
Optimal Algorithms for Generating Discrete

Random Variables with Changing Distributions

T. Hagerup∗ K. Mehlhorn† I. Munro‡

Abstract

We give optimal algorithms for generating discrete random variables for

changing distributions. We discuss two models of how distributions may

change. In both models, we obtain a solution with constant update time,

constant expected generate time, and linear space.

1 Introduction

A pseudo-distribution on integers [1 . . n] is an n-tuple (a1, . . . , an) of non-negative
real numbers. The elements ai are called frequencies. A pseudo-distribution is
called a distribution if the frequencies sum up to one. We consider the problem of
generating a discrete random variable X which for i ∈ [1 . . n] attains value i with
probability proportional to ai. This operation is one of the most fundamental and
frequently used in discrete event simulation [BFS83]. In the case of static frequen-
cies the well-known ‘alias-algorithm’ [BFS83, pp.147–148] takes O(n) preprocessing
time, after which it can generate a value in time O(1).

In this paper, we develop efficient algorithms for the case of the ai’s changing
over time, extending work of Fox [Fox91] and Rajasekaran and Ross [RR91]. Our
results lead to more efficient simulations of an important class of queuing networks,
the so–called open Jackson networks (see [Kle75]). We sketch this application in
section 5.

We study two versions of the problem. In the first version of the problem,
called the problem of maintaining a distribution, (a1, . . . , an) is a distribution and
an update changes two probabilities ai and aj but leaves their sum invariant. In
the second version of the problem, called the problem of maintaining a pseudo-

distribution, (a1, . . . , an) is a pseudo-distribution and an update changes one of the
frequencies ai. We obtain the following results.

Theorem 1 A distribution can be maintained with constant update and constant

expected generate time. The space requirement and preprocessing time is linear.

A pseudo-distribution (a1, . . . , an) is called polynomially-bounded if ai ∈ IN and∑
i ai ≤ nc for some fixed integer c (independent of n).

Theorem 2 A polynomially-bounded pseudo-distribution on [1 . . n] can be main-

tained with constant update and constant expected generate time. The space re-

quirement and preprocessing time is linear.

∗Max–Planck–Institut für Informatik, Im Stadtwald, D-6600 Saarbrücken; part of the work was

carried out during an appointment to the Departament de LSI of the Universitat Politècnica de

Catalunya in Barcelona, Spain
†Max–Planck–Institut für Informatik and Fachbereich Informatik, Universität des Saarlandes,

Im Stadtwald, D-6600 Saarbrücken
‡Department of Computer Science, University of Waterloo, Canada; this research was carried

out while the author was visiting the MPI für Informatik

1

Both theorems substantially improve upon previous results. The only previous
method which could deal with general update operations and put no restriction
on the distribution (or pseudo-distribution) had generate and update time O(log n)
[BFS83]. Sublogarithmic methods were only known under the assumption that there
are a-priori bounds a1, a1, a2, . . . , an, an such that ai ∈ [ai, ai] for all i ∈ [1 . . n].
Under this assumption, Rajasekaran and Ross [RR91] achieve update and generate
time O(α/α) where α =

∑
i ai/n and α =

∑
i αi/n.

Our results are valid in the standard real number RAM-model. More specifically,
we assume that the following operations take constant time:

1. arithmetic (addition, subtraction, multiplication, integer division) on integers
whose absolute value is bounded by a polynomial in n,

2. real arithmetic and the floor function,

3. generating a uniformly distributed real number between 0 and 1.

This paper is structured as follows. In section 2 we develop some basic tools, in
section 3 we show how to maintain distributions and in section 4 we show how to
maintain pseudo-distributions.

2 Basic Building Blocks

2.1 Bounded Pseudo-distributions

Lemma 1 A pseudo-distribution can be maintained with constant update time and

expected generate time O(nB/A) where A =
∑

1≤i≤n ai and B is a possibly time–

dependent known upper bound on max ai. The space requirement is O(n).

Proof: We maintain the bound B and an array a[] with a[i] = ai for 1 ≤ i ≤ n.
Then update time is clearly constant.

