Chapter 3. Sets

Many algorithms manipulate sets. We consider some typical examples. A compiler
uses a symboltable to keep track of the identifiers used in the program. in einem
Programm vorkommenden Bezeichnungen (auch Schliissel, Namen oder Identifier)
eingetragen werden. An identifier together with relevant information (e.g., type,
scope, address, . ..) is entered into the symboltable when its declaration is processed
by the compiler. Applied occurrences of the same identifier refer to the defining
occurrence; the compiler has to access the symboltable and to look up the relevant
information. More abstractly, a compiler deals with a set ST of objects consisting of
a name (key) and associated information. T'wo kinds of operations are performed
on the set ST. New objects (z,I) are added to set ST, ie., ST is replaced by
ST U{(z,I)}, and the objects are accessed via their key, i.e., given an identifier =
we want to find I such that (z,I) € ST. In most programming languages identifiers
are strings of letters and digits of some bounded length, say at most length 6. Then
the number of possible identifiers is (26 + 10)® ~ 2 - 10°%; in every program only a
small subset of the set of all possible identifiers is used. Set ST is small compared
to the very large universe of all possible identifiers.

A second example is the index of authors of a library. The name of the author
is the key, the associated information are titles of books, their locations on the
shelf, .... This example exhibits all characteristics of the problem above; however,
at least one additional operating is performed on the set: print a library catalogue
in ascending lexicographic order.

Let us consider a third example: the set of accounts in a bank. The account
number is the key, the associated information is the holder of the account, the
balance, etc. Typical operations are Access, Insert, Delete, List in ascending order;
i.e., the same operations as in our previous example. However, there is one major
difference to the previous example: the size of the universe. A bank might have
5-10° different accounts and use account numbers with 6 decimal digits, i.e., there
are 10® possible account numbers and half of them are actually used. The universe of
possible keys and the set of keys used are of about the same size. Graph algorithms
(Chapter 4) also provide us with plenty of examples of this phenomenon.

We treat the case of drastic size difference between the universe and the set
stored first (Sections 3.1 to 3.7) and discuss the case of equal size later (Section 3.8).
The major difference between the solutions is based on the fact that that accessing
an information via a key is a difficult problem in the first case, but can be made
trivial in the second case by use of an array.

Sets consist of objects. An object is typically a pair consisting of key (name)
and information associated with the key. As in chapter 2we will concentrate on the
key part and identify object and key.

S C U be the subset of a universe U. We consider the following operations:

Name of operation Effect

Access(z, S) ifzeesS
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2 Chapter III. Sets

then the information associated with z
else a message, that x is no element of S

fi;
Member(z, S) ifzeesS
then “Yes”
else “No”
fi;
Insert(z, S) S+ Su{z};
Delete(z, S) S+ S—{z}.

Operations Insert and Delete change set S, i.e., the former version of set S is
destroyed by the operations. Operation names Access and Member are used in-
terchangeably; we will always use Member when the particular application only
requires yes/no answers.

For the following operations we assume in addition, that (U, <) is linearly
ordered.

Ord(k,S) the k-th element of the linear arrangement of set S

List(S) a list of the elements of set S in ascending order.

Additional operations will be considered in later sections.

We already know one data structure which supports all operations mentioned
above, the linear list of Section 1.3.2. A set S = {z1,...,%,} is represented as a list,
whose i-th element is z;. All operations above can be realized by a single traversal
of the list and hence take time O(n) in the worst case.

In this chapter we study data structures which are considerable more effi-
cient than linear lists. These data structures can be divided in two large groups:
comparison based methods (Sections 3.3 to Section 3.7) and methods based on
representation (Section 3.1 and 3.2). The former methods only use comparisons
(<,<,=,>,>) between elements to gain information, the latter methods use the
representation of keys as strings over some alphabet to gain information. Search
trees and hashing are typical representatives of the two classes.
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3.1. Digital Search Trees

One of the most simplest ways of structuring a file is to use the digital representation
of its elements; e.g., we may represent S = {121,102,211,120,210,212} by the

following TRIE
N

Figure 1. TRIE fiir § = {121,102, 211,120, 210, 212}

The general situation is as follows: the universe U consists of all strings of
length | over some alphabet of say k elements, i.e., U = {0,...,k — 1}1. A set
S C U is represented as the k-ary tree consisting of all prefixes of elements of S. An
implementation which immediately comes to mind is the use of an array of length k
for every internal node of the tree. (We will see a different implementation in Section
6.3). in particular, if the reverse of all elements of S is stored (in our example this
would be set {121,201,112,021,012,212}) then the following Program 1 will realize
operation Access(z)

v <—Tr00t;

Y < ;

do [ times (i,y) + (y mod k, y div k);
v ¢ i-th son of v

od;

if = CONTENT[v] then “Yes” else “No” fi.

Program 1

This program takes time O(l) = O(log;, N) where N = |U|. Unfortunately, the
space requirement of a TRIE as described above can be horrendous: O(n-{-k). For
each element of set S, |S| = n, we might have to store an entire path of [ nodes, all
of which have degree one and use up space O(k). There is a very simple method of
reducing storage requirement to O(n - k). We only store internal nodes which are at
least binary. Since a TRIE for a set S of size N has n leaves there will be at most
n — 1 internal nodes of degree 2 or more. Chains of internal nodes of degree 1 are
replaced by a single number, the number of nodes in the chain. In our example we
obtain:

Here internal nodes are drawn as arrays of length 3. On the pointers from
fathers to sons the numbers indicate the increase in depth, i.e., 1+the length of
the eliminated chain of nodes of degree one. In our example the 2 on the pointer
from the root to the son with name b indicates that after branching on the first
digit in the root we have to branch on the third (since 3 = 2 4 1) digit in the son.
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4 Chapter III. Sets

Figure 2. TRIE ohne unire Knoten

The algorithms for Access, Insert and Delete become slightly more complicated for
compressed TRIES but still run in time O(I).

Theorem 1. A compressed TRIE supports operations Access, Insert and Delete
with time bound O(log;, N') where N is the size of the universe and k is the branching
factor of the TRIE. A set S of n elements requires space O(k - n).

Proof : by the discussion above. ]

Note that TRIES exhibit an interesting time space trade-off. Choosing k large
will make TRIES faster but more space-consuming, choosing k small will make
TRIES slower but less space-consuming. For static sets, i.e., only operation Access
is supported, we describe in 3.1.2 a further compression technique below.

A disturbing fact about TRIES is that the worst case running time depends
on the size of the universe rather than on the size of the set stored. We will next
show that the average case behavior of TRIES is O(log, n); i.e., average access
time is logarithmic in the size of the set stored. We use the following probability
assumption:

Every subset S C U, |S| = n, is equally likely.

Theorem 2. Let E(d,) be the expected depth of a k-ary compressed TRIE for a
set of n elements. Then

E(d,) < 2log, n + O(1).

Proof : Let gq be the probability that the TRIE has depth D or more. Then E(d,) =
>oy>194- Let S = {z1,...,2,} CU ={0,...,k — 1} be a subset of U of size n.
The compressed TRIE for S has depth less than d if the function truncg_; which
maps an element of U into its first d — 1 digits is injective on S. Furthermore,
truncg—1 is an injective mapping on set S iff {truncy_1(x); x € S} is a subset of

size n of {0,...,k — 1}9=1. Thus there are exactly (k(:l)k'(l_(d_l))" subsets S of
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size n of U such that truncy—1 is injective on S. Hence

(kdn_l)k(l—(d—l))n

4dd S 1-— (kl)
1. Ld-1. (kd—l _ 1) . (kd—l _ (n _ 1)) B k(l—(d—l))n
- (k9"
n—1 i
=1- (- =)
1=0
Next note that , daB fiir n < k91 gilt
n—1 i 1 o
H (1 _ W) —e im0 In(1—i/k )
1=0

> efnln(l—w/kd_l)d:c

0

> e_nZ/kd—l

The first inequality follows from the fact that f(z) = In(1—z/k?"!) is a decreasing

function in z and hence f(i) > f;“ f(z)dz. The last inequality can be seen by

evaluating the integral using the substitution z = k9~! . (1 — ¢) unter Benutzung
i.D.mehr von In(1 + z) < z (s. Anhang). Hence

qa<1—e /A

i.D.mehr since e* — 1 > z and hence 1 — e* < —z, zumindest wenn n < k%=1, Wegen ¢4 < 1
gilt die Abschétzung aber sogar fiir alle n. Let ¢ = 2[log;, n|. Then

E(dy) =) qa+ Y, ta

d>c+1

<c+ ) nP/k

d>c

< 2flog, n] + (/%) 3k~
d>0

< .

Theorem 2 shows that the expected depth of a random TRIE is at most 2log;, n +
O(1) and so the expected Access-, Insert-, and Delete-time is O((logn)/(logk)).
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Space requirement is O(n - k). Parameter k, the basis of the digital representation,
allows us to trade between space and time.

3.1.2. STATIC TRIES or Compressing Sparse Tables

In this section we show that the space requirement can be drastically reduced for
static TRIES without an increase in access time. Static TRIES only support oper-
ation ACCESS. The reduction is done in two steps. As a first step we describe a
general overlay technique for compressing large sparse tables. This technique is not
only applicable to TRIES but also to other areas where large sparse tables arise,
e.g., parsing tables. The first step reduces space requirement to O(nloglogn). As
a second step we reduce the space requirement further to O(n) by packing several
numbers into one storage location.

A TRIE for a set of n elements requires space O(k - n). There are at most
n — 1 nodes each of which requires storage for an array of k elements. At most
2n — 2 of the (n — 1)k possible outgoing pointers will be non-nil, because the TRIE
has n leaves and at most n — 2 internal nodes unequal the root. This suggests to
use an overlay technique to reduce storage requirement (An alternative approach is
discussed in Section 2.3).

In our example, we may use an array of length 10

o 1 2 3 4 5 6 7 8 9
|

|l1| l1| l1| l1| l1| l1| l2| l2| |l1|

210 211 212 120 121 a b 102 c

Figure 3. Komprimierung des TRIES aus ITI.1.1. in ein grofles Feld

to store all four arrays of length 3. The root node starts at location 4, node a
starts at 7, node b starts at 0 and c¢ starts at location 3. This information is stored
an an additional table (cf. Fig. 4).

a b ¢ Wurzel
L7 [ o | 3 | 4 |

Figure 4. Eintrittspunkte in das grofie Feld

Suppose now that we search for 121. We follow the 1-st pointer out of the
root node, i.e., the pointer in location 4 + 1 of the large array. This leads us to
node a. We follow the 2-nd pointer out of a, i.e., the pointer in location 7 4+ 2 of
the big array which leads us to node ¢, .... It is also instructive to perform an
unsuccessful search, say search for 012. We follow the 0-th pointer out of the root,
i.e., the pointer in location 4 + 0. This leads us to a leaf with content 121 # 012.
So 012 is not member of the set.
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3.1.2. STATIC TRIES or Compressing Sparse Tables 7

We will now describe one particular compression technique in more detail. Let
A be an r by s 0-1 matrix with exactly m entries equal to one. We want to find
small row displacements rd(i), 0 < i < r — 1, such that A[s,j] =1 = A[i,j'] and
(2,7) # (¢',7") implies rd(i) + j # rd(:') + j' for all pairs (¢,5) and (¢, '), i.e., if
we store the i-th row of matrix A beginning at position rd(i) of a one-dimensional
array C[0.. ] then no two ones will collide. In our example the 0’s correspond to
the nil pointers and the 1’s correspond to the non-nil pointers. One method for
computing the row displacements is the First-Fitdecreasing method:

1) Sort the rows in non-decreasing order according to the number of ones in the
row, i.e., the row with the maximal number of ones comes first.

2) Set rd(0) = 0. For i > 1 choose rd(z) > 0 minimal such that no collision with
the previously placed rows 0 to ¢ — 1 occurs.

In our example step 1 could produce the following matrix. In step 2 we choose

rd(b) = 0, rd(c) = 3, rd(root) = 4 and rd(a) = 7. These choices are illustrated by
the second matrix.
0 1 3 4 5 6 7 8 9
b:| 1 1 1 1 1 1
c| 1 1 0 1 1 0
root:| 0 | 1 1 111
a| 1 |0 1 110 1

Figure 5. Overlaytechnik mit First-Fit-Methode

The First-Fitdecreasing method produces small row displacements if ones of
matrix A are evenly distributed across the matrix.

Theorem 3. Let m(l) be the total number of ones in rows of A which contain [+ 1
or more ones. If m(l) < m/(l + 1) for all | then the First-Fitdecreasing method
produces row displacements rd(i) < m for 0 <i < r —1 in time O(r - s + m?2).

Proof: Consider a row with exactly [ ones. When that row is placed in step 2 only
rows with > [ ones have been placed and hence the array C' can contain at most
m(l — 1) ones. Each such one can block at most [ possible choices for the row
displacement. Since [ - m(l — 1) < m by assumption we can always find rd(:) <m
foralli, 0 <i<r—1.

We still have to prove the time bound. We compute the number of ones in
each row in time O(r - s). Bucketsort will then sort the rows according to the
number of ones in time O(r 4+ s) Finally, in order to compute rd(i¢) one has to
try up to m candidates. Dazu sucht man fir jede zu plazierende Eins von Zeile ¢
eine Null in C. Wenn die i-te Zeile r; Einsen hat, kann ein Kandidat in Zeit
O(r;) getestet werden. Dazu speichern wir die Einsen einer jeden Zeile zusatzlich in
verketteten Listen ab. Also finden wir rd(7) in Zeit O(m-7;). Die Gesamtlaufzeit ist
O(r-s+r+s+31_g m-r;) = O(r-s+m?). We obtain a total of O(r-s+7r+m-+r-m-s)
time units. ]
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8 Chapter III. Sets

The hypothesis of Theorem 3, the harmonic decay property, imposes a severe re-
striction on the distribution of ones in matrix A. We have m(1) < m/2 and thus
at least half of the ones have to lie in rows with exactly one entry equal to one.
Also m(y/m) < m/y/m = y/m and hence no row of A can contain y/m or more
ones. What can we do if A does not have the harmonic decay property? We try to
find column displacements cd(j), 0 < j < s — 1, such that matrix B obtained from
matrix A by displacing columns has the harmonic decay property. Then we apply
the previously described compression technique to matrix B.

Fiir unser Beispiel konnten wir etwa cd(0) = 0, ed(1) = 2 und ¢d(2) = 3 wahlen
und erhalten die (7 x 3)-Matrix B aus Abbildung 6.

0o 1 2
0 1
1] 1
20 0 | 1
B:3/1]1]1
4 1|0
5 0|1 0o 1 2
6 1 ed: | 0] 2] 3]

Figure 6. Situation nach Spaltenverschiebungen

Jetzt sind wir in der Lage, die Zeilenverschiebungen gemafl der absteigenden
First-Fit-Methode zu wahlen. Beachten Sie, da Schritt 1) unseres Algorithmus
die Zeilen von B in die Reihenfolge 3, 0, 1, 2, 4, 5, 6 umordnet. Schritt 2) wahlt
rd(3) = 0, rd(0) = 3, rd(1) = 4, rd(2) = 4, rd(4) = 5, rd(5) = 5 und rd(6) = 6
(cf. Fig. 7).

0 1 2 3 4 5 6 7 8
0 1 0 0
1 1 0 0
2 0 1 0
3| 1 1 1
4 0 1 0
5 0 0 1
6 0 0 1

Figure 7. Situation nach Spalten- und Zeilenverschiebungen

Somit entsteht das Feld C der Lange 9 aus Abbildung 8.

0o 1 2 3 4 5 6 7 8
C: [1[1]1[1]1[]1]1]1]1

Figure 8. Die komprimierte Matrix C

Version: 18.10.99 Time: 21:00 —8—



1.D. mehr

cd(0) =0

3.1.2. STATIC TRIES or Compressing Sparse Tables 9

The important fact to remember is that all ones of matrix A are mapped on
distinct ones of matrix C, namely A[i,j] = 1 implies A[i,j] = B[i + cd(j),j] =
Clrd(i + ¢d(j)) + j]. The question remains how to choose the column displace-
ments. We will use the First-Fitmethod. Let m; be the number of ones in columns
0,...,7 of matrix A. We choose ¢d(0), ¢d(1), ... in that order. Suppose we have
chosen ¢d(0),...,cd(j — 1) and applied these displacements to the first j columns
of matrix A. Let Bj_; be the matrix obtained in that way and let m;_;(I) be the
number of ones in rows of B;_; with / 4+ 1 or more ones. We want B = B,_; to
have the harmonic decay property, i.e.,

ms—1(1) <m/(l+1) for all I > 0.

In order to ensure the harmonic decay property after all columns displacements have
been chosen we impose a more stringent restriction during the selection process, i.e.,
we impose

(%) m;(l) < m/f(l,m;),

where f will be chosen later. The boundary conditions for f are f(I,ms_1) >1+1
and f(0,m;) < m/m;. The former condition ensures the harmonic decay property
at the end of the construction, the latter condition makes sure that we can choose
cd(0) = 0 and that the requirement can be satisfied for [ = 0. Note that m;(0) = m;
for all j and mg(l) =0 for [ > 0.

We choose the First-Fitmethod to choose the column displacements: Choose
cd(j) = 0. For j > 0 choose cd(j) > 0 minimal such that m;(l) < m/f(l,m;) for
alll > 0.

We need an upper bound on the values cd(j) obtained in that way. We ask the
following question: Consider a fized [ > 1 with the requirement

(1) m; (1) < m/f(l,m;).

How many choices of cd(j) may be blocked because fo violation of requirement (I)?
If a particular choice, say k, of cd(j) is blocked then

m;(l) > m/f(l,m;),

where m;(l) is computed using displacement k for the j-th column. Since require-
ment (!) is satisfied after choosing cd(j — 1) we also have

mj—l(l) < m/f(lamj—l)a

and hence
ms (1) = my-1(0) > m/F(l,my) —m/ (I, m;_1).

Let g =m/f(l,mj)—m/f(l,m;j_1). We can interpret g as follows: In matrix B; the
number of ones in rows with > [+ 1 ones is at least ¢ more than in matrix B;_;. We
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can count these ¢ ones in a different way. There are at least ¢/(I+1) pairs (a row of
Bj_1 with > [ ones, a one in column j) which are aligned when column displacement
cd(j) = k is chosen. Note that any pair contributes either 1 (if the row of B;_; has
> 141 ones) or [ +1 (if the row of B;_; has exactly / ones) to ¢g. Since the number
of rows of Bj_1 with > [ ones is bounded by m;_1({ —1)/l <m/(l- f(l —1,m;_1))
and since the j-th column of A contains exactly m; —m;_; ones the number of such
pairs is bounded by
_ (mj—mj1)-m
l . f(l — 1,mj_1)

Da die zu den Blockaden gehorenden Mengen von Paaren disjunkt sind, Hence there
are at most p/(q/(l + 1)) possible choices k for ¢d(j) which are blocked because of
violation of requirement [, [ > 1. Hence the total number of blocked values is
bounded by

((+1)-(mj—mj_1)-m
Zl f=1,mjq) - [m/f({I,m;) —m/f(l,m;_1)]’

where /o = min{l; m/f(l,m;_1) < l}. Note that there are no rows of B;_; with
> [y ones and hence p (as defined above) will be 0 for [ > l5. Hence we can always
choose cd(j) such that 0 < cd(j) < BV.

A bound on BV remains to be derived . We rewrite the expression for BV as
follows:

I+1 m; —mj_1 fl,mj_1)
BV = Z Fmy—0) flmy) —1 Fll— Lmy—)’

This expression involves only quotients of f and therefore we set f(I,m;) = 29(l:m;)
for some function g to be chosen later. We obtain

I+1 mj —mj—1 g(l,mji—1)—g(l—1,m;_1)
BV = Z 2g(lm, 1)—g(lmj) 1 2

Z I+1 mj — mj-1 . 99(m;—1)—g(1-1,m;_1)
B g, m;—1) —g(l,m;)] - In2 ’

since 2 — 1 > z - In2. Next we note that the two differences involve only one
argument of g. This suggests to set g(I,m;) = h(l) - k(m;) for some functions h and
k to be chosen later. The upper bound for BV simplifies to

lo
[+1 m; —m;_1 —B(1—1)). .
< . i m (A =h(1=1))-k(m;_)
BV <2 R Ry ) — KOy T2
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This sum will further simplify if we choose h and k to be linear functions, say
h(l) =1 and k(m;) =2 —m;/m < 2. Then

BV<§:Z+1' mj; —mj—1 -22
- -1 l l-(mj/m—mj_l/m)-ln2
_Nhdm 1+
B — In2 12

4m o fo
:ﬁ<21/1+21/12>
n
=1 =1

4m
< Zm 2
< 1n2(lnlo +1+4+7°/6)

lo
(since Z 1/l <1+ 1nlg (cf. appendix)
=1

and » 1/ = x°/6)

I>1

<4dmlogly + 15.3m .

Finally observe that f(I,m;) = 2-(2=mi/m) > 2l and therefore Iy < logm. Also
flyms_y) =28 > 1+ 1 for all [ and f(0,m;) = 2° =1 < m/m; for all j and
so f satisfies the boundary conditions. Thus we can always find ed(j) such that
0 < cd(j) < 4mloglogm + 15.3m gilt.

Theorem 4. Given a matrix A[0..r—1,0..s— 1] with m nonzero entries one can

find column displacements cd(j), 0 < j < s—1, such that 0 < ¢d(j) < 4mloglogm+

15.3m and such that matrix B obtained from A using those displacements has

the harmonic decay property. The column displacements can be found in time
Zeit!? O(s(r + mloglog m)?).

Proof: The bound on the column displacements follows from the discussion above.
The time bound can be seen as follows. For every row of B; we keep a count
on the number of ones in the row and keep the numbers m;(i) and m;. In or-
der to find cd(j + 1) we have to test up to 4mloglogm + O(m) possible values.
versch.Erg. Einen Kandidaten plazieren wir in Zeit O(s;+1), wobei s;41 die Anzahl der Einsen
in Spalte j + 1 ist. Dazu verwalten wir zusatzlich die Einsen einer jeden Spalte
als verkettete Liste. Weiter miissen wir fiir den untersuchten Kandidaten in Zeit
O(sj+1) die betroffenen m;(i) aktualisieren, gegebenenfalls wieder zuriicksetzen
und in Zeit O(lp) = O(logm) auf Verletzung der Bedingung (I) fir 1 <1 < [
uberprifen. Also ist die Gesamtzeit fur die Berechnung der Spaltenverschiebungen
O(mloglogm - Zj;(l](s, +logm)) = O(m?loglogm). 1
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Let us combine the Theorems 3 and 4. Given a matrix A[0..7 —1,0..s — 1] with
m nonzero entries, Theorem 4 gives us column displacements cd(j), 0 < j < s, and
a matrix B such that und eine Matrix B, die die Eigenschaft des harmonischen
Abstiegs erfiillt, so dal

Ali,j] #0 implies Bli + cd(j), ] = Ali,J]

B has s columns and 7' < 7+ 4mloglogm + 15.3m rows. Of course, B has at most
m rows with at least one nonzero entry. Next we apply Theorem 3 and obtain row
displacements rd(i), 0 < ¢ < v’ and a one-dimensional matrix C such that

Blh,j] #0 implies C[rd(h) + j] = Blh, j],
or in other words
Afi,j] #0 implies C[rd(i + cd(j)) + j] = A[s, -

Since B has only m nonzero entries there are at most m different h’s such that
rd(h) # 0. Furthermore, array C has length at most m + s since rd(h0 < m for all
h.

So far, we have obtained the following reduction in space: C uses m + s storage
locations, cd uses s storage locations and rd uses ' < r + 4mloglogm + 15.3m
storage locations.

Let us apply our compression technique to a TRIE for a set of n elements with
branching factor k < n; k = n will give the best result with respect to access time.
We can view the array representation of the internal nodes as an 7, » <n—1, by s,
s = k, array with < 2n — 2 non-nil entries. Compression gives us a matrix C with
O(k + n) = O(n) locations, a set of k = O(n) column displacements and a set of
O(nloglogn) row displacements. So total space requirement is O(n loglogn).

The entries of arrays rd, c¢d and C are numbers in the range of 0 to O(n loglogn),Jj
i.e., bitstrings of length < O(logn). As we observed above, array rd has c-nloglogn
entries for some constant ¢ all but 2n — 2 of which are zero. We will next describe
a compression of vector rd based on the following assumption: A storage location
can hold several numbers if their total length is less than log n.

Let ig,41,-.-,%—1, t < 2n — 2, be the indices of the nonzero elements of vector
rd. We compress vector rd into a vector crd of length ¢ by storing only the nonzero
entries, i.e., crd[l] = rd[i] for 0 < I < ¢t —1. We still have to describe a way of
finding [ given 1.

Let d = |loglogn]|. We divide vector rd into ¢ - nloglogn/d < 2¢ - n blocks
of length d each. For each block we write down the minimum [ such that ¢; lies in
that block, if any such [ exists. This defines a vector base of length 2¢ - n. For any
other element of a block we store the offset with respect to [ in a two-dimensional
array offset, i.e.,

base[v] = min{l; ¢y divd =v} if3:4divd=v;
-1 otherwise
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3.1.2. STATIC TRIES or Compressing Sparse Tables 13

for 0 <v <2c-nand

. [ — base[v] ifv-d+ j =14 for some I;
t = ’
offsetlv, ] { -1 otherwise

for 0 < j < d.

Then is rd[h] = 0 <= offset[h divd,h mod d] = —1 and rd[h] # 0 implies
rd[h] = crd[base[h div d] + offset[h div d, h mod d]].

For any fixed v ist offset[v, | is a list of d numbers in the range —1,...,d — 1.
We combine these numbers into a single number off [v]

U
[u

off[v] = ) (offset[v,j]+1)-(d+ 1) .

<.
Il
o

Then 0 < off[v] < (d + 1)¢ and thus off [v] fits into a single storage location. Also
offset[v, j] = ((off [v] div (d + 1)) mod (d + 1)) — 1,

and so offset|v,j] can be computed in time O(1) from off [v] and a table of the
powers of d + 1. Altogether we decreased the space requirement to O(n), namely
to O(n) for array crd, base and off , and respectively increased access time only by
a constant factor.

We illustrate these definitions by an example in Figure 9, d = 3, 19 = 1, i; = 3,
iz = 5 and i3 = 11. Note that off[1] = (1 + offset[1,0]) - 4° + (1 + offset[1,1]) - 41 +
(1+ offset[1,2]) -42=1-4°4+0-4! +2.4% = 33.

rd: | 010 | 101 | 000 | 001 |

erd: | rd(1) | rd(3) | rd(5) | rd(11) |
base: | 0 [ 1 | -1 | 3 |

offset : | —1 0 -1 und off : 4

0 -1 1 33

-1 -1 -1 0

-1 -1 0 16

Figure 9. Komprimierung von rd

Theorem 5. Let S C U, |S| = n and |[U| = N. Then an n-ary TRIE supports
operation Access in time O(log, N) worst case and O(1) expected case. The TRIE
can be stored in O(n) storage locations (of O(logn) bits each).

Proof: The time bound follows from Theorems 1 and 2. The space bound follows
from the preceding discussion. ]
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We will improve on Theorem 5 in Section 3.2.3 on perfect hashing and show how
to obtain O(1) access time in the worst case. We included Theorem 5 because the
compression technique used to prove Theorem 5 is of general interest. In particular,
it compresses large sparse tables without seriously degrading access time. Note that
an access to array A is replaced by an access to the three arrays rd, c¢d and C and a
few additions, at least as long as we are willing to tolerate the use of O(n loglogn)
storage locations.

3.2. Hashing

The ingredients of hashing are very simple: an array T'[0..m — 1], the hash table,
and a function h : U — [0..m — 1], the hash function. U is the universe; we will
assume U = [0..N — 1] throughout this section. The basic idea is to store a set
S as follows: z € S is stored in T'[h(z)]. Then an access is an extremely simple
operation: compute h(z) and look up T'[h(z)].

Suppose m = 5, S = {3,15,22,24} C [0..99] and h(x) = x mod 5. Then the

hash table appears as follows:
0 15
1
2 22
3 3
4 24

Figure 10. Eine Hashtafel

There is one immediate problem with this basic idea: what to do if h(z) = h(y)
for some z,y € S, x # y? Such an event is called a collision. There are two main
methods for dealing with collisions: chaining and open addressing.

3.2.1. Hashing with Chaining

The hash table T is an array of linear lists. A set S C U is represented as m linear
lists. The i-th list contains all elements z € S with h(z) = i.

Figure 11 shows the representation of set S = {1,3,4,7,10,17,21} in a table
of length m = 3. We use hash function h(z) = x mod 3.

figure does not exist yet

Figure 11. Beispiel fiir Hashing mit Verkettung
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3.2.1. Hashing with Chaining 15

Operation Access(z,S) is realized by the following program:

1) compute h(z);
2) search for element z in list T'[h(z)].

Operations Insert(z, S) and Delete(z, S) are implemented similarly. We only have
to add z to or to delete z from list T'[h(z)]. The time complexity of hashing with
chaining is easy to determine: the time for evaluating hash function h plus the
time for searching through list T'[h(x)]. In this section we assume that h can be
evaluated in constant time and therefore define the cost of an operation referring
to key z as O(1 + p(x, S)) where S is the set of stored elements and

(Sh(J?,S) = Z‘sh(xay)

y€eS

and
1 if h(z) = h(y) and = # y;

on(z,y) =
n(2,9) 0 otherwise.

The worst case complexity of hashing is easily determined. The worst case occurs
when the hash function h restricted to set S is a constant, i.e., h(z) = i for all
x € S. Then hashing deteriorates to searching through a linear list; any one of the
three operations costs ©(|S|) time units.

Theorem 1. The time complexity (in the worst case) of operations Access(x, S),
Insert(z, S) and Delete(z, S) is ©(|S]). 1

Average case behavior is much better. We analyze the complexity of a sequence of
n insertions, deletions and accesses starting with an empty table, i.e., of a sequence
Op¢(z1),--.,0p,(x,), where Op, € {Insert, Delete, Access} and z; € U, on the
following probability assumptions (we will discuss these assumptions later).

1) Hash function h : U + [0..m — 1] distributes the universe uniformly over the
interval [0..m — 1], i.e., for all 4,i’ € [0..m — 1]: |h=1(3)| = |[h=1(i")|.

2) All elements of U are equally likely as an argument of any one of the operations
in the sequence, i.e., the argument of the k-th operation of the sequence is equal
to a fixed z € U with probability 1/|U|.

Our two assumptions imply that value h(zy) of the hash function on the argument
of the k-th operation is uniformly distributed in [0..m — 1], i.e., prob (h(xk) = z) =
1/mforallke[l..n]and i € [0..m —1].

Theorem 2. On the assumptions above, a sequence of n insertions, deletions and
access-operations takes time O((1+ 3/2)-n) where 3 = n/m is the (maximal) load

factor of the table.
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16 Chapter III. Sets

Proof: We will first compute the expected cost of the (k + 1)-st operation. Of-
fensichtlich sind diese Kosten am grofiten, wenn die ersten k& Operationen samtlich

i.D.mehr Einfiigungen sind. Daher analysieren wir diesen Fall. Assume that h(zg4+1) =4, i.e.,
the (k + 1)-st operation accesses the i-th list. Let prob(l;(7) = j) be the probability
that the i-th list has length j after the k-th operation. Then

ECkry1 = ZPTOb(lk(i) =j)-(1+37)
i>0

is the expected cost of the (k+1)-st operation. Um die Abschéatzungen tibersichtlich
zu halten, unterlassen wir es, diesen und die folgenden Ausdriicke (Beweise der Sétze
i.D.mehr 3, 4 und 5) in O-Notation zu schreiben. Next note that

prob(li(i) = §) < (’;) (Ufm)i - (1~ 1/m)kd

(with equality if the first k£ operations are insertions) and hence

BCry1 <1+ (’;) S(1/m)? - (1—1/m)k=7 .

=1 () Wt a e

k
=1+ —.
m

Thus the total expected cost of n operations is

> roe=o0(3 0+ )

= O(n—l— (n=Ln l)n)

2m

:0(n+ ﬂz_n) '

We will next discuss the probability assumptions used in the analysis of hashing.
The first assumption is easily satisfied. Hash function h distributes the universe U
uniformly over the hash table. Suppose U = [0..N — 1] and m|N, i.e., m divides
N. Then h(z) = x mod m will satisfy the first requirement (division method). If m
does not divide N but N is much larger than m then the division method almost
satisfies assumption 1) and Theorem 2 remains true.

The second assumption is more critical because it postulates a certain behavior
of the user of the hash function. In general, the exact conditions of latter use
are not known when the hash function is designed and therefore one has to be
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very careful about applying Theorem 2. We discuss one particular application now
and came back to the general problem in the sections on perfect and universal
hashing. fragefehlt i.E. Insbesondere werden wir im Abschnitt iiber universelles
Hashing einfache Klassen von guten Hashfunktionen kennenlernen.

