq})</th>
<th>(r_{heap})</th>
<th>(m_{heap})</th>
</tr>
</thead>
<tbody>
<tr>
<td>s,r,S</td>
<td>0.36</td>
<td>0.34</td>
<td>0.35</td>
<td>0.34</td>
<td>0.51</td>
<td>0.33</td>
<td>0.35</td>
</tr>
<tr>
<td>s,r,L</td>
<td>0.38</td>
<td>0.36</td>
<td>0.37</td>
<td>0.34</td>
<td>0.54</td>
<td>0.35</td>
<td>0.54</td>
</tr>
<tr>
<td>s,w,S</td>
<td>1.86</td>
<td>1.09</td>
<td>3.77</td>
<td>1.38</td>
<td>1</td>
<td>0.76</td>
<td>2.68</td>
</tr>
<tr>
<td>s,w,L</td>
<td>1.87</td>
<td>1.1</td>
<td>3.68</td>
<td>1.34</td>
<td>1</td>
<td>0.77</td>
<td>8.49</td>
</tr>
<tr>
<td>l,r,S</td>
<td>4.96</td>
<td>3.19</td>
<td>5.2</td>
<td>3.36</td>
<td>-</td>
<td>2.52</td>
<td>2.52</td>
</tr>
<tr>
<td>l,r,L</td>
<td>6.61</td>
<td>4.81</td>
<td>6.4</td>
<td>4.49</td>
<td>-</td>
<td>3.76</td>
<td>3.38</td>
</tr>
<tr>
<td>l,w,S</td>
<td>3.32</td>
<td>2.56</td>
<td>9.17</td>
<td>3.79</td>
<td>-</td>
<td>1.63</td>
<td>3.11</td>
</tr>
<tr>
<td>l,w,L</td>
<td>2.91</td>
<td>1.92</td>
<td>7.65</td>
<td>3.22</td>
<td>-</td>
<td>2.57</td>
<td>2.55</td>
</tr>
</tbody>
</table>

\(m = 500000 \) and \(n = 2000 \) (s), or \(n = 200000 \) (l) nodes.

Random graphs \((r) \) with random edge weights in \([0..M - 1]\), where \(M = 100 \) (S) or \(M = 100000 \) (L),

Worst case graphs \((w) \) with \(c = 0 \) (S) or \(c = 10000 \) (L).

\(bin_{heap} \ll list_{pq} \) and \(bin_{heap} \ll fib_{heap} \) for random graphs and \(f_{heap} \ll bin_{heap} \) for worst-case graphs with large \(n \)
Noshita’s Average Case Analysis

- \(G = (V, E) \) arbitrary directed graph, \(s \) source node
- for every \(v \in V \) let \(C(v) \) be a set of non-negative real numbers of cardinality \(\text{indeg}(v) \).
- the assignment of the costs in \(C(v) \) to the edges into \(v \) is made at random, i.e., probability space consists of \(\prod_v \text{indeg}(v)! \) many assignments of edge costs to edges.

Theorem [Noshita]: The expected number of \(\text{decrease-p} \) operations is \(O(n \log(m/n)) \).

Proof:

- Left-right maxima in a permutation

 \[
 3 \quad 1 \quad 4 \quad 7 \quad 2 \quad 5 \quad 6
 \]

- \(\text{Exp}[\text{# left-right maxima in a random permutation of length } k] = H_k \leq \ln k \)

- \(\text{prob}(j\text{-th element is a maximum}) = 1/j \)

- \(\text{Exp}[\text{# left-right maxima}] = \sum_{1 \leq j \leq k} 1/j = H_k \)
Consider a fixed node \(v \), let \(k = \text{indeg}(v) \), let \(e_1, \ldots, e_k \) be the order in which the edges into \(v \) are relaxed, and let \(u_i = \text{source}(e_i) \).