To generate a value for X, repeat the following process until a value is output:
choose i ∈ [1 . . n] uniformly at random and output i with probability ai/B (To do
so, choose X ∈ [0, 1] uniformly at random and output i if X ≤ ai/B).

This algorithm clearly outputs integer i with probability proportional to ai,
i.e., the method is correct. Also, a particular iteration leads to an output with
probability A/(Bn), i.e., expected generate time is O(nB/A).

We refer to the method described above as the bounded distribution method. For
the application in section 4 the following observation is useful: The array a[] need
not be maintained explicitly; it suffices to assume that given i the frequency ai can
be determined in time O(1).

2.2 Flat Pseudo-Distributions

Let A ≥ 0. A pseudo-distribution (a1, . . . , an) on [1 . . n] is called A-flat if ai ∈
{0} ∪ [A, 2A], for i = 1, . . . , n.

Lemma 2 For all given A ≥ 0, an A-flat pseudo-distribution (a1, . . . , an) can be

maintained with constant update and constant expected generate time.

Proof: We will store the set S := {i : 1 ≤ i ≤ n and ai 6= 0} in a data structure
Q that supports insert and delete operations in constant time and random queries,
which return a random element of the set stored in Q drawn from the uniform
distribution over that set, in constant expected time. In order to produce a random

2

variate, repeat the following until a number is output: Compute i = random(Q)
and output i with probability ai/(2A). The correctness of the procedure is obvious,
and it can be seen to work in constant expected time.

We now describe the implementation of the data structure Q. The static version
of the problem, i.e., if only random queries on a set S ⊆ {1, . . . , n} must be sup-
ported, is extremely easy: Simply store the elements of S in an array H[1 . . |S|] and
execute a random query by drawing a random number from the uniform distribution
over [1 . . |S|] and returning the contents of the corresponding cell of H.

In order to cope with updates, first introduce an array D[1 . . n] such that for all
x ∈ S, D[x] stores the index of the unique cell in H that contains x. (The value of
D[x] for x 6∈ S is arbitrary.) Also allow H to be a padded array, i.e., allow |H|, the
size of H, to exceed |S| and fill all unused cells with a special null value. We will
maintain the invariant that precisely the first |S| cells of array H are used. This
implies that a random query can still be performed as described above. An insertion
simply stores the new element at position |S|+ 1 of array H and a deletion, say at
position i of H, simply moves H[|S|] to H[i].

We refer to the method described above as the flat distribution method. In the
applications of the flat distribution method in Sections 3 and 4 we will partition
[1 . . n] into groups and apply the flat distribution method to each group (with
different values of A). We will now discuss how this can be done without allotting
space O(n) to each group. The array D will always be shared among all groups.
Note that this is possible since each element x ∈ [1 . . n] belongs to exactly one
group. For the arrays H we have to work harder.

In section 3 we partition [1 . . n] into groups G0, . . . , Gk where k = dlog ne.
Moreover |Gi| ≤ n/2i−1 for all i ∈ [0 . . n]. We can therefore use an array Hi of size
n/2i−1 for the i–th group. The total space requirement for all arrays Hi is thus
O(n).

In section 4 we partition [1 . . n] into groups G0, . . . , Gk where k = O(log n). In
contrast to section 3 no non–trivial bound on the size of |Gi| will be available. We
will now describe two schemes: a simple scheme which uses O(n) space and guaran-
tees constant amortized update time and a more complicated scheme with constant
worst–case update time. Both schemes are suggested by the known methods for
dynamizing static data structures [OvL81].

The simple scheme operates in cycles. In each cycle 2n insertion into and dele-
tions from groups are processed. Consider a cycle. For i, 0 ≤ i ≤ k, let si be the
current size of the i–th group and let hi be the current size of the array Hi used for
the i–th group. Then hi ≥ si. We have an array K[1 . . 11n] which is divided into
a used and an unused part. All arrays Hi are contained in the used part of K. At
the beginning of a cycle set hi to 2si (to 1 if si = 0) and allocate the arrays Hi in
an initial segment of K of length 3n (note that

∑
i max(1, 2si) ≤ 3n).

