4.1. Graphs and their Representation in a Computer 1

Chapter 4. Algorithms on Graphs

In this chapter we deal with efficient algorithms for many basic problems concerning
graphs: topological sorting and transitive closure, connectivity and biconnectivity,
least cost paths, least cost spanning trees, network flow and matching problems,
and planarity testing. Most of these algorithms require methods for the systematic
exploration of a graph. We will introduce such a method in Section 4.4 and then
specialize it to breadth-first-search and depth-first-search. Novice readers should
read Sections 4.1, 4.2, 4.4 and 4.5 before proceeding to higher numbered sections;
readers, which have some familiarity with graph algorithms, may plunge into any
section directly.

4.1. Graphs and their Representation in a Computer

A directed edge over a set V is an element of V' x V. Given a directed edge
e = (v,w), v is called its tail and w its head, both v and w are called endpoints
of e. A directed edge e = (v, w) is said to leave its tail v and to enter its head w.
An undirected edge over V is a subset of V of cardinality exactly two. Given
an undirected edge e = {v,w}, v and w are called its endpoints. A directed or
undirected edge is said to be incident on its endpoints. If e = (v, w) is a directed
edge with v # w, the reverse e~! of e is the directed edge (w,v), and the undi-
rected version of e is the undirected edge {v,w}. The directed versions of an
undirected edge {v, w} are the two edges (v, w) and (w,v).

Given a finite, nonempty set V', a (directed, undirected) graph on the vertex
set V is a pair G = (V, E), where FE is a set of (directed, undirected) edges over V.
The elements of V' are called the vertices or nodes of G and the elements of E are
called the edges of G. We use graph to denote both undirected and directed graph
and frequently use digraph instead of directed graph.

Given a directed graph G = (V| E), the undirected version of G is the undi-
rected graph (V,{{v,w}; (v,w) € E}). Given an undirected graph G = (V, E),
the directed version of G is the directed graph (V,{(v,w); {v,w} € E}), i.e., each
undirected edge is replaced by its two directed versions. The edges of the directed
version of an undirected graph G are called the darts of G.

Let G = (V,E) be a digraph. A path from v to w, where v,w € V, is a
sequence vg, v1, - ..,V of nodes such that v = v,vx = w and (v;,v;41) € E for
0 <@ < k; k is the length of the path. Note that there is always the path of length
zero from v to v. A path is simple if v; # v; for 0 <7 < j <k. A cycle is a path
from v to v. If, in addition, the path is simple then the cycle is simple. A cycle
in a directed graph is trivial if its length is 0, otherwise, it is non-trivial. A path
(simple path, cycle, simple cycle) in an undirected graph G is a path (simple path,
cycle, simple cycle) in the directed version of G. A cycle in an undirected graph is
trivial if its length is either 0 or 2, otherwise, it is non-trivial.

Version: 19.10.99 Time: 11:01 -1-

2 Chapter 4. Algorithms on Graphs

A graph is acyclic if it does not contain any non-trivial cycles. Let 7' C E. We
write v % w if there is a path from v to w using only edges in T'. We write v %) w
if the length of the path is at least 1 and we use v ? w to denote the existence of
the edge (v,w) € T.

The indegree of a node v in a directed graph is the number of edges entering v,
indegg(v) = {w; (w,v) € E}|. Similarly, the outdegree of v is the number of
edges starting in v, outdegg(v) = |[{w; (v,w) € E}|. The degree of a vertex v in
an undirected graph is the number of edges incident to v.

A graph G' = (V',E') is a subgraph of G = (V,E), if V' C V and E' C E.
If G = (V,E) is a graph and V' C V|, then the subgraph induced (or spanned)
by V' is (V', E'), where E' consists of those edges of E which have both endpoints
in V'. G — V' denotes the subgraph induced by V —V'. If V' = {v} is a singleton,
then we write G — v instead of G — {v}.

A digraph A = (V,T) is a directed in-forest (out-forest, respectively) if
A is acyclic and indeg 4(v) < 1 (outdeg4(v) < 1) for all v € V. A node v with
indeg 4(v) = 0 (outdeg 4(v) = 0) is called a root of the forest. Note that a directed
forest has at least one root. If |T'| = |V| — 1, then A = (V,T) is a directed tree.
In a directed tree there is a single root r. Also, an in-tree has a unique path from
the root to any node v and an out-tree has a unique path from any node v to the
root. Finally, if v is any node of an in-tree (out-tree), then the subtree A, rooted
at v is the subgraph induced by the descendants (predecessors) of v, i.e., A4, is the
subgraph induced by {w; v %) w} ({w; w ?*1) v}).

Let G = (V,E) be a digraph. A directed forest A = (V,T) with T C E is
called a spanning forest of G. If A is a tree then it is called a spanning tree
of G. A spanning forest (tree) of an undirected graph G is the undirected version
of a spanning forest (tree) of the directed version of G.

Heaving laid out these basic definitions, we are now ready to discuss algorithmic
questions. For the algorithmic treatment of graphs, we assume that the vertices of
a graph G = (V, E) are numbered from 1 to |V, i.e., we assume V = {1,2,...,|V|}.
We also set n = |V| and m = |E|. The first question is the representation prob-
lem: how to store a graph in a computer. Two methods of storing a digraph are
customary.

a) Adjacency matrix: A digraph G = (V, E) is represented by a n X n boolean
matrix AG = (aij)lg’an with

1 if(i,)) € B
% =0 if(i,)) ¢ E.

The storage requirement of this representation is clearly ©(n?).

b) Adjacency lists: A digraph G = (V, E) is represented by n linear lists. The i-th
list contains all nodes j with (7,j) € E. The headers of the n lists are stored
in an array. The storage requirement of this representation is O(n + m). The
lists are not necessarily arranged in sorted order.

Version: 19.10.99 Time: 11:01 —-2-

4.1. Graphs and their Representation in a Computer 3

Figure 1. Graph Gg,

0 1
01
00
00
1 0

Figure 2. Representation of G, by adjacency matrix

O = O = O
S OO =OoO
O = O = O

1[4 2 [+—
2: 2 4 5 3 2l
34—

4] 5 3 1

5 [L1

Figure 3. Representation of Gg, by adjacency lists

Figures 1 to 3 show an example digraph and its representation by adjacency matrix
and adjacency lists.

Since 0 < m < n?, we conclude that the adjacency list representation is often
much smaller than the adjacency matrix representation and never much larger.
Since most graphs which arise in applications are sparse, i.e., m < n?, this is an

Version: 19.10.99 Time: 11:01 -3-

4 Chapter 4. Algorithms on Graphs

important point to keep in mind. The fact that the choice of the representation can
have a drastic influence on the time complexity of graph algorithms is even more
important. In this chapter, we will see that many graph problems can be solved
in linear time O(n + m) if the adjacency list representation is used. However, any
algorithm for these problems using the matrix representation must have running
time Q(n?), cf. Section 4.2. For this reason we will always use the adjacency list
representation if not explicitly stated otherwise (cf. Chapter 5).

To go into further detail, the adjacency list representation is based on the
following declarations:

type edge = record node: [1..n];

next :Tedge
end

and
adjhead: array[l..n] of tedge.

Array adjhead contains the heads of the adjacency lists. The elements of the adja-
cency lists are of type edge, each element representing an edge. In some cases these
elements will contain additional information, e.g., the cost of an edge in least cost
path problems, the capacity of an edge in flow problems, the capacity and the cost
of an edge in min cost flow problems,

An undirected graph G is represented by its directed version. We also assume
that each dart of G has a link to its reverse dart, i.e., there is a field reverse: Tedge
in the edge record and this field in the record representing the dart (v, w) points to
the record representing the dart (w,v) for every {v,w} € E.

Exercises 1) and 2) discuss the problem of how to convert other graph repre-
sentations into the one postulated above.

Version: 19.10.99 Time: 11:01 —4—

4.2. Topological Sorting and the Representation Problem 5
4.2. Topological Sorting and the Representation Problem

A topological sort of a digraph G = (V, E) is a mapping ord : V — {1,...,n}
such that for all edges (v,w) € E we have ord(v) < ord(w). Clearly, if a graph G
has a topological sort then G is acyclic. The converse is also true and is easily
proved by induction on the number of nodes. So suppose, G = (V, E) is acyclic. If
n = 1, then G has a topological sort. If n > 1, then G must have a node v with
indegree 0. (Such a node can be found by starting at an arbitrary node w and
traversing edges in reverse direction. Since the graph is acyclic, no node is entered
twice in this process, and hence the process terminates. It terminates in a node
with indegree 0.) By the deletion of v we obtain an acyclic graph G’ with one node
less. By the induction hypothesis G’ has a topological sort and so has G.

Actually, the argument given above is an algorithm for computing the mapping
ord. We formulate it in Program 1.

Geurrent < G; count < 0;
while G.yrrent has at least one node with no predecessor
do let v be a node with no predecessor;
count < count + 1;
ord[v] < count;
chrrent — chrrent -0
od;
if G yrrent 18 nonempty
then G is cyclic else G is acyclic fi.