Symbol tables in compilers are often realized by hash tables. Identifiers are
strings over the alphabet {4, B,C,...}, i.e., U = {A,B,C,...}*. The use of iden-
tifiers is definitely not uniformly distributed over U. Identifiers I1, 12, J1,... are
very popular and XYZ is not. We can use this nonuniformity to obtain even better
behavior than predicted by Theorem 2. Inside a computer identifiers are repre-
sented as bitstrings; usually 8 bits (a byte) are used to represent one character.
In other words, we assign a number num(C) € [0..255] to each character of the
alphabet and interpret a string C,.C,_1...Cp as a number in base 256, namely
> _onum(C;) - 256%; moreover, consecutive numbers are usually assigned to char-
acters 1,23, .... Then strings I0, I1, 12, and X0, X1, X2 lead to arithmetic progres-
sions of the form a + ¢ and b + ¢ respectively where ¢ = 0,1,2,... and 256|(a — b).
As identifiers of the form I0, I1, 12, and X0, X1, X2 are used so frequently, we want

h(a +1) # h(b+ j) for 0 <4,7 <9 and 256|(a — b),
i.e., if h(z) = x mod m for one m then we want for this m
(b—a)+ (j —i) # 0 mod m.

Since 256|(b — a) we should choose m such that m does not divide numbers of the
form 256-c+d where |d| < 9. In this way one can even better practical performance
than predicted by Theorem 2. In Abbildung 12 fassen wir die Ergebnisse einer Un-
tersuchung von Lum (71) tiber das mittlere Verhalten von Hashing mit Verkettung
zusammen.

load factor | 05 | 06 | 07 | 08 | 09 |
access time

experiment 1.19 1.25 1.28 1.34 1.38
theory 1.25 1.30 1.35 1.40 1.45

Figure 12. Mittlere Zeitkomplexitat von Hashing mit Verkettung

Hashing as we described it entails further problems apart from assumption 2).
The expected behavior of hashing depends on the load factor 8 = n/m. An op-
eration can be executed in time O(1) if 8 is bounded by a constant. This implies
that either one has to choose m large enough to begin with or one has to increase
(decrease) the size of the hash table from time to time. The first solution increases
storage requirement, which also implies an increased running time in many envi-
ronments. If the hash table is too large to be stored in main storage, then a small
load factor will increase the number of page faults.

In the second case we can use a sequence Ty, T, 15, ... of hash tables of size
m, 2m, 4m, ... respectively. Also, for each ¢ we have a hash function h;. We start
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18 Chapter III. Sets

with hash table Ty. Suppose now, that we use hash table 7; and the load factor
reaches 1 or 1/4. In the first case, we move to hash table T;,; by storing all 2¢m
elements present in T} in table T; ;. On the average, this will cost O(2'm) time
units. Also, the load factor of table T;,; is 1/2 and therefore we can execute at
least (1/4)-2i*1m = (1/2) - 2m operations until the next restructuring is required.
In the second case, we move to hash table T;_; by storing all (1/4) - 2m elements
present in 7T; in table T;_;. On the average, this will cost O((1/4) - 2'm) time
units. Also, the load factor of table T;_; is 1/2 and therefore we can execute at
least (1/4)-2¢~1m operations without any further restructuring. In either case, the
cost of restructuring is twice the number of subsequent operations which can be
performed without further restructuring. Hence, we can distribute (conceptually)
the cost of restructuring to the operations following the restructuring but preceding
the next restructuring process. In this way we will assign cost O(1) to each operation
and so the average cost of an operation is still O(1). Also, the load factor is always
at least 1/4 (except when table T} is in use).

We continue this section with a remark on operations Ord(k, S) and List(S).
Since the elements of set S are completely scattered over the hash table T' both
operations cannot be realized at reasonable cost. One of the main applications of
operation List(S) is batching requests. Suppose that we want to perform n; opera-
tions Access, Insert, Delete on set S. Instead of performing n; single operations it
is often better to sort the requests bt the key referred to and to perform all requests
by a single sweep of set S. If set S is stored in a hash table we may still use this
method. We apply the hash function to the requests and sort the requests by the
hashed key. Then we process all requests during a single scan through the hash
table.

We end this section with a second look ast the worst case behavior of hashing
and discuss the expected worst case behavior of hashing with chaining. Suppose
that a set of n elements is stored in the hash table. Then max,cy 0x(z,S) is
the worst case cost of an operation when set S is stored. We want to compute
the expected value of the worst case cost on the assumption that S is a random
subset of the universe. More precisely, we assume that S = {z;,...,z,} and that
prob(h(zy) = i) = 1/m for all k € [1..n] and i € [0..m — 1]. The very same
assumption underlies Theorem 2.

Theorem 3. On the assumption above, the expected worst case cost of hashing
with chaining is O((log n)/(loglogn)) provided that  =n/m < 1.

Proof: Let I(i) be the number of elements of S which are stored in the i-th list.
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Then prob(I(z) > j) < (’;)(1/m)7 Also
prob((max () > /) < 3 prob(l(i) > )
=0

< m (1) /my

< n-(n/m)=t(1/4)).
Thus the expected worst case cost EWC, i.e., the expected length of the longest
chain, is

EWC =) prob((maxI(i)) > j)

i1

<Y min(l,n- (n/m)’~" - (1/31)).
i>1
Let jo = min{j; n-(n/m)?~1-(1/4!) <1} < min{j; n < j!}, since n/m < 1. From
3! > (j/2)?/? we conclude jo = O((logn)/(loglogn)). Thus

J
EWC < il + ) 1/

Jj=1 J>jo
= O((logn)/(loglogn)). 1

3.2.2. Hashing with Open Addressing

Each element z € U defines a sequence h(z,i), ¢ = 0,1,2,... of table positions.
This sequence of positions is searched through whenever an operation referring to
key z is performed.

A very popular method for defining function h(z,?) is to use the linear combi-
nation of two hash functions hq and hs:

h(z,i) = [h1(z) + 7 - ho(z)] mod m

wobei ha(z) nie den Wert 0 annehmen darf. We illustrate this method by an
example; let m = 7, hy(z) = £ mod 7 and ha(z) = 1+ (z mod 4). If we insert 3,
17, 6, 9, 15, 13, 10 in that order, we obtain Figure 13.

Hashing with open addressing does not require any additional space. However,
its performance becomes poor when the load function is nearly one and it does not
support deletion.

We analyze the expected cost of an operation Insert(z) into a table with load
factor S = n/m on the following assumption: Sequence h(z,7),i=0,1,...,m—11is
a random permutation of the set {0,...,m —1}. The cost of operation Insert(x) is
1 + min{é; T[h(z,%)] is not occupied}. (Wir miiBten hier eigentlich O(1 + min...)
schreiben, vernachlissigen aber in diesem Abschnitt bewufit die O-Notation.)
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20 Chapter III. Sets

h(3,%7) = (3 4+ 44) mod 7, i = 0 works (1) ig
h(17,7) = (3 4+ 2¢) mod 7, ¢ = 1 works .

h(6,7) = (6 + 3¢) mod 7, i = 0 works

h(9,7) = (24 2¢) mod 7, i = 0 works 3] 3
h(15,7) = (1 4+ 44) mod 7, ¢ = 0 works 4] 10
h(13,i) = (6 + 2i) mod 7, i = 4 works 5| 17
h(10,i) = (3 4+ 37) mod 7, i = 5 works 6| 6

Figure 13. Example for hashing with open addressing

Theorem 4. The expected cost of an Insert into a table with load factor f = n/m
is (m+1)/(m —n+1) =~ 1/(1 — B) provided that n/m < 1.

Proof: Le C(n,m) be the expected cost of an Insert into table with m positions,
n of which are occupied. Let g;j(n,m) be the probability that table positions
h(z,0),...,h(z,j — 1) are occupied. Then go(n,m) = 1, gj(n,m) = [n/m] . [(n -
1)/(m—1)]---[(n— (5 —1))/(m — (j — 1))] and

C(n,m) =Y (g;(n,m) — gj41(n,m)) - (j +1)

j=0

=3 aj(n,m) — (1) quga(n,m)

= Z gj(n,m).
=0

The expression for g;(n,m) can be justified as follows. Position h(z,0) is occupied
in n out of m cases. If h(z,0) is occupied then position h(z,1) is occupied in n — 1
out of m — 1 cases (note that h(z,1) # h(z,0)), ... .

We prove C(n,m) = (m + 1)/(m —n + 1), by induction on m and for fixed
m by induction on n. Note first that C(0,m) = ¢o(0,m) = 1. Note first that
gj(n,m) = (n/m) - gj—1(n —1,m — 1) for j > 1. Hence

™ =gt m)

—1+— Zq]n—l m—1)
7j=0

n m
=14+ —

m m-n+1
_ m—+1 I
 m-—n+1
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The expected cost of a successful Access operation is now easy to determine. Sup-
pose that set S is stored. When Zugriff(z), z € S, is executed we step through
sequence h(z,0), h(z,1), ...until we find an ¢ with T[h(z,7)] = z. Of course, the
very same ¢ determined the cost of inserting element € S in the first place. Hence
the expected cost of a successful search in a table with n elements is

n—1

1 . m-+1
EZC(Z’m):_Z —i+1

:m+1["§__mz":“1]

1 m+1

In———— 1. Anh

~ g T (vgl. Anbang)
B 1-p

Theorem 5. The expected cost of a successful search in a table with load factor

B = n/m is O((1/8) - n(1/(1 - B)).
Proof : By the discussion above. ]

Theorems 4 and 5 state that Insert and Access time will go up steeply as 3 ap-
proaches 1, and that open addressing works fine as long as 8 is bounded below one,
say 8 < 0.9 ((cf. Fig. 14)).

B | 05 | 07 | 09 | 095 | 099 | 0999 |
1/1—B) 2 3.3 10 20 100 | 1000
(1/8)-In(1—pB) | 1.38 | 170 | 255 | 3.15 | 4.65 6.9

Figure 14. Anzahl von Operationen bei Hashing mit offener Adressierung

3.2.3. Perfect Hashing

We based our analysis of the expected performance of hashing with chaining on
two assumptions, the second of which is very critical. It postulates uniformity on
the key space, an assumption which is almost always violated. However, we saw
in Section 2.1. that it is possible to tune the hash function according to the bias
which is present in the key space. In this section we will consider the ultimate form
of tuning. Set S is known when the hash function is chosen, A is chosen such that
it operates injectively on S.
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22 Chapter III. Sets

Definition:

a) A function h : [0..N — 1] — [0..m — 1] is a perfect hash function for
SC[0..N—1]if h(z) #h(y) forall z,y € S, = # y.

b) A set H of functions 2 : [0.. N — 1] — [0..m — 1] is called (N;m; n)-perfekt
(or “perfect” for short) if for every S C [0..N — 1], |S| = n, thereis h € H
such that A is perfect for S. ]

Of course, every set S has a perfect hash function. In our example of the beginning
of Section 2 we can take h(z) = (last digit of z) mod 4. The most interesting
questions concerning the hash functions are:

a) How large are the programs for perfect hash functions, i.e., is there always a
short program computing a perfect hash function?

b) How difficult is it to find a perfect hash function given S, m and N?

c) How difficult is it to evaluate perfect hash functions?

In this section we will essentially answer all three questions completely. We first
have to give a more precise definition of program size. The size of a program is
just the length of the program written as a string over some finite alphabet. We
prove upper bounds on program size by explicitly exhibiting programs of a certain
length. We prove lower bounds on program length by deriving a lower bound on
the number of different programs required and then exploiting the fact that the
number of words (and hence programs) of length < L over an alphabet of size c is
equal to (cft1 —1)/(c —1).

Theorem 6. Let N, m, n € N and let H be a (N, m,n)-perfect class of hash
functions. Then
(z)

a) ‘H|2—(N/m)n-(’g)'
b) |H| > 132

c) There is at least one S C [0..N — 1], |S| = n, such that the length of the
shortest program computing a perfect hash function for S is

max <n(n— 1 — nin — 1)/(1— n—l)’ loglogN—loglogm)/logc—l ,

2mlIn2 2N 1n2 N
here c is the size of the alphabet used for coding programs.
Proof: a) There are (1: ) different subsets of [0.. N —1] of size n. It therefore suffices
to show that any fixed function A : [0.. N — 1] — [0..m — 1] is perfect for at most
(N/m)™ - () different subsets S C [0..N — 1], |S| = n. If h is perfect for S then
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[h~1(i)Nn S| < 1foralli € [0..m — 1]. Hence the number of sets S such that A is
perfect for S is bounded by

> (B2 (i0)] - [T G2)| -+ R (i)

0<i1<ia << i <M

This expression is maximal if |h=1(i)| = N/m for all i € [0..m — 1] and its value is
equal to (N/m)™ - (™).

b) Let H = {h1,...,hs}. We construct U; C U, 0 < i < ¢, such that for every
S CU, |SNU;| > 2, functions hy,. .., h; are not perfect for S. Then we must have
|U¢| < 1. Let Up = U and

Uip1 = Ui NRZL () fori <t

where j is such that |U; N A (5)] > |Us N R[5 (1) for every I € [0..m — 1].
Then |U;;1| > |U;|/m and hence |U;, 1| > N/m**!. Also functions hy,...,h;41 are
constant on U;;+1 and hence |Uy| < 1. Weil H perfekt sein soll, ist |Uy| < 1. Thus
1> N/m® or t > log N/ log m.

c) Let LBa and LBb be the lower bounds for |H| proven in parts a) and b). Since
there are at most cl*t! different programs of length < L and different functions
require different programs we conclude that there are least one S C [0..N — 1],
|S| = n, such that the shortest program computing a perfect hash function for S
has length max(log LBa, log LBb)/logc — 1. But

log LBb = loglog N —loglogm

and
N.--.(N-n+1) - m"

logLBa—logNn‘ Cm—nt1)
:logrl:fN_ mT;ZI
=0
- Zln(l—i/N)—Z]n(l—i/m)]/an
=0 1=
B n_l _ ' .
2_—(1— N) -10—+Z ]/1112
n(n —1) n(n—1)

= 2mIn2 2NIn2-(1—(n—1)/N)

Dabei gilt die erste Ungleichung, since In(1 — i¢/m) < —i/m and hence —In(1 —
i/m) > i/m and In(1 —i/N) > —(¢/N)/(1 — (n —1)/N) for 0 < i < n —1 (cf.
appendix). 1
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24 Chapter III. Sets

Informally, we can state part c) of Theorem 6 as follows. The length of the shortest
program for a perfect hash function is at least 1[(8/(2In2))n + loglog N]/logc,
i.e., there is an initial cost loglog N due to the size of the universe and there is
an incremental cost of §/(21n2) bits per element stored . The incremental cost
depends on the load factor 8 = n/m.

How good is that lower bound? We give the answer in two steps. Wer will first
show by a non-constructive argument that the lower bound is almost achievable
(Theorem 7 and 8). Unfortunately, the programs constructed in Theorem 8 are
extremely inefficient, i.e., Theorem 8 settles question a) concerning the program
size of perfect hash functions but does not give convincing answers to questions b)
and c). As a second step we will then derive answers for questions b) and c).

Theorem 7. Let N, m, n € N. If
t>nlnN - e"z/m,
then there is a (N, m,n)-perfect class H with |H| = t.
Proof: We may represent any class H = {h1,...,h:} by an N by ¢ matrix

M(H) = (hi(z))o<a<n-1, 1<i<t

with entries in [0..m — 1], i.e., the i-th column of matrix M(H) is the table of
function values for h;. Conversely, every N by ¢ matrix is the representation of
a class H of hash functions. There are m”~ 't matrices of dimension N by ¢ with
entries in [0..m — 1].

We want to derive an upper bound on the number of non-perfect matrices, i.e.,
matrices which correspond to non-perfect classes of hash functions. If H does not
contain a perfect hash function for S = {z; < z2 < --- < z,,}, then the submatrix
of M (H) given by rows z1, ..., Z, cannot have a column of n different values. Hence
the columns of that submatrix can be chosen out of m" —m-(m—1)---(m—n+1)
possibilities (namely, the number of functions from n points into a set of m elements
minus the number of injective functions), and hence the number of such submatrices

is bounded by [m™ —m-(m—1)---(m —n+ 1)]t. Recall that the submatrix has

t columns. verschiedene Arten gewahlt werden kann, Since S can be chosen in (]Z )
different ways, the number of non-perfect matrices is bounded by

Note that the rows corresponding to elements not in S may be filled arbitrarily.
Thus there is a perfect class H, |H| =t, if

(JZ) [m® —m-(m—1)- (m—n+1)] 'm0t < Nt
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z_:ln(l —i/m) >

m- [(1—n/m)-(1—1In(1 —n/m))—1]
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m- [(1—n/m) - (1+n/m)—1]

=-—n?/m

there will be a perfect class H with |H| = ¢ provided that ¢t > nln N - e’ /™.

25

Theorem 7 gives us an upper bound on the cardinality of perfect classes of hash
functions; it does not yet give us an upper bound on program size. The upper
bound on program size is given by the next theorem.

Theorem 8. Let N, m, n € N. For every S C [0..N — 1], |S| = n, there is a
program of length

O(n®/m +loglog N + 1)

which computes a perfect hash function h : [0..N — 1] — [0..m — 1] for S.

Proof: We will explicitly describe a program. The program implements the proof
of Theorem 7; it has essentially 4 lines:

(1) k « [In N written in binary;

(2) t+ [n-k-e” /™) written in binary;

(3) i « some number between 1 and ¢ depending on S written in binary;
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ek?2k? (4) search through all [e*] by ¢ matrices with entries in [0 .. m—1] until a (N, m,n)-
perfect matrix is found; use the i-th column of that matrix as the table of the
hash function for S;

The correctness of this program follows immediately from Theorem 7; by Theorem 7
there is a [e*] by t perfect matrix and hence we will find it in step (4). One column
of that matrix describes a perfect hash function for S, say the i-th. We set 7 to the
appropriate value in line (3).

The length of this program is O(log log N +1) for line (1), O(log n+1loglog N +
n?/m + 1) for lines (2) and (3) and O(1) for line (4). Note that the length of the
text for line (4) is independent of N, ¢t and m. This proves the claim. 1

Theorems 6 and 8 characterize the program size of perfect hash functions; upper
and lower bounds are of the same order of magnitude. Unfortunately, the program
constructed in Theorem 8 is completely useless. It runs extremely slowly and it
uses an immense amount of work space. Therefore, we have to look for constructive
upper bounds if we also want to get some insight into questions b) and c).

Our constructive upper bounds are based on a detailed investigation into the
division method for hashing. More precisely, we consider hash functions of the form
z — ((kz) mod N) mod m where k, 1 < k < N, is a multilier, N is the size of the
universe and m is the size of the hash table. The following lemma is crucial.

Lemma 1. Let N be a prime, let S C [0.. N —1], |S| =n. Forevery k,1 <k < N,
and m € N let

bf = |{z € S; ((kz) mod N) mod m = i}|
for 0 <i < m.

a) For every m there is a k such that Z?:Ol(bf)2 < n+ 2n(n —1)/m. Moreover,
such a k can be found in time O(n - N).

Teil neu b) For jedesm unde, 0 < € < 1, kann ein k mit E;’;Bl(bff <n+(2+e)n(n—1)/m
in randomisierter Zeit O(n/e) gefunden werden.

Proof: a) For k,1 < k < N, let hy(z) = ((kz) mod N) mod m be the hash function
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defined by multiplier k. Then

Next note that hi(z) = hi(y) <= [(kz) mod N — (ky) mod N |modm = 0. We
Untersch.! are asking for the number of solutions k& with 1 < k < N. Wir betrachten nun ein
festes ¢ und y und die Funktion g(k) = (kx) mod N — (ky) mod N. Wir miissen
die Anzahl der k£ mit 1 < k < N und g(k) mod m = 0 zdhlen. Beachten Sie zuerst,
dafl —N + 2 < g(k) < N — 1. Somit konnen wir die obige Summe umschreiben zu

L(N-1)/m]

> Y ks g(k) =+i-m}|.

i=1 (z,y)€S?
z£y

Wir zeigen, daB [{k; g(k) = +¢-m}| <2 ist. Seien kq1,ks € {1,...,N — 1} so, daB
g(k1) = a- g(k2), wobei a € {—1,+1}. Dann ist
(k1z) mod N — (k1y) mod N = a - ((k2z) mod N — (kay) mod N)
und daher
(k1 — ak2)(z — y) mod N = 0.

Weil  # y und N prim (d.h. Primzahl) ist, folgt daraus, da88 (k; —aks) mod N =0
und daher k; = ky oder k; = N — ky. Deshalb gilt

L(N=1/m

N-1 ,m-1 )]
(Tetr-n) s > X o
k=1 "¢ i=0 (z,y;)ées2
zAY

< 2n(n—1)(N —1)/m.

Thus there is at least one k£ such that

[ary

m—

(bF)? < n+2n(n —1)/m.

1=

Version: 18.10.99 Time: 21:00 —27-



28 Chapter III. Sets

Finally note that k£ can be found b exhaustive search in time O(n - N).

b) In part a) we have shown that S n—, (375  (6%)2 — n) < 2n(n — 1)(N — 1)/m.
Aus Y70 Y(6%)2 — n > 0 fiir alle k folgt, daB e o052 —n < 2+ e)n(n—1)/m
ist fiir mindestens den Bruchteil €/4 der k zwischen 1 und N — 1. Andernfalls wére
namlich Y/ '®5)2 —n > (2 + e)n(n — 1)/m fiir mindestens (1 — ¢/4)(N — 1)
der k und daher >N MM (05)2 — n) > (1 — €/4)(N —1)(2 + e)n(n — 1)/m >
2n(n — 1)(N —1)/m. Also ist die mittlere Anzahl der benotlgten Versuche, um ein
k mit Y71 (b5)2 —n < (2 + €)n(n — 1)/m zu finden, hochstens 4/e. Testing a
particular k for that property takes time O(n). ]

We will make use of Lemma 1 in two particular cases: m = n and m ~ n?2.

Corollary 1. Let N be a prime and let S C [0.. N —1], |S| = n. Let bf be defined
as in Lemma 1 und 0 < e < 1.

a) If n = m then a k satisfying ) .-, '(b%)2 < 3n can be found deterministically

in time O(n - N) und ein k mit ) v, Y(%)2 < (3 + €)n in randomisierter Zeit
O(n/e) gefunden werden.

b) Wenn m = n(n—1)+ 1 bzw. m = [(1 + €)n(n — 1) + 1], dann kann ein k,
so da8 ¢ — ((kx) mod N) mod m auf S injektiv ist, in deterministischer Zeit
O(n - N) bzw. randomisierter Zeit O(n/e) bestimmt werden.

Proof: a) follows immediately from Lemma 1 by substituting m = n. For part b)
we observe first that substituting m = n(n—1) +1 (m = |[(1 + e)n(n — 1) + 1|

I! respectively) into Lemma 1a) (1b) resp.) shows the existence of a k, 1 < k < N,

such that >,(0%)? < n + 2. Next note that b¥ € Ny for all s and Y, b¥ = n. Thus
b} > 2 for some i implies Y, (b¥)? > n + 2, contradiction. We conclude that bf <1
for all ¢, i.e., the hash function induced by k operates injectively on S. ]

Corollary 1 can be interpreted as follows. If m > n(n — 1) then the general division
method directly provides us with a perfect hash function. Of course, nobody wants
to work with a load factor as small as 1/n. However, part a) of Corollary 1 suggests
a method of improving upon the load factor by using a two-step hashing function.
As a first step we partition set S into n subsets S;, 0 < i < n, such that }_ |S;|? < 3n
as described in part a) of corollary 1. As a second step we apply part b) to every
subset. The details are spelled out in

Theorem 9. Let N be a prime andlet SC[0..N —1], |[S|=n. und0<e< 1.

a) A perfect hash function h : S — [0..m — 1], m = 3n, with O(1) evaluation
time and O(nlog N) program size can be constructed in time O(n - N).

b) Eine perfekte Hashfunktion h : S+ [0..m — 1], m = (3 + €)n], mit Auswer-
tungszeit O(1) und Programmgréfie O(nlog N) kann in randomisierter Zeit
O(n/€) konstruiert werden.
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Proof: a) By Corollary 1a) there is a k, 1 < k < N, such that Z?z_ol 18| < 3n
where S; = {z € S; ((kz) mod N) mod n = i}. Moreover, k can be found in time
O(n-N). Let b; = |S;| and let ¢; = b;(b; — 1) + 1. For every i, 0 < i < n, there is a
ki, 1 < k; < N, such that z — ((k;z) mod N) mod ¢; operates injectively on S; by
Corollary 1b). Moreover, k; can be determined in time O(b; - N).

The following program computes an injective function from S into [0..m — 1]
where m = Z;:ol i =n+(>;b7—>,b) <n+3n—n=3n Dabeiist z die
Eingabe:

(1) i+ ((kxz) mod N) mod n;
(2) j < ((ksz) mod N) mod c¢;;
(3) output Z;;é e+

Dieses Programm benutzt die Konstanten k, N,n und zwei Felder von Konstan-
ten, je eines fiir die k; und die Partialsummen der ¢;. Die ¢; selbst konnen dann
aus dem Feld der Partialsummen bestimmt werden. Jede der Konstanten kann
durch O(log N) Bits spezifiziert werden, und daher ist die GroBe des Programms
O(nlog N). Die Laufzeit ist O(1). Finally, the time to find the program is bounded
by O(n-N+3>.b;-N)=0(n-N).

b) The proof of part b) is very similar to the proof of part a). Sei § definiert durch
(3+¢) = (1+6)(3+ ). Ein k mit 7 |S;|> < (3 + &)n kann in randomisierter
Zeit O(n/d) gefunden werden. Auch konnen die k;, so da8 z — ((k;z) mod N) mod
L((146)b; (b;—1)+1)] auf S; injektiv ist, in randomisierter Zeit ), O(b; /6) = O(n/é)
gefunden werden. Wenn man diese Funktionen wie oben beschrieben kombiniert,
erhilt man eine injektive Funktion von S nach [0..m — 1], wobei m = Z?:_ol [(1+

Obi(bi — 1) +1)] < (1+8) T 82 < (1+8)(3+ d)n. '

Theorem 9 provides us with very efficient perfect hash functions. After all, evalu-
ating tha hash functions constructed in the proof of theorem 9 requires only two
multiplications and four divisions. However, the programs are hard to find, at least
deterministically, and they are very large. Let us take a closer look. The method
devised in part a) of Theorem 9 requires hash table of size 3n and storage space for
2n integers in the range [1.. N]. Thus a total of 5n storage locations is needed. The
situation is even worse for the hash functions constructed by probabilistic methods.
They require a total of 6n storage locations, 4n for the hash table and 2n for the
program. We will improve upon both hash functions to O(nlogn + loglog N) bits.

The key to the improvement is another variant of the division method which
we will use to reduce the size of the universe. More precisely, we will show that
for every S C [0..N — 1], |S| = n, there is p = O(n?In N) such that z — x mod p
operates injectively on S. We can then apply Corollary 1 and Theorem 9 to set
S" = {x mod p; z € S}. Since the members of S’ have size O(n?1n N) this will
reduce the space requirement considerably.
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Theorem 10. Let S ={z1 <z2<---<z,} C[0..N —1].
a) There is a prime p = O(n?In N) such that z; mod p # z; mod p for i # j.

b) A number p satisfying p = O(n*InN) and 2; mod p # z; mod p for i # j can
be found in time O(nlogn - (logn + loglog N)) by a probabilistic algorithm,
and in time O(n3logn - log N) deterministically.

Proof: a) let d;; = z; —x; for 1 < i < j < n. Then x; modp # z; modp <=
d;; # 0mod p. Let D = Hi<j di; < N(*) We need to find a bound on the size of
the smallest prime which does not divide D.

Claim 1. Letm € N. Thenm has at most O(Inm/ Inlnm) different prime divisors.

Proof: Let m have g different prime divisors and let p1,p2,ps,...,pq be the list of
primes in increasing order. Then

q

M > p1-pyccPg > gl = esimt

In:
> i mede _ cain(a/e)+1 > (g/e)?.
Hence there is a constant ¢ such that ¢ < ¢- (Inm)/(Inlnm). 1

We infer from claim 1 that D has at most ¢lnD/Inln D different prime divisors.
Hence at least half of the 2¢Iln D/Inln D smallest primes will not divide D and
hence not divide any d;;. The prime number theorem gives us a bound on the size
of this prime.

Fact 1. There is d € R such that p, < d-qlngq for all ¢ > 1; p, is the g-th smallest
i.E.mehr prime.

Proof: Cf. I. Niven/H.S. Zuckermann: “Introduction to the Theory of Numbers”,
Volume 2, Theorem 8.2. ]

We infer from this fact that at least half of the primes

2cln D 2¢cln D _
mnD “InlnD

p<d O(lnD) = O(n*InN)

satisfy part a).

b) We proved in part a) that there is a constant a such that at least half of the
i.E.mehr primes p < a-n?InN will not divide D and hence satisfy a). Furthermore, the
prime number theorem states that there are at least b- (a-n?InN)/In(a - n?1In N)
primes less than a - n2In N for some constant b > 0. These observations suggest
a probabilistic algorithm for finding a number p (not necessarily prime) satisfying
p <an?InN and z; mod p # z; mod p for i # j. We select a numberp < a-n?’InN
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at random and check whether z; mod p # x; mod p for i # j in time O(nlogn) by
sorting numbers z; mod p, 1 < i < n. If p does not work then we try again, ....

It remains to derive a bound on the expected number of unsuccessful at-
tempts. Note first that a random number p < a-n?1In N is a prime with probability
(1/In(a - n?In N)) and that a random prime satisfies a) with probability > 1/2.
Hence a random number p < a - n?In N leads to a mapping z — 2 mod p which is
injective on S with probability Q(1/1In(a-n?In N)); therefore the expected number
of unsuccessful attempts is O(In(a - n?In N)). Since each attempt costs O(nlogn)
time units the total expected cost is O(nlogn - (log n + loglog N)).

Deterministically, we search through numbers p = O(n?InN) exhaustively.
This will cost at most O(n®logn - log N) time units. 1

We end this section by combining Theorems 9 and 10.

Theorem 11. Let S C [0..N — 1] with |S| = n. There is a program P of size
O(nlogn+loglog N) bits and evaluation time O(1) which computes a perfect hash
function from S into [0..m — 1], m = 3n. P can be found in random time O(n? -
(log n + loglog N)).

Proof: Let S C[0..N —1], |S| = n. Nach dem Beweis von Satz 10a) haben min-
destens die Hilfte der Primzahlen kleiner a-n?log N fiir eine geeignete Konstante a
die Eigenschaft, da} die Funktion h; : £ — x mod p auf S injektiv ist. Angenom-
men, wir haben nun eine Primzahl p = O(n?log N), so daB h; : £ — x mod p auf S
injektiv ist. Sei weiter S1 = hy(S) C [0..p — 1]. Nach Korollar 1b) mit e = 1 gibt
esein k, 1 <k < p, so dal die Funktion hs :  — ((kz) mod p) mod (2n(n—1)+1)
auf Sp injektiv ist. & kann in randomisierter Zeit O(n) gefunden werden. Sei
Sz = ha(S1) C [0..2n(n —1)] C [0..q9 — 1], wobei ¢ die kleinste Primzahl
> 2n(n — 1) + 1 ist. Es gilt ¢ = O(n?), und daher kann ¢ nach Aufgabe 47
in Zeit O(n?logn) bestimmt werden. Nach Satz 9a) gibt es eine injektive Funk-
tion hg : So — [0..m — 1], m = 3n, mit Auswertungszeit O(1) und Program-
mgrofie O(nlogg) = O(nlogn). Weiterhin kann hs in deterministischer Zeit
O(n - q) = O(n?®) gefunden werden.

h = hz o hy o hy is the desired hash function. A program for h can be found
in time O(n®) by a probabilistic algorithm. The program has size O(log p + logp +
nlogn) = O(nlogn + loglog N) bits. Moreover, it can be evaluated in time O(1).

Was haben wir jetzt erreicht? Wenn p = O(n?log N) eine Primzahl ist, so daf
x — ¢ mod p auf S injektiv ist, dann konnen wir die gewunschte Hashfunktion in
randomisierter Zeit T mit 7 = O(n®) finden. Wenn wir also bis zu T Zeiteinheiten
aufwenden, um hs und h3 zu finden, dann haben wir mit Wahrscheinlichkeit min-
destens 1/2 Erfolg. Also ist die Wahrscheinlichkeit mindestens 1/4, daf§ fiir eine
zufillige Primzahl p < a-n?log N die Funktion h; : z — x mod p auf S injektiv ist
und dafl wir auch hs und hs in Zeit T finden. Also finden wir A = h3z o hg 0 hy in
randomisierter Zeit O(n3 - (logn + loglog N)) nach dem Argument von Satz 10b). I
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Theorem 11 essentially settles all questions about perfect hashing. The pro-
gram constructed in the proof of Theorem 11 has almost minimal size, namely
O(nlogn + loglog N) bits instead of O(n + log log N) bits, they achieve a load fac-
tor 8 = n/mexceedingl/3, they are not too hard to find, and they are quite efficient.
More precisely, evaluation requires one division of numbers of length O(log N), a
multiplication and two divisions on numbers of length O(logn +loglog N), and two
multiplications and four divisions on numbers of length O(logn).