We now process updates as described in Lemma 2 except when si exceeds hi.
When some si exceeds hi double hi and allocate a new array Hi for the i–th group
in the unused part of K. This has cost O(hi). Since at least hi/2 insertions into
Gi took part since the last allocation of Hi the amortized cost per insertion is
constant. At the end of a cycle the Hi’s are compacted into the first 3n cells of K.
We still need to argue that K never overflows. This follows from the observation
that initially 8n cells of K are unused and that whenever a new Hi is allocated, say
of size 2hi, there were at least hi/2 insertions into Gi since the previous allocation.
Thus 4 cells are used per insertion for a total of at most 8n. This completes the
description of the simple scheme.

Amortization is used at two levels in the simple scheme: when a new array Hi

is allocated (inner level) and when a cycle is completed (outer level). We deal with

3

the two levels in turn.
To cope with the inner level of amortization we increase the size of K to 27n(=

3n + 8n + 16n), have an additional array H i[1 . . 2hi] for each i ∈ [1 . . n], and
maintain the invariant that the content of H i is exactly the content of the new Hi

in the simple scheme whenever hi doubles. This is ensured as follows. Whenever hi

doubles, make the old H i the new Hi and allocate space for the new H i. Do not
initialize H i. For each update executed on Hi perform the same update on H i and
in addition initialize 4 cells of H i by either copying values from Hi or storing null

whatever is appropriate. This ensures that H i is completely initialized by the time
Hi overflows.

We next deal with the outer level of amortization. Consider the midpoint of a
cycle, i.e., when n updates are processed. Process the next n updates as described
above but in addition perform the following actions:

• when an element of K is written keep also the last value before the midpoint,

• record the sequence of updates in a log–file, and

• compact the content of K at the midpoint into an initial segment of length
3n and perform the updates recorded in the log–file on it.

The last action takes O(n) time. It is performed in piecemeal fashion, O(1)
steps per update, such that it is completed within the second half of the cycle.
Note that we have now a version of K on which exactly n updates were performed,
i.e., this K is exactly at the midpoint of its cycle. We operate on this K exactly
as described above. This completes the description of the scheme with constant
worst–case update time.

2.3 Small Ground Sets

We deal with pseudo-distributions over small ground sets and with small integer-
valued frequencies. More specifically, we make the following assumption: k is an
integer with (k+1)k+3 ≤ n and (a1, . . . , ak) is an integer-valued pseudo-distribution
on [1 . . k] with ai ∈ [0 . . k] for all i, 1 ≤ i ≤ k. Under this assumption, a pseudo-
distribution can be encoded as an integer fitting into a single word and generating
random values and updating the pseudo-distribution can be done by table lookup.

Lemma 3 Under the assumption above a pseudo-distribution can be maintained

with constant update and generate time. The solution requires space and prepro-

cessing time O(n).

Proof: We encode a pseudo-distribution (a1, . . . , ak) as the integer A =
A(a1, . . . , ak) with (k + 1)–ary expansion (a1, . . . , ak), i.e., A(a1, . . . , ak) =∑

1≤i≤k ai(k + 1)i−1, and store A and S = a1 + . . . + ak. We also precom-

pute tables L[0 . . (k + 1)k − 1, 1 . . k2] and U [0 . . (k + 1)k − 1, 1 . . k, 0 . . k] such that
L[A(a1, . . . , ak), l] = i for exactly ai values l ∈ [1 . . S]
and
U [A(a1, . . . , ak), i, b] = A(a1, . . . , ai−1, b, ai+1, . . . , ak) for all (a1, . . . , ak) ∈
[0 . . k]k, i ∈ [1 . . k] and b ∈ [0 . . k]. These tables can be computed in time
O((k + 1)k+3) = O(n).

To generate a value for X we generate l ∈ [1 . . S] uniformly at random and
return L[A, l].

To change the value of ai to a′
i we replace A by U [A, i, a′

i] and S by S − ai + a′
i.

We refer to the method described above as the small ground set method.