NN AN N N N N N N
© 00 ~J O O i W N =
N e e N N N N N N

Program 1

The correctness of Program 1 follows immediately from the preceding discus-
sion. With respect to complexity the crucial lines are lines (3) and (6). How do we
efficiently find a node with indegree 0 in line (3)? A brute force approach would be
a complete search of graph G .yrrent- Since such a search would at least take time
Q(n), the entire algorithm would be Q(n?) at best.

A better approach is to exploit the interdependence of lines (3) and (6). In
line (6) node v and all edges leaving v are deleted. This changes the indegrees of
exactly those vertices which are heads of edges leaving v. It is therefore reasonable
to use an array indeg[l..n] to store the current indegree of all nodes. Array indeg
is updated in line (6). In line (3) we need to know one node with indegree 0. The
indegree of a node can only become zero in line (6) and it is easy to detect this
fact there. It is therefore wise to keep all nodes of Goyrrent With indegree 0 in a set
zeroindeg.

Program 2 refines our algorithm and makes use of the variables indeg: array
[1..n] of integer and zeroindeg: subset of V. The graph G yrrent i not stored
explicitly. Instead, we store it implicitly by using the fact that G.yprent is the
subgraph of G induced by the nodes which have not been given a number ord yet.

Version: 19.10.99 Time: 11:01 —5—

6 Chapter 4. Algorithms on Graphs

The set zeroindeg contains the nodes of zero indegree in G yrrent and indeg maps
each node to its indegree in Giyrrent- Initially, Geyrrent = G and so indeg should
be initialized to the indegrees in G. This can be done efficiently by traversing all
adjacency lists.

1) count < 0;

2) zeroindeg < 0; for all i € V do indeg[i] + 0 od,;
3) foralli e V

4) do for all j € V with (i,j) € E

5) do indeg[j] « indeg[j] + 1

6) od

7) od;

8) foralli eV

9) do if indeg[i] = 0 then add i to zeroindeg fi

10) od;

~—

while zeroindeg # ()
do let v be any node in zeroindeg;
delete v from zeroindeg;
count < count + 1;
ord[v] < count;
for all w € V with (v,w) € E
do indeg[w] + indeg[w] — 1;
if indeg[w] =0
then add w to zeroindeg fi
od
od;
if count < n
then halt (“graph is cyclic”) else halt (“graph is acyclic”) fi.

~— — *
DO =
~— —

Ul W N =

© 00 ~J OO OO O OO O UL I W WK = e e e e e
N N N N

N N N~~~ o~~~ P~~~ S~~~ P~~~ o~~~
~—

Program 2

An implementation for set zeroindeg remains to be specified. On this set the
following operations are performed: insertion of an arbitrary and deletion of an
unspecified element, and test for emptiness. In Chapter 1 we saw that implementing
zeroindeg by a stack or by a queue will allow us to execute each of these operations
in time O(1). We prefer the stack because of its simplicity and higher efficiency, so
zeroindeg is a stack of elements of V' (stack of [1..n]).

Finally, we need to explain lines (1.4) and (6.1) in detail. They are realized by
traversing the adjacency list corresponding to the nodes ¢ and v respectively and
take time proportional to the outdegree of those nodes. Program 3 gives a detailed
implementation of lines (1.4) and (1.5). (p is of type fedge.)

We are now able to determine the performance of our algorithm for topological
sorting. Line (1.1) takes time O(1), line (1.2) and lines (1.8)—(1.10) take time O(n).
The execution of lines (1.4) to (1.6) for a fixed i takes time O(outdeg(i)) and

Version: 19.10.99 Time: 11:01 —6—

4.2. Topological Sorting and the Representation Problem 7

p « adjhead|i];

while p # nil

do j « pT.name;
indeg[j] < indeg[j] + 1;
p « pt.next

od;

Program 3

hence lines (1.3)-(1.7) take time O(n+m). Altogether, the initialization takes time
O(n + m). The main loop is executed O(n) times and hence the total time spent
in lines (3.1), (3.2), (4) and (5) is O(n). For a fixed v, lines (6.1)—(6.5) take time
O(outdeg;(v)). Since every node v is deleted from zeroindeg at most once the total
running time of that loop is O(n + m). This shows that the running time of the
entire algorithm is O(n + m).

Theorem 1. A topological sort of digraph G = (V, E) can be computed in linear
time O(n + m).

Proof: Given by the discussion above.]

Next we will show that any algorithm is doomed to inefficiency if we store the graph
in the form of a matrix.

Theorem 2. Any algorithm for topological sorting which receives the digraph as
an adjacency matrix has running time Q(n?).

Proof: Consider the behavior of any such algorithm on the empty graph, i.e., on
the entire zero matrix. Suppose, there is a pair ¢,j of nodes, i # j, such that
the algorithm neither inspects a;; nor a;;. Then we could change both entries to
one and the algorithm would still return a topological sort. However, the graph
is cyclic after having added edges (Z,7) and (j,%). This shows that the algorithm
has to inspect at least half of the entries of the matrix and hence has running time
Q(n?). 1

We saw that a topological sort of an acyclic digraph can be computed in linear time.
Given the mapping ord : V — {1,...,|V|} it is easy to rearrange the adjacency lists
in increasing order as follows: Generate set {(ord(v), ord(w)); (v,w) € E} and sort
it using bucket sort. This takes time O(n + m) by Section 2.2.1 and generates the
adjacency lists in sorted order. An alternative linear time algorithm for topological
sorting will be given in Section 4.5.

Version: 19.10.99 Time: 11:01 —7-

8 Chapter 4. Algorithms on Graphs

4.3. Transitive Closure of Acyclic Digraphs

Let G = (V,E) be a digraph. The digraph G* = (V, E*), where (v,w) € E* if
and only if there is a path from v to w in G, is called the reflexive, transitive
closure of G or simply transitive closure. In this section we present an algorithm for
computing the transitive closure of an acyclic digraph; the algorithm is extended to
general digraphs at the end of Section 4.6. We will assume that the acyclic digraph
is topologically sorted, i.e., (¢,7) € E implies 7 < j and that the adjacency lists are
sorted in increasing order. We saw in the previous section that this can be achieved
in linear time O(n + m).

The idea underlying the algorithm is very simple. We consider the nodes of G
in decreasing order. Suppose that we consider node i. Then for every j > i we have
already computed the set of nodes reachable from j, reach[j] = {k; j - k}. Then

reach[i] = {i} U U reach/[j].

(i,4)EE

This equation demonstrates that reach[i] can be computed by outdeg(i) union oper-
ations on sets of nodes. For many graphs the number of union operations required
to compute reach|i] can be reduced considerably as follows. We consider the edges
(,j) emanating from 7 in increasing order of j. When edge (4,) is considered, we
first test whether j € reachli] is at this stage already. If this is the case, then there
must be a node h # j with i —h - j and hence reach[h] D reach[j]. Thus we do
not have to add reach[j] to reach[i]. Program 4 gives the complete algorithm.

(1) for i from n downto 1

(2) do reach[i] «+ {i};

(3) for all j with (¢,j) € E co in increasing order!! oc
(4) do if j ¢ reachli]

(5) then reach|t] < reach[i] U reachj]

(6) fi

(7) od

(8)

od.

Program 4

How should we represent the set reach[i]? We recommend coding reachl[i] as a
bit vector array[l..n| of boolean. Then lines (2) and (5) take time O(n) each and
line (4) takes time O(1). Since line (2) is executed exactly once for each node and
line (4) exactly once for each edge, the running time is O(n? + m + m’ - n) where
m' is the number of edges (i, j) for which line (5) is executed.

Definition: Let G = (V, E) be an acyclic digraph. Let E,.q = {(¢,j) € E; there
is no path of length at least two from 7 to j in G}, let Greq = (V, Eyeq), and let
Myped = |Ered|- Gred is called the transitive reduction of G. |

Version: 19.10.99 Time: 11:01 —8—

4.8. Transitive Closure of Acyclic Digraphs 9

Lemma 1. Let G = (V, E) be an acyclic digraph.

a) G* = (Grea)™-

b) The algorithm correctly computes the transitive closure.
c) If line (5) is executed for (i,7) iff (i,7) € Ereq.

Proof: a) (Greq)* is certainly a subgraph of G*. In order to prove the converse
consider any (z,j) € E*. Let ig,41,...,i; be a path of maximal length form i = g
to j = ig. Then (4;,%;41) € Epeq for all I, 0 <1 < k, and hence (i,5) € (Ereq)*-

b) It is obvious that our algorithm computes a subset of the transitive closure.
Suppose that it computes a proper subset. Then let 7 be maximal such that a node
h exists with >k and h is never added to reach[i]. Consider a maximal length
path ig,...,i from ¢ = ig to h = ix. Then h € reach[i;] by definition of i. Also,
(t0,71) € Epeq. If the test in line (4) is executed with j = i; then j ¢ reachli]
because there is no path of length at least two from iy to ¢1; otherwise the path
would not be of maximal length. Hence h is added to reach[t] in line (5) if it is not
there already.

c) Suppose that (i,j) € E — E.eq- Then h exists with (i,h) € E,..q and h%j.

Hence j is added to reach[:] when edge(i, h) is considered in loop (3) to (6). Thus
J € reach[i] when edge(, j) is considered. Conversely, if (i,j) € Eyeq then line (5)
is certainly executed.]