- \(d(u_1) \leq d(u_2) \leq \ldots \leq d(u_k) \) since nodes are scanned according to increasing \(d \).
- Edge \(e_i \) causes a \textit{decrease}_p \text{ iff } i \geq 2 \text{ and } d(u_i) + c(e_i) < \min \{ d(u_j) + c(e_j) ; j < i \} \).
- number of \textit{decrease}_p(v, -) is bounded by the number of \(i \) such that
 \[
 i \geq 2 \text{ and } c(e_i) < \min \{ c(e_j) ; j < i \} .
 \]

- Since the order in which the edges into \(v \) are relaxed is independent of the costs assigned to them, the expected number of such \(i \) is simply the number of left-right maxima in a permutation of size \(k \) (minus 1, since \(i = 1 \) is not considered). Expectation = \(H_k - 1 \). Thus

\[
E[\text{decrease}_p] \leq \sum_{v} H_{\text{indeg}(v)} - 1 \leq \sum_{v} \ln \text{indeg}(v) \leq n \ln(m/n)
\]

Consequence: expected running time of Dijkstra is \(O(m + n \log(m/n) \log n) \) with the heap implementation of priority queues.

asymptotically more than \(O(m + n \log n) \) only for \(n = o(m) \) and \(m = o(n \log n \loglog n) \).
Radix Heaps [Delgado-Fox, Ahuja-Mehlhorn-Orlin-Tarjan]

- edge costs are integers in $[0..C]$
- radix heaps exploit the binary representation of tentative distances.
- for numbers $a = \sum_{i \geq 0} \alpha_i 2^i$ and $b = \sum_{i \geq 0} \beta_i 2^i$ let

$$msd(a, b) = \begin{cases}
\max \{ i \mid \alpha_i \neq \beta_i \} & a \neq b \\
-1 & a = b
\end{cases}$$

(most distinguishing index)

- If $a < b$ then a has a zero bit in position $i = msd(a, b)$ and b has a one bit.
- we assume that $msd(a, b)$ can be computed in $O(1)$ (can be removed)
- radix heap = sequence of buckets B_{-1}, B_0, \ldots, B_K where $K = 1 + \lceil \log C \rceil$.
- $min =$ tentative distance of node scanned most recently
- unscanned node v is stored in bucket B_i, where $i = \min(msd(min, d(v)), K)$.
- Buckets are organized as linear lists and every node keeps a handle to the list item representing it.
Operations on Radix Heaps

init create $K + 1$ empty lists, time $O(K)$

insert($v, d(v)$) inserts v into the appropriate list, time $O(1)$,

decrease_p($v, d(v)$) removes v from the list containing it and inserts it into the appropriate queue, time $O(1)$

extract_min 1. find the minimum i such that B_i is non-empty.
 2. time $O(1)$ if bit-vector of non-empty buckets is kept, $O(i)$ with linear search
 3. if $i = -1$, extract an arbitrary element in B_{-1}. Time $O(1)$
 4. if $i \geq 0$, iterate over B_i and set min to smallest tentative distance in B_i.
 5. move elements in B_i to the appropriate new bucket.
 6. total time for *extract_min* is $O(1)$ if $i = -1$ and $O(1 + |B_i|)$ if $i \geq 0$.
 7. **Obs:** every node in bucket B_i moves to a bucket with smaller (!!!) index.
 8. total time for searching for minimal i in all *extract_mins*: $O(n)$
 9. total time for moving elements around in all *extract_mins*: $O(nK)$

Theorem 1 With the Radix heap implementation of priority queues, Dijkstra’s algorithm runs in time $O(m + nK) = O(m + n \log C)$.
Lemma 1 Let i be minimal such that B_i is non-empty and assume $i \geq 0$. Let min be the smallest element in B_i. Then $\text{msd}(\min, x) < i$ for all $x \in B_i$.

- distinguish the cases $i < K$ and $i = K$.

- $\min' = \text{the old value of } \min$.

- assume $i < K$: i is the most significant distinguishing index of \min' and any $x \in B_i$
 - \min' has a zero in bit position i
 - all $x \in B_i$ have a one in bit position i.
 - they agree in all positions with index larger than i.
 - Thus the most significant distinguishing index for \min and x is smaller than i.