4

2.4 Bounded Ordered Sets

Let k be an integer. The bounded ordered set problem on [1 . . k] is to maintain a
set S ⊆ [1 . . k] under the operations Insert(i), Delete(i), Member(i), Pred(i), and
Suc(i) where the last two operations return the nearest predecessor and successor
of i in S respectively (0 if there is no such element).

Lemma 4 If k = (log n)O(1) then an ordered set on [1 . . k] can be maintained in

constant time per operation. Preprocessing time and space requirement is O(n).

Proof: Let k0 be the largest integer with 2k0k2
0 ≤ n. We first show how to

maintain a subset of [1 . . k0]. Encode a set as a number in [0 . . 2k0 − 1] and prepare
a table for each operation. These tables have 2k0k0 entries and can be set up in
time O(k0) per entry.

For k = (log n)O(1) let c ∈ IN be such that k ≤ kc
0. Represent [1 . . k] ⊆ [1 . . kc

0] as
a k0-ary tree of depth c and use the structure described in the preceding paragraph
for each node of the tree.

2.5 Logarithms

The methods to be described in sections 2.6, 3 and 4 require the computation of
binary logarithms. We describe how this is done.

For the integers i between 1 and n we precompute a table L[1 . . n] with L[i] =
dlog ie. This table requires linear space and can be set up in time O(n).

To determine dlog pne for p ∈ [1/n, 1] compute dlogdpnee.
To compute dlog xe for x ∈ [1 . . nc] and c a fixed integer (independent of n), let

i0 = max{i ≥ 0 : ni ≤ x}, where n is the largest power of 2 no larger than n, and
then use dlog xe = i0 log n + dlogdx/ni0ee.

2.6 Small Ground Sets Revisited

We refine the small ground set method of section 2.3. Let c be a fixed integer
constant. We make only the following weaker assumption: k is an integer with
(k0 + 1)k0+3 ≤ n, where k0 = 22dlog ke − 1, and (a1, . . . , ak) is a pseudo-distribution
on [1 . . k] with ai ∈ [0 . . nc − 1] for all i, 1 ≤ i ≤ k.

Lemma 5 Under the assumption above a pseudo-distribution can be maintained

with constant update and generate time. The solution requires space and prepro-

cessing time O(n).

Proof: The idea is as follows. Split each probability into a rounded part and
a remainder such that the small ground set method is applicable to the pseudo-
distribution of the rounded parts and the bounded distribution method is applicable
to the pseudo-distribution of the remainders. To generate a random value first
choose one of the two distributions with appropriate probability and then apply the
respective method. To update a frequency recompute the rounded part and the
remainder and make the appropriate changes in the two distributions. We now give
the details.

Let s = dlog ke. Split the binary representations of the frequencies ai into blocks
of s bits each, i.e., write ai =

∑
j aij2

sj where aij ∈ [0 . . 2s − 1] for 0 ≤ j ≤ L :=
d(c log n)/se. Let j(ai) be the maximal j with aij 6= 0 and define Aij by Aij = aij

if j ∈ {j(ai), j(ai) − 1} and Aij = 0 otherwise. Let amax = max1≤i≤kai and let
jmax = j(amax). Then Aij = aij for all i and all j ≥ jmax−1. Let S = a1 + . . .+ak

and let Sj =
∑

i Aij for 0 ≤ j ≤ L.

5

For i ∈ [1 . . k], the rounded part b1i of ai is now given by b1i = Aijmax
2s +

Aijmax−1 and the remainder b2i is given by b2i = ai − b1i2
s(jmax−1). Let

b(1) = (b11, . . . , b1k) be the pseudo-distribution of the rounded parts and let
b(2) = (b21, . . . , b2k) be the pseudo-distribution of the remainders. Note that

•
∑

i b1i = Sjmax
· 2s + Sjmax−1

• b1i < 22s for all i, i.e., the small ground set method is applicable to b(1), and

• b2i ≤ amax/2s ≤ S/2s ≤ S/k for all i, i.e., the bounded distribution method
with bound S/k is applicable to b(2) (It will become clear below that, given i,
b2i can be computed in constant time.).