Theorem 1. The transitive closure of an acyclic digraph G = (V, E) can be com-
puted in time O(n - (n 4 Myeq)) = O(n3).

Proof: We have argued above that the running time is O(n? +m + m/ - n), where
m’ is the number of edges for which line (5) is executed. By Lemma 1 we have
m' = Mpeq < m. Also, m < n2.]

Of course, m,cq < m. Unfortunately, m,.q = m = O(n?) can occur. Consider for
example V ={1,... ,n}and E = {(4,5); i <n/2 < j}. In general however, m,.4 is
considerably smaller than m. We will support this claim by an analysis of random
digraphs below. Before doing so, we will slightly improve upon the running time
of the algorithm by using packed bit vectors instead of just bit vectors for the sets
reach[i]. We divide the bit vector reach[i] into segments of length L where L is an
integer to be determined later (L = logn). The idea now is to perform the union
operation in line (5) not bit by bit but rather segment by segment. In this way
we may combine L bit operations into a single operation and hence speed up the
computation by a factor L. For the analysis of this approach we need the following
assumption:

(A): The arithmetic operations +, —, -, =, #, < on integers in the range [0..n]
take time O(1).

Assumption (A) is reasonable since node names are integers in that range and we
assumed already that they can be handled in constant time. A bit string ar_1...aq

Version: 19.10.99 Time: 11:01 -9—

10 Chapter 4. Algorithms on Graphs

of length L represents the integer a = 31" a;-2! in the range R = [0..2% —1]. We
define functions union: Rx R — R, power: [0..L—1] — R, is_in: [0..L—1]xR —
{0,1}, index: [1..n] = [0..[n/L]—1], and bit: [1..n] — [0..L — 1] as follows: If
a= Ze 0 Q- 2t and b= 52—01 by - 2¢ then

union(a, b) g max(ag, by) -

power(l

) =
isiin(l,a) =
) =
) =

indez(j (] —1)div L
bit(j) = (j — 1) mod L.
We can now represent the bit vector reach[i] as reach[i, [n/L] — 1],..., reach[i,0]

where each reachl[i, h] is an integer in the range R = [0..2L — 1], i.e., a bit string of
length L. Node j corresponds to the bit(j)-th bit in reach[i, indez(j)]. With these
definitions we can rewrite Program 4 as Program 5.

(1) for i from n downto 1

(2a) do co initialize reach|i] to empty set oc

(2b) for [,0<1< [n/L]

(2c) do reach[i,l] < 0 od;

(2d) co add i to reach[i] oc

(2e) reach[i, indez (1)] < power(bit(7));

(3) for all j with (i,j) € E co in increasing order!! oc
(4) do if is_in(bit(j), reach[i, indez(j)]) =0

(5a) then for [,0 <! < [n/L]

(5b) do reachli,l] < union(reach[i,l], reach[],1]) od
(6) fi

(7) od

(8) od.

Program 5

Lemma 2. Under the assumption that functions union, power, bit, index and
is_in can be evaluated in time O(1), Program 5 runs in time O((n+ my.eq) -n/L) =

O(n3/L).
Proof: Obvious.]

How can we evaluate these functions quickly? The easiest solution is to tabulate
them.

Version: 19.10.99 Time: 11:01 -10-

4.8. Transitive Closure of Acyclic Digraphs 11

Lemma 3. The functions union, power, bit, index and is_in can be tabulated in
time O(L - 22F).

Proof: We only discuss the functions is_in and union and leave the other functions
to the reader. The value is_in(i,a) is true iff a; = 1. This is exactly the case if
a=(20+1) 2" +h for some h, 0 < h < 2! —1. The table is_in[,] is therefore filled
correctly by Program 6. Program 6 runs in time O(L - 2%).

is_infi,a] + 0, for 0 <i<L—1,0<a<2l—1;
fori,0<i<L—1
do for h, 0 < h < power[i] — 1
do for [, 0 <[< power[L —i] —1
do is_in[i, (2l + 1) - power[i] + h] < 1 od
od
od.

Program 6

Using the table is_in[,], the entry union[a,b] of table union[, | can now be
computed in time O(L) by Program 7.

c+ 0

for j from 0to L —1

do ¢ < ¢+ max(is_in[j, a], is_in[j, b]) - power[j] od;
union|a, b] « ¢;

Program 7

The complete table union|, | can therefore be filled in time O(22% - L). 1

Theorem 2. Under assumption (A) the transitive closure of an acyclic digraph
can be computed in time O((n + myeq)n/logn) = O(n3/logn).

Proof: We choose L =logn — loglogn = Q(logn). Then

22L L < 22(log n—loglogn) _ logn < n2/ logn
and the computation of the various tables takes time O(n?/logn) by Lemma 3.
Also the transitive closure is computed in time O((n + myeq) - n/L) = O((n +

Myed) - 1/ logn) after preprocessing by Lemma 2. |

Version: 19.10.99 Time: 11:01 -11-

12 Chapter 4. Algorithms on Graphs

Next, we turn to the average case analysis of the transitive closure algorithm. We
postulate the following model of a random acyclic digraph on n nodes. Let € be
a real between 0 and 1. For ¢ < j the probability of the event “(¢,5) € E” is e. For
(7,7) # (I, h) the events “(i,j) € E” and “(I,h) € E” are independent.

Theorem 3.

o n-(n+3) n-(1+In(1/e)
a) E(m*) > 5 - - :

b) E(myeq) < min(n - (2 +1n(1/€)),n? - €).
¢) The expected running time of our algorithm on an n node random digraph is

O(min(n? - (2 + In(1/€)),n® - €)) = O(n® - Inn).

d) Under assumption (A) the expected running time on an n node random digraph
is O(n?).

Proof: a) and b): We prove parts a) and b) in four steps. In the first step (Lemma 4)
we establish a connection between the expected size of the transitive closure and
the expected size of the transitive reduction. This relation allows us to concentrate
on the expected size of the transitive closure. We will next (Lemma 5) derive a
recurrence for the probability that the number of vertices reachable from vertex 1
in a random digraph on n vertices is exactly [. This lemma in combination with
a general property (Lemma 6) of this type of recurrence will allow us to get the
desired bound on the size of the transitive closure (Lemma 7) and on the size of the
transitive reduction.

We use the following notation. The random variable outdeg”®?(v) (outdeg’ (v))
denotes the outdegree of vertex v in the transitive reduction (transitive closure) of
a random digraph on n vertices.

Lemma 4.
a) prob((1,n) € E"*?) = IL - prob((1,n) ¢ E*).
— €

b) Blrtves) = 1 - (M5 B)
Proof: a) We have

prob((1,n) € E"®%) = prob((1,n) € E) - prob(Yv,v ZLv#n15v:(v,n) ¢ E)

7

— A
n—1
=e- Z prob(A|outdeg, (1) =1) - prob(outdeg, _,(1) = 1)
1=1
n—1
=€- Z(l —€)!"1 . prob(outdeg’ _,(1) =1)
1=1

[since prob(A|outdeg),_;(1) =1) = (1—¢)!71]

Version: 19.10.99 Time: 11:01 -12—-

4.8. Transitive Closure of Acyclic Digraphs 13

n—1
=1 <. Z(l —¢)! - prob(outdeg’ _,(1) = 1)
—€
=1
€ *
= 7 "prob((L,n) ¢ EY)

[since prob(Vv,1 -3 v: (v,n) ¢ E|outdeg;,_1(1) =1) = (1—¢)]

b) E(mrea) = Y E((4,5) € B4
1<i<j<n
= Z prob((i,7) € Ered)
1<i<j<n
= Y i - prob((i, j) ¢ E*) [by part a)]
1<i<j<n
——- > (1—prob((i,j) € B")
1<i<j<n
- 1ie'(n(n2_ : _E(m*)>' I

We infer from Lemma 4b) that we can derive an upper bound on E(m,..4) by deriving
a lower bound on E(m*). Let p,; denote the probability that outdeg; (1) = L.

Lemma 5. p,; =0 forl ¢ {1,...,n}, p1,1 =1 and for n > 2

Pt =Pn-1,1 (1= €)' +Pp_1y-1-(1— (1 —¢)'™1)

Proof : In a digraph with only a single vertex the number of vertices reachable from
vertex 1 is always 1. Assume n > 2 next. If outdeg, (1) = [, then either [vertices
among the first n—1 are reachable from 1 and none of these vertices has an outgoing
edge into vertex n (probability p,_1; - (1 —€)!) or [— 1 vertices among the first
n — 1 are reachable from 1 and at least one of these vertices has an outgoing edge
into vertex n (probability p,—1,;-1 - (1 — (1 —€)!=1)). Thus

Prg=Pn-14- (1= +pn111-(1—(1—¢). I
With \; =1—(1— e)l the recurrence above can be rewritten as

P11 =1;
png =0 for 1 ¢{1,...,n}
Png =1 =) Pne10+N—1-Pp—1,-1-

Version: 19.10.99 Time: 11:01 -13-

14 Chapter 4. Algorithms on Graphs

This type of recurrence is known as a pure birth process in probability theory. If
one interprets n as time and [as size of a population, then the recurrence reads as
follows. We start with a population of size 1. When the population has size [at
time n — 1 then it keeps at size [with probability 1 — A\; and grows to size [+ 1

with probability A;. We should expect that on the average size 2 is reached at time
1/A1, size 3 is reached at time 1/A; + 1/A2, An exact formulation of this is

Lemma 6. Let ¢(I) = Y.'_} 1/A; for I > 1. Then
E(p(outdegy,(1))) =n—1
for all n.