- Let us next assume that $i = K$ and consider any $x \in B_K$. Then $\min' < \min \leq x \leq \min' + C$. Let $j = \text{msd}(\min', \min)$ and $h = \text{msd}(\min, x)$. Then $j \geq K$. We want to show that $h < K$. Observe first that $h \neq j$ since \min has a one bit in position j and a zero bit in position h. Let $\min' = \sum_l \mu_l 2^l$.

Assume first that $h < j$ and let $A = \sum_{l > j} \mu_l 2^l$. Then $\min' \leq A + \sum_{l < j} 2^l \leq A + 2^j - 1$ since the j-th bit of \min' is zero. On the other hand, x has a one bit in positions j and h and hence $x \geq A + 2^j + 2^h$. Thus $2^h \leq C$ and hence $h \leq \lfloor \log C \rfloor < K$.

Assume next that $h > j$ and let $A = \sum_{l > h} \mu_l 2^l$. We will derive a contradiction. \min' has a zero bit in positions h and j and hence $\min' \leq A + 2^h - 1 - 2^j$. On the other hand x has a one bit in position h and hence $x \geq A + 2^h$. Thus $x - \min' > 2^j \geq 2^K \geq C$, a contradiction.
Linear Expected Time [Meyer 00, Goldberg 01]

- edge costs are random integers in $[0..C]$
- $\text{min}_\text{in}_\text{cost}(v)$ = minimum cost of any edge into v.
- split queue into two parts
 - F = all nodes whose tentative distance label is known to be exact
 - B = the other nodes in the queue. B is organized as a radix heap.
- also maintain a value min.
- scan nodes as follows:
 - when F is non-empty, scan an arbitrary node in F.
 - when F is empty, the minimum is selected from B and min is set to it.
 - the nodes in the first non-empty bucket B_i are redistributed if $i \geq 0$.
 - modified redistribution process: when v is moved and $d(v) \leq \text{min} + \text{min}_\text{in}_\text{cost}(v)$, move v to F.
 - Observe that any future relaxation of an edge into v cannot decrease $d(v)$ and hence $d(v)$ is know to be exact at this point.
Theorem 2 (Meyer, Goldberg) Let G be an arbitrary graph and let c be a random function from E to $[0..C]$. Then alg above runs in expected time $O(n + m)$.

- As before nodes start out in B_K.
- when v is moved to a new bucket B_j but not yet to F,
 $$d(v) \geq \min + \min_{in_cost}(v)$$
 and hence $j \geq \log \min_{in_cost}(v)$.
- We conclude that the total charge to nodes in extract_min ops is
 $$\sum_v (K - \log \min_{in_cost}(v) + 1) \leq n + \sum_e (K - \log c(e)) .$$
- $K - \log c(e)$ is the number of leading zeros in the binary representation of $c(e)$ when written as a K-bit number.
- our edge costs are uniform random numbers in $[0..C]$ and $K = 1 + \lceil \log C \rceil$
- thus the expected number of leading zeros is $O(1)$.
- total expected cost of extract_min is $O(n + m)$. Time outside is also $O(n + m)$.
Limited Randomness

Theorem 3 Let G be an arbitrary graph, let $c : E \mapsto [0..C]$ be an arbitrary cost function, let $0 \leq k \leq K = 1 + \lfloor \log C \rfloor$, and let \overline{c} be obtained from c by making the last k bits of each cost random. Then the single source shortest path problem can be solved in expected time $O(n(K - k) + m)$.

- By the proof of the preceding theorem, the total cost is
 \[O(n + m + \sum_v (K - \log \min_{\text{in_cost}}(v) + 1) \]

- Next observe that $\min_{\text{in_cost}}(v)$ is the minimum of $\text{indeg}(v)$ numbers of which the last k bits are random. Thus
 \[
 \mathbb{E}[K - \log \min_{\text{in_cost}}(v)] \leq K - k + \sum_{e=(u,v)} \# \text{ of leading zeros in random part of } \overline{c}(e)
 \leq K - k + O(\text{indeg}(v))
 \]