We can now describe how to generate a value for X. First select pseudo-
distribution b(1) with probability p1 := (Sjmax

· 2s + Sjmax−1) · 2s(jmax−1)/S and
pseudo-distribution b(2) with probability p2 := 1 − p1, and then select a value i
according to either b(1) or b(2) using either the small ground set or the bounded dis-
tribution method. The expected generate time is O(p1 ·1+p2 ·k·(S/k)·(1/

∑
i b2i)) =

O(1).
We next turn to updates. We maintain

• the values ai, Aij , Sj , S for all i ∈ [1 . . k] and j ∈ [0 . . L].

• for each j ∈ [1 . . L] the pseudo-distribution (Aij2
s + Aij−1)1≤i≤k according

to the small ground set method. (Note that b(1) as defined above is identical
to the pseudo-distribution (Aijmax

2s + Aijmax−1)1≤i≤k. We maintain these
pseudo–distributions for all j and not only for j = jmax to allow for efficient
updates.)

• the value jmax, for each j ∈ [0 . . L] the number nj of non-zero Aij ’s, and
the subset I of [0 . . L] consisting of all indices j with nj 6= 0. The set I is
maintained using the bounded ordered set structure of section 2.4.

Suppose now that frequency ai is to be changed to a′
i. We may assume w.l.o.g.

that either ai or a′
i is zero. We discuss the former case and leave the latter to the

reader.
Compute l := j(a′

i) (according to the formula j(a′
i) = bblog a′

ic/sc). Compute
a′

il and a′
il−1 and set Ail and Ail−1 to these values (according to the formulae

a′
il = ba′

i/2
slc and a′

il−1 = b(a′
i − a′

il2
sl)/2s(l−1)c). Increment Sl by Ail and Sl−1

by Ail−1, insert l and l − 1 into I, increment nl and nl−1, increment S by ai, and
update jmax using the bounded set structure on I. Finally, update the distributions
(Aij2

s + Aij−1)1≤i∈k for j = l and j = l − 1. All of this takes constant time.

We refer to the method described above as the refined small ground set method.

3 Maintaining Distributions

We proceed in two steps. We first describe a reduction process which reduces the
problem of maintaining a distribution on [1 . . n] to the problem of maintaining a
distribution on [0 . . dlog ne] at an additive cost of O(1) in update and generate time.
From this we derive a solution with constant time performance (by combination with
the small ground set method).

6

3.1 A Reduction

The idea for the reduction process is to split a distribution (p1, . . . , pm) into a
distribution for the small probabilities (value ≤ 1/m) and a distribution for the
large probabilities (value > 1/m) and then in turn to split the distribution of the
large probabilities into log m flat groups. To generate a value for random variable
X, first choose a group with the appropriate probability and then use either the
bounded or the flat distribution method to determine an actual value for X. The
details are as follows.

Let m be an integer and let (p1, . . . , pm) be a distribution on [1 . . m]. For
j ∈ [1 . . dlog me] let Gj = {i ∈ [1 . . m]; 2j−1/m < pi ≤ 2j/m} and let G0 = {i ∈
[1 . . m]; pi ≤ 1/m}. For j ∈ [0 . . dlog me] let gj =

∑
i∈Gj

pi.
We maintain:

1. The distribution g = (g0, g1, · · · , gdlog me) on [0 . . dlog me]. We call g the group

distribution.

2. The pseudo-distribution a(0) = (a01, . . . , a0m), where a0i = pi if i ∈ G0 and
a0i = 0 otherwise, according to the small distribution method.

3. For 1 ≤ j ≤ dlog me, the pseudo-distribution a(j) = (aj1, · · · , ajm), where
aji = pi if i ∈ Gj and aji = 0 otherwise, according to the flat distribution
method. Denote by Hj the array used in the flat distribution method for Gj .

4. An array D which associates with every i ∈ [1 . . m] the probability pi, the
group index j with i ∈ Gj , and, if j > 0, the index l with Hj [l] = i.

To generate a value for X, choose j ∈ [0 . . dlog me] according to group distribu-
tion g and then i according to pseudo-distribution a(j). Output i.