3.2.4. Universal Hashing

In diesem Abschnitt lernen wir einfache Klassen von guten Hashfunktionen kennen.
Universal hashing is a method for dealing with the basic problem of hashing: its
linear worst case behavior. We saw in Section 3.2.1 that hashing provides us with
O(1) expected access time and O(n) worst case access time. The average was taken
over all sets S C [0..N — 1], |S| = n. In other words, a fixed hash function
h:[0..N —1] — [0..m — 1] works well for a random subset S C U, but there
are also some very “bad” inputs for h. Thus it is always very risky to use hashing
when the actual distribution of the inputs is not known to the designer of the hash
function. It is always conceivable, that the actual distribution favours worst case
inputs and hence will lead to large average access times.

Universal hashing is a way out of this dilemma. We work with an entire class
H of hash functions instead of a single hash function; the specific hash function in
use is selected randomly from the collection H. If H is chosen properly, i.e., for
every subset S C U almost all h € H distribute S fairly evenly over the hash table,
then this will lead to small expected access time for every set S. Note that the
average is now taken over the functions in class H, i.e., the randomization is done
by the algorithm itself not by the user: the algorithm controls the dices.

Let us reconsider the symbol table example. At the beginning of each compiler
run the compiler chooses a random element h € H. It will use hash function h for
the next compilation. In this way the time needed to compile any fixed program
will vary over different runs of the compiler, but the time spent on manipulating
the symbol table will have small mean.

What properties should the collection H of hash functions have? For any pair
z,y € U, ¢ # y, arandom element h € H should lead to collision, i.e., h(z) = h(y),
with fairly small probability.

Definition: Let ¢ € R, N,m € N. A collection H C {h; h:[0..N —1] — [0..m —
1]} is c-universal, if forall z,y € [0..N — 1], z # y

|[{h; h € H und h(z) = h(y)}| <c-|H|/m. 1

A collection H is c-universal if only a fraction ¢/m of the functions in H leads to
collision on any pair z,y € [0..N — 1] . It is not obvious that universal classes
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of hash functions exist. We exhibit an almost 1-universal class in Theorem 12; in
Exercise 6 it is shown that there are no c-universal classes for ¢ < 1 — n/mj Thus
Theorem 12 is almost optimal in that respect.

Theorem 12. Let m, N € N and let N be a prime. Then
Hy = {hap; hap(z) =[(ax +b) mod N mod m, a,be [0.. N —1]}

is a c-universal class, where ¢ = ([N/m]/(N/m)) 2,

Proof : Note first that |H;| = N2. Let 2,y € [0.. N — 1], z # y. We have to show
that

[{(a,8); hap(@) = hap(y)}| < c- N?/m.

If hgp(z) = hep(y) then there are g € [0..m — 1] and r,s € [0.. [N/m] — 1] such
that
ar+b=q+r-mmodN

ay+b=qg+s-mmodN.

Since Zy is a field (IV is a prime) there is exactly one solution in a,b of these
equations for each choice of ¢, r and s. Hence

[{(a,0); hap(2) = hap(y)}| =m-[N/m]?
and therefore class H; is c-universal. |

Universal class h; has size N2, i.e., O(log N) bits are required to specify a function
of the class. A random element of H; may be selected by choosing two random
numbers a, b in the range [0.. N — 1]. In Theorem 15 we exhibit a smaller universal
class; O(logm + loglog N) bits suffice to specify a member of that class. We will
also show that this is best possible.

We analyze the expected behavior of universal hashing on the following as-
sumptions:

1) The hash function h is chosen at random from some c-universal class H, i.e.,
each h € H is chosen with probability 1/|H|.

2) Hashing with chaining is used.

Theorem 13. Let c € R and let H be a c-universal class of hash functions.
a) Let SC[0..N—1],|S|=nand let z € [0.. N — 1|. Then

’g;{(l+5h(x,5))/|H| < {}iz:?ﬁl)/m ﬁig
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b) The expected cost of an Access, Insert or Delete operation is O(1+c-3), where
B = n/m is the load factor.

c) The expected cost of a sequence of n Access, Insert and Delete operations
starting with an empty table is O((1 + ¢ - 3/2) - n) where 8 = n/m is the
(maximal) load factor.

Proof: a)
> (140, 9) = [H[+ > dul(z,y) (definition of &5)
heH heH yes
= |H|+ Z Z on(z,y) (reordering)
yeES heH
<|H|+ Z c-|H|/m (since ép(z,z) = 0 and
yeS—{=z}

H is c-universal)

|H|- (1 +c-n/m) if v ¢ S;
S{|H‘'(1+c-(n—1)/m) ifresS.

b) obvious from part a).

c) obvious from part b) and the observation that the expected cost of the i-th
operation in the sequence is O(1 + ¢ -i/m). 1

Theorem 13c) reads the same as Theorem 2 (except from the factor ¢). However,
there is a major difference between the two theorems. They are derived on com-
pletely different assumptions. In Theorem 2 each subset S C U, |S| = n, was
assumed to be equally likely, in Theorem 13c) each element h € H is assumed to be
equally likely. So universal hashing gives exactly the same performance as standard
hashing, but the dices are now controlled by the algorithm not by the user.

For every fixed set S C U, a random element h € H will distribute S fairly
evenly over the hash table, i.e., almost all functions h € H work well for S and only
very few will give us bad performance on any fixed set S. Theorem 14 gives us an
upper bound on the probability of bad performance.

Theorem 14. Let ¢ € R and let H be a c-universal class. Let S C [0..N — 1],
|S| =n and x € [0..N — 1]. Let u be the expected value of ép(x,S), i.e., p =
(X hew On(x,S))/|H|. Then the probability that 6x(z,S) >t - p is less than 1/t.

Proof: Let H' ={h € H; dp(z,S) >t pu}. Then

p= (3 nle,9) /18]

heH

> (Y on(z,9)/1H] (since 0y (z, S) > 0)

heH'
>t-p-|H'|/|H| (since dp(z,S) >t pfor h e H')
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and hence |H'| < |H|/t. 1

We infer from Theorem 14 that the probability that the performance is more than
t times the expected performance is at most 1/¢. Much better bounds can often be
obtained for specific universal classes; cf Exercise 7 where a 1-universal class with
an O(1/t?) bound is described. We end this section with an estimate of the size of
universal classes of hash functions.

Theorem 15. Let N,m € N and N > m.

a) Le¢t H C {h; h : [0..N — 1] — [0..m — 1]} be a c-universal class. Then
|H| > m([log,, N| —1]) /c and hence

log |[H| = Q(logm + loglog N — log ¢).

b) There is a 8-universal class Hy C {h; h:[0..N — 1] — [0..m — 1]} of hash
functions with

log |H2| = O(log m + loglog N).

Proof: a) Let H = {hy,...,ht}. As in the proof of Theorem 6b) we construct a
sequence Uy = [0.. N — 1], Uy, U, ..., such that hy,...,h; are constant functions
on U; and |U;| > |U;—1|/m > N/mt. Let to = [log,, N] — 1. Then |U,| > 1. Let
z,y € Uy, x #y. Then

to < |{h € H; h(z) = h(y)}| <c-|H|/m

since H is c-universal. Thus |[H| > m - ([log,, N| —1)/c.

b) Let N,m € N and let ¢ be minimal such that ¢t lnp; > mIn N. Here p; denotes the
t-th prime. Angenommen, ps; < m. Dann wiirde folgen, dafl tlnp; < po; Inps; <

mlnm < mlnN, ein Widerspruch zur Definition von ¢. Daraus folgt, dafl m/pa: <
1. Weiter ist t = O(m1In N). Let

H2 = {gc,d(hl(x))’ t <l S 2t; 0 S C,d < p2t}a
where
hi(z) = £ mod p;

and
9e,a(2) = [(c- z + d) mod pst| mod m.

Then |Hy| = t - p%, and hence log |Hs| = O(logt) = O(logm + loglog N), since
logpa: = O(logt) by the prime number theorem. It remains to be shown that Hs
is 8-universal. Let z,y € [0.. N — 1], z # y, arbitrary. We have to show that

{(e,d, 1); ge,a(hu(x)) = ge,a(ha(y))}| < 8+ |Ha|/m.
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If ge,a(hi(z)) = ge,a(hi(y)) then by definition of h; and g q

[c- (z mod p;) + d] mod pa; = [c- (y mod p;) + d] mod py; (mod m).
Thus there must exist ¢ € [0..m — 1] and 7, s € [0.. [pa;/m] — 1] such that

[c- (z mod p;) +d] mod pay =gq+7-m
[c-(ymodpl)-i-d] mod py; = g+ s - m.

We have to count the number of triples (¢, d, ) which solve this pair of equations.
we count the solutions in two groups: The first group contains all solutions (¢, d, )
with £ mod p; # y mod p; and the second group contains all solutions (¢, d,!) with
x mod p; = y mod p;.

Group 1: Of course, there are at most ¢ different I’s such that z mod p; # y mod p;.
For each such ! and any choice of ¢, and s there is exactly one pair (¢,d) which
solves our equations. This follows from the fact Z,,, is a field. Hence the number
of solutions in group one is bounded by

tom-([par/m])? <t-m- (L+pa/m)* = (t-p3,/m) - (1+m/px)*
= (|Hz|/m) - (1 +m/p2)*.

Group 2: Let L = {l; t <1 < 2t and  mod p; = y mod p;} and let P = [[,c; pi.

P < N Then P > pl*!. Also P divides z — y and hence P < N. Thus |L| < (InN)/Inp, <
t/m by definition of ¢.
Consider any fixed I € L and any choice of ¢,r and s. If » # s then there s no
pair (c,d) solving our pair of equations. If r = s then there are exactly py; pairs
(¢, d) solving our pair of equations. Hence the number of solutions in group two is
at most

IL|-m - [(p2e/m)] - p2e < (t- p3,/m) - (1 +m/pas)
= (|Hz|/m) - (1 + m/pas).

Altogether, we have shown that the number of solutions (c,d,l) is bounded by
2(1 + €)2|Hy|/m where € = m/py; < 1. (Note that py; < m would imply ¢Inp; <
i.E.mehr p2: Inpy; < mlnm < mIn N, a contradiction to the definition of t). Hence Hj is
8-universal. ]

3.2.5. Extendible Hashing

Our treatment of hashing in Sections 3.2.1 to 3.2.4 based on the assumption that
main memory is large enough to completely contain the hash table. In this section
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we discuss the application of hashing to secondary storage. We assume that sec-
ondary storage is divided into buckets (pages) of size b; i.e., each bucket can hold
up b elements of universe U.

Again, we start with a hash function h : U ~ {0, 1}* where k is some integer.
h is assumed to be injective. For d, 0 < d < k, we use hgy to denote the function
which maps z € U onto the first d digits of h(z), i.e., hg : U + {0,1}¢ and hg(z)
is a prefix of h(z) for all z € U. Let S C U, |S| = n, be a subset of U. The depth
d(S) of S wit respect to bucket size b and hash function A is defined as

d(S) = min{d; |{z € S; h4(z) =a}| <bfor all a € {0,1}*}.

In other words, if we use a TRIE to partition h(S) into subsets of size at most b
then this TRIE has depth d(.5).

Extendible hashing uses a table T[0..2%5) — 1], called the directory, and
some number of buckets to store set S. More precisely, the entries of table T are
pointers to buckets. If z is an element of S then the bucket containing x can be
found as follows.

(1) Compute hgs)(z) and interpret it as the binary representation of an integer,
say i, in the range 0..245) — 1.

(2) Use this integer index directory T'; pointer T'[¢] points to the bucket containing
.

Example: Let h(S) = {0000, 0001, 0100, 1100} and let b = 2. Then d(S) = 2.
Wir erhalten die in Abbildung 15 veranschaulichte Situation. ]

figure does not exist yet

Figure 15. Example for extendible hashing

As one can see from Figure 15, we allow entries of T' to point to the same bucket.
However, we require that sharing of bucket must conform to the buddy principle.
Das bedeutet folgendes: Jeder Korb hat eine lokale Tiefe r. Auf einen Korb der
lokalen Tiefe r zeigen genau 24(5)—" Katalogeintrige. Ferner gibt es ein a € {0,1}",
so daB genau die Katalogeintrige T[aa;] auf B zeigen fiir a; € {0,1}%(5)=". In
Abbildung 15 steht die lokale Tiefe der Korbe in der linken oberen Ecke.

The insertion algorithm for extendible hashing is quite simple. Suppose that
we want to insert z € U. We first compute bucket B which should contain z. If B
is not full, i.e., B contains less than b keys, then we insert z into B and are done. If
B is full, say B contains 1, ..., s, then additional work is required. Let r be the
local depth of page B and let B’ be a new page. If r = d(S) then we double the size
of directory T, i.e., we increase d(S) by 1, create a directory T" of size 24(5)+1 and
initialize 7". Note that initializing 7" essentially means to make two copies of T’
and to merge them. At this point we have r < d(S) in either case, i.e., if r < d(S)
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initially or if » = d(S) and directory size was doubled. We complete the insertion
by setting the local depth of B and B’ to r + 1 and by inserting z1, ..., 2,z into
B or B’ whatever is appropriate. Note that this might cause B or B’ to overflow
(in some rare case). In this case we go through the procedure once more.

Example: (continued). Suppose that we want to insert  with h(z) = 0010. It
will cause the first bucket to overflow. We obtain Figure 16.

figure does not exist yet

Figure 16. Nach Einfiigen von 0010 in die Beispielmenge

The deletion algorithm is also quite simple. Suppose that we want to delete
x from S. We first determine bucket B containing  and delete ¢ from B. Let
B’ be the buddy of B, i.e., if r is the local depth of B and a € {0,1}"~! and
z € {0,1} are such that all directories T[aza;], a; € {0,1}4(5)="_ point to B then
B' is the buddy of B if all entries T'[aZa;] and Z = 1 — z, point to B’. Note that B’
does not necessarily exist. Deshalb konnen auch Zeiger auf leere Korbe entstehen.
fragefehltIf B’ does exist and B and B’ contain together at most b keys then we
merge B and B’ to a single bucket of local depth r — 1. In addition, if »r = d(.S) and
B and B’ were the only buckets if depth d(S) then we half the size of the directory.
This completes the description of the deletion algorithm.

What can we say about the behavior of extendible hashing? What are the
relevant quantities? We have already seen that an Access operation requires only
two accesses to secondary memory. This is also true of an Insert, except for the
case that a bucket overflows. In this case we have to obtain a new bucket, a third
access and to distribute the elements of the bucket to split over the new buckets.
In rare cases we will also have to double the directory. These remarks show that
the time complexity of extendible hashing is very good.

The space complexity requires further investigation. The two main questions
are: What is the size of the directory? How many buckets are used? First of all, as
for all hashing schemes worst case behavior can be very, very bad. So let us discuss
expected behavior. The analysis is based on the following assumption. We have
k = oo, i.e., hash function A maps U into bit strings of infinite length. Furthermore,
h(z) is uniformly distributed in interval [0, 1]. Note that h(z) an be interpreted as
the binary representation of a real number. A discussion of expected behavior is
particularly relevant in view of our treatment of universal hashing. Note that the
behavior of extendible hashing heavily depends on the hash function in use and
that universal hashing teaches us how to choose good hash functions. Unfortu-
nately, a complete analysis of the expected behavior of extendible hashing is quite
involved and far beyond the scope of the book. fragefehlt i.EEine vollstandige Anal-
yse von erweiterbarem Hashing kann nachgelesen werden in Flajolet/Steyaert (82).
Eine approximative und einfachere Analyse von erweiterbarem Hashing steht in
A. Yao (80). Es gilt
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Theorem 16.

a) The expected number of buckets required to store a set of n elements is ap-
proximately n/(bIn2).

b) The expected size of the directory for a set of n elements is approximately
(e/bIn2)n!+1/b, 1

We finish this section with a discussion of Theorem 16. Part a) states that the
expected number of buckets is n/(bln2) ist; in other words the expected number
of elements per bucket is b1ln2 =~ 0.69b. Expected storage utilization is 69%. This
result is not surprising. After all, buckets can contain between 0 and b keys. Once
a bucket overflows it is split into two buckets. The size of the two parts is a random
variable; however, it is very likely that each of the two buckets receives about 50%
of the elements. We should thus expect that the expected number of elements per
bucket is somewhere between 0 and b with a small inclination towards b. Eine sehr
ahnliche Situation wird in Abschnitt II1.5.3.4 untersucht. fragefehlt i.E.

Part b) is more surprising. Expected directory size is non-linear in the number
of elements stored. The table aus Abbildung 17 lists expected directory size for
various choices of b and n.

b | n = 10° | n = 108 | n = 108 | n = 1010
2 6.2 x 107 1.96 x 108 1.96 x 10T 1.96 x 10™
10 1.2 x 10° 1.5 x 108 2.4 x 108 3.9 x 1010
50 9.8 x 108 1.0 x 108 1.1 x 108 1.2 x 101°
100 4.4 x 103 4.5 x 10* 4.7 x 108 4.9 x 108

Figure 17. Mittlere Kataloggroflen bei erweiterbarem Hashing

We can see from Figure 17 that the non-linear growth is clearly perceptible
for small b, say b ~ 10, and that directory size exceeds the size of the file even
for moderate n, say n = 108 bei b = 50. fragefehlt i.E.If b is larger, say b ~ 100,
then the non-linearity is hardly noticeable for practical values of n, say n < 101°.
Moreover, the size of the directory will be only about 5% of the size fo the file.

Why does directory size grow non-linearly in the size of the file? In the case
b = 1 this is not too hard to see and follows from the birthday paradox. If bis 1
then the directory size doubles whenever two elements of S hash to the same entry
of the directory (have the same birthday). If directory size is m (the year has m
days) and the size of S is n then the probability p, ., that two elements of S hash
the same entry of the directory is

Pam=m-(m—1)---(m—n+1)/m"

n—1 1
. In(1—i
= J[ (1 - i/m) = e2uizo (=)
=0
_ n—1 / 2
~e N
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Thus pn,m < 1/e if n exceeds v/m. In other words, a directory of size m suffices for
a set of n = y/m elements with probability less than 1/e. So directory size must
grow non-linearly in file size and should in fact be quadratic in file size.

3.3. Searching Ordered Sets

We will now turn to comparison based methods for searching. We assume that U is
linearly ordered and denote the linear ordering by “<”. The assumption of U being
linearly ordered is no real restriction; there is always an ordering on the internal
representations of the elements of U. The basis for all comparison-based methods is
the following algorithm for searching ordered arrays. Let S = {z1 < 32 < --- < z,,}
be stored in array S[1..n], i.e., S[i] = x;, and let a € U. In order to decide a € S,
we compare a with some table element and then proceed with either the lower or the
upper part of the table. Programm 2 zeigt diesen Algorithmus in unserer hoheren
Programmiersprache.

low < 1; high < n;
nezt < an integer in [low.. high];
while a # S[nezt] and high > low
do if a < S[next]
then high < next—1
else low < next+ 1 fi;
next < an integer in [low.. high]
od;
if a = S[next] then “successful” else “unsuccessful” fi.

NN N N N N N N N
© 00 ~J O O i W N =
N e N e S e N N N

Program 2

Various algorithms can be obtained from the scheme of Program 2 by replacing
lines (2) and (7) by specific strategies for choosing nezt. Linear search is obtained
by

next < low,
binary search by
[hz’gh + low-‘
nert < | ————
2
and interpolation search by
a — S[low — 1]

next  (low—1) + ’V - (high — low + 1)-‘ .

S[high+ 1] — S[low — 1]

Hierbei nehmen wir an, daf die Positionen S[0] und S[n + 1] mit kiinstlichen Ele-
menten gefiillt sind. We discuss these strategies in greater detail below.
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The correctness of Program 2 is independent of the particular choice made in
line (2) and (7). This can be seen from the fact that the following predicate P is
an invariant of the body of the while-loop:

(a € S=ac{S[low],...,S[high]})  and
(low < high = low < next < high).

P is certainly true before execution of the while-loop. If the loop body is entered
then a # S[nezt] and hence either a < S[nezt] or a > S[nezt]. If a < S[nezt| then
certainly a ¢ {S[next|,...,S[high]} and hence a € S implies a € {S[low], ..., S[next—
1]}. The case a > S[nezt] is treated similarly. Also a number in [low.. high] is
assigned to nezt in line (7) provided that low < high.

Thus when the while-loop terminates we have P and ((a = S[nezt]) or (high <
low)). If a = S[nezt] then the search is successful. Suppose now that a # S[nezt|.
Since P holds we know that a € S implies a € {S[low],...,S[high]}. If high < low
then certainly a ¢ S. If high = low then next = high by P and hence a ¢ S. In
either case the search is unsuccessful.

Program 2 terminates because high — low is decreased by at least one at each
execution of the loop body.

3.3.1. Binary Search and Search Trees

Binary search is obtained by replacing lines (2) and (7) by
next < "7hzgh;— low" .

It is very helpful to illustrate the behavior of the algorithm by a binary tree. We
do so for n = 6. In the tree shown in Figure 18 node S[4] represents a comparison
with S[4].

figure does not exist yet

Figure 18. Binarer Suchbaum fiir 6 Elemente

If a < S[4] then we go left, if a > S[4] then we go right, if a = S[4] then we are
done. We start the search by comparing a and S[4]. If a > S[4] then a can only
be equal to S[5] or S[6]. Next we compare a and S[6],.... We can also see from
Figure 18 that an unsuccessful search gives us information about the rank of a in
S d.h. die Anzahl der Elemente von S kleiner als a.

Since the value of high— low+1 is halved at each iteration of the loop, the loop
body is executed at most (logn) times. Thus an operation Access(a,S) takes time
O(log|S|). Operations Ord(k, S) and Sequ(.S) are trivial in this structure, however,
Insert and Delete cannot be executed efficiently. An Insert would require that we
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move part of the array, a costly process. An elegant way out is to represent the
tree above explicitly by pointers and not implicitly by an array. Then operations
Insert and Delete can also be executed fast as we will see shortly. This leads to the
following definition.

Definition: A binary search tree for set S = {z; < 23 < --- < z,,} is a binary
tree with n nodes {vi,...,v,}. The nodes are labelled with the elements of S,
i.e., there is an injective mapping CONTENT : {vy,...,v,} + S. The labelling
preserves the order, i.e., if v; (v;) is a node in the left (right) subtree of the tree
with root vy then CONTENT[v;] < CONTENT[v] < CONTENT [v;]. 1

An equivalent definition is as follows: a traversal of a search tree for S in symmetric
order reproduce the order on S. We will mostly identify nodes with their labellings,
i.e., instead of speaking of node v with label x we speak of node z and write &) or
simply . Node z corresponds to the test aus Programm 3.

ifa<czx
then go to the left son
elseifa=12z
then terminate search

else go to the right son
fi
fi.

Program 3

The n + 1 leaves represent unsuccessful access operations. It is not necessary
to store leaves explicitly. Each leaf represents one of the n + 1 open intervals of
U generated by the elements of S. We draw the leaf corresponding to interval
x; < a < xit+1 as (@i, ;1) durch ein rechteckiges Kastchen einrahmen (cf. Fig. 19).
In the text we simply speak about (z;,z;+1). Leaf ( ,z1) represents all a € U with
a < x1. Sometimes we will write (zg, 1) instead of ( ,z1). A similar remark applies
to leaf (z,, ).

figure does not exist yet
Figure 19. Binarer Suchbaum mit Blattern

So let T" be a binary search tree for set S. Then the Program 4 realizes operation
Access(a, S):

If program 4 terminates in node v then @ = CONTENT[v]. Otherwise it
terminates in a leaf, say (z;,2;41). Then z; < a < z;41. Operation Insert(a, S) is
now very easy to implement. We only have to replace leaf (x;, x;11) by the tree aus
Abbildung 20.

Deletion is slightly more difficult. A search for a yields node v with content a.
We have to distinguish two cases.
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v < root of T
while v is a node and a # CONTENT[v]
do if a < CONTENT[v]
then v <+ LSOHN|[v]
else v < RSOHN|v]
fi
od.

Program 4

figure does not exist yet

Figure 20. Neuer Unterbaum bei Einfiige(a, S)

Case 1: At least one son of v is a leaf, say the left.
Then we replace v by its right son and delete v and its left son from the tree.

Case 2: No son of v is a leaf.

Let w be the rightmost node in the left subtree of v. Node w can be found by
following the left pointer out of v and then always the right pointer until a leaf
is hit. We replace CONTENT[v] by CONTENT|[w] and delete w as described in
Case 1. Note that w’s right son is a leaf.

Figure 21 illustrates both cases. The node with content 4 is deleted, leaves are not
drawn. da sie auch nicht explizit abgespeichert werden.

figure does not exist yet

Figure 21. Loschen von 4 in verschiedenen binaren Suchbaumen

Operations Access, Insert and Delete essentially consist of a single pass down
the tree followed by some local updating. Updating takes time O(1) and hence the
total cost is O(h(T)), where h(T) is the height of tree T. Operation Sequ(S) is
equivalent to the traversal of tree T' in symmetric order. We have already seen (see
1.4.3 and 1.5) that tree traversal takes time O(|.S|). Finally, we show how to realize
operation Ord(k,S) in time O(h(T)) by slightly extending the data structure. In
each node we store the number of elements stored in the left subtree. These numbers
are easily updated during insertions an deletions. With the use of these numbers
Ord(k, S) takes time O(h(T)).

The considerations above show that the height of the search tree plays a crucial
role in the efficiency of the basic set operations. We will see in 3.5 that h(T) =
O(log|S|) can be achieved by the use of various balanced tree schemes. In Exercise
9b) it is shown that the average height of a random grown tree is O(logn).
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3.3.2. Interpolation Search

Interpolation search is obtained by replacing lines (2) and (7) by

a — S[low — 1]
S[high + 1] — S[low — 1]

It is assumed that positions S[0] and S[n + 1] are added and filled with artificial
elements. The worst case complexity of interpolation search is clearly O(n); consider
the case that S[0] = 0, S[n+1] =1, a = 1/(n+1) and S C (0,a). Then
next = low and interpolation search deteriorates to linear search. Average case
behavior is much better. Average access time is O(loglogn) under the assumption
that keys z1,...,x, are drawn independently from a uniform distribution over the
open interval (zg, Zp41)-

An exact analysis of interpolation search is beyond the scope of this book.
However, we discuss a variant of interpolation search, which also has O(loglogn)
expected behavior: quadratic binary search.

Binary search has access time O(logn) because it consists of a single scanning
of a path in a complete binary tree of depth logn. If we could do binary search
on the paths of the tree then we would obtain O(loglogn) access time. So let us
consider the question whether there is a fast way (at least at the average) to find
the node on the path of search which is halfway down the tree, i.e., the node on the
path of search which has depth } logn.

There are 2'/2 18" — | /p of these nodes and they are \/n apart in the array
representation of the tree. Let us make an initial guess by interpolating and then
search through these nodes by linear search. Note that each step of linear search
skips 4/n elements of S and hence as we will see shortly only O(1) steps are required
on the average. Thus an expected cost of O(1) has reduced size of the set from n
to 4/n (or in other words determined the first half of the path of search) and hence
total expected search time is O(loglogn).

The precise algorithm for Access(a, S) is as follows: Let low = 1, high = n and
next = [p-n| be defined as above; here p = (a — x¢)/(Tn+1 — o). If a > S[next
the compare a with S[nezt + \/n], S[nezt + 24/n], ..., until an ¢ is found with
a < S[next+ (i — 1)y/n]. This will use up ¢ comparisons. If a < S[nezt] then
we proceed analogously. In any case, the subtable of size \/n thus found is then
searched by applying the same method recursively.

We must determine the expected number C of comparisons required to deter-
mine the subtable of size y/n. Let p; be the probability that 7 or more comparisons
are required for finding the subtable. Then

C=>i-(pi—pit1) =) pi

i>1 i>1

next < (low—1) + [ - (high — low + 1)-‘ .

We still have to estimate p;. Note first that p; = ps = 1 since two comparisons are
always required. So let 7 > 2. If ¢ or more comparisons are needed then

lactual rank of a — next| > (i — 2)v/n
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where the “actual rank of a” denotes the number of x;’s smaller than a. Hence
p; < prob(|actual rank of a — nezt| > (i — 2)/n).

We use Chebyshev’s inequality (cf. W. Feller, “An Introduction to Probability The-
ory, and its Applications”, John Wiley, New York 1968) to derive a bound on p;:
Sie lautet:

prob(|X —pu| >t) < 0%/t

for a random variable X with mean p and variance o2. Let random variable X

be the number of z;’s smaller than a. Recall, that we assume that z;,...,2, are
drawn independently from a uniform distribution over (zg,z,+1). Then, since the
z;’s are independent and since p = (a — zg)/(zn+1 — o) is the probability that any
one of them is less than a, the probability that exactly j out of n are less than a is
(T;)pj(l — p)"~J. Thus the expected number of keys less than a, i.e., the expected
rank of a is

p= Zijoj(?>pj(1 — )" =p-ni (?:i)pj‘l(l -p)" 7 =pn

with variance

Um die letzte Gleichung zu verifizieren, schreibt man (j — u)? = j2 — 2ju + p?
und behandelt dann die 3 Summen nach dem bei der Berechnung von u benutzten
Schema. Thus

p; < prob(|actual rank of a — p - n| > (i — 2)v/n)
p(l—p)n

= G-2)vmp?

_p(1—p)

(i —2)?
o1
= 4(i - 2)2

since p(1 — p) <1/4 for 0 < p < 1. Substituting into our expression for C yields

1 2
>3

Finally, let T'(n) be the average number of comparisons used in searching a random
table of n keys for a. Since the subtables of size \/n are again random, we have

T(n) <C+T(v/n) forn>3
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and

and thus

T(n) <2+ Cloglogn for n > 2,

as is easily shown by induction on n.

Theorem 1. The expected cost of quadratic binary search is O(loglogn). ]

The worst case access time of quadratic binary search is O(y/n). Note that the
maximal number of comparisons used is n'/? + n'/4 + n'/® ... = O(/n). This
worst case behavior can be reduced to O(logn) as follows without sacrificing the
O(loglogn) expected behavior. Instead of using linear search to determine the i
with S[nezt + (i — 2)y/n] < a < S[nezt + (¢ — 1)4/n] with ¢ comparisons we use
exponential + binary search (cf. I11.4.2) Theorem 11) for a cost of only O(logi)
comparisons. Since logi < i the expected behavior remains the same. However,
the maximal number of comparisons is now logn!/2 + logn'/% + logn'/8 4+ ... =
(1/24+1/4+1/8 + ...)logn = logn. Thus worst case behavior is O(logn) if
exponential + binary search are used.

3.4. Weighted Trees

In this section we consider operation Access applied to weighted sets S. We associate
a weight (access probability with each element of S. Large weight indicates that
the element is important and accessed frequently; it is desirable that these elements
are high in the tree and can therefore be accessed fast.

Definition: Let S = {z1 < z2 < --- < z,,} and let 3; bzw. a; be the probability
of operation Access(a, S) where a = z; (z; < a <zjt1) for 1 <i<n (0<j <n).
Dabei sind z¢ und 41 zusatzliche kiinstliche Elemente. Then 3; > 0, a;j > 0
and Y B; + > a; = 1. The (2n + 1)-tuple (ag, f1, a1, ..., B, ) is called access
(probability) distribution. 1

Let T be a search tree for set S, let b be the depth of node z; and let a;f be the
depth of leaf (z;,2;11). Consider a search for element a of the universe. If a = z;
then we compare a with bZT + 1 elements in the tree, if z; < a < x;41 then we
compare a with a;‘r elements in the tree. Hence

PT:Z,Bz(].‘I‘b;T)—f—ZOZJa‘T
=1 7=0
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is the average number of comparisons in a search. P7 is called (normalized)
weighted path length of tree 7. We take PT as the basic measure for the
efficiency of operation Access; the actual

We will suppress index T if tree T can be inferred from the context. Fig-
ure 22 shows a search tree for set S = {z1,z2, 3,24} with (ag,B1,...,8s,a4) =
(1/6,1/24,0,1/8,0,1/8,1/8,0,5/12). In this tree by = 1, by = 2, bg = 0, by = 1,
ap = a3z = aq4 = 2 and a; = a3 = 3. Weighted path length is equal to 2. There is no
search tree for set S with smaller weighted path length; the tree shown in Figure 22
is optimal with respect to the given access distribution.

figure does not exist yet

Figure 22. Optimaler Suchbaum fiir Beispiel

3.4.1. Optimum Weighted Trees, Dynamic Programming and Pattern
Matching

With every search tree for set S we associated a single real number, its weighted
path length. We can therefore consider the tree with the minimal weighted path
length. This tree will then also optimize average access time.

Definition: Let S = {z1 < z2 < --- < z,} be a set and let (g, f1,Q1,---,Bn, Q)
be an access distribution. Tree 7" is an optimum binary search tree for set S if
its weighted path length is minimal among all search trees for set .S. We use T,,; to
denote an optimum binary search tree and P,,; to denote its weighted path length.
|

Theorem 1. An optimum binary search tree for set S and distribution (ayp, 1, @1, . - -

can be constructed in time O(n?) and space O(n?).