Proof: We use induction on n. For n =1 we have
E(p(outdegi(1))) = > ¢(l) - p1,
l

=¢(1)-p11 [since py; =0 for I # 1]
0 [since (1) = 0]

and for n > 2

E(p(outdegy,(1)) = Y @(0) - Pns
l

= Z o(l) - (M=1 - Pn—1,1—1 + (1 = A;) - Pn—1,1) [by Lemma 5]
1

= Z el +1)- A pp-1 + ZCP(Z) “Pn-1,1
1

l

=D) A Pty

l

ZQP(Z +1) = (1) A pa—10 + Z @(l) Pn—1,

7

1
Al
= an—l,l + Z @(l) Pn-1,
1 1
=1+n-—2,
where », ¢(l) - pn—1,1 = n — 2 by induction hypothesis. 1

We can now use Lemma 6 to derive bounds on the expected size of the transitive
closure.

Version: 19.10.99 Time: 11:01 -14-

4.8. Transitive Closure of Acyclic Digraphs 15

Lemma 7.
a) E(outdeg, (1)) >n+1—

n+3 1+In(l/e)
2 " €

¢) E(myed) <n- (1 4 @t/ 6)) <n-(2+1In(1/e)

1—c¢

1+1n(1/e)

b) E(m*) >n

Proof: a) We first compute an upper bound @ for the function ¢. The bound &
is a linear function and hence E(®(outdeg)(1))) = ®(E(outdeg, (1))). It is then
easy to derive a lower bound on E(outdeg} (1)). Recall that \; =1 — (1 —¢€)? and

e(l) = Y11/

1+In(1
Claim: (1) <1— 2+ 2F10(1/0)
€

Proof: We have

-1 1
(p(l) = 1/6+Z m

-1
dx
cvjer [e
) T-a—oe

In(1—(1—¢)®)]""
:1/6+[m_ In(1 —¢) 1
B In(1 — (1 —¢)!71) Ine
=leti-1- In(1 —¢) _1+1n(1—e)
<l_24 l—i-l.':(l/e)’
. In(1—-(1-¢Y
since (1= c) >0and In(1 —¢€) < —e. 1
Let (1) =1—2+ (1+1n(1/€))/e. Then
n — 1 = E(p(outdeg (1)) [Lemma 6]
< E(®(outdeg, (1))) [since ¢ < @]

= Zé(l) * Pl
l
=D (1=2+ (1 +1n(1/e))/€) - pu,

1
= E(outdeg, (1)) — 2+ (1 +In(1/€))/e.

Thus E(outdeg, (1)) > n+1— (1+In(1/e))/e.

Version: 19.10.99 Time: 11:01 -15—

16 Chapter 4. Algorithms on Graphs

b) We have
E(m*) = E(Z outdeg,, (7))

= Z E(outdeg; (i))

=1

— ZE(outdeg:;_iﬂ(l))

=1

Zi(n—i+2—M)

i=1
n+3 1+ In(1/e)
. J— n .
2 € ’
and part a) of Theorem 3 is completed.

Part ¢) of Lemma 7 follows from part b), Lemma 4b) and a simple computation:
€

B(mped) = T— - (n- (n—1)/2 — B(m")) [Lemma 4b)]
< 1ie) (n(n— 1)/2—n-(n+3)/2+n- 1+1n{1/e) +h;(1/6)> [part b)]
- 1L_6 - (—2e +1+1n(1/e))

<n- (14+529)

—e)2 —e)3
:n-(l-l_(l_e)_*_%_k%_k...)

1 [Taylor expansion]
—€

<n-(2+In(1/e)). 1

To complete part b) of Theorem 3 we only need the additional observation that
E(myeq) < E(m) <n’-e.

c) The expected running time of our algorithm is E(n - (n + my..q)) which is
O(min(n? - (2 +In(1/€)),n> - €))

by part b). Next observe that for € > (Inn)/n we have
n?-(2+1n(1/e)) = O(n? - Inn)

and that for € < (Inn)/n we have

n®-e=0(n? Inn).

|
d) Under assumption (A) the expected running time reduces to E(n-(n+my..q)/logn) =|}
O(n?) by the reasoning of part c) and Theorem 2. 1

Version: 19.10.99 Time: 11:01 -16—

4.4. Systematic Exploration of a Graph 17

A closer look at Theorem 3 shows that the expected running time of our algorithm
is optimal for dense digraphs. This can be seen as follows. Let ¢g = 4-Inn/n. Then
E(m*) = Q(n?) for € > g by part a) of Theorem 3 and hence the expected size of
the output is quadratic for € > ¢p. The expected running time is also quadratic and
therefore optimal for € > €.

4.4. Systematic Exploration of a Graph

A fundamental requirement for most graph algorithms is the systematic exploration
of a graph starting at some node s. The basic idea is quite simple.

Suppose that we have already visited some set S of nodes and have traversed
some of the edges leaving nodes in S. Initially, S = {s} and no edge has been
traversed. At each step the algorithm selects one of the unused (= not traversed)
edges incident to a node in S and explores it, i.e., the edge is marked used and
the other endpoint of the edge is added to S. The algorithm terminates when no
unused edges incident to nodes in S are left. We summarize in Program 8.

S« {s};

mark all edges unused;

while there are unused edges leaving nodes in .S

do choose any v € S and an unused edge (v, w) € E;
mark (v, w) used;
S+ SU{w}

od.

Program 8

Lemma 1. Let G = (V, E) be a digraph. Then
S = {v; there is a path from s tov in G}

on termination of Program 8.

Proof: If a node is added to S then it is certainly reachable from s. Suppose now
that v is reachable from s, i.e., a path vy, ..., v, exists from s to v. We show by
induction on ¢ that v; is added to S. Since s = vy, this is certainly true for ¢ = 0.
Suppose now that v; is in S but v;41 is not. Then edge (v;,v;+1) is unused and
incident to a node in S. As long as this condition prevails the algorithm cannot
terminate and hence v;11 must be added to S.]

Version: 19.10.99 Time: 11:01 -17-

18 Chapter 4. Algorithms on Graphs

Of course, Program 8 leaves many implementation details unresolved. The major
questions are how to mark edges used and unused, how to store the set S, and how
to select an edge marked unused and leaving a node in S.

The first problem is easily solved. We have for each node i a pointer p[i] into
the adjacency list of node i. The edges to the left of the pointer are used and the
other edges are unused. Initially, the pointer p[i] points to the first entry of the i-th
adjacency list, i.e., we mark all edges unused by executing Program 9.

for1<i<n
do pli] + adjhead[i] od.

Program 9

The selection of an unused edge leaving a node in S is also fairly easy. We only
have to maintain the subset S C S of all nodes v € S, whose adjacency list is not
yet exhausted. To select an unused edge we choose any node in S and traverse any
unused edge leaving that node. This leads to Program 10.

1 procedure ezplorefrom(s);

2 S « {s}; mark all edges unused;
3 S« {s};

4 while S # 0

do choose some node v € S ;
if there is an unused edge leaving v
then let (v, w) be any such edge;
mark (v, w) used;
if w¢ S then add w to S;
add w to S
fi
else delete v from S
fi
od
end.

Ll e el el L e eon Lo e T Lot e et e e

U W N - O OO~ ot
e e S e e e e e e S S e

P N e e

Program 10

Lines (6) to (8) of Program 10 need to be refined further. Using the fact that
the pointer p[v] always points to the first unused edge in v’s adjacency list, we can
rewrite these lines as Program 11.

We still have to solve the representation question for sets S and S. On set S
the operations Insert, Member and Initialize_to_Empty_Set are executed, on set S
the operations Empty?, Insert, Select_Some, Select_and Delete_Some and Initial-
ize_to_ Empty_Set are executed. We saw in Section 3.8.1 that a boolean array is a

Version: 19.10.99 Time: 11:01 -18-

4.4. Systematic Exploration of a Graph 19

if p[v] # nil
then w « p[v|T.node;
p[v] < p[v]t.next;
if w¢ S then ...

Program 11

good representation for S: Operations Insert and Member cost O(1) time units and
Initialize to_ Empty Set costs O(n) time units. For set S we use either a stack or a
queue (cf. Section 1.4.1). Then all operations on S take O(1) time units. We are
now able to determine the efficiency of procedure ezplorefrom.

Lemma 2. A call explorefrom(s) costs O(ns + m,) time units (without counting
the cost of initialization in line (2)), where n, = |V,| = |{v; s >v}| and m, is the
number of edges in the subgraph induced by V.

Proof: One execution of the body of the while-loop takes O(1) units of time. During
each iteration either an edge is used up or an element is deleted from S. Since each
node in V; is added exactly once to S (the test in line (9) avoids repetitions), the
total time spent in the while-loop is O(n,s + m;).]

We will now put procedure ezxplorefrom to its first use: determining the connected
components of an undirected graph.