Consider an update next. Say pi, pj are changed into p′i, p
′
j . This amounts to an

update of the group distribution g and to up to four updates on pseudo-distributions
a(l). Note that the indices h and k with p′i ∈ Gh and p′j ∈ Gk can be computed in
constant time as described in section 2.5.

We summarize in:

Lemma 6 The method above produces values according to distribution (p1, . . . , pm).
Update time is constant and generate time is constant expected time plus the update

and generate time for the group distribution. Space requirement is O(m) plus the

space for the group distribution.

Proof: Correctness is obvious. The space bound follows directly from Lemmas 1
and 2. For the time bound we observe that some i ∈ G0 is produced with probability
g0 and that generating an i ∈ G0 takes expected time O(1/

∑
i a0i) = O(1/g0)

(by Lemma 1). For values of i in ∪j≥1Gj the generate time is constant expected
according to Lemma 2.

3.2 A Constant Time Solution

We combine the reduction with the small ground set method. More precisely, we
apply the reduction method twice. This leaves us with a distribution (p1, . . . , pk)
on [1 . . k] where k = dlog(1+ dlog ne)e+1. Note that (k +1)k+3 ≤ n for sufficiently
large n, i.e., Lemma 3 is applicable. We maintain:

1. The number psmall =
∑

{pi; pi ≤ 1/k}.

7

2. The pseudo-distribution (a1, . . . , ak), where ai = pi if pi ≤ 1/k and ai = 0
otherwise, according to the bounded distributions method with bound 1/k.

3. The pseudo-distribution (b1, · · · , bk), where bi = dkpie if pi > 1/k and bi = 0
otherwise, according to the small ground set method.

To generate a value i ∈ [1 . . k] according to (p1, . . . , pk) we first choose x ∈ [0, 1]
uniformly at random. If x ≤ psmall then we choose i according to (a1, . . . , ak) using
the bounded distributions method and output i. If x > psmall then we repeat the
following process until a value is output. Choose i according to (b1, · · · , bk) using
the small ground set method and output i with probability kpi/bi.

Theorem 1 A dynamic distribution on [1 . . n] can be maintained with constant up-

date and constant expected generate time. The space requirement and preprocessing

time is O(n).

Proof: We only need to argue that the method described above generates values
according to distribution (p1, . . . , pk) in constant expected time. All other claims
follow directly from Lemma 6.

Let Small = {i; pi ≤ 1/k} and Large = [1 . . k] \ Small. Then psmall =∑
i∈Small pi and hence any i ∈ Small is generated with probability pi. Also given

that x ≤ psmall it takes expected time O(k(1/k)/
∑

i∈Small pi) = O(1/psmall) to
generate an output, i.e., the contribution to the overall generate time is constant.

Consider i ∈ Large next. Observe first that kpi/bi ≥ 1/2 for i ∈ Large and
hence the values in Large are also generated in constant expected time. For i ∈
Large let gi = bi

b1+···+bk
· kpi

bi
. Given that x > psmall any value i ∈ Large is output

with probability gi/
∑

i∈Large gi = pi/(1 − psmall).

4 Maintaining Pseudo-Distributions

As in the previous section we proceed in two steps. We first describe a reduction
and then combine the reduction with the refined small ground set method.

Let c be a fixed integer constant and let A = nc. Recall that a pseudo-
distribution (a1, . . . , an) is called polynomially–bounded if

∑
i ai ≤ nc.

4.1 A Refined Reduction

We describe a reduction process refining the one used in section 3.1. The additional
complexity arises from the fact that in contrast to section 3.1 the definition of small
frequency depends on the current pseudo-distribution.