Proof: We use dynamic programming, i.e., we will construct optimal solutions for
increasingly larger subproblems in a systematic way. In our case this means the
construction of optimum search trees for all pairs, triples, ... of adjacent nodes. A
search tree tree for set S has nodes z1,...,z, and leaves (zg,21),...,(Zn, Tnt+1)-
A subtree might have nodes z;,...,z; and leaves (z;_1,;),...,(z;,z;+1) with
1 <4,j <mn,i<j+1 Such a subtree is a search tree for set {z;,...,z;}
with respect to the universe (z;_1,2;11). The access probabilities innerhalb eines
Unterbaumes are given by the conditional probabilities

B = B [ wij und ap = ap/w;;

where
wij =1+ B+ +Pitaj, i<k<jandi—-1<h<j.

Version: 18.10.99 Time: 21:00 —-47—

aﬂnaan)l



48 Chapter I1II. Sets

(1) for i from 0 to n

(2) do wit1,; <+ a5 Pitq; < 0 od;

(3) for k from 0 ton—1

(4) do for i from 1 ton —k

(5) do j+ i+ k;

(6) Wij & i1+ P tag _

(7) let m, i <m < j, such that P; y,_1 + Ppy1,; is minimal;
in case of ties choose the largest such m;

(8) rij —my B
(9) Pij < wij + Pim—1+ Pry1,j
(10) od
(11) od.
Program 5
We use T;; to denote an optimum binary search tree for set {z;,...,z;} with access

distribution (&;_1, 3,,- - ,Bj,aj). Let P;; be the weighted path length of T;; and
let r;; be the index of the root of T};, i.e., x,,, with m = r;; is the root of Tj;.
Lemma 1.

a) P,;_1=0

b) w;;P;j = wij + min (Wi m—1Pim-1+ Wmt1,jPm+1,5) for i <j.

i<m<j

Proof: a) T; ;1 consists of a single leaf (z;_1,2;) which has depth zero. Thus
P;_,=0.

b) Let T;; be an optimum tree for set {z;,...,z;}. Then T;; has weighted path
length P;; and root x,, with m = r;;. Let T (7)) be the left (right) subtree of T;;
with weighted path length P, (P,). Since

bf""zl—l—b? for i<k<m-—1,
bfjﬂ' =0 and
bt =14b"  for m+1<k<j
and analogously for the leaf weights we have

wij Pij = wij + wim—1P + Wm1,;Pr.

T; is a search tree for set z;,...,Zm—1 and therefore P, > P; ,,_1. We must have
P, = P; y,—1 because otherwise we could replace 7} by T; ,,,—1 and obtain a tree with
smaller weighted path length. This proves b). ]

Lemma 1 suggests a way for computing all values w;;P;;. Initialization is given in
part a) ‘and the iterative step is given in part b). In the complete program below
we use P;; to denote w;; F;;.
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Program 5 is a direct implementation of the recursion formula of Lemma 1. On
termination the optimum search tree is given implicitly by the array r;;. Node z,,
with m = ry ,, is the root of the search tree. The root of the left subtree is x;, with
k=rim-1,.... It is easy to see that the search tree can be explicitly constructed
in time O(n) from array r;;.

So let us consider the complexity of the algorithm above. The program uses
three arrays ﬁij, w;; and r;; and hence has space complexity O(n?). We next turn
to time complexity. Note first that one execution of lines (5), (6), (8), (9) takes
time O(1) and one execution of line (7) takes time O(j —i+ 1) = O(k + 1) for fixed
¢ and k. Thus the total running time is

n—1ln—k

Y > Ok +1) = 0(n®).

k=0 i=1

This falls short of the O(n?) bound promised in the theorem. Before we sketch an
improvement we illustrate the algorithm on the example of the beginning of 3.4.
Arrays P;;, wi;, 1 <i<5,0<j<4andr;, 1<:<4, 1<j<4aregiven in

Figure 23.

0 5 11 25 48 45 8 14 24
o 0 3 12 31 . 03 9 19
P=—. 0 6 2| Uw=—. 0 6 16
24 0 13 24 3 13
0 10

11 3 3

. 2 3 4

3 4

4

Figure 23. ﬁij, w;;, und r;; fiir das Beispiel aus II1.4

We learn one important fact from this example: Matrix 7 is monotone in each
row and column, i.e., r; j—1 < 7;; < ri41,; for all 4,5. We postpone the proof of
this fact for a while (cf. Lemma 3 below). The monotonicity of  has an important
consequence; we may change line (7), the search for r;;, into

let m, T;j—1 S m S Ti+1,5 be such ...

without affecting the correctness of the algorithm. (Fiir £ = 0 ist die Suche nach m
i.D.mehr sowieso trivial.) However, the change does have a dramatic effect on the running
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time. It is now
n—1n—=k

(0] n—I—ZZ 1+7'z+lz+k_7'zz+k 1))

k=1 i=1

(
O(n—}—z m—k~+Tp—kt1,n — le))
(n+

O(n+ n)

= O(n® )
This proves Theorem 1. ]

We still have to justify the monotonicity of ». We will do so in a more general
context: Dynamic programming with quadrangle inequalities.

Let w(i,j) €R for 0 <7 < j <n and let ¢(7,) be defined by
c(i,i) = w(i, i) =0 and
c(i,j) = w(i, j) + .g}ciil_(c(i, k—1)+c(k,j)) fori<j.
i<k<j

Optimum binary search trees are a special case of these recursion equations: take
i.E.mehr w(i,j) = wit1,; = o + Bigy1 + -+ + B + aj; then ¢(i,j) = Piyq ;-
The algorithm given in Program 5 also allows us to compute ¢(7,j), 1 < i <
j < n, in time O(n®). However, there is a faster way of computing c(3, 5) if function
w(i, j) satisfies the quadrangle inequality

(QI) w(i, §) +w(i’,§') < w(i’, §) +w(i,j") fori<i' <j< .

Theorem 2. If w satisfies (QI) and is monotone with respect to set inclusion of
< w(i',j)? intervals, i.e., w(i,j') > w(i',j) if i <i' < j < j', then function c as defined above
can be computed in time O(n?).

Remark: Before we give a proof of Theorem 2 we apply it to optimum binary
search trees. Function w(i, j) = w;41,; is obviously monotone and satisfies (QI), in
fact with equality.

Proof: Theorem 2 is proven by establishing the following two lemmas.

Lemma 2. If w satisfies (QI) and is monotone then function ¢ defined above also
satisfies (QI), i.e., c(%,7) + c(i',5") < c(i,5") + (', ) fori <i' <j<j'

We use c¢(%,j) to denote w(i,j) + c(i,k — 1) + c(k,j) a we define K(i,j) =
max{k; cx(i,7) = ¢(i,7)} for i < j. Also K(i,i) = i. Then K(i,7) is the largest

index where the minimum is achieved in the definition of ¢(%, j). Then
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Lemma 3. If ¢ satisfies (QI) then K is monotone, i.e.,

K(i,j) <K(i,j+1) < K(i+1,j+1) fori<j.

Lemma 3 is the key for improving the running time of dynamic programming to
O(n?) as we have seen above. Lemmas 2 and 3 remains to be proven.

Proof: (Lemma 2). We use induction on the “length” I = j' — i of the quadrangle
inequality for ¢

(Qlc) c(i,j) + (@, j") < (i, j') +e(@,j) fori<i' <j<j'

This inequality is trivially true if : = i’ or j = j’. This proves (QIc) for [ < 1. For
the induction step we have to distinguish two cases: i’ = j or i’ < j.

Case 1: i<i' =j<j'.

In this case (QIc) reduces to

c(i, ) + (4, j") < (i, 5"),

an (inverse) triangle inequality. Let £k = K(¢,5'). We must distinguish two sym-
metric subcases: k < j or k > j.

Case 1.1: k<j.
We have c(¢,j") = w(i, j') + ¢(i,k — 1) + c(k, j') and therefore
c(i, 5) +¢(5,3") S w(i,§) + e(i, b — 1) + e(k, j) + (G, ")
(definition of ¢(i, 7))
w(i, j') +c(i, k — 1) +c(k, j) + c(4,7")
(monotonicity of w)
<w(i,j") +c(,k—1)+c(k,j")
(inverse triangle inequality for £ < j < j' nach I.A.)

= C(iaj,)'

Case 1.2: k> j.
This is symmetric to Case 1.1 and left to the reader.

Case 2: i<i' <j<j'.
Let y = K(¢,j) and z = K(i,j'). Again we have to distinguish two symmetric
cases: z <y and z > y. We only treat the case z < y. Note first that z <y < j by
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definition of y and 7 < z by definition of z. We have

(@', j') + (i, ) < ey(d, ') + ex(d, )
=w(@, i)+, y—1)+c(y,j') + w(i, j) +c(i,z — 1) + c(z, )
<w(i,j) +w(@,j) + iy — 1) +e(i, 2 — 1) + ¢z, 4) + c(y, ')
(by (QI) for w)
<w(i,j') +w(i,j) + (i, y — 1) + (i, 2 — 1) + ey, j) + (2, §')
(by the induction hypothesis, i.e.,
(QIc) angewandt auf z <y < j < j')
=c(i,j") + (¥, 7) (by definition of y and z).

This complete the induction step and thus proves Lemma, 2. ]

Proof: (Lemma 3). Lemma 3 is trivially true when ¢ = j, and so we only have to
consider i < j. We will only prove K (i,j) < K(i,j +1). Recall that K (i, ) is the
largest index where the minimum is assumed in the definition of ¢(7, j). It therefore
suffices to show

[err (i, 7) < er(d,5)] = [ew (6,5 +1) < er(i,j + 1)]

forall i < k < k' <j,ie., if K(i,7) prefers k' over k then so does K(i,5 + 1). In
fact, we will show the stronger inequality

er(ig) —ew(i,5) < er(i,j +1) —ew (i, g + 1)
or equivalently
ce(t, J) +ep (i, j +1) <cp(i, j) +er(i,j+1)
or equivalently by expanding all four terms using their definition
c(k,j) +c(k',j+1) < ek, ) +clk,j+1).

However, this is simply the (QIc) at £ < k¥’ < j < j + 1. Damit sind Lemma 3 und
schlieBlich Satz 2 bewiesen. i

Dynamic programming is a very versatile problem solving method. The reader
finds many applications in Exercises 10-12 and in Sections 5.2 and 6.6.1. Dynamic
programming is closely related to problem solving by backtracking. We illustrate
the connection by two examples: optimum binary search trees and simulation 2-way
deterministic pushdown automata on random access machines.
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A call OST(1,n) of the recursive procedure aus Programm 6 computes the cost
fehlt i.E. of an optimum search tree

—~
—_
~—

real function OST(,j : integer);
co OST computes the weighted path length

of an optimum search tree for z;,...,z; oc

ifi=j5+1

then OST + 0

else OST + oc;
for k from i to j
do OST < min(OST,w;; + OST(i,k — 1) + OST(k + 1, 7))
od

fi

end.

NN N N N N N N
© 00 ~J O O i W N
N N N N N e S N

Program 6

The running time of procedure OST is exponential. If T'(n) is the time required
by OST for finding the optimum cost of a tree for a set of n elements then T'(n) =
O(n)+ 2?2_01 (T(1)+T(n—i—1)) = O(n)+2 Z?:_Ol T(¢). Subtracting the equations
for T(n+1) and T'(n) yields T(n+1)—T(n) = O(1)4+2-T'(n) and hence T'(n+1) =
O(1) + 3-T'(n). This shows that T(n) grows exponentially.

Of course, the exponential running time of OST stems to the fact that sub-
problems OST(i, ) are solved repeatedly. It is therefore a good idea to introduce a
global table P[i, j] and to record the values computed by OST in this table. This
leads to Program 7.

(1) real function OST(i,j : integer);
(2’) if P[i,j] is defined
(3’) then OST « PJi,j]
(4) else ifi=j+1
(57) then OST + 0
(6”) else OST +
(7) for k from i to j
(8”) do OST < min(OST,w;; + OST(i,k — 1) + OST(k + 1,j))
(9°) od

(10°) fi;

(117) P[i,j] + OST

(12) fi

(13’) end.

Program 7
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Note that lines (4’)—(11’) are executed at most once for every pair (7, j), i+1 <
j. Hence the total time spent in lines (4’)—(11’) of OST is O(n®). Die Gesamtzahl
der Aufrufe von OST ist O(n3), weil OST nur in Zeile (8’) rekursiv aufgerufen
wird. Also note that the total number of calls of OST is O(n®) since lines (4’)—(11’)
are executed at most once for every pair (z,7). Thus the total time spent in lines
(1)—(3%) and (12’)-(13’) of OST is also O(n?).

We can see from this example that tabulating function values in exhaustive
search algorithms can have a dramatic effect on the running time. In fact, the
revised Program 7 is essentially our dynamic programming algorithm. The only
additional idea required for the dynamic programming algorithm is the observation
that recursion can be replaced by iteration.

We describe one more application of this approach. A two-way deterministic
pushdown automaton consists of a finite set of states, an input tape with a two-
way reading head and a pushdown store. Abbildung 24 zeigt das Gerippe eines

* 2DPDA.

figure does not exist yet

Figure 24. Ein 2DPDA

Formally, a 2DPDA is a 7-tuple (S, A, B, F, qo, C, ) consisting of a finite set
S of states, an input alphabet A, a pushdown alphabet B, a set F' C S of accepting
states, a start state go € S, a initial pushdown symbol C' € B and a transition
function

§:SxBx (AU{$,¢}) — S x ({efuB?) x {-1,1}.

On input a1 a2 ... ap, € A*, wobei A* die Menge aller Worte tuber A ist, the
machine is started in state go with $ a1 ... a, € on its input tape, its reading head
on a; and with C in the pushdown store. The machine then operates as given by
d. More precisely, if the machine is in state ¢ € S, reads a € AU {$, ¢}, has gD,
B € B*, D € B in its pushdown store and §(g, D, a) = (¢’, @, A) then the new state
is ¢', the new content of the pushdown store is Ba and the input head is moved
by A. Note that a € {¢} U B2 If o = € then the move is called a pop-move, if
o € B? then the move is called a push-move. A 2DPDA is not allowed to leave
the portion of the input tape delimited by $ and ¢, i.e., §(, ,$) = (, ,+1) and
(,,¢) =(,,—1). A 2DPDA halts if it empties its pushdown store. It accepts if
it halts in an accepting state.

Example: We describe a 2DPDA M which does pattern matching, i.e., it accepts
all strings a1 ... am # b1 ... bn, ar,bs € {0,1} such that there is a j with a; =
bjt+i—1 for 1 <7 < m. In other words, M decides whether pattern a; ... a,, occurs
in text by ... b,. Program 8 shows how machine M operates. The correctness
of this machine is implied by the following observation. Before step (2) the input
head is on a; and the pushdown store contains b;b;1+1 ... b, with b; at the top.
If in step (2) und zu Schritt (3) kommen we move the input head to a;4+1 then
ap = bjtp—q for 1 < h < ¢ and a;41 # bji;. Next observe, that i = m implies
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that we found an occurrence of the pattern and that 7 + ¢ = n + 1 implies that
the text is too short to contain an occurrence of the pattern. In step (5) we push
bj+i—1,bj4i—2,...,b; in that order onto the pushdown store, thus restoring the
initial configuration. In (6) we remove b; from the stack and then search for an
occurrence of the pattern starting at b; 1. ]

(1) move the head to the right endmarker ;

then move left and store b,,b,_1,...,b1 in the pushdown store;

by is at the top of the pushdown store; position the input head on a;
(2) while the symbol under the input head and

the top pushdown symbol agree
do move the input head to the right and
delete one symbol from the pushdown store

od;
(3) if the symbol under the input head is #

then empty the pushdown store and accept fi;
(4) if the top symbol on the pushdown store is C' (the special symbol)

then empty the pushdown store and reject fi;
(5) Move the input head to a;. While moving left push

all symbols scanned onto the pushdown store
(6) Remove one symbol from the pushdown store and go to (2).

Program 8

Of course, a 2DPDA can be directly implemented on a RAM. Die Laufzeit des
RAM-Programms ist dann gleich der Laufzeit des 2DPDA. The disadvantage of
this approach is that the running time might be quite large. In our example, the
worst case running time of the 2DPDA and hence the RAM is O(m - n). We can
do much better.

Theorem 3. If a language L is accepted by a 2DPDA then there is a RAM which
accepts L in linear time.

Proof: We will first define a recursive procedure which accepts L and then improve
its running time by tabulating function values.

Let M = (S,A,B,F,qo,C,0) be a 2DPDA and let a; as ... ap, € A* be
an input. A triple (¢,D,i) with ¢ € S, D € Band 0 < i < n+ 1 is called
surface configuration of M; here i denotes the position of the input head on the
input tape. Note that the number of surface configurations on input a; ... a, is
|S| - |B| - (n+2) = O(n). Define partial function term : S x B x [0..n + 1] —
S x [0..n+ 1] by term(q,D,i) = (p,j) if M started in configuration (g, D,i) will
eventually empty its pushdown store and is in state p and input position j in this
case.
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Next note that term(qo, C,1) = (p,j) for some p € F und ein j € {0,...,n +
1} <= M accepts a1 az ... a,. Zur Simulation von M auf einer RAM it thus
suffices to compute term. The following (inefficient) recursive procedure TERM
aus Programm 9 computes term.

(1) function TERM(q, D,i);

(2) if J(QaDaai) = (p7 G,A)

(3) then TERM + (p,i+ A)

(4) else let 6(¢,D,a;) = (p,GH,A), where G, H € B;
(5) (r,j) < TERM(p, H,i + A);

(6) TERM « TERM(r,G, )

(7) fi

(8) end.

Program 9

The correctness of this program is easy to establish. Procedure TERM cer-
tainly computes term if line (3) applies. If lines (4)—(6) apply then the computation
starts out of configuration (g, D, %) with a push move. When the pushdown store has
length 1 for the next time, the machine is in state r and scans position j (line (5).
The content of the pushdown store is G at this point. Therefore term is correctly
computed in line (6). The running time of this program is equal to the running
time of the underlying 2DPDA.

As in our previous example we observe that TERM may be called repeatedly
for the same argument. This suggests to tabulate function values in a table which
we call TE. In table TE we store terminators which were already computed and we
store * in order to indicate that a call of TERM is initiated but not yet completed.
Initially, all entries of TE are undefined. We obtain Program 10.

Claim:

a) The total running time of call TERM (qo,C,1) is O(n).
b) A call TERM(qo,C, 1) correctly computes term(qo,C,1).

Proof: a) Recall that the number of surface configuration is O(n). Observe next,
that lines (7’)—(13’) are executed at most once for each surface configuration. Hence
the total time spent in lines (7’)—(13’) is O(n) and the total number of calls of TERM
is O(n). Thus the total time spent in lines (1')—(6’), (14’)—(15’) of TERM is also
O(n). This shows that the total running time is O(n).

b) Observe first that if TERM (g, D, ¢) returns pair (r, j) then term(q, D,i) = (r, 7).
We still have to consider the case that the simulation stops in line (3’). This can
only be the case if there is a call TERM (q', D’,i') which (indirectly) initiates call
TERM(q',D’,i") before its own completion. In this case we detected an infinite
loop in the computation of M.

Damit sind die Behauptung und Satz 3 bewiesen. il
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—
—
~

function TERM (q, D, 1);
if TE[q,D,i] = *
then halt and reject
because the 2DPDA is in an infinite loop;

—~
w N
—

fi;
if TE[q, D, ] is defined
then TERM <+ TElq,D,1]
else TE[q,D,i] < x;
if 5(an’ai) = (p’ G,A)
then TERM « TE[q,D,i] « (p,i + A)
else let é(¢q,D,a;) = (p, GH,A), where G, H € B;
(r,§) « TERM(p, H,i+ A);
TERM <+ TEl[q,D,i] + TERM(r,G,j)

fi

fi
end.

= e e e e~ NS S S
CUR WO ©Oo O O

e e N N N e N N N N e S

P~~~

Program 10

Theorem 3 has a very pleasant consequence. Pattern matching can be done in
linear time on a RAM. Of course, the algorithm obtained by applying Theorem 3
to the 2DPDA described in the exercise above is quite involved and will be hard
to be understand intuitively. We therefore give an alternative simple linear time
algorithm for pattern matching next.

Let a; ... a, be a pattern and let b; ... b, be a text, a;,b; € {0,1}. We
want to find all occurrences in the text. Define f : [1..n] — [0..n], the failure
function for the pattern, by

f(i) = max{h < 4; aj—r = ap— for 0 < k < h}.

The significance of function f is as follows. Suppose that we started to match the
pattern at position j of the text and succeeded up to position ¢ of the pattern, i.e.,
a; =bjq;—q for 1 <1 <iand aj4q1 # bjy; (cf. Fig. 25).

..... bj bjy1 ... bjti—1 bj+i -....
[ [N
a; Qs a; i1
ag..... ap  Qp41

Figure 25. Vergleich des Musters mit dem Text

At this point we can slide the pattern to the right and start matching at some
later position in text b. If we move the pattern to the right such that aj is below
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bj+i—1 then a match can only succeed if we have a;_ = ap— for 0 < k < h. Thus
the only sensible values that should be tried are f(i), f(f(¢)), ... . We obtain
Program 11. In this algorithm we assume that we added a special symbol a, 41 to
the pattern which does not match any symbol in the text.

—~~
—
e

1< 0; 5«0
while j <m
do co a...a; = j—z‘+1---bj and
(l > ¢ implies a; ... q; ;ébj_H.l...bj) ocC

—~
w N
e

(4) if aj41 =bj11
(5) then i+ i+1;jj+1
(6) else if i =n then report match starting at b;_,4+1 fi;
(7) ifi=0
(8) then j ¢ j + 1
(9) else i+ f(i)
(10) fi
(11) fi
(12) od.

Program 11

Lemma 4. Program 11 determines all occurrences of pattern p = a; ... a, in text
b1 ...by, in time O(m).

Proof: In order to improve the correctness it suffices to verify the loop invariant.
It is certainly true initially, i.e., if i = j = 0. So assume the invariant is true
before executing the loop body. a;41 = b; 41 then the invariant trivially holds after
execution of the body, if a;11 # bj11 and 7 = 0 then it also holds trivially and if
i > 0 then it holds by definition of f.

The bound on the running time is shown as follows. At each iteration either
line (5), line (8) or line (9) is executed. Lines (5) and (8) increase j and are therefore
executed together exactly m + 1 times. In line (9) the value of ¢ is decreased since
f(i) < i. Since i is only increased in line (5) and 7 > 0 always we conclude that line
(9) is executed at most m + 1 times. 1

Lemma 4 shows that pattern matching requires linear time if failure function f
ia available. Fortunately, f can be computed in time O(n). In fact, the same
algorithm can be used because f is the result of matching the pattern against itself.
Programm 12 tut dies.

Lemma 5. Program 12 computes failure function f in time O(n).
Proof: Similar to the proof of Lemma 4. ]

We summarize in

Version: 18.10.99 Time: 21:00 —-58—



3.4.1. Optimale gewichtete Baume ... 59

i+ 0; j«<1; f(1) <0
while j <n
do co ag...q; = Qj—j41---aj and
(¢ <l<jimplies ai...a; # aj_i+1-..a;) ocC
if aj41 = aj41
then f(j+1)«i+1; i+ i+1; j«<j+1
else ifi =0
then f(j+1)«0; j«<j+1
else i<+ f(i)

fi
fi
od.
Program 12
Theorem 4. All occurrences of pattern ay ... a, in stringb; ... by, can be found
in linear time O(n + m).
Proof: follows immediately from Lemmas 4 and 5. ]

The dynamic programming algorithm for optimum binary search trees has quadratic
space and time requirement. It can therefore only be used for small and medium
sized n. In the next section we will discuss algorithms which construct nearly
optimal binary search trees in linear time. Note hat giving up optimality is really
not that bad because usually access probabilities are only known approximately
anyhow. There is one further advantage of nearly optimal trees. We will be able
to bound the cost of every single access operation and not only the expected cost.
Recall that average and worst case behavior can differ by large amounts, i.e., in
Quicksort; a similar situation could arise here.

We will be able to directly relate weighted path length of optimum trees and
nearly optimal trees. Rather we compare both of them to an independently yard-
stick, the entropy of the access distribution.

Definition: Let (vy1,...,7,) be a discrete probability distribution, i.e., 7; > 0 and
> 79 =1. Then

n
H(Y1,-- %) = — Y vilog i

i=1
is called the entropy of the distribution. We use the convention 0 - log0 = 0. ]
Some basic properties of the entropy function can be found in the appendix. In
the sequel we consider a fixed search tree T for set S = {z1,...,z,} and access
distribution (e, B1, - - -, Bn, an ). We use H to denote the entropy of the distribution,
ie., H= H(oag,f1,---,Pn, ). and we use b; (a;) for the depth of node z; (leaf
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(xj,zj41)) for 1 <4 < n (0 < j <n). Pisthe weighted path length of T. We
will prove lower bounds on the search times in tree T'. These lower bounds are
independent of the structure of 7T'; in particular, they are valid for the optimum
tree. The proofs follow classical proofs of the noiseless coding theorem.

Lemma 6. Let c€R with 0 <c¢ < 1. Let

Then Ei, a; > 0 and Zﬁz +> a; =1, ie, (60,51,...,ﬂn,6n) is a probability
distribution.

Proof: (By induction on n). If n = 0 then a9 = 0 and hence @y = 1. So assume
n > 0. Let z be the root of T, T; (T).) the left (right) subtree of T'. Let b (b}),
1<i<k-1(k+1<i<n) be the depth of z; in tree T} (T}). Define aj and aj
analogously. Then
bi+1 for1<i<k-—1;
b;=4¢0 for i = k;
b/ +1 fork+1<i<n

und

B a;+1 for0<j<k-—1
4= aj +1 fork<j<n.

Also by induction hypothesis

k-1
SI=Z((1—C/2 c+Z (1—c)/2)% =1

An analogous statement holds for S,.. Furthermore, Bk = ¢. Thus

Zﬂ +Zaa— (1-¢)/2)S + e+ (1 —¢)/2)8, = 1. .

Theorem 5. (Lower bound on weighted path length). Let B = > 3;. Then
a) max{(H —d-B)/log(2+27%); d€R} < P;
b) H< P+ B (loge —1+log(P/B)).

where we use the notation as defined above.

Proof: Define Bl and @; is in Lemma 6. Then

bi+1=1+ (log B, —logc)/loge and
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a; =loga;/loge
where ¢ = (1 — ¢)/2. An application of property E1) of the entropy function
(cf. appendix) yields (note that loge < 0)

P:Zﬂi-(bi-l-l)-l-Zaj-aj
=B -(1—loge/loge) + (1/loge) - [Zﬂ, logﬁi—l—Zaj logaj]
>B-(1—logc/logc) —(1/loge) - H
= (H — Blog(c/c))/log(1/c).

Setting d = log(¢/c) and observing that ¢/¢ = 2¢/(1—c) ia surjective mapping from
0 < ¢ < 1 onto the reals completes the proof of part a).

b) Unfortunately, there is no closed form expression for the value of d which max-
imizes the left side of a). Numerical methods have to be used to compute dyq4
in every single application. A good approximation for dy,., is d = log(P/2B). It
yields
H<Plog(2+2™%) +d-B

= Plog(2 + 2B/P) + Blog(P/2B)

<P-(1+(B/P)loge)+ B - (log(P/B) —1) (logz < (z —1)loge)

=P+ B-(loge—1+log P/B). 1
Special case d = 0 is also useful in some occasions. It yields P > H/log3. We

will next turn to the behavior of single access operations. Theorem 5a) reads in
expanded form

ZB’ - [(—log B; — d)/log(2 + 27%)] + Z ;- [—logay/log(2 +27%)]

< B [+ D]+ ay [aj]-

We show that the inequality above is almost true componentwise for the expressions
in square brackets; more precisely, for h € R, h > 0 define

Ny = {i; (—logBi —d—h)/log(2+27%) > b; +1} and
Ly ={j; (—loga; —h)/log(2+ 2_d) > a;}.

ZﬂerajS?_h,

iENh JELh

Then

i.e., for a set of leaves and nodes, whose total weight exceeds 1 — 2~" Theorem 5a)
“almost” holds componentwise. “Almost” has to be interpreted as: up to the
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figure does not exist yet

Figure 26. Eine Zugriffsverteilung

additive factor —h/log(2 + 27%). The proof of this claim is as follows: Let d =
log(¢/c) with ¢ = (1 —¢)/2 and 0 < ¢ < 1. Then d = log¢ — logc and log(2 +
279) = log(1/¢). A simple computation shows that the definitions of Nj, and Ly,

are equivalent to B
Nh = {Z, ,8, S 2_h,8i} and

Ly = {j; a; <27"q;}

where 3, and @; are defined as in Lemma 6. Thus

We summarize in

Theorem 6. (Lower Bounds for single access operations). Let c,h € R with 0 <
c<1andh>0. Define 3,,@; as in Lemma 6 and let

Nh = {Z, ,8, < 2_hBi} and
Ly = {j; oj <27"a;}.

Zﬂi+zajﬁ2_h- 1

’iENh JELh

Then

We give an explicit example of Theorems 5 and 6 at the end of Section 3.4.2.

3.4.2. Nearly Optimal Binary Search Trees

In binary search (cf. Section 3.3.1) we always compare the argument of the access
operation with the middle element of the remaining array and hence exclude at
least the half of the set in every step of the search.

We deal now with the more general situation that elements have different
weights (probabilities). At each step we should therefore try to exclude one half of
the elements in probability. Figure 26 shows for the example from the beginning of
3.4 the distribution on the unit line.
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figure does not exist yet

Figure 28. Case A

Point 1/2 lies within a §; or a ¢;. In the first case we should choose z; as the
root of the search tree, in the second case we should either choose z; if 1/2 lies in
the left half of a; or x4 if 1/2 lies in the right half of a;. In our example we
choose 3 as the root. This also fixes the right subtree. For the left subtree we still
have to decide whether we choose xz; or z, as the root.

Method 1: The restriction of our access distribution to set {z1,z3} is given by
(W, 5 W,0, W, 0) where W = (: + o; + 3)~'. We proceed as described above
and look for the root of the left subtree. In this way we will choose x; as the root

of the left subtree. Method 1 is analyzed in Exercise 20.

figure does not exist yet

Figure 27. Durch Verfahren 2 konstruierter Suchbaum

Method 2: We proceed by strict bisection, i.e., we choose the root of the left subtree
by considering reference point 1/4. Point 1/4 is contained in 8, and therefore z
is chosen as the root of the left subtree. In this way the following tree of Figure 27
with weighted path length Pgp = 50/24 is constructed. We now describe method 2
in more detail. Let

Qo
30:?
Si 311+ +ﬂz il for1<i<n.

2 2

Then a call construct_tree(0,n,0,1) of Program 13 constructs a search tree according
to method 2.

procedure construct_tree(i, j, cut,l);
co we assume that the actual parameters of any call of construct_tree satisfy the
following conditions:
(1) 7 and j are integers with 0 <7 < j < n;
(2) lis an integer with I > 1;
(3) cut = Z _1 ©p27P with z, € {0, 1} for all p;
(4) cut <s; < sj <cut+27L

A call construct_tree(i, j, , ) will construct a binary tree for nodes ¢ +1,...,j
and leaves i,...,J.

oc

begin

ifi+1=j (Case A)
then return tree of Figure 28
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else determine k such that

(5) i <k <y

(6) k=14+1ors,_1 <cut+27}

(7) k=7 or s > cut + 27",

oc k exists because the actual parameters are supposed to satisfy condition

(4)-

co

if k =i+ 1 (Case B)

then return tree of Figure 29 fi;
einbildCase B

if k = j (Case C)

then return tree of Figure 29 fi;

figure does not exist yet

Figure 29. Case C

ifi+1<k<j(CaseD)
then return tree of Figure 30 fi;

figure does not exist yet

Figure 30. Case D

fi
end.

Program 13

Theorem 7. Let b; be the depth of node x; and let a; be the depth of leaf (x,xj4+1)
in tree Tgp constructed by construct_tree(0,n,0,1). Then

b; < |log1/B;| and a; < |logl/aj]|+2.

Proof: We state several simple facts.

Fact 1. Ifthe actual parameters of a call construct_tree(z, j, cut, 1) satisfy conditions
(1) to (4) and that i+ 1 # j, then a k satisfying conditions (5) to (7) exists and the
actual parameters of the recursive calls of construct_tree initiated by this call again
satisfy conditions (1) to (4).