Definition: An undirected graph G = (V, E) is connected if for every v,w € V
there is a path from v to w. A connected component of an undirected graph G
is a maximal (with respect to set inclusion) connected subgraph of G.]

The problem of determining the connected components of an undirected graph often
arises in the following disguise. V is a set and £ C V X V is a relation on V. Then
the reflexive, symmetric, transitive closure of F is an equivalence relation. The
problem is to determine the equivalence classes of this relation. In the language of
graphs this amounts to determining the connected components of the undirected
graph G = (V, {{v,w}; (v,w) € E or (w,v) € E}).

In an undirected graph the set of nodes reachable from s forms a connected
component. This observation leads us to the following theorem.

Theorem 1. The connected components of an undirected graph can be found in
linear time O(n + m).

Proof: We embed procedure ezplorefrom into Program 12 and change line (2) in
ezplorefrom from “S < {s}; mark all edges unused” to “S + S U {s}”.

We infer from Lemma 2 that the cost of a call ezplorefrom(v) is proportional
to the size of the connected component containing v. Since explorefrom is called
exactly once for each connected component, the total running time is O(n + m).

Version: 19.10.99 Time: 11:01 -19-

20 Chapter 4. Algorithms on Graphs

S« 0;

for all v € V do p[v] < adjhead|v] od;
for allv eV

do if v ¢ S then ezplorefrom(v) fi od.

Program 12

In what sense does this program determine the connected components of a
graph? All nodes of a component are visited during one call of ezplorefrom. A list
of the nodes of each component can be obtained as follows. Let comp be a variable
of type “set of nodes” (implemented by a stack). We initialize comp to a singleton
set {v} before ezplorefrom(v) is called and insert the instruction “add w to comp” in
line (10) of ezplorefrom. Then comp contains all nodes of the component containing
v after return from ezplorefrom(v). 1

Depending on the representation of set S, as stack or queue, we have two versions
of the procedure ezxplorefrom at hand. They are known by the names depth-first-
search (S is a stack) and breadth-first-search (S is a queue). In depth-first-
search the exploration always proceeds from the last node visited which still has
unused edges, in breadth-first-search it proceeds from the first node visited which
still has unused edges.

In either case explorefrom traverses the adjacency list of each node in a strictly
sequential manner; the order of the edges in the adjacency lists has no influence
on the running time. In Section 4.5 we will take a closer look at depth-first-search.
In Section 4.6 we will apply depth-first-search to various connectivity problems. In
Section 4.7 we will apply breadth-first-search to distance problems.

Version: 19.10.99 Time: 11:01 —-20-

4.5. A Close Look at Depth-First-Search 21

(1) procedure dfs(v:V);
(2) add v to S;
(3) countl < countl + 1; dfsnum[v] < countl,
(4) for all (v,w) € E
(5) doifwé¢S
(6) then [add (v,w) to T7;
(7) dfs(w)
(8) [else if v w then add (v, w) to F
(9) else if w %)v then add (v, w) to B
(10) else add (v,w) to C fi fi]
(11) fi
(12) od;
(13) count2 < count2 + 1; compnum[v] < count2;
(14) end;
(15) begin €O main program oc
(16) S + 0; countl + 0; count2 < 0;
(17) [T + F < B+ C <+ 0]
(18) forallveV
(19) doifv¢s
(20) then dfs(v)
(21) fi
(22) od
(23) end.

Program 13

4.5. A Close Look at Depth-First-Search

In this section we take a detailed look at depth-first-search of directed and undi-
rected graphs. In the depth-first-search version of procedure ezplorefrom set S is
handled as a stack. It is convenient to make that stack implicit by formulating
depth-first-search as a recursive procedure dfs, cf. Program 13. An execution of
this program is called a depth-first-search or simply DFS on graph G.

Several remarks are to be made here. We have extended our basic algorithm
in two respects. First of all, we number the nodes in two different ways. The
first numbering dfsnum is with respect to the calling time of procedure dfs, the
second numbering compnum is with respect to the completion time of procedure
dfs. Second of all, we partition the edges of the graph into four classes: the tree
edges T, the forward edges F, the backward edges B and the cross edges C. The
partitioning process is only done conceptually (this fact is indicated by enclosing
the corresponding statements in brackets); it will facilitate the discussion of depth-
first-search.

Third of all, we assume that the reader knows by now how to represent set S

Version: 19.10.99 Time: 11:01 -21-

22 Chapter 4. Algorithms on Graphs

and how to realize line (4). S is represented as a boolean array as discussed in
Section 4.4 and line (4) may be expanded into

(4a) p < adjhead|v];

(4b) while p # nil

(4c) do w < pt.node; p « pt.next

where p :Tedge and w : integer are local to procedure dfs.

In the example of Figure 4 tree edges are drawn solid, back edges are drawn
dashed, cross edges are drawn squiggled and forward edges are drawn dash-dotted.
Name (an element of {a, b, c,d, e}), depth-first-search numbers (dfsnum) and com-
pletion numbers (compnum) are indicated in each node in that order. It is assumed
that the adjacency list for a is d, e, ¢ and that dfs(a) is called first. In our examples
we will always draw tree edges upwards and arrange the sons of a node (via tree
edges) from left to right in increasing order of dfsnum.

Figure 4. A graph and its dfs-tree

Lemma 1. A depth-first-search on a digraph G = (V, E) takes time O(n + m).

Proof: A call dfs(v) costs O(outdeg(v)) units of time; this accounts for the time
spent in the body of dfs but does not account for further recursive calls. Since a
node v is always added to S when the execution of dfs(v) starts and no node is ever
removed from S, dfs is called at most once for each node. Hence the total time
spent inside dfs is clearly O(n + m); the total time spent outside dfs is O(n). 1

Next we will state some important properties of depth-first-search.

Lemma 2. (DFS-Lemma). Let G = (V, E) be a digraph and let T, F, B, C, dfsnum
and compnum be defined by a depth-first-search on G.

a) Sets T, F,B,C form a partition of E.
b) A= (V,T) is a spanning forest of G.

c) v %)w iff dfsnum|v] < dfsnum|w] and compnum|w] < compnum|v].

Version: 19.10.99 Time: 11:01 -22—-

4.5. A Close Look at Depth-First-Search 23

d) For all (v,w) € E: (v,w) € TUF iff dfsnum[v] < dfsnum[w].

e) Let v,w,z be nodes such that v%w, ﬂ(v%z), and (w,z) € E. Then dfs-
num[z] < dfsnum[v] and (w,z) € BUC. Moreover, if compnum|z] <
compnum|v] then (w, z) € C; if compnum[z] > compnum[v] then (w,z) € B.

f) For all (w,z) € E:

(w,z) € B iff dfsnum[w] > dfsnum[z] and compnum|w] < compnum|z].

g) For all (w,z) € E:

(w, z) € C iff dfsnum[w] > dfsnum[z] and compnum|[w]| > compnum|z].

Proof : a) Follows from the fact that each edge is handled exactly once during the
depth-first-search on graph G.

b) When edge (v, w) is added to T in line (6) of dfs then w is added to S in line (2)
in the following recursive call. This shows that indeg4(w) < 1 for all w € V and
that A is acyclic.

c) Observe first that the forest A corresponds to the calling history of procedure dfs,
ie., v—;}w iff the call dfs(w) is nested within the call dfs(v). Observe next that

the call dfs(w) is nested within the call dfs(v) iff dfsnum[v] < dfsnum[w] and
compnum|[w] < compnum|v)].

d) “=”: If (v,w) € TUF thenv ?"} w by definition of T" and F' and hence dfsnum[v] <
dfsnum[w| by part c).

“<”: Consider the exact instant when edge (v,w) is handled in dfs(v). Either
exploration of that edge will lead to call dfs(w) or v = w or v # w and dfs(w)
was called before edge (v,w) is handled. In the first case we have (v,w) € T.
In the second case the edge (v,v) is added to F. Consider the third case. Since
dfsnum|[v] < dfsnum|w], call dfs(w) was started after call dfs(v). Hence call dfs(w)
is nested within call dfs(v) and therefore v % w by part ¢). Thus (v,w) € F in this
case.

e) The situation is visualized in Figure 5. Since (w, z) € E, the call dfs(z) is started
before the call dfs(w) is completed and hence before the call dfs(v) is completed;

since ﬂ(v%z) the call dfs(z) is not nested within the call dfs(v). Thus the call

dfs(z) starts before the call dfs(v) and hence dfsnum|z] < dfsnum[v]. This also
implies (w, z) € BU C by parts a) and d).

Observe next, that z%v iff compnum[z] > compnum|v] by part c). Hence
(w,z) € B iff z%}w iff z%)v iff compnum|z] > compnum[v]. This completes the
proof of part e).

f) and g) follow immediately from part e) with v = w and the observation that
(w, z) € BUC implies ﬁ(w%z). 1

Version: 19.10.99 Time: 11:01 -23-

24 Chapter 4. Algorithms on Graphs

) \the subtree of A = (V,T)

/

Cross or ’ with root v
back edge ,

/

Figure 5. Situation in Lemma 2e)

It is worthwhile to restate the content of Lemma 2 in an informal way. Forward
edges run from nodes to their descendants with respect to tree edges, backward
edges run from nodes to their ancestors, and cross edges run from right to left in
our drawings. Also, the depth-first-search number (completion number) of a node
is smaller (larger) than that of its tree descendants. Cross edges run from larger
to smaller depth-first-search and completion numbers. Finally, if (u,w) is a back
edge, then all nodes which are completed between u and w are descendants of w.