Let m be an integer and let a = (a1, . . . , am) be a pseudo-distribution
with a1 + . . . + am ≤ A. For j ∈ [0 . . . dlog Ae] let Gj = {i ∈
[1 . . m]; 2j−1 < ai ≤ 2j} and gj =

∑
i∈Gj

ai. Let S = a1 + . . . + am, let

Large = {j; gj 6= 0 and there are less than log m indices k > j with gk 6= 0}, and
let Large = {j1, j2, . . . , jh} where h = dlog me (If |Large| < dlog me then fill up
Large to size dlog me using the indices dlog Ae, dlog Ae − 1, . . .). Note that Large
contains the log m largest non-empty groups. This means that one update can move
only O(1) groups from large to non-large and vice versa. We maintain:

1. A bijection π between [1 . . h] and Large. π is stored as an array Π[1 . . h] with
Π[i] = π(i) and an array Π′[0 . . dlog Ae] with Π′[j] = π−1(j) for j ∈ Large
and Π′[j] = nil otherwise.

8

2. The pseudo-distribution g = (S−
∑

j∈Large gj , gπ(1), . . . , gπ(h)) on [0 . . h]. We
call g the group pseudo-distribution.

3. For each j, the pseudo-distribution on b(j) = (bj1, . . . , bjm), where bji = ai

if i ∈ Gj and bji = 0 otherwise, according to the flat distributions method.
Denote by Hj the array H used in the flat distribution method for Gj .

Remark: We maintain the flat distribution method on all groups Gj and
not only on the groups Gj with j ∈ Large. The generating algorithm uses
only the structures for j ∈ Large. The advantage for the update algorithm of
keeping all structures is that a group can be moved from large to non-large
and vice versa at constant cost.

4. The pseudo-distribution b(0) = (b01, . . . , b0m), where b0i = ai if i ∈⋃
j 6∈Large Gj and b0i = 0 otherwise, according to the bounded distribution

method.

Remark: If i ∈
⋃

j 6∈Large Gj then ai ≤ amax2− log m ≤ S/m where amax =
max{ai; 1 ≤ i ≤ m}, i.e., S/m can be used as a bound in the bounded
distribution method.

5. A array D which associates with every i ∈ [1 . . n] its frequency ai, the group
index j with i ∈ Gj , and the index l with Hj [l] = i.

6. The minimal element min in Large and a bitvector B[0 . . dlog Ae] with B[j] =
1 iff Gj 6= ∅. The bitvector B is organized as the bounded ordered set structure
of section 2.4.

Remark: For every i the j with i ∈ Gj is given by D[i]. Comparing j with
min decides whether j ∈ Large, i.e., membership of i in

⋃
j 6∈Large Gj can

be decided in constant time. The bounded distribution method is therefore
applicable to b(0). Updates can make non-empty groups empty and vice versa.
Suppose that a group Gj with j ≥ min becomes empty. We then use the
bounded set structure on B to find the index to be added to Large and
to update the value of min. Similarly, if some Gj with j ≥ min becomes
nonempty we use the bounded set structure on B to update min.

To generate a value for X we first generate a j ∈ [0 . . h] and then use either
the bounded distribution method (if j = 0) to generate i or the flat distribution
method (if j > 0) on Gπ(j) to generate i.

To change a frequency ai, we need to update the group pseudo-distribution and
up to two of the pseudo-distributions b(j). Note that given the new frequency a′

i its
group can be computed in constant time as described in section 2.5. We also may
have to add or remove an index from Large.

Lemma 7 The method above produces values according to the pseudo-distribution

(a1, . . . , am). Update time is constant and generate time is constant expected plus

the update and generate time for the group pseudo-distribution.

Proof:

Similar to the proof of Lemma 6 and therefore left to the reader.

9

4.2 A Constant Time Solution

Let (a1, . . . , an) be a polynomially bounded pseudo-distribution. We combine the
refined reduction method of section 4.1 with the refined small ground set method
of section 2.6. More precisely, we apply the refined reduction method twice. This
leaves us with a pseudo-distribution (a1, . . . , ak) on [1 . . k] where k = dlog(1 +
dlog ne)e + 1 and

∑
i ai ≤ A. Note that (k0 + 1)k0+3 ≤ n, where k0 = 22dlog ke − 1,

for sufficiently large n, i.e., Lemma 5 is applicable. We apply the refined small
ground set method to (a1, . . . , ak). Altogether we obtain:

Theorem 2 An integer-valued polynomially-bounded pseudo-distribution can be

maintained with constant update and constant expected generate time. The space

requirement is O(n).