Proof: Assume that the parameters satisfy conditions (1) to (4) and that ¢ +1 # j.
In particular, cut < s; < cut + 2711 Suppose, that there is no &, i < k < j, with
Sp—1 < cut+27" and s > cut+27!. Then either for all kii<k<j, s < cut+271
or for all k, i < k < j, sp_1 > cut+ 27!, In the first case k = j satisfies (6) and (7),
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in the second case k = i + 1 satisfies (6) and (7). This shows that k£ always exists.
It remains to be shown that the parameters of the recursive calls satisfy again (1)
to (4). This follows immediately from the fact that k satisfies (5) to (7) and that
i+ 1+# j and hence s > cut + 27! in Case B and s;_; < cut + 27! in Case C. 1§

Fact 2. The actual parameters of every call of construct_tree satisfy conditions (1)
to (4) (if the arguments of the top-level call do).

Proof: The proof is by induction, Fact 1 and the observation that the actual pa-
i.D.anders rameters of the top-level call construct_tree(0,n,0,1) satisfy (1) to (4). 1

Beachten Sie, da§ die aktuellen Parameter des Aufrufes construct_tree(0,n,0,1) die
Bedingungen (1)—(4) erfiilllen und damit die Voraussetzung von Faktum 2 erfillt

ist.

We say that node h (leaf h resp.) is constructed by the call construct_tree(i, j, cut, )]

ifh=j (h=1o0r h =j)ist and Case A is taken or if h =i+ 1 (h = i) and Case

B is taken or if h = j (h = j) and Case C is taken or if h = k and Case D is taken.

Let b; be the depth of node ¢ and let a; be the depth of leaf j in the tree returned

by the call construct_tree(0,n,0, 1).

Fact 3. If node h (leaf h) is constructed by the call construct_tree(i, j, cut,l), then
bp+1=1 (ap =1).

Proof: The proof is by induction on I. ]
Fact 4. If node h (leaf h) is constructed by the call construct_tree(i, j, cut,l), then
,Bh S 2—l+1 (ah S 2—l+2)_

Proof: The actual parameters of the call satisfy condition (4) by Fact 2. Thus

27 > 5 — s = (o +@;)/2+ Biy1 + Qig1 + -+ B
> Bn resp. ap/2. 1

We infer from Facts 3 and 4, 3, < 27% and aj, < 279 *2. Taking logarithms and
observing that b, and aj are integers proves the theorem. ]

Theorems 6 and 7 together give fairly detailed information about the tree con-
structed by procedure construct_tree. In particular, we have

bi ~logl/B; and a;=logl/a;

for most nodes and leaves of tree Tpp. Substituting the bounds on b; and a; given
in Theorem 7 into the definition of weighted path length we obtain
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Theorem 8. Let Ppp be the weighted path length of the tree constructed by
construct_tree. Then

Ppgp < Zﬂi[logl/ﬂij —I-Zaj[logl/ajj +Zﬂ,~ +Zaj +Zaj
SH(a07ﬁla---7ﬂnaan)+1+zaﬂ' i

and further

Theorem 9. Let Pgp be the weighted path length of the tree constructed by
construct_tree for distribution (ag, 1, - - ., fn, @n) and let Py be the weighted path
length of an optimum tree. Then (B =) 3;)

H—-d-B
a) max{w; dER}SPOptSPBB§H+1+Za];

b) Ppp < Popt + B - (loge + log(Popt /B)) + 2 a;.

Proof: a) follows immediately from Theorem 5a) and 8 and a) follows immediately
from Theorem 5b) and 8. 1

Theorem 9 can be interpreted in two ways. On the one hand it shows that the
weighted path length Pgp of tree Tgp is always very close to the optimum and
hence Tgp is a good search tree. Essentially, part b) shows that

Pgp — P,p; < log Py, =~ log H.

On the other hand, it provides us with a small interval containing P,,; as well as
Ppp. This interval is easily computable from the distribution and provides us with
a simple a-priori estimate of the behavior of search trees. This estimate can be
exploited for the decision whether or not to use weighted trees. The bounds given
in Theorems 5-9 are sharp (cf. Exercises 18-19).

Let us illustrate our bounds by an example. There is an extensive literature
dealing with word frequencies in natural languages. In English, the probability of
occurrence of the i-th most frequent word (cf. E.S. Schwartz, JACM 10 (1963),
S. 413-439) is approximately

v
Zi21(1/i)1.12 .

B; = c/i*'? where c=

A simple calculation yields

H(/BlaﬂQ’/Bi*n"') = _Zﬂz 108,61 =~ 10.2.
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In the light of Theorem 9 we would therefore expect that the weighted path length
of an optimum binary search tree for all English words is about 10.2 and certainly
no larger than 11.2. This was also observed in experiments. Gotlieb/Walker took
a text of 108 words and counted word frequencies. Then they constructed (nearly
optimal binary search trees for the N most common words, N = 10, 100, 1000,
10000, 100000. Let Pxn be the weighted path length of the tree constructed for
the N most common words. Then Py — 11 for N — oo as Figure 31 (due to
Gotlieb/Walker (72)) below suggests. This is in agreement with Theorem 9.

2

102 120 121 210 211 212
Figure 31. Wachstum von Py

We will now turn to the time complexity of recursive procedure construct_tree.
Let T'(n) be the maximal running time required by construct_tree for a tree with n
nodes, i.e., n = j —i. If n = 1, then the body of construct_tree requires constant
time. Hence
T(l)=c for some constant c;.

If n > 1 then k has to be determined and some recursive calls have to be initiated.
Let T's(n, m) be the time required to find k, where m = k—i. We determine T's(n, m)
below when we specify a concrete algorithm for finding k. construct_tree is called
once or twice recursively within the body. In Case D the first call constructs a tree
with k—1—¢ = m—1 nodes and the second call constructs a tree with j—k =n—m
nodes. Hence

T(n) < max|[T(m — 1) + T(n — m) + Ts(n,m) + ca].

- m

Constant ¢y measures the cost of parameter passing. If we define 7'(0) = 0 then the
inequality above also holds true in Cases B and C of construct_tree where only one
recursive call is started. With the convention Ts(1,m) = 0 and ¢ = max(c1,c2) we
can further simplify our inequality and obtain

T0)=0 and

T(n) <  Dax [T(m —1) + T(n —m) + Ts(n,m) + c|.
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We discuss two methods for finding k.

1) Binary Search: We first try 7 = [(i + 1+ j)/2]. If s, > cut + 27! then k < r,
otherwise £ > r. We iterate as described in 3.3.1 and find %k in logn steps. Thus
Ts(n,m) < dlogn for some constant d, and we obtain

T(0)=0  and

T(n) <  max [T(m — 1) + T(n —m) + c+ dlogn].

We infer T'(n) = O(nlogn), cf. Section I1.1.3, conversely,

T(n)>T(n—1)+dlogn+c>d Zlogi = Q(nlogn).

i=1
Also gilt

Theorem 10. If the search for k in procedure construct_tree is implemented by
binary search, then T'(n) = ©(nlogn). 1

2) Ezponential and Binary Search: The running time of procedure construct_tree
with binary search is Q(nlogn) since we us up log(j —¢) time units even if k =~ i +1
or k = j, i.e., even if the size of the problem to be solved is reduced only by a small
amount. If we want to improve upon the O(nlogn) time bound we have to use a
search algorithm which finds k fast if & is close to the extremes. A first attempt is to
use linear search and to start the search simultaneously at both ends. However, this
also does not guarantee linear running time. If &k = (i4+ 1+ j)/2 the this method will
use ©(j — i) steps to find k and again we obtain an O(nlogn) algorithm (Exercise
21). So, how we can do better? We should start searching from the end but not in
unit steps:

(1) Compare s, with cut + 27! for r = (i + 1+ j)/2]. If s, > cut + 27! then
ke{i+1,...,7},if s, < cut+ 27! then k € {r,...,j}. We assume for the
sequel that k € {i + 1,...,r}. Step (1) has constant cost, say d;.

(2) Find the smallest ¢, t = 0,1,2,..., such that s; ;¢ > cut + 27!, Let to be that
value of t. We can find ¢ in time ds - ({9 + 1) for some constant dy. Then
i+ 207t <k <i42% e, 2t >k —i=m > 2%~ and hence logm > to — 1.
Thus the cost of step (2) is bounded by ds - (2 + logm).

(3) Determine the exact value of k by binary search on the interval i + 2t~ +
1,...,i+ 2%, This takes d3 - (log(2tc —2t0=1) + 1) =d3 -ty < d3 - (1 + logm)
time units for some constant ds.

Exponential (step (2)) and binary search (step (3)) allow us to find k in < d- (1 +
logm) time units provided that i < k < [(¢ + 1+ j)/2|. Here m = k —i and d is
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a constant. Similarly, & can be found in < d - (1 + log(n — m + 1)) time units if
[(i4+1+7)/2| < k. Thus Ts(n,m) < d-(1+ logmin(m,n —m+ 1)) and we obtain
the following recurrence relations for the worst case running time of construct._tree:

T(0) =0 and

T(n) < max [T(m —1) +T(n—m)+d-(1+logmin(m,n —m + 1)) +¢].

Theorem 11. If the search for k in procedure construct_tree is implemented by
exponential and binary search; then T'(n) = O(n).

Proof: We show by induction on n:
T(n) < (2d+ ¢)n — dlog(n + 1).
This is certainly true for n = 0. For n > 0 we have

T(n) <  max [T(m — 1)+ T(n —m) +d - (logmin(m,n —m + 1)) +d +

= 1§mlgn(i}i1)/2[T(m— 1) + T(n —m) + dlogm + d +c],

by the symmetry of the expression in square brackets in m — 1 and n — m. Next we
apply the induction hypothesis and obtain

T < 2 . —1 — —d-(1 1 — 1
(n)_lgm:[gn(?z)il)/2[( d+c)-(m—1+n—m)—d-(logm+log(n —m+ 1))

—I—dlogm—l—d—l—c]

=(2d+c)n+ ISmISn(aTLL)iI)/Q[—d (14 log(n —m + 1)].

The expression in square brackets is always negative and is maximal for m = (n +
1)/2. Thus

T(n) < (2d+c)n—d- (1+1og((n+1)/2))
= (2d + ¢)n — dlog(n + 1). 1

Let us summarize. construct_tree constructs trees which are nearly optimal with
respect to average search time (Theorem 9) as well as with respect to single search
time (Theorems 6 and 7). We can make construct_tree run in linear time (Theo-
rem 11).

We conclude this section by exemplifying Theorems 8 and 9 on the example
of the beginning of Section 3.4. We start with Theorem 9 which concerns average
search time. We have H ~ 2.27, > fB;|log1/5;] + > oj|logl/a;| ~ 2.04, > 6; =
0.29 and Y a; = 0.71. d = 1.05 maximizes the left hand side of 9a) and yields
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1.50 < Pypy = 2.0 < 2.04 < 2.08 = Pgp < 3.75 < 3.98. Of course, the additive
constants play an almost dominating role in our bounds for that small value of H.
We have seen in the application to an English dictionary that the estimates are
much better for large values of H.

We will now turn to Theorems 6 and 7 on the behavior of single searches:
We can see from the table shown in Figure 32 that the upper bounds given by
Theorem 7 exceed the actual values by 1 or 2. If we apply Theorem 6 with ¢ =1/2
and h = 2 then Ny = {3,4} and L, = {1,2} and

Y B+ > y=1/8<1/4=27"

1EN> JEL>

Hence nodes and leaves with total probability > 7/8 satisfy Theorem 5a) compo-
nentwise (cf. the discussion preceding Theorem 6).

name of node | depth in | depth in | probability | |— log p] Bi» @
or leaf Topt TsB p forc=1/2
1 1 2 1/24 1 1/32
. 2 1 1/8 3 1/8
3 0 0 1/8 3 1/2
z4 1 1 0 00 1/8
(,z1) 2 3 1/6 2 1/64
Ty, T 3 3 0 0 1/64
(22, 3) 3 2 0 00 1/16
(11}3,.’134) 2 2 1/8 3 1/16
(x4, ) 2 2 5/12 1 1/16

Figure 32. Tabelle firr Beispielwerte
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3.5. Balanced Trees

We return to the discussion started in3.3.1: Realizing operations Access, Insert and
Delete by binary search trees. In Section 3.3.1 we saw that the height of the tree
plays a crucial role.

We consider only unweighted sets in this section, i.e., We are only interested
in the size of the sets involved. In other words, if T' is a search tree for set S =
{r1 < 2 < --- < z,,} then we assume uniform access probabilities, i.e., 3; = 1/n
and aj =0 for 1 <i<n,0<j <n. As above, we use b; to denote the depth of
node x; in T'. )

P=- Xi:(b, +1)
is called the average path length (internal path length) of 7. Theorems 5b)
and 6 of the previous section give logn = H < P + log P + 0.44 and height(T) >
logn—1. The second inequality is obtained by taking the limit A — 0 in Theorem 6.
Somewhat better bounds can be obtained by direct computation.

Theorem 1. Let T be a binary search tree for set S = {z1 < z2 < --+ < Zp}.
Then

a) P> |log(n+1)] — 1.
b) height(T) > [log(n + 1)].

Proof: b) Since T is a binary tree, there are at most 2¢ nodes of depth i (i > 0),

and hence at most Zf:o 2t = 2k+1 _ 1 nodes of depth < k. In a tree with n nodes
there must thus be at least one node of depth k where 25! — 1 > n. This proves
b) since height(7T") = max{depth(v) + 1; v node of T'}.

a) Apparently, a tree T' with n nodes has minimal average path length, if there are
20 node of depth 0, 2! nodes of depth 1, ... , 2* nodes of depth k and n —2F+1 41
nodes of depth k + 1. Here k = [log(n + 1)| — 1. Thus

k
P> %(Z(z +1)2 4 (k+2)(n — 21 + 1))

1
= [k- 281 41+ (K +2)(n — 281 + 1)) (s. Anhang, S1)
> |log(n+1)] — 1. 1

Theorem 1 shows that logarithmic behavior is the best we can expect from binary
search trees in the worst case as well as in the average case. Also, logarithmic
behavior is easy to obtain as long as we restrict ourselves to access operations.
This is even true in the case of weighted sets as we saw in 3.4. Insertions and
deletions create new problems; the naive insertion and deletions algorithms of 3.3.1
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can create extremely unbalanced trees and thus lead to intolerable search times.
Inserting x1,...,z, with z; < 3 < --- < z, into an initially empty tree creates a

fehlt tree with average path length (n + 1)/2, wie Abbildung 33 veranschaulicht.

fehlt i.E.

Figure 64. Entarteter bindrer Suchbaum

Thus tree search deteriorates to linear search. Extreme deterioration is not
very probable in the case of random insertions (Exercise 9). Deterioration can be
completely avoided if the tree is rebalanced after each insertion or deletion. We will
see later that rebalancing can be restricted to local changes of the tree structure
along the path from the root to the inserted or deleted node. In this way, rebalancing
time is at most proportional to search time and hence total cost is still logarithmic.

A1l known classes of balanced trees can ne divided into two groups: weight-
balanced and height-balanced trees. In weight-balanced trees one balances the
number of nodes in the subtrees, in height-balanced trees one balances the height
of the subtrees. We will discuss one representation of each group in the text and
mention some more in the exercises.

3.5.1. Weight-Balanced Trees

For this section « is a fixed real, 1/4 < a < 1— \/5/2 The bounds on a will become
later on. (vgl. den Beweis von Lemma 1).

Definition:
a) Let T be a binary tree with left subtree 7} and right subtree T;.. Then
p(T) = |Ti|/IT| =1 - |T:|/|T|

is called the root balance of T'. Here |T'| denotes the number of leaves of tree
T.

b) Tree T is of bounded balance ff, if for every subtree 7" of T":
a<p(T)<1—a.
c) BBJ[ff] is the set of all trees of bounded balance a. 1
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In the tree of Figure 34 (leaves are not shown) the subtrees with root u (v, w, )
have root balance 1/2 (2/3, 2/5, 5/14). The tree is in BB[a] for oo < 1/3.

g d C{d

Figure 65. Ein BB[a]-Baum

Trees of bounded balance have logarithmic depth and logarithmic average path
length.

Proof: Let T € BB[a] be a tree with n nodes. Then

(1+1/n)-log(n+1)

-1
H(a,1— )

a) P <
where H(a,1 — a) = —aloga — (1 — a) - log(1 — a).

b) height(T) < 1+11(;§((?/?—112;):;.

Proof: a) For this proof it is easier to work with P =n- P = > (b; + 1). We show
P < (n+1)-log(n+1)/H(a,1 — a) — n by induction on n. P is often called total
(internal) path length of 7. For n = 1 we have P = 1. Since 0 < H(a,1—a) <1 (s.
fehlt i.E. Anhang, Formel E2), this proves the claim for n = 1. So let us assume n > 1. T has
aleft (right) subtree with I () nodes and path length P; (P,.). Thenn = [+r+1 and
P = P;+ P, +n (cf. the proof of Lemma 1 in 3.4.1) and a < (I+1)/(n+1) < 1—a.
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Applying the induction hypothesis yields

P=n+P, +P,
1

<—- 1)-1 1 1)-1 1 1
S Hai—a [+D) logll+1)+(r+1) log(r+1)] +
n+1 [+1 I+1 r+1 r+1
=—— |1 1 -1 : 1
H(a,1— ) [og(n-i— )+n+1 Ogn+1+n+1 Ogn—|—1]+
_ gy Lo HGEE)
 H(a,1-0) H(a,1 - )
1
<——- 1)-1 1) —
< =g (D logln+1)

since H(z,1 — z) is monotonically increasing in z for 0 < z < 1/2.

b) Let T' € BBJa] be a tree with n nodes, k = height(T"), and let vg, vy, ...,vx—1 be
a path from the root to a node vg_1 of depth k — 1. Let w; be the number of leaves
in the subtree with root v;, 0 < i <k — 1. Then

2 < wg_1 und
wiv1 < (1 —a) - w; fir0<i<k-—1,

since T is of bounded balance «, and therefore
2<wp_1 <(1—a) 1 wy=010-a) "t (n+1).
Taking logarithms completes the proof. ]

For o = 1 —+/2/2 ~ 0.2929 Theorem 2 reads

P <1.15(14+1/n)log(n+1)—1 and
height(7") < 2log(n + 1) — 1.

A comparison with Theorem 1 shows that the average search time in trees in BB[1—
v/2/2] is at most 15% and the maximal search time is at most by a factor of 2 above
the optimum.

Operations Access, Insert and Delete are performed as described in 3.3.1. How-
ever, insertions and deletions can move the root balance of some nodes on the path
of search outside the permissible range [a,1 — a]. There are two transformations
for remedying such a situation: rotation and double rotation. In the following
Figures 35 and 36 nodes are drawn as circles and subtrees are drawn as triangles.
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QP Rotation 2
/N /\ /\ /o\

Figure 66. Rotation nach links

Doppelrotation
e

Figure 67. Doppelrotation nach links

The root-balances are given beside each node. The figures show transformations
“to the left”. The symmetrical variants also exist.

The root balances of the transformed trees can be computed from the old
balances p1, p2 (and p3) as given in the figures. We verify this claim for the rotation
and leave the double rotation to the reader. Let a,b,c be the number of leaves in
the subtrees shown. Then

a q b
= — an = .
a+b+e P2 = e

1
Since
a+b=py1-(a+b+c)+p2-(b+c)
=p1-(a+b+c)+p2-((a+b+c)—a)
=(p1+p2-(L=p1))-(a+b+c)
the root-balance of node z after the rotation is given by

a _ P1
at+b prt+p-(1—p1)’
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and the root-balance of node y is given by

a+b

axbre (p1 + p2 - (1 = p1)).

Let us consider Insert first. Suppose that node a is added to the tree. Let
vo,V1,...,V¢ = a be the path from the root to node a after the insertion. Op-
eration Insert(a) described in 3.3.1 creates the following subtree of Figure 37 with
root balance 1/2.

Figure 68. Durch Einfiige(a) entstehender Unterbaum

We will now walk back the path towards the root and rebalance all nodes on
this path. So let us assume that we reach node v; and that the root balances of all
proper descendants of v; are in the range [o,1 — a]. Then 0 < ¢ < k — 1. If the
root-balance of node v; is still in the range [@,1 — a] then we can move on to node
v;—1. If it is outside the range [a,1 — a] we have to rebalance as described in the
following lemma.

Lemma 1. For all o € (1/4,1 — /2/2] there are constants d € [a,1 — a] and
0<6<1 (ifa<1—+/2/2 then § > 0) such that for T a binary tree with subtrees
Ty and T, and

(1) T, and T, are in BBJq]
(2) |T1|/|T| < a and either
(2.1) |T;|/(|T| — 1) > a (i.e., an insertion into the right subtree of T' occurred)
(2.2) (|T1)+1)/(|T| + 1) > « (i.e., a deletion from the left subtree occurred).
(3) po is the root balance of T,

we have

(i) if p2 < d then rotation rebalances the tree, more precisely v1, y2 € [(1+6)a, 1—
(1+ &)a] where 71, 72 are as shown in the figure describing rotation.

(ii) if po > d then a double rotation rebalances the tree, more precisely 1,7,
vs € [(1+68)a, 1—(148)a] where v1,72, 73 are as shown in the figure describing
double rotation.

Version: 18.10.99 Time: 21:00 —T76—



3.5.1. Weight-Balanced Trees T7

Remark: Dieses Lemma besagt, dafl die Wurzelbalancen nach der Rotation bzw.
Doppelrotation zumindest im Bereich [, 1 — o] liegen. Fiir a < 1—+/2/2 liegen sie
sogar in einem echt kleineren Bereich. Dies werden wir weiter unten im Beweis von
Satz 4 ausnutzen.

Proof: A complete proof is very tedious and unelegant. It can be found in Blum/Mehlhorn (80).|
In that paper one can also find expressions for § and d as a function of . In order

to give the reader an impression of the proof, we verify some parts of the claim for

a = 3/11, d = 6/10 and § = 0.05. Let us consider case (i), i.e., p2 < 6/10 and a

rotation is applied. We will only verify v; € [(1+ §)a,1 — (1 + §)a] and leave the

remaining cases to the reader. Note first that v; = p; + (1 — p1)p2 is an increasing

function of p; and ps. Hence

mn<a+(l—a)-d (since p1 < @, p2 < d)
i
110

1\ 3
—1-(1+=)- =
(+15> 11

<1-1.05a.

We still have to prove a lower bound on 7;. From |Tj|/(|T| — 1) > «a or (|T}] +
1)/(|T| +1) > a and |T;| > 1 one concludes p; = |T}|/|T| > a/(2 — @) and hence

712%+(1_2(—1a>.a
81
= 200
> 1.05¢. |

Lemma 1 implies that a BB[a]-Baum can be rebalanced after an insertion by means
of rotations and double rotations. The transformations are restricted to the nodes
on the path from the root to the inserted element. von der Wurzel zum eingefiigten
Element. Thus height(T") = O(log|S|) transformations suffice; each transformation
has cost of O(1).

We still have to clarify two small points: how to find the path from the inserted
element back to the root and how to determine whether a node is out of balance.
The path back to the root can be easily found. Note that we traversed that very
path when we searched for the leaf where the new element had to be inserted. We
only have to store the nodes of this path in a stack; unstacking will lead us to the
root. This solves the first problem. In order to solve the second problem in each
node v of the tree we do not only store the left and the right son but also its size,
i.e., the number of leaves in the subtree with root v. So the format of a node is

| CONTENT | LSON | RSON | SIZE |
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The root balance of a node is then easily computed. Also the SIZE field is easily
updated when we walk back the path of search to the root. We summarize: An oper-
ation Insert(a, S) takes time O(log|S|). This is also true for operation Delete(a, S).
Delete(a, S) removes one node and one leaf from the tree as described in 3.3.1. (The
node removed is necessarily the node with content a). Let vy,...,v; be the path
from the root vy to the father vy of the removed node. We walk back to the root
along this path and rebalance the tree as described above.

Theorem 2. Let a € (1/4,1 —+/2/2]. Then operations Access(a, S), Insert(a, S),
Delete(a, S), Min(S), Deletemin(S) and Ord(k,S) take time O(log|S|) in BB[a]-
trees. Also operation Sequ(S) takes time O(|S|).

Proof: The discussion preceding the theorem treats operations Access, Insert and
Delete. The minimum of S can be found by always following left pointers starting at
the root; once found the minimum can also be deleted in time O(log |S|). Operation
Ord(k, S) is realized as described in 3.3.1 and Sequ(S) as in 1.5. 1

We argued that at most height(T") transformations are required to rebalance a tree
in BB[a] after an insertion or deletion. It is easy to find examples where one actually
has to use that many transformations. Take a tree where all nodes have balance
a and perform one insertion (at the proper place). Then all nodes on the path of
search will leave the range [, 1 — a] and have to be rebalanced. Note however, that
this will move the root balances of all nodes involved in the rebalancing operations
into the intervals [(14+0)a, 1—(140)a] where § > 0if o € (1/4,1—+/2/2). Therefore
these nodes will not become unbalanced in the near future. This observation leads
to

Theorem 3. Let a € (1/4,1 —+/2/2). Then there is a constant ¢ such that the
total number of rotations and double rotations required to process an arbitrary
sequence of m insertions and deletions into the initially empty BB[a]-tree is < ¢-m

Proof: Let Ty be the BB[a]-tree which consists of a single leaf and no node. The
sequence of m insertions and deletions gives rise to a sequence of trees T4, ..., Tny,
where Tj1 comes from 7T} by an insertion or deletion and subsequent rebalancing.
We need some more notation.

A transaction is either an insertion or deletion. A transaction goes through
a node v if v is on the path from the root to the node which is to be inserted or
deleted. A node v takes part in a single rotation (double rotation) if it is one
of the two (three) nodes explicitly shown in the figure defining the transformation.
Furthermore, nodes retain their identity as shown in that figure, i.e., if a rotation to
the left is applied to a subtree with root x, then node x has subtrees with weights a
and b respectively after the rotation. Die Gewichte sind dabei die Anzahlen der
Blatter in den Unterbaumen. Note also that nodes are created by insertions and
then have balance 1/2 and that nodes are destroyed by deletions. Finally, a node v
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causes a single rotation (double rotation) if v is node x in the figure defining the
transformations, i.e., v is a node which went out of balance.

With every node v we associate accounts: The transaction accounts TA4;(v)
and the balancing operation accounts BO;(v), 0 < i < co. All accounts have initial
value zero. The j-te transaction, 1 < j < m, has the following effect on the accounts
of node v:

a) If the transactions does not go through v then all accounts of v remain un-
changed.

b) If the transaction does go through v then let w be the weight of v in the tree
T;_1. Let i be such that (1/(1 — a))* <w < (1/(1 — @))**!. Note that w > 2,
1/(1—a) > 1and ¢ > 1. We add one to transaction accounts T4;_1(v), TA;(v),
TA;+1(v). If v causes rebalancing operation then we also add one to BO;(v).

Lemma 2. For every node v and every i:

1—a)

Bow) < - ao)

where ¢ is as in Lemma 1.

Proof: We show how to count éa/(1 — a) increments of TA;(v) for every incre-
ment of BO;(v). Suppose BO;(v) is increased at the j-th transaction, i.e., the j-th
transaction goes through v and moves v out of balance. Let w be the number of
leaves in the subtree of T;_; with root v. Then (1/(1 —a))’ < w < (1/(1 — a))**L.

Let £ < j be such that v takes part in a rebalancing operation at the k-
th transaction or the k-th transaction created v and v does not take part in a
rebalancing operations after the k-th and before the j-th transaction. In either case
we have p(v) =t'/w' € [(1+0)a,1 — (14 d)a] in Ty. Here ¢’ (w') is the number of
the leaves in the left subtree of v (in the tree with root v) in Tj. Since v causes a
rebalancing operation at the j-th transaction we have p(v) = t/w ¢ [a,1 — @], say
p(v) < a after the j-th transaction but before rebalancing v. We use ¢ to denote
the number of leaves in the left subtree of v in that tree.

Node v did not take part in rebalancing operations between the k-th and the
j-th transaction. But its balance changed from ¢'/w’ to t/w and hence many trans-
actions went through v. Suppose that a insertions and b deletions went through v.
Then w =w'4+a—band t >t —b.

Claim: a+ b > daw.
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Proof: Assume otherwise, i.e., a + b < Jaw. Then
1+8)a<t/w

<(@t+b)/(w—a+b)
< (t+b)/(w — daw + 2b)
< (t+ dow)/(w + daw)
< (aw + daw)/(w + dow)
< (14 0)a,

contradiction. Note that (¢ + b)/(w — daw + 2b) is increasing in b. 1

fehlt i.E. Eine analoge Behauptung gilt fir p(v) > 1 — a. Ihr Beweis wird dem Leser
iiberlassen. We have thus shown that at least daw > da/(1 — a)! transactions
went through v between the k-th and the j-th transaction. During the last daw
of these transactions the weight (number of leaves in the subtree with root v) of v
was at least w — daw > 1/(1 — a)*~! and at most w + daw < 1/(1 — a)**2. (hier
wird 6 < 1 benutzt). Hence all these transactions were counted on T4;(v). Damit
ist Lemma 2 bewiesen. 1

Lemma 3. For alli: ), TA;(v) < 3m.

Proof: Let vg,...,v be the rebalancing path for the j-th transaction and let wj
i.E.mehr be the weight of node v;, i.e., the number of leaves in the tree with root v;. Then
wi+1 < (1 — a)w; for I > 0. Thus there are at most three nodes on the path with
(1/(1 — )"t <w; < (1/(1 — a))**2. Hence at most three is added to Y, T4;(v)
for each transaction. ]

It is now easy to complete the proof. ). > BO;(v) is the total number of single
and double rotations required for processing the sequence of m transactions. We
estimate this sum in two parts: ¢ < k and ¢ > k where k is some integer.

SN Boiw) <Y % - TA;(v) (by Lemma 2)

i>k v i>k v
1— %
< Z % -3m (by Lemma 3)
>k
< (1—a)k-3m/éa?
and
> Y BOiw) < (k—1)-m
i<k v
since there is at most one node v for each transaction such that BO;(v) is increased

by that transaction for any fixed i. Hence the total number of single and double
rotations is bounded by [(k — 1) 4+ 3(1 — a)* /§a?] - m for any integer k. 1
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It is worthwhile to compute constant ¢ of Theorem 4 in order to give a concrete
example. For a = 3/11 we have § = 0.05 (cf. proof of Lemma 1). Choosing k = 17
yields ¢ = 19.59. Experiments with random insertions suggest that this estimate is
far too crude, the true value of ¢ is probably close to one. Nevertheless, Theorem 4
establishing the fact that the total number of rebalancing operations is linear in
the number of insertions and deletions. Furthermore, the proof of Theorem 4 also
shows that Y~ BO;(v) = O(m- (1 — )'); thus rebalancing operations are very rare
high up in the tree.

We can exploit this fact as follows. In Chapters 7 and 8 we will frequently
augment BB[a]-trees by additional information. In this augmented trees the cost
of a rotation or double rotation will not be O(1); rather, the cost of a rebalancing
operation caused by node v will depend on the current “thickness” of node v, i.e., if
node v causes a rebalancing operation and the subtree with root v has w leaves then
the cost of the rebalancing operation is f(w) time units for some non-decreasing
function f. In many applications we will have f(z) = z or f(z) = zlogz.

Theorem 4. Let a € (1/4,1 —+/2/2) and let f : R — R be a non-decreasing
function. Suppose that the cost of performing a rotation or double rotation at node
v of BB[a]-tree is f(th(v)) where th(v) is the number of leaves in the subtree with
root v. Then the total cost of the rebalancing operations required for a sequence of
m insertions and deletions in an initially empty BB[a]-Baum is

O(m : cg_g:mf((l —a)" ) (1 a)i),

where ¢ = 1/log(1/(1 — a)).

Proof: If a node v with (1 — @)~ < th(v) < (1 — a@)~*~! causes a rebalancing
operation then the cost of this operation is at most f((1 — a)~*"!) time units
since f is non-decreasing. Every such rebalancing operation is recorded in account
BO;(v). Hence the total cost of all rebalancing operations is

<33 B0 H(1- )7

<S> ) f(@ - (by Lemma 2)

clogm
3 ) )
<5 g (1-a)f - f(1—a)™) (by Lemma 3)
i.E.mehr and the observation that TA;(v) = 0 for ¢ > clogm by Lemma 1b. 1
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Theorem 5 has some interesting consequences. If f(z) = z® with a < 1 then the
total rebalancing cost is O(m) and if f(x) = z(log z)* for some a > 0 then the total
rebalancing cost is O(m - (logm)®*!). Thus even f(z) is fairly large the amortized
rebalancing cost (i.e., rebalancing cost per insertion/deletion) is small. We will
make extensive use of this fact in Chapters 7 and 8.

3.5.2. Height-Balanced Trees

Height-balanced trees are the second basic type of balanced tree. They appear in
many different kinds: AVL-trees, B-trees, HB-trees, ... and (a,b)-trees which we
describe here.

Definition: Let a and b be integers with a > 2 and b > 2a — 1. A tree T is an
(a; b)-tree if

a) all leaves of T' have the same depth

)
b) all nodes v of T satisfy p(v) <b
c) all nodes v except the root satisfy p(v) > a
d) the root r of T satisfies p(r) > 2.

Here p(v) denotes the number of sons of node v. ]

(a, b)-trees are known as B-trees if b = 2a — 1. In our examples we always use a = 2
and b = 4.