In undirected graphs the situation is simpler; no cross edges exist and every
forward edge is the reversal of a backward edge.

Lemma 3. Let G = (V, E) be an undirected graph and let T, F, B,C be defined
by a depth-first-search on the directed version of G.

a) C=0.

b) (v,w) € B iff (w,v) € T U F for every dart (v,w) of G.

c) If G is connected then A = (V,T) is a tree.

Proof: a) (Indirect). Assume C # 0. Let (v,w) € C be the first dart which
was added to C in the depth-first-search on G. By Lemma 2g) the call dfs(w)
is completed when dart (v,w) is handled in the call dfs(v). Since graph G is
undirected, dart (w,v) was explored in dfs(w) and since (v,w) is the first dart
added to C, we must have (w,v) € T U F U B. In either case we have w%}v or

v —;} w. Hence (v, w) is not added to C, contradiction.

b) Since C = () by part a) this is an immediate consequence of Lemma 2, parts a),
d) and f).

c) If A= (V,T) were not a tree but a proper forest, then A would contain at least
two trees A; and A,. Since G is connected, there must be edges between A; and As,.
Since back edges and forward edges run parallel to paths of tree edges, such edges
must be cross edges. However, depth-first-search on an undirected graph does not
produce cross edges and hence A must be a single tree.]

Version: 19.10.99 Time: 11:01 —24-

4.6. Strongly Connected and Biconnected Components 25
In Program 13 the partitioning process on the edges is only done conceptually. In
light of the DFS-Lemma it can also be done computationally. We only have to
replace lines (8) to (10) by:

else if dfsnum|v] < dfsnum|w]

then add (v, w) to F co part d) oc
else if compnum|w] is undefined
then add (v,w) to B co part f) oc

else add (v,w) to C fi fi co part g) oc

We finally observe that depth-first-search gives us an alternative way of computing
a topological sort of an acyclic digraph G = (V, E). In an acyclic digraph there
are no back edges and hence compnum|w] < compnum|v] for all edges (v,w) € E
by parts c) and g) of the DFS-Lemma. Hence ord[v] = n + 1 — compnum|[v] is a
topological sort.

Theorem 1. A topological sort of an acyclic digraph can be computed in time
O(n+m) . |

4.6. Strongly Connected Components of Directed Graphs

and Biconnected Components of Undirected Graphs

We will describe linear time algorithms to determine the strongly connected com-
ponents of a digraph and the biconnected components of an undirected graph. All
algorithms are based on depth-first-search.

Definition:
a) A digraph G = (V, E) is strongly connected if v > w v for v,w € V.

b) A strongly connected component (s.c.c.) of a digraph G is a maximal
strongly connected subgraph.]

The problem of determining the strongly connected components of a digraph often
arises in the following disguise. V is a set and E a relation on V. Two elements
v,w € V are called equivalent if v — w and w —» v. The equivalence classes of this
equivalence relation are just the s.c.c.’s of G = (V, E). Furthermore, shrinking the
equivalence classes (s.c.c.’s) to single points leaves us with a partial order (an acyclic
graph).

We will describe two linear time algorithms for computing s.c.c.’s. The first
algorithm has a very simple correctness proof, but uses two passes of DFS, the
second algorithm requires a more complicated proof, but uses only one pass of DFS.

Version: 19.10.99 Time: 11:01 —25—

26 Chapter 4. Algorithms on Graphs

Yet another one-pass algorithm is described in Exercise 8. Both one-pass algorithms
can be modified for computing the biconnected components of an undirected graph.

Figure 6. A graph with 5 s.c.c.’s

Figure 7. A DFS on the graph of Figure 6

Figure 6 shows a graph with five s.c.c.’s, Figure 7 shows a DF'S on this graph,
where the nodes were explored in the order a,b,c,d, e, f,g,h and ¢, and Figure 8
shows the acyclic graph obtained by shrinking s.c.c.’s to single nodes. The s.c.c.’s
are C1,...,Cs, where C; is the i-th component for which all calls dfs(v), v € C;,

Version: 19.10.99 Time: 11:01 —26—

4.6. Strongly Connected and Biconnected Components 27

Figure 8. The graph obtained by shrinking the s.c.c.’s to single nodes

were completed. Thus Cy = {a}, Cy = {e}, Cs = {i}, Cs = {c,d, f,9,h} and
Cs = {b}. The components C1,Cs,... could be determined easily, if we knew

nodes vy, vs,... such that v; lies in C;. Because then a call dfs(vy) explores Cy, a
subsequent call dfs(vy) explores Cs, Unfortunately, there seems to be no easy
way to determine the desired sequence v1,vs,... of nodes. However, we know a

node in the component completed last, namely the node v with highest completion
number; this is node b in our example. A call dfs(v) on the reversed graph G~1
explores exactly the component completed last in the first pass. Let now be w the
node with the highest completion number which has not yet been visited in the
second pass. A call dfs(w) explores the component completed next to last,
The formal basis for this strategy is provided by

Lemma 1. Let C; = (V;, E;), 1 <i <k, be thes.c.c.’s of G = (V,E), n = |V|, and
let r; be the node with largest completion number in C;. Let us also assume that
compnum[ry] < compnum[ry] < -« < compnum|[rg].

a) compnum[ry] =n
b) va%)r,- then v € UV]
Jj>1
Ifr; > v th V;
c) Ty U envejgi]

d) riélvforaHUEV;

Proof: a) The node with completion number n belongs to some s.c.c..
b) Let v € V; and U%)ri. Then r; %7‘1‘ and hence dfs(r;) is started before dfs(r;)

is completed. Thus, either compnum[r;] < compnum|[r;] and hence i < j by as-

Version: 19.10.99 Time: 11:01 —27-

28 Chapter 4. Algorithms on Graphs

sumption or call dfs(r;) is nested within call dfs(r;) and hence r; % r; and hence
i=7.
c) follows immediately from part b) and the observation that v é) r; iff r; E—*_>1 v.

d) Let v € V;. Then v —;> r; and the claim follows. 1

Assume that a DFS on G has been performed and that the completion numbers
have been computed. Now consider a DFS on the graph G~!. Assume that the
first call made is dfs(ry). Note that this is easy to achieve since 7 is the node with
completion number equal to n. The call dfs(ry) reaches exactly the vertices in Vj
by parts ¢) and d) of Lemma 1. Also, at this point r_1 is the node with the highest
completion number which has not been reached by the search yet. A call dfs(rr—1)
will now reach all vertices in Vj_;, This suggests the following algorithm for
computing s.c.c.’s.

1) Perform DFS on G and compute the completion number of each vertex (equiv-
alently, compute an array ord with ord[i] = v iff compnum[v] = 7).

2) Compute the graph G~1.

3) Perform DFS on G~!, where the main program considers the nodes in de-

creasing order of completion number, i.e., lines (18) to (20) of Program 13 are
replaced by

(18") for ¢ from n downto 1
(19") do if ord[i]| ¢ S
(20") then dfs(ord|[i])

Lemma 2. Under the hypothesis of Lemma 1 the following holds: the calls made
in line (20) of Program 13 are exactly the calls dfs(r;), k > i > 1, and furthermore
exactly the nodes in V; are added to S during the call dfs(r;).

Proof : Tt suffices to show that for all ¢ the call dfs(r;) is made by the main program
and that after completion of dfs(r;) the equality S = |J ;> Vj holds. But this follows
from Lemma 1, parts ¢) and d) and the observation that

compnum|[r;] = max{compnum[v]; v € V — U Vi}.]
Jj>i

We summarize in

Theorem 1. The strongly connected components of a digraph G can be computed
in linear time O(n + m).

Proof: Steps 1) and 3) are linear by Lemma 1 of Section 4.5, and step 2) is linear
by Exercise 1.]

Version: 19.10.99 Time: 11:01 —28—

4.6. Strongly Connected and Biconnected Components 29

We now turn to an alternative algorithm which uses only one pass of DF'S. The idea
underlying the one-pass algorithm is to maintain the s.c.c.’s of Goyr = (Veur, Ecur)
which is the subgraph spanned by the set E.,, of explored edges. Initially, V., =
{1}, E.ur = 0 and there is only one s.c.c.. Suppose now that we explore an edge
e = (v,w). If e € T, then w is added to V,, and the node w by itself forms a s.c.c.,
if e ¢ T, then the exploration of e may merge several s.c.c.’s into one. The main
difficulty is to perform this merging process efficiently.

Figure 9. A snapshot of the execution of DF'S on the graph of Figure 6.
Nodes for which the call of dfs is completed are shaded. The shrunken
graph is also shown. Completed components are shaded.