5 An Application

We briefly discuss an application of our results to the simulation of queuing net-
works. This application is discussed in more detail in [Fox91, RR91]. Consider
an open Jackson network (see e.g. [Kle75]). It consists of n single–server queues.
New customers are generated according to a Poisson process with rate λ. A new
customer is routed to queue i with probability r0i for 1 ≤ i ≤ n. The service time
at queue i is exponentially distributed with parameter µi. When a customer com-
pletes service at queue i, it is routed to queue j, 1 ≤ j ≤ n, with probability rij . It
leaves the system with probability ri0 = 1 −

∑
j rij . Service times are assumed to

be independent from each other and from the arrival process.
In the standard future event scheduling simulation method a priority queue of

events is maintained. Whenever an event is processed zero or more new events are
generated and inserted into the event queue. Thus processing an event takes time
Ω(log m) where m is the current size of the event queue. In a heavily loaded system,
i.e., a significant fraction of the server queues is non–empty, this is Ω(log n).

Fox [Fox91] suggested an alternative simulation strategy. Consider the Markov
chain associated with the queuing network (the states are n–tuples (s1, . . . , sn)
where si is the number of customers in the i–th queue). What are the transition
probabilities? Note that the rate ai associated with the i–th queue is either µi or 0
depending on whether the i–th queue is non–empty or not. Also the rate associated
with external arrivals is a0 = λ. Given that the current rates are a0, a1, . . . , an the
time to the next event (inter–event time) is exponentially distributed with parameter
S := a0 + a1 + . . . + an. This event is a service completion at queue i, 1 ≤ i ≤ n,
with probability ai/S and a new arrival with probability a0/S. Once the type
C ∈ [0 . . n] of the event is determined a customer is moved from queue C according
to the routing probabilities rCj , 0 ≤ j ≤ n. The alias–algorithm [BFS83, 147-148])
can be used for the last step. After an event is processed at most two the ai’s
change. We can therefore apply the results of section 4 and simulate an event in
constant expected time (provided that the rates are polynomially bounded).

Fox [Fox91] and Rajasekaran and Ross [RR91] previously obtained weaker ver-
sions of this result: Fox guarantees constant simulation time per event only for very
heavily loaded systems and Rajasekaran and Ross only for heavily loaded systems
(In technical terms: If (λ1, . . . , λn) is a solution to the so–called ‘traffic equations’
λi = λ0r0i +

∑
j λjrji , 1 ≤ i ≤ n, then λi ≈ µi (Fox) and λi/µi ≥ c for some fixed

constant c > 0 (Rajasekaran and Ross) was required.)

10

6 Conclusion

We have presented constant expected time algorithms to generate random variables
according to time–varying distributions and pseudo–distributions. In the case of dis-
tributions our solution is completely general but in the case of pseudo–distributions
our solution works only for polynomially–bounded pseudo–distributions. This is
due to the fact that we need to compute binary logarithms of integers and know of
no constant time implementation of this operation for integers which are not poly-
nomially bounded. If binary logarithms of arbitrary integers could be computed in

constant time then our solution would extend to frequencies bounded by 2(log n)O(1)

.
The limiting factor would then be the bounded ordered set problem.

References

[BFS83] P. Bratley, B.L. Fox, and L.E. Schrage. A Guide to Simulation. Springer
Verlag, 1983.

[Fox91] B.L. Fox. Generating Markov-chain transitions quickly: II. Operations

Research Society of America Journal on Computing, 2.1:3–11, 1991.

[Kle75] L. Kleinrock. Queuing Systems. John Wiley & Sons, 1975.

[OvL81] M. Overmars and J. van Leeuwen. Worst-case optimal insertion and dele-
tion methods for decomposable searching problems. IPL, 12:168–173, 1981.

[RR91] S. Rajasekaran and K.W. Ross. Fast algorithms for generating discrete
random variates with changing distributions. Technical Report MS-CIS-
91-52, Dept. of CIS, Univ. of Pennsylvania, 1991.

11