We have to deal with the following questions: how to store a set in an (a, b)-
tree, how to store an (a,b)-tree in a computer, how to search in, insert into and
delete from an (a, b)-tree?

Sets are stored in (a,b)-trees in a leaf-oriented way. This is not compulsory,
but more convenient than node-oriented storage which we used so far. Let S =
{r1 <--- < z,} be a subset of ordered universe U and let T be an (a, b)-tree with
n leaves. We store S in T as follows.

1) The elements of S are assigned to the leaves of T' in increasing order from left
to right.

2) To each node v of T' we assign p(v) — 1 elements k;(v), ..., k,)—1(v) of U such
ki(v) < ka(v) < -+ < kp(y)—1(v) und fiir alle Blitter w im i-ten Unterbaum
von v, 1 < i < p(v), die Relation k;_1(v) < CONTENT[w] < k;(v) gilt. Fur
alle Blétter w im 1-ten Unterbaum gilt CONTENT [w] < k1 (v), fiir alle Blatter

w im p(v)-ten Unterbaum gilt k,(,)—1 < CONTENT [w].

Figure 38 shows a (2,4)-tree for set S = {1,3,7,8,9,10} CIN.

The simplest method of storing an (a, b)-tree in a computer is to reserve 2b— 1
storage locations for each node of the tree, b to store the pointers to the sons and
b — 1 to contain the keys stored in the node. In general, some of these storage
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(2)
(7] [&] [oJ [

Figure 69. (a,b)-Baum fir S ={1,3,7,8,9,10}

locations are unused, namely, whenever a node has less than b sons. If a node has
arity p(v) then a fraction (2p(v) — 1)/(2b — 1) of the storage locations will be used.
Since p(v) > a for all nodes (except the root) at least the fraction (2a —1)/(2b —1)
of the storage locations is used. In (2,4)-trees this might be as low as 3/7. We will
see in Section 3.5.3.4 that storage location efficiency is much larger on the average.
An alternative implementation is based on red-black trees and is given at the end
of the section.

Searching for an element x in an (a,b)-tree with root r is quite simple. We
search down the tree starting at the root until we reach a leaf. In each node v we
use the sequence k1(v),...,k,)—1(v) in order to guide the search to the proper
subtree. In Program 14 we assume that ko(v) < = < k,(v)(v) for every element
x € U and every node v of T

v < root of T

while v is not a leaf

do find 7, 1 < i < p(v), such that k;—1(v) < z < k;i(x);
v < i-th son of v

od;

if t = CONTENT|v]

then “success” else “failure” fi.

Program 14

The cost of an search in tree T is apparently proportional to b - height(T");
there are height(7T') iterations of the while-loop and at each iteration O(b) steps are
required to find the proper subtree. Since b is a constant we have O(b-height(T')) =
O(height(T')) and again the height of tree T' plays a crucial role.

Lemma 4. Let T be an (a,b)-tree with n leaves and height h. Then
a) 2a"1 <n <dh

b) logn/logb < h <1+ log(n/2)/loga.
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Proof: Since each node has at most b sons there are at most b" leaves. Since the
root has at least two sons and every other node has at least a sons there are at least
2a"~! leaves. This proves a). Part b) follows from Part a) by taking logarithms. I

We infer from Lemma 4 and the discussion preceding it that operation Access(z, S)
takes time O(log |S|). We will now turn to operation Insert(z, S). A search for ele-
ment z in tree 7" ends in some leaf w. Let v be the father of w. If 1 = CONTENT [w],
then we are done. If z # CONTENT[w], then we proceed as follows:

1) We expand v by giving it an additional son to the right of w (we also say: we
split w), store z and CONTENT[w] in w and the new leaf in appropriate order
and store min(z, CONTENT[w]) in v at the appropriate position, i.e., between
the pointers to w and the new leaf.

Example: Insertion of 6 into the tree of Figure 69 yields the tree of Figure 39. 1

6] [71 3] [5] [0

Figure 70. Nach Einfiigen von 6

2) Adding a new leaf increases the arity of v by 1. If p(v) < b after adding the
new leaf then we are done. Otherwise we have to split v. Since splitting can
propagate we formulate it as a loop in Program 15.

while p(v) =b+1
do if v’s father exists
then let y be the father of v
else let y be a new node and make v the only son of y
fi;
let v' be a new node;
expand g, i.e., make v’ an additional son of y
immediately to the right of v;
split v, i.e., take the rightmost [(b+ 1)/2] sons and keys

k| (5+1)/2)+1(v),-- -, ks(v) away from v and incorporate them into v’ and move key
k| (b+1)/2) (v) from v to y (between the pointers to v and v');
VY
od.
Program 15
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Example (continued): Splitting v yields Figure 40. ]

7] L8] [9] [10]

Figure 71. Nach Spalten von v

Lemma 5. Let a > 2 and b > 2a — 1. Inserting an element x into an (a, b)-tree for
set S takes time O(log|S|).

Proof : The search for z takes time O(log|S|). Also, we store the path of search in
a pushdown store during the search. After adding a new leaf to hold x we return to
the root using the pushdown store and apply some number of splitting operations.
If a node v is split it has b+ 1 sons. It is split into nodes v and v’ with |(b+ 1)/2]
and [(b+ 1)/2] sons respectively. Since b > 2a — 1 we have [(b+ 1)/2| > a and
since b > 3 we have [(b+ 1)/2] < b and thus v and v’ satisfy the arity constraint
after the split. A split takes time O(b) = O(1) and splits are restricted to a final
segment of the path of search. This proves Lemma 5. ]

Deletions are processed very similarly. Again we search for x, the element to be
deleted. The search ends in leaf w with father v.

1) If x # CONTENT[w] then we are done. Otherwise, we shrink v by deleting
leaf w and one of the keys in v adjacent to the pointer to w (to be specific, if
w is the i-th son of v then we delete k;(v) if i < p(v) and k;—1(v) if i = p(v).)

Example (continued): Deleting 6 yields Figure4l. ]

2) Shrinking v decreases p(v) by 1. Wenn v = r und p(v) = 1, wird die Wurzel
gestrichen. Wenn v # 7 und p(v) noch > a ist, sind wir fertig. Otherwise
v needs to be rebalanced by either fusing or sharing. Sei y linke oder rechte
Bruder von v (ein beliebiger von beiden, falls beide existieren). Programm 16
zeigt, wie man die Rebalancierung in diesem Fall implementiert.

Example (continued): The tree shown in Figure 72 can be either rebalanced by
sharing or fusing depending on the choice of y. If y is the left brother of v then
fusing yields Figure 42. If y is the right brother of v then sharing yields Figure 43.
|
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[7] [8] [9] [10]

Figure 72. Nach Streichen von 6

while p(v) =a—1and p(y) =a
do let z be the father of v;
fuse v and y, i.e., make all sons of y sons of v and
move all keys from y to v and delete node y;
also move one key (the key between the pointers to y and v)
from z to v (note that this will shrink z, i.e., decrease the arity of z by one);
if z is root of T
then if p(z) =1 then delete z und mache v zur Wurzel fi;
goto completed
fi;
v 2
let y be the a brother of v;
od;
co we have either p(v) > a and rebalancing is completed
or p(v) =a—1 and p(y) > a and rebalancing is completed by sharing;
oc
if p(v) =a—1
then co we assume that y is the right brother of v oc
take the leftmost son away from y and make it an additional (rightmost) son of v;
also move one key (the key between the pointers to v and y
from z down to v and replace it by the leftmost key of y;
fi;
completed:

Program 16
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2 4 89

1] (8] 7] [8] [9] [10]

Figure 73. Rebalancierung durch Verschmelzen

<D
AR

Figure 74. Rebalancierung durch Stehlen

(1] [3] |

Lemma 6. Let a > 2 and b > 2a — 1. Deleting an element from an (a,b)-tree for
set S takes time O(log |S|).

Proof: The search for z takes time O(log |S|). An (a, b)-tree is rebalanced after the
removal of a leaf by a sequence of fusings followed by at most one sharing. Each
fusing or sharing takes time O(b) = O(1) and fusings and sharings are restricted to
the path of search. Finally note that a fusing combines a node having a — 1 sons
with a node having a sons and yields a node with 2a — 1 < b souns. ]

We summarize Lemmas 4, 5 and 6 in

Theorem 5. Let a > 2, b > 2a — 1. If set S is represented by an (a,b)-tree then
operations Access(z, S), Insert(x, S), Delete(zx, S), Min(S), Deletemin(S) take time
O(log |S])-

Proof: For operations Access, Insert and Delete this is obvious from Lemma 4,5
and 6. For Min and Deletemin one argues as in Theorem 3. ]

(a, b)-trees provide us with many different balanced tree schemes. For any choice of
a>2and b > 2a— 1 we get a different class. We will argue in 3.5.3.1 that b > 2a
is better than b = 2a — 1 (= the smallest permissible value for b) on the basis that
amortized rebalancing cost is much smaller for b > 2a. So let us assume for the
moment that b = 2a. What is a good value for a?
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We will see that the choice of a is depends heavily on the intended use of the
tree. Is the tree kept in main storage, or is the tree stored on secondary memory?
In the latter case we assume that it costs C; 4+ Cam time units to transport a
segment of m contiguous storage locations from secondary to main storage. Here
C1 and Cy are device dependent constants. We saw in Lemma 4 that the height of
an (a,2a)-tree with n leaves is about logn/loga. Let us take a closer look at the
search algorithm in (a, b)-tree. The loop body which is executed (logn/loga) times
consists of two statements: in the first statement the proper subtree is determined
for a cost of ¢1 +c2a, in the second statement out attention is shifted to the son of the
current node for a cost of C; + Csa. Here Cy = 0 if the tree is in main memory and
C1 + Caa is the cost of moving a node from secondary to main memory otherwise.
Thus total search time is

(c1 4+ c2a + C1 + Caa)logn/loga
which is minimal for a such that
a- (lna — 1) = (Cl + Cl)/(02 + Cz)

If the tree is kept in main memory then typical values of the constants are ¢; =
ca = C7 and C2 = 0 and we get a = 2 or a = 3. If the tree is kept in secondary
storage, say on a disk, then typical values of the constants are ¢; ~ ¢y ~ (3 and
C7 =~ 1000c;. Note that C; is the latency time and C; is the time to move one
storage location. In this case we obtain ¢ = 100. From this coarse discussion one
sees that in practice one will either use trees with small arity or trees with fairly
large arity.

We close this section with a detailed description of an implementation of (2, 4)-
trees by red-black trees. A tree is colored (with colors red and black) if its edges
are colored red and black. If v is a node we use bd(v) to denote the number of
black edges on the path from the root to v; bd(v) is the black depth of node v.
A red-black tree is a binary, colored tree satisfying the following three structural
constraints:

1) all leaves have the same black depth,
2) all leaves are attached by black edges,
3) no path from the root to a leaf contains two consecutive red edges.

In the following diagrams we draw red edges as wiggled lines and black edges as
straight lines.

There is a close relationship between (2, 4)-trees and red-black trees. Let T be
a (2,4)-tree. If we replace nodes with three (four) sons by Gebilde aus Abbildung
44, then we obtain a red-black tree.

In the example of the beginning of the section (cf. Figure 69) we obtain the
tree shown in Figure 45.

Conversely, if T' is a red-black tree and we collapse by red edges then a (2, 4)-tree
is obtained. Red-black-trees allow for a very efficient and elegant implementation.
Each node and leaf is stored as a type node where
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/ AN

Figure 75. Grundbausteine eines Rot-Schwarz-Baumes

L7] L8] [of [10]

Figure 76. Rot-Schwarz-Baum fiir das Beispiel vom Anfang von II1.5.2

type node = record content : U;
color : (red, black);
son[0..1] : Tnode
end;

The field content stores an element of the underlying universe, the field color con-
tains the color of the ingoing edge (the color of the edge into the root is black by
default), and fields son[0] and son[1] contain the pointers to the left and right son
respectively. All son-pointers of leaves are nil.

In the following programs variables root, p, ¢ and r are of type Tnode, but we
simply talk about nodes instead of pointers to nodes. A node is called red (black)
if its ingoing edge is red (black).

The program for operation Access is particularly simple. For later use we store
the path of search in a pushdown store, more precisely we store pairs (z,d) where z
is a pointer to a node and d € {0, 1} is the direction out of node z taken in the search.

(1) p <« root;

(2) while pt.son[0] # nil co a test, whether p is a leaf oc
(3) do if z < pt.content

(4) then Push(p, 0);

(5)

Program 17 searches for z € U. p < pt.son[0]
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else Push(p, 1);
p < pt.son[l]

fi
od;
if pt.content = x
then “successful”
else “unsuccessful”
fi.

= e N~ S
WNH OO WS
SN N N N e e e N

o~~~ P~

Program 17

We will next turn to operation Insert. Suppose that we want to insert x and
also suppose that we executed Program 17 above. It terminates in line (12) with
p pointing to a leaf and with the path of search stacked in a pushdown store. The
leaf p is not stacked. We initialize the insertion algorithm by replacing leaf p by a
red node r with sons p and a new leaf containing z (cf. Fig. 46).

= P —>
P —

| min(z, pt. Inhalt) | | max(x, pT.Inhalt) |

Figure 77. Beginn der Operation Einflige(x)

This is done in Programs 18 und 19. We also redirect the pointer from p’s
father to the new node r. If p’s father is black this completes the insertion.

new(q);
gt.color < black; ¢t.son[0] < ¢T.son[1] < nil;
qt.content + x;
new(r);
r1.content < min(z, pT.content);
rf.color < red;
if x < pt.content
then rt.son[0] < ¢; ri.son[1] < p
else rf.son[l] < g; ri.son[0] < p
fi;
(g, dir2) < pop stack;
qf.son[dir2] < r;
if gt.color = black
then — — “the insertion is completed”
fi;

= e e e N NS S S S S S
QU W N O ©OoJO0 Ol Wb =
N N N N N N N e e e S S N S

.

Program 18
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If node q (as tested in line (13)) is red then we created two consecutive red edges
and therefore violated the third structural constraint. Program 19 restores the red-
i.E.anders black properties. Nach Zeile (16) von Programm 19 sind wir in folgender Situation.
Node p is black (because its son ¢ is red), node ¢ is red and has exactly one red
son, namely r (otherwise, two consecutive red edges would have existed before the
insertion). We will maintain this property as an invariant of the following loop. In
this loop we distinguish two cases. If both sons of node p are red then we perform
a color flip on the edges incident to p and propagate the “imbalance” closer to the
root. A color flip corresponds to a spit in (2,4)-trees. If p has only one red son
then we rebalance the tree either by a rotation ((dirl = dir2)) or a double rotation
((dirl # dir2)). Both subcases correspond to expanding node p in the related
(2,4)-tree and hence terminate the insertion.

(16) (p, dirl) < pop stack;

(17) while true

(18) do if pt.son[l — dirl]f.color = red

(19) then co p has two red sons and we perform a color flip oc

pT.son[0].color < pt.son[l].color + black;
pt.color < red;
if p = root
then pt.color < black;
terminate the insertion algorithm
fi;
T 4 D;
(g, dir2) « pop stack;
if gt.color = black
then terminiere den Einfuige-Algorithmus
fi;
(p, dirl) < pop stack
else if dirl = dir2
then co we rebalance the tree by a rotation oc

LWN OO0 Uk WwNhEFEO

NN N AN AN N N N N N N N N N
O W W W NN DNDDDDNDDDDDNDNDN DN
o S N e e L L e S S e
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(34) pt.son[dirl] < gf.son[l — dirl];
(35) qt.son[l — dirl] « p;

(36) ph.color < red; qt.color < black;
(37) if p = root

(38) then root <+ ¢

(39) else (r, dir2) < pop stack;

(40) rt.son[dir2] < q

(41) fi;

(42) terminate the insertion algorithm
(43) else co we rebalance the tree by a double rotation oc
(44) pt.son[dirl] < rt.son[dir2];

(45) qt.son[dir2] < rf.son[dirl];

(46) r.son[dirl] < g;

(47) ri.son[dir2] < p;

(48) pt.color < red; r.color < black;
(49) if p = root

(50) then root < r

(51) else (p, dir2) « pop stack;

(52) pt.son[dir2] < r

(53) fi;

(54) terminate the insertion algorithm
(55) fi

(56) fi

(57) od.

Program 19
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At this point it is appropriate to make several remarks. We mentioned already
that color flips in red-black trees correspond to splits in (2,4)-tree. What do rota-
tions and double rotations correspond to? They have no equivalent in (2,4)-trees
but correspond to the fact that the subtrees shown in Figure 47 are not “legal”
realizations of nodes with four sons.

/ /

Figure 78. So diirfen 4-Knoten nicht aussehen

If we replaced the third structural constraint by “red components (= sets of
nodes connected by red edges) consist of at most three nodes” then the subtree
of Figure 78 would be legal and the rotations and double rotations would not be
required. However, the code which realizes a split would become more cumbersome.

Deletions from red-black trees can be handled by a similar but slightly longer
program. The program is longer because more cases have to be distinguished. We
leave the details to the reader.

However, there is one important remark that should be made. The algorithms
for red-black trees as described above simulate (2,4)-trees in he following sense.
Let T be a (2,4)-tree and let 7" be the red-black tree which corresponds to 7' as
described above. Suppose now that we perform an insertion into (deletion from) T’
and the same operation on 7". Let T and T be the resulting (2,4)-tree and red-
black tree respectively. Then T corresponds to 77 in the sense described above.
Also, the number of color-flips required to process the operation on 7" is the same
as the number of splits required to process the operation on T'. We will use this
observation frequently in the sequel without explicitly mentioning it. More precisely,
we will derive bounds on the amortized rebalancing cost in (2-4)-trees in the next
section. These bounds holds also true for red-black trees (if the programs above are
used to rebalance them).

Red-black trees can also be used to implement (a, b)-trees in general. We only
have to replace the third structural constraint by: “red components have at least
a — 1 and at most b — 1 nodes” (cf. Exercise 27).

Finally, we should mention that there are alternative methods for rebalancing
(a, b)-trees, b > 2a, and red-black trees after insertions and deletions. A very useful
alternative is top-down rebalancing. Suppose that we want to process an insertion.
As usual, we follow a path down the tree. However, we also maintain the invariant
now that the current node is not a b-node (a node with b sons). If the current node
is a b-node then we immediately split it. Since the father is not a b-node (by the
invariant) the splitting does not propagate towards the root. In particular, when the
search reaches the leaf level the new leaf can be added without any problem. The
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reader should observe that b > 2a is required now because we split b-nodes instead
of (b + 1)-nodes now. The reader should also note that the results presented in
Section 3.5.3.2 below are not true for the top-down rebalancing strategy. However,
similar results can be shown provided that b > 2a + 2 (cf. Exercises 29 and 32).

Top-down rebalancing of (a, b)-trees is particularly useful in a parallel environ-
ment. Suppose that we have several processors working on the same tree. Parallel
searches cause no problems but parallel insertions and deletions do. The reason is
that while some process modifies a node, e.g., in a split, no other process can use
that node. In other words, locking protocols have to be used in order to achieve
mutual exclusion. These locking protocols are fairly simple to design if searches and
rebalancing operations proceed in the same direction (deadlock in a one-way street
is easy to avoid), i.e., if top-down rebalancing is used. The protocols are harder to
design and usually have to lock more nodes if searches and rebalancing operations
proceed in opposite directions (deadlock in a two-way street is harder to avoid),
i.e., if bottom-up rebalancing is used.

We return to the discussion of parallel operations on (a, b)-trees at the end of
Section 5.3.2. In Section 5.3.2 we prove a result on the distribution of rebalancing
operations on the levels of the tree. In particular, we will show that rebalancing
operations close to the root where locking is particularly harmful are very rare.

3.5.3. Advanced Topics on (a,b)-Trees

(@, b)-trees are a very versatile data structure as we will see now. We first describe
two additional operations on (a, b)-trees, namely Split and Concatenate, and then
apply them to priority queues. In the second section we study the amortized re-
balancing cost of (a,b)-trees with regard to sequences of insertions and deletions.
We use the word amortized to denote the fact that the time bounds derived are
valid for sequences of operations. The amortized cost per operation is much smaller
than the worst case cost of a single operation. This analysis leads to finger trees
in the third section. Finally, we introduce fringe analysis, a method for partially
analyzing random (a, b)-trees.

3.5.3.1. Mergable Priority Queues

We introduce two more operations on sets and show how to implement them effi-
ciently with the help of (a,b)-trees. We then describe the implementation of mer-
gable priority queues based on (a, b)-trees.

Name der Operation Effekt der Operation
Concatenate(Sy, S2, S3) S3 + S1 U Sy;

Split(Sy, y, Sa, Ss) Sy {xeS; z<y} and
Sy <« {z € S1; =z > y}.
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Operation Concatenate is only defined if max.S; < minS;. Both operations are
destructive, i.e., sets S7 and Ss (set Sy respectively) are destroyed by an application
of Concatenate (Split).

Theorem 6. Let a > 2 and b > 2a — 1. If sets S; and S» are represented by (a,b)-
trees then operation Concatenate(Sy, S, S3) takes time O(log max(|S;],|Sz2|)) and
operation Split(S1,y, Sa, Ss) takes time O(log |S1])-

Proof: We treat Concatenate first. Let S; and S2 be represented by (a, b)-trees Ty
and T3 of height hy and hs respectively. We assume that the height of a tree and
the maximal element of a tree are both stored in the root. It is easy to see that this
assumption does not affect the time complexity of any of the operations considered
so far.

Assume w.l.o.g that hy > hy. Let r5 be the root of T5 and let v be the node
of depth h; — ho on the right spine of T3, i.e., v is reached from the root of T3 by
following the pointer to the rightmost son (hq — hs) times. Fuse v and 75 and insert
the maximal element stored in T; as the additional key in the combined node. The
combined node has arity at most 2b. If its arity is not larger than b then we are
done. Otherwise we split it in the middle and proceed as in the case of an insertion.
Splitting may propagate all the way to the root. In any case, the time complexity
of the algorithm is O(|hy — ha| + 1) = O(max(hy, hy)) = O(logmax(|Si|,|S2]))-
Also note that the resulting tree has height max(hq, ha) or max(hy, he) + 1. This
completes the description and analysis of Concatenate.

The algorithm for Split(Sy,y, S, S5) is slightly more complicated. Let T} be
an (a,b)-tree for S;. The first thing to do is to search for y and to split all nodes
on the path of search at the pointer which leads to that successor which is also on
the path of search. In the example shown in Figure 48 along the path to leaf 12 is
splitted.

HENORNG
[0 (12)13] (1) (5] (16

AN J
e e

14 Fy

Figure 79. Zerlege(S1,12,S54,Ss)
The splitting process yields two forests Fy and Fy, i.e., two sets of trees. F}
is the set of trees to the left of the path and F5 is the set of trees to the right of

the path. The union of the leaves of F; gives S; and the union of the leaves of
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F, gives S5. We show how to build the tree for Sy in time O(log|S1|). The root
of each tree in Fj is a piece of a node on the path of search. Hence F; contains
at most h; = height(T}) trees. Let Dy,...,Dy,, m < hq, be the trees in F; from
left to right. Then each D; is an (a,b)-tree except for the fact that the arity of
the root might be only one. Let us call such a tree an almost (a,b)-tree. Also
max D; < min D;y; and height(D;) > height(D; ;) for 1 < i < m. Hence we can
form a tree for set S; by executing the sequence of Concatenates of Program 20.

Concatenate(Dy,—1, D, D! _1);

m—1

Concatenate(Dy,—2, D!, _1,D! _5);

Concatenate(Dy, D}, DY)

Program 20

It is easy to see that applying Concatenate to almost (a,b)-trees yields an
almost (a, b)-tree. Hence D] is an (a, b)-tree for set Sy. If the root of D} has arity 1
then we only have to delete it and obtain an (a, b)-tree for Sj.

We still have to analyze the running time of this algorithm. The splitting phase
is clearly O(log |Si|). For the build-up phase let h] be the height of D]. Then the

complexity of the build-up phase is O(|hpm—1 — hpm| + E;n:_f |hi — hiq] +m).
Claim: hi+1 < h;+1 < h,‘+1 +1 < h;.

Proof : Since D;11 is used to form D; , we clearly have h;,; > h;y1. We show
hiy1 < hit1+ 1 < h; by induction on (decreasing) i. For i = m — 2 we have

Prn—1 < max(hm—1,hm) +1 < hm_1+1 < hypa,

since h,, < hy—1 < hyp_2 and for ¢ < m — 2 we have

hiyq < max(hiy1,hi o) +1 (, property of Concatenate)
S hi+1 + 1 y h;+2 S hi+1 by IH)
< h;. , since h;y1 < h; |

Thus

m—2
Pim—1 = han| + Y |hi — ki sy +m
=1

m—2
<hme1—hm + Y (b — hiyy) +m
i=1
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m—2
< By = hm + Y (B = hipy) +m
i=1
<m+hi < m+h +1 = O(log|S1|). 1

In our example F consists of two trees. Concatenating them yields Figure 49.

135711 —

(1] [2 ][4 ][] 0] [12] L) (2] [4] [7] (o] [12]

Figure 80. Nach Konkatenieren von Fj

Concatenate is a very restricted form of set union , da max$S; < minSs
fehlt i.E. gefordert wird. General set union of ordered sets is treated below in 3.5.3.3. How-
ever, Concatenate is good enough to handle the union question on unordered lists.
A very frequent task is the manipulation of priority queues; we will see an example
in Section 4.6 on shortest path algorithms. The name mergable priority queue
refers to the problem of manipulating a set of sets under the operations Insert(z, S),
Min(z, S), Deletemin(S) and Union(Si, Sz, S3). We will add two more operations
later. Note that operation Access is not included in this list. Also note, that oper-
ation Access was the main reason for storing the elements of a set in sorted order
in the leaves of an (a,b)-tree. We give up this principle now.

Definition: A set S, |S| = n, is represented as follows in an unordered (a; b)-tree
T with n leaves:

1) the leaves of T contain the elements of S in some order

2) each node v of T contains the minimal element in the subtree with root v and
a pointer to the leaf containing that element. ]

Operation Min(.S) is trivial in this data structure; it takes time O(1). For Deletemin(S)Jj
we follow the pointer from the root to the minimal element and delete it. Then
we walk back to the root, rebalance the tree by fusing and sharing and update
the min values and pointers on the way. Note that the min value and pointer of
a node can be found by looking at all its sons. Thus Deletemin(S) takes time
fehlt i.E. O(alog|S|/loga). (Dabei haben wir b = O(a) angenommen.) We include factor a
because we will see that other operations are proportional to O(log |S|/loga) and
because we will exploit that fact in 4.7.
Insert(z, S) is a special case of Union where one of the sets is a singleton. Fi-
nally Union(S1, S2, S3) reduces to Concatenate and takes time O(alog(max |S1|,|S2|))/log a).}

Version: 18.10.99 Time: 21:00 -97-



98 Chapter III. Sets

Delete in its pure form cannot be supported because there is no efficient method
of finding an element. However, a modified form of Delete is still supported. Given
a pointer to a leaf that leaf can be deleted in time O(alog|S|/loga) as described
for Deletemin above. We call this operation Delete*.

Finally we consider operation Demote* which takes a pointer to a leaf and
an element z of the universe. Demote* is only applicable if z is smaller than the
element currently stored in the leaf, and changes (demotes) the content of that leaf
to z. Demote* takes time O(log |S|/loga) because one only has to walk back to

anders the root, alle Min-Werte grofler als x auf diesem Pfad durch z ersetzen und die
Min-Zeiger richtigstellen mufl. We summarize in:

Theorem 7. Let a > 2, b > 2a — 1 und b = O(a). If sets are represented by
i.E.anders unordered (a,b)-trees then dann haben die folgenden Operationen die angefiihrten

Laufzeiten:
operation running time
Min(S) 0(1)
Deletemin(.S) O(alog|S|/loga)
Insert(x, S) O(alog|S|/loga)
Union(S’l,Sz,Sg) O(alog(|51| + |52|)/ loga)
Delete*( , S) O(alog|S|/loga)
Demote*(, ,S) O(log|S|/loga) 1

3.5.3.2. Amortized Rebalancing Cost and Sorting Presorted Files

In this section we study the total cost of sequences of insertions and deletions in
(a, b)-trees under the assumption that we start with an initially empty tree. We
will show that the total cost is linear in the length of the sequence. The proof
follows a general paradigm for analyzing the cost of sequences of operations, the
bank account paradigm, which we already considered in the proof of Theorem 4
in 3.56.1. We associate a bank account with the tree; the balance of that account
measures the balance of the tree. We will then show that adding or pruning a
leaf corresponds to the withdrawal of a fixed amount from that account and that
the rebalancing operations (fusing, sharing and splitting) correspond to deposits.
Finally using the obvious bounds for the balance of the account, we obtain the
result.

Version: 18.10.99 Time: 21:00 —98—



3.5.8.2. Amortized Rebalancing Cost ... 99

Theorem 8. Let a > 2 and b > 2a. Consider an arbitrary sequence of i insertions
and d deletions (n = i + d) into an initially empty (a,b)-tree. Let SP be the total
number of node splittings, F' the total number of node fusings and SH be the total
number of node sharings. Then

a) SH<d<n.
c
2¢—1)-SP -F < -
b) (2¢—1)-SP+¢ _n+c+a+c_1
wobei ¢ = min(min(2a — 1, [(b+ 1)/2]) — a,b — max(2a — 1, [ (b + 1)/2])).
Note that ¢ > 1 for a > 2 and b > 2a and hence SP+ F < n/c+ 1+ (n—2)/a.

'(i_d_2)7

Proof: a) Node sharing is executed at most once for each deletion. Hence SH < d.
b) We follow the paradigm outline above. For a node v (unequal the root) of an
(a, b)-tree let b(v) of v be

b(v) = min(p(v) — a,b — p(v), c),

where ¢ is defined as above. Note that ¢ > 1 for a > 2 and b > 2a and that
p(v") = [(b+1)/2] and p(v") = [(b+ 1)/2] implies b(v') + b(v"") > 2¢ — 1 and that
p(v) = 2a — 1 implies b(v) = c. For rot r (r will always denote the root in the
sequel) the balance is defined as

b*(r) = min(p(r) — 2,b — p(r), c).
Definition:

(i) (T,v) is a partially rebalanced (a; b)-tree where v is a node of T if

a) a—1<pv) <b+1 ifv#r
1< p(v) <b+1 ifv=r,

b) a<p(w)<b for all w # v, r;
c) 2< p(r) <0 ifo#r.

(ii) Let (T,v) be a partially rebalanced (a,b)-tree. Then the balance of T is
defined as the sum of the balance of its nodes

BT)=b"(r)+ Y. bv) "

v is node of T'
v#r

Fact 1. Let T be an (a,b)-tree. Let T" be obtained from T by adding a leaf or
pruning a leaf. Then b(T') > b(T') — 1.

Proof: obvious. 1
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Fact 2. Let (T,v) be a partially rebalanced (a, b)-tree with p(v) = b+ 1. Splitting
v and expanding v’s father x generates a tree T' with b(T") > b(T) + (2¢ — 1).
Proof: Wir unterscheiden zwei Falle.

Case 1: v is not the root of T'.

Wegen p(v) =b+1 ist b(v) = —1. Let = be the father of v. v is split into nodes, v’
and v" say, of arity |(b+ 1)/2] and [(b+ 1)/2] respectively, and the arity of z is
increased by one. Hence the balance of x decreases by at most one and we have

B(T") > b(T) + b(v') + b(v") — b(v) — 1.

Furthermore, b(v) = —1 and b(v') +b(v") > 2¢—1 by the remark above. This shows

Case 2: v is the root of T'.
Wegen p(v) = b+ 1 ist b*(v) = —1. Then the father z of v is newly created and
hence has arity 2 after the splitting of v. Hence

b(T'") > b(T) + b(v') + b(v") — b*(v) + b*(x)

> b
> B(T) + (2¢ — 1) — (=1) +0. I

Fact 3. Let (T,v) be a partially rebalanced (a, b)-tree with p(v) =a—1andv # r
the root of T'. Let y be a brother of v an let x be the father of v.

a) If p(y) = a then let T' be the tree obtained by fusing v and y and shrinking of
x. Furthermore, if x is the root and has degree 1 after the shrinking, then x is
deleted. Then b(T") > b(T) + c.

b) If p(y) > a then let T' be the tree obtained by sharing, i.e., taking 1 son away
from y and making it son of v. Then b(T") > b(T).
Proof: a) y and v are fused to a node, say w, of arity p(w) = 2a — 1.

Case 1: x is not the root of T.
Then the arity of = is decreased by one and hence the balance of x is decreased by
at most one. Weiterhin ist b(w) = ¢. Hence
o(T") > b(T) + b(w) — b(v) — b(y) — 1
(T)4+c—(—-1)—0—-1
b(T) +c.

v

Version: 18.10.99 Time: 21:00 -100-



fehlt

3.5.83.2. Amortized Rebalancing Cost ... 101

Case 2: x is the root of T'.