Figure 9 shows a typical situation for the example graph of Figure 6. In this
situation the calls dfs(a), dfs(e), dfs(d) and dfs(g) have been completed and we
are currently exploring edges out of node h. The s.c.c.’s of G, are {b}, {a}, {e},
{c,d}, {f,9} and {h}. A s.cc. C of G,y is said to be completed if dfs(v) is
completed for all v € C'. Otherwise, it is called uncompleted. In our example, the
components {a} and {e} are completed and the components {b}, {c,d}, {f,g} and
{h} are uncompleted. Figure 9 also shows the graph obtained by shrinking the
s.c.c.’s of Gy to single nodes. We make two observations (which will be invariants
of our algorithm):

I1: There are no edges (z,y) with z belonging to a completed component and y
belonging to an uncompleted component.

12: The uncompleted components form a path and we are currently exploring edges
out of the last component of this path.

We can now further develop our basic idea. If we explore a tree edge (v, w), then a
new uncompleted component {w} is created and added to the path of uncompleted
components. If we explore a non-tree edge (v,w) and w belongs to a completed
component, then no action is required because the edge (v, w) cannot close a cycle
by invariant I1. If w belongs to an uncompleted component then some final seg-
ment of the path of uncompleted components collapses to a single s.c.c. (cf. Fig. 10).

Version: 19.10.99 Time: 11:01 —29—-

30 Chapter 4. Algorithms on Graphs

Note that in all three cases the Invariants I1 and I2 are preserved. Finally, observe
that the invariants are also maintained when we complete a s.c.c. because the com-
ponent to be completed is always the last component on the path of uncompleted
components. The main algorithmic problem to be resolved at this point is the
representation of the path of uncompleted components.

- >
the effect of

exploring the
edge (v, w)

Figure 10. The path of uncompleted s.c.c.’s and the effect of exploring
an edge (v,w), where w belongs to an uncompleted component.

Let unfinished denote the sequence of nodes belonging to uncompleted com-
ponents of G, in increasing order of DFS-number. In the example of Figure 9,
unfinished = (b, c,d, f,g,h). We observe:

13: The nodes of each uncompleted s.c.c. form a contiguous subsequence of the
sequence unfinished.

For each s.c.c. C let us call the node with the smallest DFS-number in C' the root
of C and let roots be the sequence of roots of uncompleted s.c.c.’s in increasing
order of DFS-number. Of course, roots is a subsequence of unfinished. In our
example, roots = (b, ¢, f,h). With these definitions we can reformulate (and refine)
invariants I2 and I3 as follows:

Let unfinished = (v1,v2,...,vs) and let roots = (vi,, Vi, ..., 0,), where 1 = i3 <

ig < --- < i}, be the subsequence of roots.

I2: The nodes in roots lie on a single tree path, i.e., v;, %)v,”l for 1 <l <k, and
we are currently exploring edges out of v,, where p > 4.

I3: The nodes in the uncompleted s.c.c. with root v;, are the nodes v;,,v;;41,. ..,
Vi,,,—1 (with the convention 4x,; = s 4 1). Moreover, all these nodes are tree
descendants of the root v;,.

Version: 19.10.99 Time: 11:01 -30—

4.6. Strongly Connected and Biconnected Components 31

Let us reconsider the exploration of edges and the completion of calls. If (v, w) is
the edge to be explored, let G, = (Veur U {w}, Ecyr U{(v,w)}) be the new graph

cur
spanned by the explored edges. Of course, w € V,,, if (v, w) is not a tree edge.

e Exploration of a tree edge (v, w):

In G!,, the node w is a s.c.c. by itself, of course, an uncompleted one; all other
s.c.c.’s stay the same. We can reflect this change by adding the node w at the
end of sequences unfinished and roots. Note that this preserves all our invariants.
11 is preserved since the node v belongs to an uncompleted component by 12; 12
is preserved since v is a tree descendant of the last element of sequence roots (=
top(roots) if we implement roots as a stack) by 12, I3 and the fact that (v,w) is a
tree edge; I3 is preserved since w is a s.c.c. by itself. Also, the sequences unfinished
and roots are still ordered by DFS-number.

In Program 14, lines (3) and (4) implement the actions described above. The se-
quence 1oots and unfinished are realized as pushdown stores; in addition, unfinished
is also represented as a boolean array in_unfinished.

¢ Exploration of a non-tree edge (v, w):

We have to distinguish two cases: either w belongs to a completed component
(in_unfinished[w] = false) or it does not. The case distinction is made in line (8) of
Program 14.

Case 1: w belongs to a completed component, i.e., in_unfinished[w] = false.

In this case no path exists from w to v, since v belongs to an uncompleted component
of G.yr by I2 and no edge exists from a node in a completed component to a node
in an uncompleted component by I1. Thus G.,, and G.,, have the same s.c.c.’s
and no action is required. The three invariants are clearly preserved.

Case 2: w belongs to an uncompleted component, i.e., in_unfinished[w] = true.
Let unfinished = (v1,va,...,vs) and let roots = (vi,, Vi, .., 0,), where 1 = i1 <
ip < --- < 1. Let v = vp, where p > 4} by 12, and w = v, where 3; < g < ¢41, i.e,,
v;, is the root of the s.c.c. containing w. We claim that we can obtain the s.c.c.’s of
G, by merging the s.c.c.’s of Gy, with roots v, v;,_,,...,v;, into a single s.c.c.
with root v;, and leaving all other s.c.c.’s unchanged. This can be seen as follows.
Note first that completed s.c.c.’s remain the same by I1. Consider any node z in an
uncompleted component next, i.e., z = v, for some r. If r > 4;, say ip <7 < ip41
with I < h <k, then

where the existence of the first, the fourth and the fifth path follows from I2 and
I3, the existence of the second and third path follows from the fact that v;, and v,
belong to the same s.c.c., and the existence of the seventh path follows from the
fact that w and v;, belong to the same s.c.c.. Thus z = v, and v;, belong to the
same s.c.c. of G/ if r > ;.

cur

Version: 19.10.99 Time: 11:01 -31-

32 Chapter 4. Algorithms on Graphs

procedure dfs(v : node);
countl « countl + 1; dfsnum[v] < countl; add v to S;
push v onto unfinished; in_unfinished[v] < true;
push v onto roots;
for all w with (v,w) € E
doifwé¢S

then dfs(w)

else if in_unfinished|w]

then co we now merge components oc
while dfsnum[top(roots)] > dfsnum[w]
do pop(roots) od
fi

fi
od;
if v = top(roots)
then repeat w < pop(unfinished); in_unfinished|w| < false;

co w is an element of the s.c.c. with root v oc
until v = w;
pop(roots)

fi
end;

begin CO main program ocC

unfinished < roots < empty_stack; S « 0;
countl < 0;

for all v € V do in_unfinished[v] + false od,;
for all v € V do if v ¢ S then dfs(v) fi od
end.

DN DD DN DN DN DN DN = = = e e e e e e NN S S S S S
NN O Ok W = O OO O WNMFEOO©OO Ok W =
S N e e e N N N N N N N N N N N N e e e e S S e S N N

N N .

Program 14: A one-pass s.c.c. algorithm

If r <, say ip, < r < ipq1 with A < [, then v, Ei> Vi, Ei> v;, % w, since

cur cur cur

v, and v;, (v;, and w respectively) belong to the same s.c.c. and v;,, E—*> v;, by I2.

cur

Since h < [no path exists from v;, to v, = z in G.y,. If did exist such a path in
G..,», then it would have to use the edge (v,w) and hence there must be a path
from w to v, in G.yr. Thus w and v, would belong to the same s.c.c. of G.yy, a
contradiction. This shows that uncompleted s.c.c.’s with roots v;,, h < [, remain
unchanged.

We have now shown that the s.c.c.’s of G, can be obtained from the s.c.c.’s
of Gy by merging the s.c.c.’s with roots v;,,...,v;, into a single s.c.c.. The newly
formed s.c.c. has clearly root v;, and hence the merge can be achieved by simply
deleting the roots v;,_,,...,v; from roots. Next note that i; < ¢ < ij41 < --- <

ir, where w = vy and hence dfsnum[v;,] < dfsnum[w] < dfsnum[v;,] < ... <

Version: 19.10.99 Time: 11:01 -32—

4.6. Strongly Connected and Biconnected Components 33

dfsnum|vg| since unfinished and roots are ordered by DFS-number. This shows
that the merge can be achieved by popping all roots from roots which have a DFS-
number larger than w. That is exactly what lines (10) and (11) of Program 14
do. The three invariants are preserved by the arguments above. This finishes the
description of how edges are explored. We now turn to the completion of calls dfs(v).

e Completion of a call dfs(v):

By I2 the node v is a tree descendant of top(roots). If it is a proper tree descendant,
i.e., v # top(roots), then the completion of dfs(v) does not complete a s.c.c.. We
return to dfs(w) where w is the parent of v. Clearly, w is still a tree descendant of

top(roots) and alsow — v = top(roots) and therefore w and top(roots) belong to

cur cur

the same s.c.c.. This shows that I2 and I3 are preserved; I1 is also preserved since
we do not complete a component.