If p(x) > 3 before the fusing then the analysis of case 1 applies. Otherwise we have
p(z) = 2 and hence b*(z) = 0 before the fusing, and z is deleted after the fusing
and w is the new root. , wobei b*(w) = ¢. Hence

b(T') = b(T) + b*(w) — b(v) — by) — b ()
B(T) +c— (~1) —0—0
b

(T)+c+ 1.

In either case we have shown b(T") > b(T) + c.

b) Taking away one son from y decreases the balance of y by at most one. Giving
v (of arity a — 1) an additional son increases b(v) by one. Hence b(T") > b(T). 1

Fact 4. Let T be an (a,b)-Baum with m leaves. Then

c

Proof: For 0 < j < ¢, let m; be the number of interior nodes unequal the root of
degree a + j and let m,. be the number of interior nodes unequal the root of degree
at least a + ¢. Then

b(T) §c+Zj-mj,
j=0

since the balance of the root is at most ¢. Furthermore,

Cc Cc
2+Z(a—|—j)~m]—§m+2m]~

=0 =0

since the expression on the right side is equal to the number of edges (= number of
leaves + non-root nodes) in T and the expression on the left hand side is a lower
bound on that number. Hence

c

Z(a—i—j—l)-mj < m-2.
j=0

Since
jlla+ji—1) < ¢/(a+c—1)
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for 0 < j < ¢ we conclude

BT)<c+ Y j-m;
j=0

In order to finish the banking account paradigm we need to relate deposits, with-
drawals and initial and final balance. Since we start with an empty tree Tp, the
initial balance b(Tp) is 0. Next we perform 7 insertions and d deletions and obtain T,
(n =i+d). Since T, has ¢ —d leaves we conclude b(T,) < c+(i—d—2)c/(a+c—1).
Also the total withdrawals are at most n by Fact 1 and the total deposits are at
least (2¢ — 1) - SP+ ¢ - F by Facts 2 and 3. Hence

b(Ty) + (2¢—1) - SP+c- F—n < b(Ty)

and thus
(2¢c—1)-SP+c-F<n+c+(i—d—2)-c/(a+c—1). 1

Theorem 9 establishes an O(1) bound on the amortized rebalancing cost in (a, b)-
trees for b > 2a. In that respect it is a companion theorem to Theorem 4 on
weight-balanced trees. Let us consider som concrete values of ¢ and b. For a = 2,
b =4 we have ¢ = 1 and hence SP+ F < 3n/2. For (4,13)-trees we have ¢ = 3 and
hence SP+ F < 7n/12 + 1/2. We should also mention that Theorem 9 does not
hold if b = 2a — 1 as can be seen from the example shown in Figure 50. rebalancing
always runs all the way to the root. However, Theorem 9 is true for b = 2a — 1 if
one considers insertions only (Exercise 30).

Einfiigen eines neuen

rechtesten Blattes
— >

-~

Streichen des
rechtesten Blattes

a

Figure 81. Schlechtes Verhalten von (2,3)-Baumen

Theorem 9 has an interesting application to sorting, more precisely to sorting
presorted files. Let z1,...,x, be a sequence which has to be sorted in increasing
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order. Suppose, that we know that this sequence is not random, but rather pos-
sesses some degree of sortedness. A good measure for sortedness is the number of
inversions. Let

fi=Hz;; j>iand z; <z}

and F =3 " fi. Then 0 < F < n(n—1)/2, F is called the number of inversions
of the sequence z1,...,x,. We take F' as a measure of sortedness; F = 0 for a
sorted sequence, F = n? for a completely unsorted sequence and F < n? for a
nearly sorted sequence. These remarks are not meant to be definitions. We can
sort sequence zi,...,%, by insertion sort, i.e., we start with the sorted sequence
x, represented by an (a,b)-tree and then insert z,_1,Z,_2,...,21 in turn. By
Theorem 5 this will take total time O(nlogn). Note however, when we have sorted
Tit1,--., Ty already and next insert x;, then x; will be inserted at the (f; + 1)-th
position from the left in that sequence. If F < n2, then f; < n for most i and
hence most x;’s will be inserted near the beginning of the sequence.

What does this mean for the insertion algorithm? It will move down the left
spine (the path to the leftmost leaf) for a considerable amount of time and only
branch off it near the leaf-level. It is then cheaper to search for the point of departure
from the left spine by moving the spine upwards from the leftmost leaf. Of course,
this requires the existence of son-to-father pointers on the left spine.

Let us consider the insertion of x; in more detail. We move up the left spine
through nodes vy,vs,vs,... (v1 is the father of the leftmost leaf and v;1; is the
father of v;) until we hit node v; with z; < k1(v;), i.e., z; has to be inserted into
the leftmost subtree of node v; but not into the leftmost subtree of node v;_1, i.e.,
either j =1 or #; > k1(vj—1). In either case we turn round at v; and proceed as in
an ordinary (a, b)-tree search. Note that the search for z; will cost O(1+height(v;))
time units. Since fur § > 3 all leaves stored in the subtree rooted at v;_» must have
content less than x; we conclude that f; > number of leaves in subtree rooted at
Vj_g > 2¢"(¥i-2)=1 by Lemma 4a) and hence

height(v;) = O(log f;).

Die Fille f; = 0 und f; = 1 vernachléssigen wir der Einfachheit halber, denn sie
andern nichts am Ergebnis. The actual insertion of z; costs O(s;) time units, where
s; is the number of splits required after adding a new leaf for z;. This gives the
following time bound for the insertion sort

n

>_[000g £+ O(si)] = O(n+ 3 log fi+ 3 si)

i=1

= O(n +nlog(F/n))
since Y log f; = log[] f; and (] £:)Y/™ < 3 fi/n (the geometric mean is never
larger than the arithmetic mean) and since > s; = O(n) by Theorem 9. Thus we

have
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Theorem 9. A sequence of n elements and F inversions can be sorted in time
O(n + nlog(F/n)).

Proof: By the preceding discussion. ]

The sorting algorithm (A-Sort) of Theorem 10 may be called adaptive. The more
sorted sequence z1,...,%, is, the faster is the algorithm. For F = nlogn, the
running time is O(nloglogn). This is in marked contrast to all other sorting al-
gorithms, e.g., Heapsort, Quicksort, Mergesort. In particular, it will be faster than
all these other algorithms, provided that F' is not too large. Eine sorgfaltige, nicht
asymptotische Analyse von A-Sort geht iiber den Rahmen dieses Buches hinaus; der
Leser findet sie in Mehlhorn/Tsakalidis (82). Dort wird gezeigt, daB A-Sort besser
als Quicksort ist, wenn F < 0.02n'57.

Let us return to Theorem 9 and its companion Theorem 4 on weight-balanced
trees. In the proof of Theorem 4 we also established that most rotations and double
rotations occur near the leaves. We will now proceed to show a similar theorem for
height-balanced trees. We need some more notation.

We say that a splitting (fusing,sharing) operation occurs at height A, if node
v which is to be split (which is to be fused with its brother y or shares a son with its
brother y) has height h; the height of a leaf being 0. A splitting (fusing) operation
at height h expands (shrinks) a node at height A + 1. An insertion (deletion) of a
leaf expands (shrinks) a node at height 1.

Let (T,v) be a partially rebalanced (a, b)-tree. We define the balance of tree T
at height h as:

Z b(v) if h # height(Wurzel);
bh (T) = v node of T' of height h

b*(r) if h = height(Wurzel),
where b and b* are defined as in the proof of Theorem 9.
Theorem 10. Let a > 2 and b > 2a. Consider an arbitrary sequence of i insertions
and d deletions (n = i + d) into an initially empty (a,b)-tree. Let SPy, (Fn, SHpy)
be the total number of node spittings (fusings, sharings) at height h. Then

SPy, + Fp + SHy, < 2(c 4+ 2)n/(c+ 1)"

where c is defined as in Theorem 9.

Proof: The first part of the proof parallels the proof of Theorem 9.

Fact 1. Let T be an (a,b)-tree. Let T be obtained from T by adding or pruning
a leaf. Then b1(T") > b:(T) — 1 and by (T") = by (T') for h > 1. 1
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Fact 2. Let (T,v) be a partially rebalanced (a, b)-tree with p(v) = b+ 1 and height
of v equal h. Splitting v und Expandieren des Vaters von v generates a tree T' with
ba(T") = ba(T) + 2¢, bp4a(T") 2 b1 (T) — 1 and by(T") = b(T) for L # h,h +1. B

Fact 3. Let (T,v) be a partially rebalanced (a, b)-tree with p(v) = a — 1, height of
v equal h and v # r the root of T. Let y be a brother of v and let x be the father
of v.

a) if p(y) = a then let T' be the tree obtained by fusing v and y and shrinking
x. Furthermore, if z is the root of T and has degree 1 after the shrinking,
then z is deleted. Then by(T") > bp(T) + c+ 1, bp+1(T") > bp+1(T) — 1 and
b (T") = b(T) for I # h,h + 1.

b) if p(y) > a then let T' be the tree obtained by sharing. Then b)(T") > b(T)
for all 1. 1

The proofs of Facts 1 to 3 are very similar to the proof of the corresponding facts
in Theorem 9 and therefore left to the reader.

Fact 4. Let T), be the tree obtained after i insertions and d deletions from Ty, the
initial tree. Let SPy+ Fy =i+ d. Then for allh > 1

bn(Tn) > ba(To) — (SPh-1+ Fa—1) + (2¢- SPp + (¢ + 1) - Fp).

Proof: Facts 1-3 imply that splits (fusings) at height h increase the balance at
height h by 2¢ (¢ + 1) and decrease the balance at height A + 1 by at most 1. ]

Since by (Tp) = 0 for all h (recall we start with an empty tree) and 2¢ > ¢+ 1 (recall
that ¢ > 1) we conclude from Fact 4

bn(Tn) = SPh_1+ Fh_
+ .
c+1 c+1

SPp + Fp, <

and hence

h-1
bh—l(Tn) SPO + Fg
P+ Fy <
SPnt "—;(cﬂ)m T s

n bi(Ty) - (c+ 1)t
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Fact 5. Forallh > 1:

sz e+ 1) <(c+1)-(i—d)<(c+1)n

Proof: Let m;(h) be the number of nodes of height h and degree a +j, 0 < j < ¢,
and let m.(h) be the number of nodes of height h and degree at least a + ¢. Then

[

(%) Y (a+j)-m(h) < Zma

j=0

for h > 2 since the number of edges ending at height h — 1 is equal to the number
of edges emanating at height h. Setting Z;ZO m;(0) = ¢ — d (the number of leaves
of T,) the inequality holds true for all h > 1. Using b;(T},) < Z;ZOJ' -m;(l) and
relation (%) we obtain

<(c+1)-(i—ad),
since a/(c +1) > 1 and 37, m;(0) =i —d. 1
Combining the bound of Fact 5 with the bound for SP, + F;, we obtain
SPy, + Fy < 2n/(c+1)h.
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With respect to sharing, note that fusing at height h—1 either completes rebalancing
or is followed by a sharing or fusing at height h. Ferner geht einem Stehlen auf Hohe
h > 1 stets ein Verschmelzen auf Hohe A — 1 und einem Stehlen auf Héhe 1 stets
eine Streiche-Operation voraus. Hence

SHp < Fp1 — Fp < SPp_1 + Fpo1 < 2n/(c+ 1)1

for h > 2 and
SH, < SH; + F; <d.

Combining everything we obtain
SPy, + Fp + SHy, < 2(c 4+ 2)n/(c+ 1)"
for all h > 1 and Theorem 11 is proven. ]

SPp + Fy, + SHy, is the number of insertions and deletions which require rebalancing
up to the height h or higher. Theorem 11 shows that this number is exponentially
decreasing with h (recall ¢ > 1). This is very similar to Lemma 2 of 3.5.1. Again
note that the proof of Theorem 11 relies heavily on the fact that b > 2a. In fact,
Theorem 11 is not true for b = 2a — 1, as the example following the proof of
Theorem 9 shows. There SP;, + Fj, + SHy, = n for all h.

We complete this section with a brief sketch of an application of Theorem 11:
(a, b)-trees in a parallel environment. Some applications, in particular real-time
data bank applications, require a very high transaction rate. Very high transaction
rates can only be supported by concurrent tree manipulation, i.e., by many pro-
cessors working on the same tree. Concurrent searches cause no problem; however,
concurrent insertions/deletions do. Note that the rebalancing operations (splitting,
fusing, sharing) require locking of nodes, i.e., whilst node v is rebalanced by one
process, the other processes cannot use node v and have to wait if they want to use
it. Also note, that locking node v will (on the average) block many other processes
if v is close to the root and that it will hardly block any other process if v is close to
the leaves. Theorem 11 guarantees that most rebalancing operations occur close to
the leaves and that therefore blocking of processes is no insurmountable problem.
We refer the reader to Bayer/Schkolnik (77) for detailed discussion.

3.5.3.3. Finger Trees

In this section we generalize from (a, b)-trees to finger trees. In the previous section
we have seen that it is sometimes better to start the search in an (a, b)-tree at a leaf.
This led to A-sort. Finger trees grow out out of that observation and generalize it.

Recall that we used (a, b)-trees to represent ordered lists. A finger into a list
is a pointer to an element of the list. (Im folgenden identifizieren wir oft den Finger
auf ein Element mit dem Element selbst.) Dies wird jeweils aus dem Kontext klar.
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Fingers may be used to indicate areas of high activity in the list and we aim at
efficient searches in the vicinity of fingers. If the list is represented as the leaves
of an (a,b)-tree then a finger is a pointer to a leaf. (a,b)-trees, as defined above,
do not support efficient search in the vicinity of fingers. This is due to the fact
that neighboring leaves may be connected only by a very long path. Therefore we
introduce level-linked (a, b)-trees.

In level-linked (a;b)-trees all tree edges are made traversable in both di-
rections (i.e., there are also pointers from sons to fathers); in addition each node
has pointers to the two neighboring nodes on the same level. Figure 51 shows a
level-linked (2,4)-tree for list 2, 4, 7, 10, 11, 15, 17, 21, 22, 24.

Figure 82. Ein niveau-verbundener (2,4)-Baum

A finger tree is a level-linked (a, b)-tree with pointers to some of its leaves, the
fingers. Level-linked (a, b)-trees allow very fast searching in the vicinity of fingers.

Lemma 7. Let p be a finger in a level-linked (a,b)-tree T. A search for a key k
which is d keys away from p takes time ©(1 + logd).

Proof: We first check whether k is to the left or right of p, say k is to the right of
p. Then we move towards the root, say we reached node v. We check whether k is
a descendant of v or v’s right neighbor on the same level. If not, then we proceed
to v’s father. Otherwise we turn round and search for k in the ordinary way.

Suppose that we turn round at node w of height h. Let us be that son of w
which is on the path to the finger p. Then all descendants of u’s right neighbor lie
between the finger p and key k. Hence the distance d is at least a®~! and at most
2b". The time bound follows.

Lemma 8. A new leaf can be inserted in a given position of a level-linked (a, b)-tree
in time ©(1 + s), where s is the number of splittings caused by the insertion.

Proof : This is obvious from the description of the insertion algorithm in 3.5.2. Note
that it is part of the assumption of Lemma 8 that we start with a pointer to the leaf
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which is to be split by the insertion. auf das Blatt beginnen, neben dem eingefugt
werden soll. So no search is required, only rebalancing. ]

Lemma 9. A given leaf can be deleted from a level-linked (a, b)-tree in time ©(1+
f), where f is the number of node fusings caused by the deletion.

Proof: Obvious from the description of the deletion algorithm. Again note that it
is part of the assumption of Lemma 9 that we start with a pointer to the leaf which
has to be deleted. ]

Lemma 10. Creation or removal of a finger at a given leaf in a level-linked (a, b)-
tree takes time ©(1), wenn das Ziel des Fingers bekannt ist.

Proof: Obvious. ]

We can now refer to Theorem 9 and show that although the search time in level-
linked (a,b)-trees can be greatly reduced by maintaining fingers, it still dominates
the total execution time, provided that b > 2a.

Theorem 11. Let a > 2 and b > 2a. Then any sequence of searches, finger
creations, finger removals, insertions and deletions starting with an empty list takes
time

O(total cost of searches)

if a level-linked (a,b)-tree is used to represent the list. Dabei wird vorausgesetzt,
daB8 bei allen Operationen (aufBer bei Suche) das Blatt, an dem die Operation
auszufiihren ist, durch eine vorhergehende Suche bestimmt wird.

Proof : Let n be the length of the sequence. Since every operation has to be preceded
immediately by a search, the total cost for the searches is (n) by Lemma 7. Die
Gesamtkosten der Suchen sind Q(n). On the other hand, the total cost for the
finger creations and removals is O(n) by Lemma 10 and the total cost of insertions
and deletions is O(n) by Lemmas 8 and 9 and Theorem 9. 1

Theorem 10 on sorting presorted files is a special case of Theorem 12. Theorem 12
can be generalized in two directions. We can start with several empty lists and add
Concatenate to the set of operations (Exercise 33) or we can start with a non-empty
list. For the latter generalization we also need a more general version of Theorem 9.
We need a bound on the total rebalancing cost even if we start with a non-empty
tree.

Let T be any (a, b)-tree. Suppose now that we execute a sequence of insertions
and deletions on T'. It is intuitively obvious that only nodes are affected (this is
made precise in Fact 1 below) which lie on a path from one of the inserted or deleted

Version: 18.10.99 Time: 21:00 -109-



110 Chapter III. Sets

leaves to the root. We will derive a bound on the number of such nodes in Fact 5.
Of course, only these nodes can change their balance and hence their number gives
a bound on the difference of the balance of the initial tree and the final tree. An
application of the bank account paradigm will then give us a bound on the number
of splittings, fusings and sharings (Fact 4).

In order to facilitate the following discussion we introduce the following con-
vention: if a leaf is deleted from an (a, b)-tree, it (conceptually) is not deleted but
turns into a phantom. The rebalancing algorithms do not see the phantoms, i.e.,
the arity of nodes is solely determined by the non-phantom leaves. In the following
Figure 52 phantom leaves are shown as dashed boxes.

Streichen des
4. Blattes
T

® ein Phantom

3. Blattes und

Streichen des
Verschmlezen

Einfiigen eines

neuen 3. Blattes
-

Phantome

neuen 4. Blattes und

Einfiigen eines
Spalten

Figure 83. Phantome in einem (2,4)-Baum

Theorem 12. Let a > 2 and b > 2a and let T be an (a,b)-tree with n leaves.
Suppose that a sequence of s insertions and t deletions is performed and tree T'
is obtained. Then tree T' has n + s leaves, t of which are phantoms. Number the
leaves from 1 to n+ s from left to right. Let p1,ps,...,ps+: be the positions of the
s + t new leaves and phantoms in T', p; < py < --- < ps4¢. Let SH (SP, F) be
the total number of sharings (splittings, fusings) required to process this sequence.
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Then

s+t
SH+ SP+ F<9(s+1t) + 4 (Lloga(n +5)] + Y _[log,(pi — pi—1 + 1)J).

Proof: We first introduce a marking process which (conceptually) marks nodes
during the rebalancing process.

Adding a leaf: When a new leaf is added we mark the new leaf and its father.

Splitting a node: Suppose that node v (v will be marked at this point and has a
marked son) is split into nodes v’ and v". Then v’ is marked if it has a marked son,
v"" is marked if it has a marked son and we mark the father of v’ and v".

Pruning a leaf: We mark the phantom and its father.

Fusing: Suppose that node v (v has a marked son at this point) is fused with its
brother y. Then we mark v and its father.

Sharing: Suppose that node v (v has a marked son at this point) is given a son
from its brother y. Then we mark v and we unmark y (if it was marked).

Fact 1. If interior node v is marked then it has a marked son.
Proof: Obvious. ]

Since the only leaves which are marked are the new leaves and the phantoms we
conclude from Fact 1 that all marked nodes lie on paths from the new leaves and
the phantoms to the root. In Fact 5 we derive an upper bound on the number of
such nodes.

Next we define some new concepts: critical and noncritical splitting operation
and marked balance. A splitting of node v is critical if v’s father exists and has
arity b. All other splittings are noncritical. Let SPC be the number of critical
splittings and let SPNC be the number of noncritical splittings and let SH (F) be
the number of sharings (fusings).

Fact 2. SPNC+ SH< s+t.
Proof: A sharing or noncritical splitting terminates rebalancing. 1

The marked balance of a (a,b)-tree T is the sum of the balances of its marked
nodes, i.e.,

mb(T) = Z b(w) + if root is marked then b*(r) else 0 fi,

w marked node of T
w#root of T'
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where the balance of a node w # r is defined as follows.

-1 if p(w) € {a —1,b+ 1};
0 if p(w) = b;
2 if p(w) =2a -1,
1  ifa<p(w)<band p(w) #2a —1
and for the root
-1 ifp(r) € {—I—l b+ 1}

() =1 9 if p(r) = 2a—1;

1 r)

Fact 3. Let T' be obtained from T by

a) adding a leaf, then mb(T") > mb(T) — 2;
b) pruning a leaf, then mb(T") > mb(T) — 2;
¢) noncritical splitting, then ~ mb(T") > mb(T);
d) critical splitting, then mb(T") > mb(T) + 1;
e) fusing, then mb(T") > mb(T) + 2;
f) sharing, then mb(T") > mb(T).

Proof : a) Suppose we add a leaf and expand v. Then v is marked after adding the
leaf and may be marked or not before. Hence

mb(T") = mb(T) + b(v after adding leaf)
— [b(v before adding leaf)],

where the expression in square brackets only occurs if v is marked before adding
the leaf. In either case it is easy to see that mb(T") > mb(T) — 2.

b) Similar to part a).

c) Suppose we split node v (which is marked at this point) into nodes v' and v"”
and expand v’s father . Since the splitting is noncritical we have p(z) < b before
the splitting. Also, at least one of v’ and v"” will be marked after the splitting, x
will be marked after the splitting,  may be marked before or not. Hence

mb(T") > mb(T) + min(b(v'), b(v")) + b(z after splitting)
— b(v) — [b(z before splitting)],
where the expression in square brackets only occurs if z was marked before splitting.

Since min(b(v'),b(v")) > 1 (obviously [(b+ 1)/2] < b) and since the balance of z
decreases by at most two we conclude

mb(T') > mb(T) +1+0— (—1) — [2].
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d) Argue as in Case c) but observe that p(x) = b before splitting. Therefore

mb(T") > mb(T) + 1+ (=1) — (-1) — [0]
> mb(T') + 1.

e) Suppose that we fuse v and its brother y and shrink their common father z. If
x is the root and has arity 1 after the fusing then z is deleted. Also v and z are
marked after the fusing and at least v is marked before. y and = may be marked
before. Hence

mb(T") > mb(T) + b(v after fusing)
+ b(z after fusing) — b(v before fusing)
— [b(z before fusing)] — [b(y before fusing)]
> m (T)+2+( 1) = (=1) —[0] - [0]
> mb(T) +
since the balance of z can decrease by at most one.

f) Suppose that v takes away a son from y. Then v is marked before and after the
sharing, y is not marked after the sharing and may be marked or not marked before
the sharing. Also, the balance of y before the sharing is at most 2. Hence
mb(T") > mb(T) + b(v after sharing)
— b(v before sharing) — [b(y before sharing)]
o(T)+1—(-1)—[2]
b(T).

\Y,
33

Suppose now that we start with an initial empty tree T' (no node is marked) and
perform s insertions and t¢ deletions and obtain 7, (n = s +t).

Fact 4.

a) mb(T,) > SPC+2F—2-(s+1t).

b) mb(T,) < 2m, where m is the number of marked nodes of T,,.

¢) All marked nodes lie on a path from a new leaf or phantom to the root.

d) SPC+ F < 2:(s+t)+ 2-(number of nodes on the path from the new leaves
and phantoms to the root).

Proof: a) follows immediately from Fact 3, b) follows immediately from the defi-
nition of marked balance, c¢) follows from Fact 1 and d) is a consequence of a), b)

and c). 1
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We still have to derive a bound on the number of marked nodes in tree T;,. In
Fact 5 we use the name (a, 00)-tree for any tree where each interior node unequal
the root has at least a sons and where the root has at least 2 sons.

Fact 5. Let T be an (a,0)-tree with N leaves. Let 1 <p; <ps < --- <p, < N.
Let m be the total number of nodes on paths from the root to the leaves with
positions p;, 1 < i <r. Then

m < 3r+2 (|_loga N|+ i[loga(pi —Dpi-1+ l)J)

=2

Proof: For every node v label the outgoing edges 0, ..., p(v) — 1 from left to right
as shown in Figure 53.

Figure 84. Markierung der in v ausgehenden Kanten

Then a path from the root to a node corresponds to a word over alphabet
{0,1,2,...} in a natural way.

Let A; be the number of edges labelled 0 on the path from the root to leaf
pi, 1 < i < r. Since an (a,00)-of height h has at least 2a"~! leaves, we conclude
0 < A; <1+ |log, N/2]. Furthermore, let /; be the number of interior nodes on
the path from leaf p; to the root which are not on the path from leaf p;_1 to the
root. Then

m <1+ [log, N/2| + ) 1.
=2

Consider any i > 2. Let v be the lowest common node on the paths from leaves
pi—1 and p;, p;_1 # pi, to the root. Then edge k; is taken out of v on the path to
pi—1 and edge k2 > ki is taken on the path to p;. Note that the path from v to leaf
p;—1 as well as to leaf p; consists of [; + 1 edges, da alle Blatter gleiche Tiefe haben.

Claim: A; > A;_1 +1; — 2|log,(p; — pi—1 +1)] — 3.

Proof: Fur p;_1 = p; ist die Behauptung klar. Sei p;_1 # p;. The paths from p;
and p; to the root differ only below node v. Let s be minimal such that

a) the path from v to p;_1 has the form k;af with || = s and «a contains no 0.

b) the path from v to p; has the form k50!%ly for some v with |y| = s.
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Note that either 3 starts with a 0 or -y starts with a non-zero and that |a|+ |8 = ;.
Figure 54 illustrates the situation. Hence

A;=A;_1+if k; =0 then —1 else 0 fi
+ |
+ number of zeroes in «y
— number of zeroes in
>Ai-1—14+(;—s)+0—s.

Figure 85. Zur Definition von s

It remains to be shown that s <1+ |log,(p; —pi—1+1)|. This is certainly the case
if s = 0. Suppose now that s > 0. We noted above that either 8 starts with a zero
or that « starts with a non-zero. In the first case consider node w which is reached
from v via kyal, in the second case node w which is reached from v via k20/210. All
leaf descendants of w lie properly between p;_; and p;. Furthermore, w has height
s — 1 and hence at least a®*~! leaf descendants. This proves

' <pi—pi1—1<pi—pi_1+1

and hence
s <1+ [log,(pi —pi-1+1)].

Damit ist die obige Behauptung bewiesen. ]

Using our claim repeatedly, we obtain
r T
A > Av+ ) =2 [log,(pi —pica +1)] =3+ (r—1).
i=2 i=2
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Since A, <1+ |log, N/2] and A; > 0, this proves
ili <3r—3+1+ [log, N/2|+2- itloga(pi —pi-1+1)]
i=2 i=2
and hence
m < 3 — 1+ 2llog, N/2) +2+ 3" loga(ps — pics + 1))
i=2
This proves Fact 5. 1

At this point, we combine everything and obtain a bound on the number of rebal-
ancing operations.
SH+ SP+ F=SH+ SPNC+ SPC+ F
<s+t+SPC+F (by Fact 2)
<3(s+1t)+2m, (by Fact 4d)
where m is the total number of nodes on the paths from the new leaves and phantoms

to the root in the final tree. Since the final tree is an (a, c0)-tree and has n + s
leaves and phantoms leaves, we conclude from Fact 5

s+t
m < 3(s +) +2(|loga(n + )] + > lloga(ps —pi-1 +1)))
i=2
and hence
s+t
SH+ SP+F<9(s+1t)+ 4(Lloga(n +5)|+ ) _|log, (pi — pi—1 + 1)J).
i=2
This proves Theorem 13. ]

Theorem 13 provides us with a bound on total rebalancing cost if we start with a
non-empty (a,b)-tree. We use Theorem 13 to generalize Theorem 12 to the case
where we start with a non-empty list.

Theorem 13. Let a > 2 and b > 2a. Let L be a sorted list of n elements repre-
sented as a level-linked (a,b)-tree with one finger established. Then any sequence
of searches, finger creations, Fingerentfernungen, insertions and deletions, the total
cost of the sequence is

O(log(n + s) + total cost of searches),
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wobei s die Anzahl der Einfiige-Operationen ist.

Proof: Let S be any sequence of search, finger creations, Fingerentfernungen, in-
sertions and deletions containing exactly s insertions and ¢ deletions. Let T'f;,q1 be
the (a,b)-tree, which represents list L after S is performed. Assume that we keep
deleted elements as phantoms. Let the n + s leaves (real leaves and phantoms) of
Tfina be named 1,...,n + s from left to right. Assign a label [(p) to each leaf
p, whose value is the number of leaves lying strictly to the left of p which were
present initially and which did not become phantoms. These labels lie in the range
[0..n—1].

Consider the searches in S which leads either to the creation of a new finger or
the insertion or deletion of an element. Call an element of L accessed if it is either
the source or the destination of such a search. (We regard an inserted item as the
destination of the search which discovers where to insert it). Let p; < ps < -+ < p;
be the accessed items.

We shall consider graphs whose vertex set is a subset of {p;; 1 <i <I[}. We
denote an edge joining p; < p; in such a graph by p;—p; and we define the cost of
this edge to be max([log(I(p;) —{(ps)+1)],1). For each item p; (except the initially
fingered item) let g; be the fingered item from which the search for p; started. Each
g; is also in {p;; 1 < i <1}, since each finger except the first must be established
by a search. Consider the graph G with vertex set {p;; 1 < i < [} and edge set
{(gi,pi); 1 <i<1and p; is not the originally fingered item}.

Some constant times the sum of edge cost in G is a lower bound on the total
search cost, since |I(p;) — I(¢;)] + 1 can only underestimate the actual distance
between ¢; and p; when p; is accessed. We shall describe a way to modify G,
without increasing its cost, until it becomes

T1—Ty— Tk

where 7y < ry < --- <y are the k = s+t inserted or deleted leaves. Since the cost of
this graphis } 5, ;) max([log({(r;)—I(ri-1)+1)],1) > %(k+zl<i§k log(r;—ri—1+
1)), und somit dominieren die Suchkosten den ersten und den dritten Summanden
der oberen Schranke aus Satz 13. (Fiir die Ungleichung beachte man, da§ aus r; =
ri—1 folgt I(r;) = l(r;—1) und daB aus r; > r;_q folgt I(r;) — l(ri—1) =r; — 151 — 1,
da die Blatter zwischen r; und r;_; samtlich von Anfang an vorhanden waren und
nie gestrichen wurden. Daher gilt max(log(I(r;) — I(ri—1) + 1),1) > (1 + log(r; —
ri—1 + 1)).) Daraus folgt die Behauptung.

The initial graph G is connected, since every accessed item must be reached
from the initially fingered item. We first delete all but [ — 1 edges from G so as to
leave a spanning tree; this only decreases the cost of G.

Next we repeat the following step until it is no longer applicable: Let p;—p;
be an edge of G such that there is an accessed item p, satisfying p; < p, < p;.
Removing edge p;—p; now divides G into exactly two connected components. If
Pq is the same connected component as p;, we replace p;—p; by p,—p;; otherwise,
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we replace p;—p; by pi—p,. The new graph is still a tree spanning {p;; 1 <i <[}
and the cost has not increased.

Finally, we eliminate each item p; which is not an inserted or deleted leaf by
transforming p; —p; —p, to p;—p, and by removing edges p;—p, where there is
no other edge incident to p;. This does not increase the cost, and it results in the
tree of inserted and deleted items

ri—Tr2— " —Tg
as desired. I

Finger trees can be used efficiently for many basic operations such as union, inter-
section, difference, symmetric difference,. ...

Theorem 14. Let A and B be sets represented as level-linked (a,b)-trees, a > 2
and b > 2a.

Access zuviel a) Insert(z,A), Access(z,A), Delete(x,A), Concatenate(A, B), Split(z, A) take
logarithmic time.

b) Let n = max(|A|, |B|) and m = min(|A|,|B|). Then AUB, AQ B, AN B and
A\ B can be constructed in time O(log ("T™)).

m

Proof: a) It is easy to see that Theorems 6 and 7 are true for level-linked (a, b)-trees.

b) We show how to construct AQ B = (A—B)U(B—A). Assume w.l.o.g. |A| > |B|.
The algorithm steht in Programm 21.

(1) establish a finger at the first element of A;
while B not exhausted
do take the next element, say z, of B
and search for it in A starting at the finger;
insert z into or delete x from A, whatever is appropriate;
establish a finger at the position of x in A;
destroy the old finger
od.

A/_\
W N =
~— ~—

N

NN N N
J O O
— N

Program 21

Let p1,...,Pm, m = |B|, be the positions of the elements of B in the set AU B,
let pg = 1. Then the above program takes time

m—1

O(log(n+m) + > log(pir1 —pi + 1))
=0

by Theorem 14 and the observation that total search time is bounded by Z;n:?]l log(pi+1 —I
pi +1).
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This expression is maximized for p;+1 —p; = (n+m)/m for all i, and has value
O(log(n +m)) + mlog((n + m)/m)) = O(mlog((n +m)/m)) = O (log (*™)).

In the case of AU B, we only make insertions in line (4). In the case of AN B,
we collect the elements of AN B in line (4) (there are at most m of them) and
construct a level-linked (a, b)-tree for them afterwards in time O(m).

Finally we have to consider A\ B. If |A| > |B|, then we use Program 21. If
|A| < |B| then we scan through A linearly, search for the of A in B as described
above (roles of A and B reversed) and delete the appropriate elements from A.

Apparently, the same time bound holds. ]

Note that there are (";;m) possibilities for B as subset of A U B. Hence log ("';m)
im Entscheidungsbaum-Modell (s. I1.1.6) is also a lower bound on the complexity

of union and symmetric difference.

3.5.3.4. Fringe Analysis

Fringe analysis is a technique which allow us to treat some aspects of random (a, b)-
trees. Let us first make the notion of random (a, b)-trees precise.

A random (a;b)-tree is grown by random insertions starting with the empty
tree. Let T be an (a, b)-tree with j leaves. An insertion of a new element into T is
random if each of the j leaves of T' is equally likely to be split by the insertion. This
can also be phrased in terms of search trees. Let S be a set with j — 1 elements and
let T' be a search tree for S U{oco}. Then the elements of S split the universe into
j intervals. The insertion of a new element x is random if x has equal probability
of lying in any one of the j intervals defined above.

We use fringe analysis to derive bounds on 77(N'), the expected number of nodes
in a random (a, b)-tree with N leaves, i.e., a tree obtained by N random insertions
from an empty tree. Then 7(N)-(2b— 1) is the average number of storage locations
required for a random (a, b)-tree with N leaves. Ein Knoten wird dabei durch 2b—1
aufeinanderfolgende Speicherzellen dargestellt. Since any (a,b)-tree with N leaves
has at least (N —1)/(b — 1) nodes and hence uses at least (20 — 1)(N —1)/(b— 1)
storage locations we can define

s(N) = (N —=1)/[(b - 1) -n(N)]

as the storage utilization of a random (a,b)-tree. We show that 5(N) ~ 0.69 if
b = 2a and a is large. This in marked contrast to worst case storage utilization of
(a—1)/(b—1) = 0.5.

For T an (a,b)-tree let n(T) be the number of nodes of T" and let pn(T') be
the probability that T is obtained by N random insertions from the empty tree. Of
course, pny(T') is zero if the number of leaves of T' is unequal N. Then

n(N) =Y pn(T) - n(T).
T
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Fringe analysis is based on the fact that most nodes of an (a, b)-tree are close to the
leaves. Therefore a good estimate of 7(IN) can be obtained by simply estimating
the number of nodes on the level one above the leaves.

Let n;(T) be the number of leaves of 7" which are sons of a node with exactly
i sons, a <4 <b. Then ), n;(T) = |T|, the number of leaves of T'. Let

Then ). m;(N) = N.

Lemma 11.

a) Let T' be an (a,b)-tree and let r = ), n;(T)/i. Then

b_——11+(1+bT11).r < n(T) < 1—|—(1+a%)-r.

4 (14 =) -T(V) < A(V) < 1—|—(1+a11)-F(N).

Proof: a) Let m be the number of nodes of T' of height 2 or more. Then n(T) =
m + ). n;(T)/i since n;(T)/i is the number of nodes of arity 7 and height 1. Also

Zinz(f)l/i—l <m < Zﬂ;(i){i—lJrl

since every node of height 2 or more has at most b and at least a sons (except for
the root which has at least two sons) and since there are exactly Y, n;(T)/i nodes
of height 1 in T'. The 1 on the right hand side accounts for the fact that the degree
of the root might be as low as 2.

b) immediate from part a) and the definition of 7;(N) and n(N). 1

We infer from Lemma 11 that 7(N) is essentially >, 7;(IN)/i. We determine this
quantity by setting up recursion equations for 7;(IN) and by solving them.

Lemma 12. Let a > 2 and b = 2a. Then
. ﬁb(N) — ﬁa(N)
N )
My (V) + g (V) — Raq1 (V)
N )

na(N+1)=n,(N) +a

Fat (N +1) = Faga (V) + (a +1) -

ﬁi_l(N) — ﬁ,(N)

(N +1)=m;(N) +i- ~

fora+2<1i<hb.
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Proof: We proof the second equation and leave the two others to the reader. Let
T be an (a,b)-tree with N leaves. Consider a random insertion into T' resulting in
T'. Note that ng,1+1(7") — ne+1(T) grows by a + 1 if the insertion is into a node
with either exactly a (probability n,(T")/N) or b (probability ny(T")/N) leaf sons
and that ng,41(7") — nget1(T') decreases by a + 1 if the insertion is into a node of
height 1 with exactly a 4+ 1 sons (probability n,+1(7")/N). Thus

ﬁa+1(N + 1)
= zT:pN(T) ‘ |:na+1(T) +(a+1)- (an(VT) n najﬁfT) _ na-yxr(T))]
(V) +7a(N) = Tlay1 (V)

— Fras1 (V) + (a+1)

N

Let Q(IN) be the column-vector (7,(N),... ,ﬁb(N))T und I die Einheitsmatrix.
Then Lemma 12 can be written in matrix form as

QN +1) = (I+%-B>-Q(N)

where
—a a
a+1l —(a+1) a+1
B = a+2 _(a+2>
+b b

With ¢(N) = (1/N) - Q(N) this can be rewritten as

¢V +1) = [I+ﬁ-(3—1)] L g(IV).

Note that matrix B — I is singular since each column sums to zero. We show below
that g(N) converges to g, a right eigenvector of B — I with respect to eigenvalue 0,
as N goes to infinity. Also |¢(N) — ¢| = O(N~°) for some ¢ > 0. This is shown in
Theorem 17.

We will next determine g = (g4, -..,g5)". From (B—I) =0and ), n;(N)/N =

1 one concludes a

(a+1)(b+1)(Hy — Hy)

9a =

and
1

TG @, - H)

fora+1<i<b
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where H, = Y.; ;1/i is the a-th harmonic number. (Die g¢;’s, a < i < b,
can be found as follows: take g, as an indeterminate and solve (B — I) - ¢ for

Qb—1,96—2, - - - yda+2,9a, da+1 in that order. Then use ), ¢; = 1 to determine g¢3).
Thus

b ' 1 b .
Yo/ =(Grmen * 2, ) /-

(oo 2 (5 +>)/<Hb—Ha>
:(<a+1>1< >+a+1 )/

= [(b+ 1)(Hy, — H,)] - (since b = 2a)

Theorem 15. Let a > 2 and b= 2a, let € > 0 and let 3(N) = (N —1)/[(b—1) -
n(N)| be the storage utilization of a random (a, b)-tree with N leaves. Then

[S(N)—In2| < C/a+e
for some constant C' independent of N and a and all sufficiently large N.

Proof : Note first that

N N

RS R SV ) B

for all sufficiently large N by nach Lemma 11b). Here #(N)/N = > . q:i(N)/i =
>.q/t + O(N=¢) = 1/[(b+ 1) - (Hy — H,)] + O(N™¢) for some constant ¢ >
0. Furthermore H, — H, = El at1 1/t = In2 — O(1/a) since a+1(1/m)da: <

N

Z?:a+1 1/i < f:(l/m) dz. Thus [§(N) — In2| < C/a + € for all sufficiently large
and some constant C.

o)

Storage utilization of a random (a,2a)-tree is thus about In2 ~ 69% fiir groBe a.
Fringe analysis can also be used to strengthen Theorem 9 on the total rebalancing
cost. The bound in Theorem 9 was derived under the pessimistic assumption that
every insertion/deletion decreases the value of the tree by 1. Fringe analysis provides
us with a smaller bound at least if we restrict our attention to random sequences
of insertions It is not hard to define what is meant by a random deletion; any leaf
of the tree is removed with equal probability. However, it seems to be very hard to
extend fringe analysis to random insertions and deletions.

We still have to prove convergence of sequence g(N), N = 1,2,.... The answer

is provided by the following general theorem which is applicable to fringe analysis
problems of other types of trees also.
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Theorem 16. Let H = (h;j)1<i,j<m be a matrix such that

1) all off-diagonal elements are non-negative and each column of H sums to zero
and

2) there is an i such that for all j there are jg,...,jx with i = jp, j = ji and

hﬁ,jl+1 >0for0<I<k.
Then
a) Let A1,..., A\ be the eigenvalues of H in decreasing order of real part. Then

A1 =0> Re()\g) > Re()\3) > > Re()\m)
b) Let ¢(0) be any non-zero m-vector and define ¢(N + 1) = (I + 5 H) - ¢(N)

for N > 0. Then q(N) converges to q, a right eigenvector of H with respect to
eigenvalues 0 and |q — q(N)| = O(NRe(A2)),

Proof: a) H is singular since each column of H sums to zero. Thus 0 is a eigenvalue
of H. Furthermore, all eigenvalues of H are contained in the union of the disks
with center hj; and radius >, |hijl, j = 1,2,...,m. This is the well-known
Gerschgorin criterion (cf. Stoer/Bulirsch: “Numerische Mathematik II”, page 77).

fehlt Thus all eigenvalues of H have non-positive real part. Eigenwerte ungleich 0 haben
sogar einen echt negativen Realteil.

It remains to be shown that 0 is an eigenvalue of multiplicity one. This is the
case iff the linear term in the characteristic polynomial of H (i.e., det(H — AI))
is non-null. The coefficient of the linear term is ), det H;; where H;; is obtained
from H by deleting the i-th row and column. Application of the Gerschgorin cri-
terion to H;; shows that all eigenvalues of H;; have non-positive real part. Since
det H;; = €1---€y,_1 Where €1,...,€6,_1 are the eigenvalues of H;;, we infer that
either det H;; = 0 or sign(det H;;) = (—1)™~!. Beachten Sie, daf det H;; reell ist.
Thus ), det H;; =0 <= det H;; = 0 four all 7.

We will next show that det H;; # 0 where ¢ satisfies assumption 2) of the the-
orem. Assume otherwise. Let u = (uq,...,u;—1, Uij41,--.,Un) be a left eigenvector
of H;; with respect to eigenvalue 0. Let u; be a component of maximal absolute
value in w and let I = {j; |u;j| = |u¢|} C {1,...,m} —{i}. Sincei ¢ I and I # 0
there must be j € I, k ¢ I, such that hy; > 0 by assumption 2). We may assume
w.Lo.g. that u; > 0. Thus

Zul-hlj Suj~ (Zhl]—f—Z'Z—”hl])

1£4 lel 1gr
<o (oo (51 ) w)

< 0.

anders Widerspruch! Dabei folgt die zweite Ungleichung wegen |u;| < u; und hj; > 0 fur
! # j und die dritte wegen ), hj; = 0, |ug|/u; < 1 und hy; > 0. Hence u is not left
eigenvector of H;; with respect to eigenvalue 0.

Version: 18.10.99 Time: 21:00 -123-



124  Chapter III. Sets

b) Let fn(z) = H?Zl(l +z/j) and let f(zx) = ILm fn(x). Then f(0) = f,(0) = 1.
Also
Claim: |f,(z)| < C-nR®) for some C depending on z.

Proof : Note first that |f,(z)| = [Ij_; [1 + 2/j| = exp(Xj_, In|1 + z/j]). Next
note that I i i
[1+2/j]* = |1+ Re(z/4)|" + [Im(z/j)|
(

< [1+Re(x/§)?(1 + ¢ [Im(z/5)?)

for some constant ¢ and all j > jo (¢ and jo depend on z). Taking square roots and
substituting into the expression for |f,(z)| yields

[fn(@)] < exp (D 1+ a/j]

Jj<Jjo
+ Z [In(1 + Re(z/5)) + In((1 +c- IIm(x/j)P)l/?)])
< C - nRel)

for some constant C' depending on z since In(1 + Re(z/j)) < Re(z)/j and In((1 +
¢ [Im(z/5)[*)"/?) < (¢/2) - Im(x)|?/5* (s. Anhang). "

Let ¢(0) be some m-vector and let ¢(N +1) = (I + x4 H) - ¢(N) for N > 0. Then
q(N) = fn(H) - q(0) where f,(H) = HlSJSn(I + %H) We consider the matrix
fn(H) in more detail. Let

J1 0
JT-H-T—l( )
0 Ji

be the Jordan matrix corresponding to H; Ji, ..., J; are the blocks of the Jordan
matrix. We have J; = (0), i.e., J; is a one by one matrix whose only entry is zero.
Also

A1 0

Ji =
-1
0 Al

with Re(\;) < 0. Then f,(H) = fpo (T~ - J-T) =T f,(J) - T, as can be easily
verified. Also
fn(Jl)

n J2
f(J) = P
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We have (cf. Gantmacher, “Matrizen”, Chapter 5, Example 2)

1 2 (vy—1)
Fa(N0) fr(L)l(!Az) f,(,;(!At) (M)

Ul!

fa(R) = ,
fn()\l)

where v; is the multiplicity of A; and f* is the h-th derivative of f,. The reader
can easily verify this identity (for every polynomial f,) by induction on the degree.
Hence f,(J1) = (1), the one by one matrix whose only entry is one and

€1,1 (n) e €1,v; (n)
falJ) = - : ;
0 SRV (n)

where €; ; = O(n®¢(2)). Thus ¢(N) converges to ¢ = T~ - f(J)-T-¢(0) as N goes
to infinity. Here f(J) is a matrix with a 1 in position (1,1) and all other entries
equal to zero. Also H-q = (T~*-J-T)-(T7'-f(J)-T-q(0)) =T~ t-J-f(J)-T-q(0) =
T~1.0-T-q(0) where 0 is the all zero matrix. Hence H - ¢ = 0, i.e., ¢ is the right
eigenvector of H with respect to eigenvalue 0. Finally, |g(N) — q| = O(nRe(X2)). 1

3.8.2. Maintaining Dynamic Partitions of Linear Lists

In this section we treat the problem to maintain a dynamic partition of a linear list
in intervals. Let B be a linear list of possibly marked objects. The marked objects
are partitioning the linear list in intervals. We want to use the following operations
on linear lists:

Find(z) find then next marked object strictly to the right of =
in the list;

Split(z) mark the object z;

Union(z) erase the mark of the object «;

Add(y, x) insert a new unmarked object y directly in front of the object x
in the list;

Erase(z) remove the unmarked object x from the list.

For all five operations we consider the parameters of the operations to be pointers
to the object z; in the static version of the problem (the operations Add and Erase
are not allowed) we could also identify the linear list B with a beginning section of
the integers. In this section we denote the length of the sequence B with N.
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We will know several applications of the problem of interval partitioning: e.g. in
the chapters about graph algorithms and multidimensional searching. The problem
of interval partitioning is a variant of the priority queue problem. Let S C B be
the set of marked objects in the sequence B. Then Find(x) produces the successor
of z in the set S (in the case of the priority queue problem we only can search for
the smallest element in the set S), Split(z) inserts z in S, and Union(z) removes x
from S; the operations Add and Erase “modify the universe” and don’t have any
analogy in the priority queue problem.

The problem of interval partitioning has a simple solution with running time
O(log |S|) per operation: organize the set of marked objects in a balanced tree. In
this section we describe a solution with running time O(loglog N); the time bound
holds for the operations Find, Split and Union in the worst case and is amortized
for the operations Add and Erase. So the new solution is better if the set of marked
objects in the sequence B is dense enough.

The new solution is based on the Divide-and-Conquer Paradigma. Suppose
that we divide the sequence B in about v/N subsequences of length about v/N. For
every subsequence we generate a representative who will get marked if one of the
objects in the subsequence is. The representatives are collected in a linear list of
representatives. Note that this list is of length about v/N. Suppose now that we
have a pointer to the object  to our disposal and want to compute Find(z). We
consider two cases: Either the subsequence containing x also contains the result
of the operation Find(z) or not. Both cases can be distinguished in time O(1) if
every representative has a pointer to the maximal marked object in the subsequence
which it represents. Furtherly note that in the first case we reduced the length of
the sequence to be considered from N to v/N. This holds also for the second
case, because we only find the successor of the representative of z in the list of
the representatives (i.e. the subsequence containing z) and then we have to find
the first marked object (we hold a pointer to it) in its subsequence. So in both
cases time O(1) is sufficient to reduce from N to v/N the length of the sequence
to be considered. This implies time complexity O(loglog N); note the solution
T(N) = O(loglog N) for the recursion equation T(N) = T(v/N) 4+ O(1), as we will
see later. Let’s now take a look to the details.

Definition 1: A layered tree T for a sequence B of N objects consists of:

1) A representative r(7') with components mark, min and maz (the values of
this components will be specified below);

and if N > 4:

2) A Copy B’ of B, which is divided in subsequences Bj, ..., B,,, where %\/N <
m < 2v/N and every B! has between 2v/N and 2v/N elements;

3) layered trees T7y,..., T, for the sequences Bi,...,B..;

4) a layered tree T, for the sequence R of representatives r(T7),...,r(T},). 1

Version: 18.10.99 Time: 21:00 -126-



3.8.2. Maintaining Dynamic Partitions of Linear Lists 127

We call T7,...,T), and T, the substructures of 7' and T the upper structure
of Ty, ..., T} and T,.

07 000 e
By By B,
OrgO0r0O0OmBOOO0OZO

the sequence B

Figure 105. A layered tree

Figure 105 shows a layered tree for simplicity without the pointers connecting
the objects. We realize layered trees by pointers as follows. Every object and every
representative is described by a record of type node and consists of ten components:

mark : boolean pred : Tnode
succ : Tnode low :7Tnode
high  : Tnode rep  : Tnode
list : Tnode size : integer
min  : Tnode maz : Tnode

The components pred and succ organize the sequence B as a doubly linked linear
list. The components low und high are pointers connecting nodes with its copies in
substructures in both directions. rep connects every node with its representative.
The components list and size are only defined for representatives: list is a
pointer to the first element of the doubly linked list for B and size contains the
length of the list. We still have to define the components mark, min and maz.
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Definition 2: Let T with representative r = 7(T') be a layered tree for the se-
quence B.

1)

2)

3)

r.mark is true <= the sequence B consists of at least one marked object. Then
r.min and r.maz point to the minimal respectively maximal marked object in
the sequence B. If there is no marked object in B then the value of r.min and
r.maz is nil.

If B consists of at most one marked element then all substructures of T are
“trivial”, i.e., all nodes in these substructures are unmarked and all min and
maz pointers are nil.

If B consists of two or more objects then the copies (in B’) of the marked
objects of B are marked and the same rules are applied to all substructures 77,
1 < ¢ < k consisting of at least one marked object. Note that with the above
the marks of the representatives 7(7}), 1 < ¢ < k are defined. Finally the same
rules are applied to the substructure Tj. ]

The recursive Procedure buildstructure from Program 21 constructs a layered tree
in accordance with the Definitions 1 and 2.

procedure buildstructure(B : nodelist; var r : node;

const triv : boolean);

co Input: A doubly linked linear list B of objects

ocC

Effect: Construction of a layered tree for B and

output of the representative r

Running time: O(|B|loglog|B|)
The layered tree is trivial if ¢riv is true.

N « |BJ;

r < new node;

if triv

then r.mark < false; r.min < r.maz < nil
else r.mark < Vipecpk.mark;

fi;

r.min < leftmost marked element of B;
r.maz < rightmost marked element of B;
s < number of the marked elements of B

r.high < nil;

r.size < N,

for all k£ € B do k.rep < r; k.low < nil od;
if N >4

then B’ « 0;

for allk € B
do k' < new node;
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if triv
then k'.mark < false
else k'.mark < k.mark
fi;
k'.min < nil;
k'.maz < nil;
k'.high < k;
k.low < k';
B+ B'"U{k'}

od;

divide B’ into blocks B, B}, ..., B!, of size between v/ N and %\/]V ;

co then %x/ﬁgngx/ﬁoc

R+ 0;

fori=1ton

do organize B] as a doubly linked linear list;
buildstructure(Bj,r', triv or s < 1);
R+ RU{r'}

od;

buildstructure(R',r, triv or s < 1)

fi
end.

Program 22

Lemma 13. Let B be a sequence of N objects. A layered tree for T needs
O(N loglog N) storage locations and may be constructed in time O(N loglog N).

Proof: We show that a layered tree for a sequence of N objects consists of at most
O(N loglog N) nodes. This implies the space bound and also the time bound,
because the Procedure buildstructure needs O(1) time units per node. To prove the
bound for the number of nodes we show that there are only O(loglog N) copies per
node, i.e., there are only O(log log V) hierarchy levels. Let g : R — R be defined by

(z) = 1 if x < 4;
I =V 1+9(2vz)) ifz >4
Then g(N) is an upper bound for the hierarchy levels in a layered tree for a sequence

of N objects. A simple inductive argument shows g(z) < 2 + (loglog z)/ log(4/3).
Indeed g(z) <3 forz < 9. Ifx > 9

g9(z) =1+ g([2Vz])
<1+ g(a3/*) (because 2/z < z3/4)
< 1+ 2+ (loglog z3/*)/log(4/3) (by induction hypothesis)
<241+ log((3/4)log z)/log(4/3)
<241+ (log(3/4) + loglogx)/log(4/3)
< 2+ (loglogz)/log(4/3) 1
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Now we take a look to the operations Find, Split and Union. To formulate these
algorithms we suppose the existence of a boolean function leftof(x,y) which is de-
fined for two marked objects x and y. It yields true <= z is in front of y in the
sequence B. In all ours applications of layered trees the existence of the function
leftof with running time O(1) is obvious because the sequence B will always be a
sorted sequence of keys and leftof can be computed by comparison of two keys. The
general case will be treated in Exercise 23.

function find(k : node) : node;
co Input: object k of the sequence B
Output: next marked successor of k£ in B or nil
Running time: O(1), if the output is nil; O(loglog |B|) otherwise
oc
r < k.rep;
if r.size <4
then find the next marked successor by linear search in time O(1)
else if (r.mark # false) and leftof(k, r.maz)
then co find has a defined value oc
if r.maz = r.min
then co exactly one marked node oc
print r.mazx
else co two or more marked nodes oc
z < find(k.low);
if £ = nil
then co The call find(k.low) needed time O(1) oc
x + find(k.low.rep);
print x.min.high
else print x.high

fi
fi
else co find has the value nil co
print nil
fi
fi
end.

Program 23

Lemma 14. The Procedure find of Program 23 finds the next successor in time
O(loglog N).

Proof: The correctness of Program 23 is easy to show. If the representative r of k
is not marked or k is not left of 7.maz then find prints nil. Otherwise, we search for

a marked successor of the copy k.low in its subsequence. If there is such a successor
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then we print it. (More precisely, we print a copy one level higher in hierarchy.) If
there is no such successor then we find the marked successor of the representative
of the copy k.low and print the node described by its min pointer. In both cases
we correctly compute the next marked successor.

Also the time bound is easy to verify. Let be r.size > 4. Note first, that the
then case always prints a defined value and that the else case has constant time
complexity and prints nil. This implies running time O(1) in the case of output nil.
If the output is not equal to nil then we recursively call find either once or twice.
If we call it twice then the first call prints nil and the running time is O(1). Hence
the total running time is O(g(NN')), where g is defined as in Lemma 1. 1

Now we turn to operation Split.

procedure split(k : Knoten);

co before: k is an unmarked object in the sequence B, T is a valid
(i.e., follows Definitions 1 and 2) layered tree for B
afterwards: k.mark = true and T is valid

Running time: O(1), if there is no marked object in B before split;
O(loglog |B|) otherwise
oc
k.mark < true;
r < k.rep;
if r.mark = false
then co before the structure was empty oc
r.mark < true;
r.min < k;
r.maz < k
else if r.min = r.maz
then co one marked object before Split co
T 4 r.man;
if leftof(k, r.min)
then r.min < k
else r.maz <+ k
fi;
co B contains the two marked objects x and k; the
substructures must be initialized in accordance with the
property 3 of Definition 2
oc
if r.size > 4
then co there are substructures oc
split(z.low); co time O(1) oc
split(z.low.rep); co time O(1) oc
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if z.low.rep = k.low.Tep
then split(k.low) co a nontrivial call oc
else split(k.low);  co time O(1) oc
split(k.low.rep) co a nontrivial call oc
fi
fi
else co two or more marked objects oc
if leftof(r.maz, k) then r.maz < k fi;
if leftof(k, r.min) then r.min « k fi;
if k.low.rep.mark = false
then split(k.low); co time O(1) oc
split(k.low.rep) co a nontrivial call oc
else split(k.low); co a nontrivial call oc
fi
fi
fi
end.

Program 24

Lemma 15. Program 24 realizes the operation Split and has time complexity
O(loglog N).

Proof: To prove correctness we must show that the conditions of Definition 2 are
fulfilled. This is obviously if B contains no or at least two marked objects before the
Split. If B contains exactly one marked object before the Split then all substructures
of B were trivial before the Split and the substructures Ty and the substructures
containing x.low and k.low are not trivial after the Split. This is precisely the effect
of the recursive calls.

Let’s turn to the time complexity. The essential observation (cf. the comments
in the program) is that at most one recursive call splits the substructure containing
a marked object and that a Split applied to a substructure containing no marked
object costs O(1). Hence the running time is O(g(N)) = O(loglog N). 1

procedure union(k: node, var newmin, newmaz: node);

co  before: k is a marked object of the sequence B,
T is a valid layered tree for B
afterwards: k.mark = false, furthermore T is valid and newmin resp. newmaz

is the new leftmost resp. rightmost marked object in B
running time  O(1) if k is the only marked object in B
O(loglog |B|) otherwise
oc
k.mark < false;
r < k.rep;
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if r.min = r.mazx
then co just one marked node k = r.min = r.maz before Union oc
r.min < nil;
r.max < nil;
r.mark < false
else co r.min # r.maz oc
if r.size < 4
then the obvious operations on the linear list B
else co there are nontrivial substructures; first

fi
fi;

we erase recursively the mark of k.low and
recompute the new min and maz pointers oc
UNION(k.low, z,y);
if x = nil
then co k.low was the only marked node in the
substructure and hence the recursive call needed
time O(1) oc
UNION(k.low.rep, z1, y1);
T 4 T1.mun;
Y  Y1.maz
fi;
if k = r.min then r.min < z.high fi;
if £ = r.maz then r.max < y.high fi;
if r.min = r.mazx
then co now only one marked object;
we must trivialize the substructures oc
UNION(r.min.low, , ); co time O(1) oc
UNION(r.min.low.rep, , ) co time O(1) oc
fi

Newmin <— r.min;
newmaz < r.mazc

end.

Program 25

Lemma 16. Program 25 realizes the operation Union in time O(loglog N).

133

Proof: This is obvious with the comments in the program.

The operations Add and Erase modify the linear list B by adding or erasing an
object. We realize Erase(z) by erasing x and all of its copies in the pointer structure.
This may lead to an violation of the balance criterion from Definion 1. Hence we
store the outermost structure (in the hierarchy) which becomes to tight in a variable
outbal and later we will call the Procedure rebal which will repair the balance. On
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the execution of Add(x,y) we similarly add y and its copies to the pointer structure
giving them the same representatives as the corresponding copies of z; then we store
the outermost structure which has become too heavy in a variable outbal and call
rebal to repair the balance. The details are described in the two following programs.

procedure addl(y,z);
co before: x € B and T is a valid layered tree for B
effect: adds the unmarked object y directly in front of  to B and
stores the representative of the first substructure
which is too heavy in a variable outbal
and the size of its upper structure in w.
running time:  O(loglog |B|)
oc
T < T.TEp;
y.rep < 1]
add y in front of z in the doubly linked list r.list
r.size <— r.size + 1;
if y.high # nil
then co the upper structure exists oc
r' < y.high.rep;
if (r.size > 2v/r'.size) and (outbal = nil)
then co overflow oc
outbal < ;
w  r'.size
fi
fi;
if r.size > 4
then co substructure oc
z ¢ new node;
z.mark < false;

z.high < y;

y.low < z;

add1(z,z.low)
fi
end.

Program 26
procedure erasel(z);
co before: x is an unmarked object in B and T is a valid
layered tree for B.
effect: erases x from B and stores the representative of the first
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substructure which is too tight in a variable
outbal and the weight of its upper structure in a variable w;
running time:  O(loglog |B|)

oc
outbal < nil;
T < y.rep;
x.rep < 71
erase x from the doubly linked list r.list;
r.size < r.size — 1;
if z.high # nil
then co the upper structure exists oc

7' < x.high.rep;

if (r.size < 1v/r'.size) and (outbal = nil)

then co underflow oc

outbal < v;
w < 1’ size

fi
fi;
if r.size > 4
then co substructure oc

ERASE1(z.low)
fi
end.

Program 27

Both procedures obviously have running time O(loglog |B|) and perform their
specification. We still have to describe the procedure rebal which is called in the
case if outbal # nil after the call of add! and erasel, resp.

procedure rebal(r, w);

co before: r is a representative of a substructure, say S;
the upper structure is of size w;
effect: joins S with a brother structure and repairs

the balance criterion of Definition 1;

running time:  O(loglog |C|), where C is the linear list described by s.
oc
if r.succ = nil
then r’ + r.pred
else 7' + r.succ
fi;
C « r'.list Ur.list
R + r.rep.list;
divide C in sequences By, Bo, ..., B, of size between y/w and 2./w;

fori=1toc
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do buildstructure(B;, x);
insert z in front of 7 in R

od;

erase r and r’ from R;

buildstructure(R, r.rep)

end.

Program 28

Lemma 17. Let B be a sequence of N objects. buildstructure(B,r) followed by N
Add and Erase operations has total costs O(N - (loglog N)?).

Proof: Let Sy be the layered tree constructed by buildstructure(B,r) and

0 0 0
So B8 gy bl g DPe grmebal g TPy rebalg

a sequence of N Update operations each of them followed by a call of rebal, where
Op; € {add1, erasel} for 1 <i < N —1. We estimate the total costs of the N calls
of the Procedure rebal. We do this by using the banking paradigma. We define for
a layered tree S

. 3 :
bal(S) = 2loglog N - E max(0, r.size — 5\/5, Vw — r.size).
r representative
w size of the upper structure

Then bal(Sy) = 0, because Sy was constructed by a call of buildstructure and
so yw < r.size < 2./w for all representatives r in S. Note further that a call
of add1 or erasel changes the size components of O(loglog N) representatives and
hence bal(S!) < bal(S;) + O((loglog N)?) for 0 <i < N — 1.

Let’s take a look to the transition from S} to S;4+1. If S} = S;41, i.e., there was
no need of a call of rebal then bal(S]) = bal(S;+1) and the transition has costs 0.
Suppose now that a call of rebal(outbal;, w;) was necessary. Such a call has costs
O(outbal;.size-loglog N). Furthermore bal(S;+1) < bal(S;) — outbal;.size-loglog N.
It follows that the declining of the balance can pay the costs of the transition.
Therefore Lemma 5 is prooven. ]

Now we want to formulate the main statement of this section.

Theorem 17. Find, Union, Split, Add and Erase may be computed in time
O(loglog N) per operation and need O(N) storage locations. The time bound
holds for Find, Union and Split in the worst case and for Add and Erase in the

amortized case.

Proof: First we describe an improvement of the time bound from Lemma 5 to
O(Nloglog N). Let B be a linear list of N objects. We divide B in groups of
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size between loglog N and 4loglog N elements. Each group is realized by a doubly
linked list. The O(N/loglog N) list headers are stored in a layered tree. This
tree needs O(N) storage locations. The costs of the operations Find, Union and
Split are only increased by an additive factor O(loglog N) and remain therefore
O(loglog N). Usually the operations Add and Erase are applied on linear lists;
only every O(loglog N)-th Update operation needs a “real” rectification in the
layered tree (if a linear list gets too long, i.e., its length is 1 + 4 loglog N we divide
it in two lists of length nearly 2loglog N. If a list gets too short, i.e., its length is
—1+4loglog N then we fuse it either with its brother list (if the length of the brother
list is at most 2loglog N) or we steal (loglog N)/2 objects from the brother list (if
the length of the brother list is at least 2loglog N)), and therefore the amortisized
costs of an Add or Erase operation are reduced to O(loglog N).

Now it is easy to complete the proof. We apply the above strategy on a
sequence of N Update operations and reconstruct a totaly new structure. This
costs O(N loglog N). |

We end this section with a short remark on the term “layered tree”. Consider a
sequence of N elements and its complete binary tree. Suppose now that all paths
of marked leaves to the root are marked. We then could realize the operation Find
by ascending the tree until we meet (coming from the left) a marked path and then
following the marked path. A more economial method is to jump in the half of
the tree (by using the rep pointers) to a node of height 1log N and there to test
(by using the maz pointers) if we are already on a marked path. Then we continue
this process in the half of the tree either above or below this node. This essentially
corresponds to the binary search on the paths of the tree. The name “layered tree”
emphasizes this clever using of the layer structure of trees.
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