If v = top(roots) then we complete a component. By I3 this component consists
of exactly those nodes in unfinished which do not precede top(roots) and hence these
nodes are easily enumerated as shown in lines (16) through (18) of Program 14. Of
course, top(roots) ceases to be a root of an uncompleted s.c.c. and hence has to be
deleted from roots; line (19). We still need to prove that the invariants are preserved.
For I1 this follows from the fact that all edges leaving the just completed s.c.c. must
terminate in previously completed s.c.c.’s, since the uncompleted s.c.c.’s form a path
by I2. The invariants 12 and I3 are also maintained by a similar argument as in the
case v # top(roots).

We have now completed the correctness proof of Program 14 and summarize in

Theorem 2. Program 14 computes the strongly connected components of a di-
graph in time O(n + m).

Proof: Having already proved correctness, we still have to prove the time bound.
The time bound follows directly from the linear time bound for DFS and the fact
that every node is pushed onto and hence popped from unfinished and roots exactly
once. This implies that the time spent in lines (11) and (16) is O(n). The time
spent in all other lines is O(n + m) by Lemma 1 of Section 4.5. 1

We now turn to biconnected components of undirected graphs.

Definition:

a) A connected undirected graph G = (V| E) is biconnected if G—v is connected
for every v € V.

b) A biconnected component (b.c.c.) of an undirected graph is a maximal
biconnected subgraph.

c) A vertex a € V is an articulation point of G if G — a is not connected. |

We start with a simple observation on biconnected components. Let G; = (4, Ey),
.+yGm = (Vin, Ep,) be the biconnected components of an undirected graph G =

Version: 19.10.99 Time: 11:01 -33-

34 Chapter 4. Algorithms on Graphs

(V,E). Then E = E1U---UE,, and E;NE; = 0 for i # j. To see this, note that for
each edge (v,w) € E the graph consisting of vertices v and w and the single edge
(v, w) is biconnected, and hence contained in one of the biconnected components
of G. Thus (v,w) € Ej for some h. It remains to be shown that E; N E; = for
i # j. Assume otherwise, say (v,w) € E; U E; for some i # j. Since G; and G,
are maximal biconnected subgraphs, the subgraph G' = (V; UV}, E; U E;) is not
biconnected. Thus a vertex a € V; UV, must exist such that G’ —a is not connected.
Let z and y be vertices in different components of G’ —a. Since G; —a and G; —a
are connected, we must have z € V; and y € V; (or vice versa). Since a cannot be
equal to both v and w, we may assume v # a. Since G; — a (G; — a) is connected,
a path exists from x to v (y to v) in G; —a (G; — a). Hence a path exists from x
to y in G’ — a, and we have reached a contradiction. We have thus shown that the
b.c.c.’s of a graph give a partition of the edges of the graph.

One further observation on b.c.c.’s will be useful in the sequel. If there is a
simple cycle through nodes v and w then v and w belong to the same b.c.c.. In
the example of Figure 11 there are four b.c.c.’s, namely {f,c}, {a,b,c}, {e,¢9} and
{b,d,e}. The articulation points are ¢, e and b. A depth-first-search on the graph
of Figure 11 could yield the structure of Figure 12; nodes are explored in the order
a’b’c’f’d’e’g'

Figure 11. A graph with 4 b.c.c.’s

The biconnected components are easily recognized in Figure 12. The first edge
of each b.c.c. which is explored is a tree edge; we call the endpoint of that tree edge
the center of the component (formally, the node with the second smallest dfsnum
in the b.c.c.). All back edges leaving the subtree rooted at the center of a b.c.c.
end in the parent node of the center or in a tree descendant of the center. The
parent of the center is always an articulation point or the root of the dfs-tree. The
b.c.c. with center v consists of the parent of v and the nodes which are reachable
from v via tree edges without going through another center. In our example the
centers of the four components are f,g,d and b. The b.c.c. with center d consists
of b = parent|d], and the tree descendants d and e of d.

Formally, we define the center of a b.c.c. as the node with the second smallest
dfsnum in the b.c.c.. The centers of b.c.c.’s play a role similar to the roots of s.c.c.’s.
In fact, Program 14 is easily modified to compute the b.c.c.’s of undirected graphs,

Version: 19.10.99 Time: 11:01 -34-

4.6. Strongly Connected and Biconnected Components 35

Figure 12. A DFS on the graph of Figure 11

cf. Exercise 11. Here we describe an algorithm which is closely related to the s.c.c.
algorithm outlined in Exercise 8. For each node v let
lowpt [v] = min({ dfsnum[v]} U

{dfsnum[z]; there is w such that v %) w— z}).

Lemma 3. Let G = (V,E) be a connected undirected graph, let T, F,B and
dfsnum be determined by a depth-first-search on the directed version of G and
let lowpt be defined as above.

a) lowpt[v] < dfsnum[parent[v]] for all v with dfsnum[v] > 2.
b) v is the center of a b.c.c. iff lowpt[v] = dfsnum[parent|v]] and dfsnum[v] > 2.
c) Let G' = (V',E') be a b.c.c. with center v. Then

V' = {parent[v]} U

{w; v %} w and there is no center # v on the tree path from v to w}.

d) lowpt[v] = min({dfsnum[v]} U
{dfsnum|z]; (v,z) € B} U
{lowpt[u]; (v,u) € T}

forallveV.

Proof: a) If dfsnum[v] > 2 then parent[v] exists and edge (v, parent[v]) is a back
edge. Hence lowpt[v] < dfsnum[parent[v]].

Version: 19.10.99 Time: 11:01 -35—-

36 Chapter 4. Algorithms on Graphs

b) “=”": Let v be the center of a b.c.c.. Then certainly dfsnum[v] > 2. Sup-
pose lowpt[v] = dfsnum[u] < dfsnum[parent[v]]. Then a path v %)w Zu exists for

some w. Also, u is a tree ancestor of v and since u # parent[v] a tree ancestor of
parent[v] as well. Hence u, parent[v], v and w lie on a simple cycle and hence all
belong to the same b.c.c.. This b.c.c. contains at least two nodes, namely u and
parent[v], whose dfsnum’s are smaller than v’s dfsnum, a contradiction.

“<”: Suppose dfsnum[v] > 2 and lowpt[v] = dfsnum[parent[v]]. Consider the
b.c.c. G' = (V', E') containing the edge {parent[v],v}. We will show that v is the
center of G'. Assume the existence of u € V', u # parent[v] and dfsnum|u] <
dfsnum[v]. Since G’ — parent|v] is connected, there must be a simple path vy, ..., vg
from v = vy to vy = u avoiding node parent[v]. Let v; be the first node on that
path which is not a tree descendant of v, i.e., v —;> v;—1 and —(v ?’;) v;). Then edge
(vi—1,v;) must be a back edge. Also, lowpt[v] < dfsnum[v;] by the definition of
lowpt. Furthermore, since v; is a tree ancestor of v;_; and since v; is not a tree

descendant of v and v; # parent[v], v; must be a proper ancestor of parent[v]. Hence
lowpt[v] < dfsnum[v;] < dfsnum[parent[v]], a contradiction.

c) Let G' = (V',E’) be a b.c.c. with center v. In the proof of the second half
of part b) it was shown that parent[v] € V’'. Also, by the definition of center
dfsnum[v] < dfsnum[w] for all w € V' — {v, parent[v]}. Since G’ — parent[v] is
connected, all vertices w € V' — {v, parent[v]} are reached by the search before
dfs(v) is completed. None of them is reached before dfs(v) is started and hence

v ?"} w for all w € V' — {parent[v]}. This proves V' C {parent[v]} U {w; v ?*) w}.
Next suppose v —;> z and z ¢ V'. Let ¢ be the center of the b.c.c. G” containing

the edge {parent|z],z}. Then c—;>z by the first part of the proof of part c¢) and

hence either v;’}c or c;*gv. ¢ = v is impossible since z ¢ V’'. In the first case

we have finished. So suppose c%}v. Since G" — parent[v] is connected (parent[v]

might not even be a node of G), a path zy,...,2; must exist from z to ¢ avoiding
parent[v]. Because of this fact and since v %)z a path vg,...,v; must exist from

v = vp to ¢ = vy, avoiding parent[v]. Let v; be the first node of that path which
is not a tree descendant of v. As in the proof of part b) one shows lowpt[v] <
dfsnum|v;] < dfsnum|[parent[v]], a contradiction. This completes the proof of part

c).

d) Follows directly from the definition of lowpt.]

Lemma 3 directly leads to the algorithm shown in Program 15. Lines (4), (10)
and (11) compute the lowpt-values; note that in line (11) the test whether (v, w) €
B, i.e., dfsnum|w] < dfsnum|[v], is unnecessary, since the line has no effect if (v, w) €
F, ie., dfsnum[v] < dfsnum[w]. In line (14) the centers of b.c.c.’s are recognized
by Lemma 3, part b). By part c) the b.c.c. with center v consists of parent[v] and

Version: 19.10.99 Time: 11:01 -36—

4.6. Strongly Connected and Biconnected Components 37

procedure dfs(v : node);
countl + countl + 1; dfsnum[v] < countl,;
add v to S;
lowpt[v] + dfsnum[v];
push v on unfinished;
for all (v,w) € E
doifwdS
then parent[w] + v;
dfs(w);
lowpt[v] < min(lowpt[v], lowpt[w)])
else lowpt[v] < min(lowpt[v], dfsnum|w])
fi
od;
if dfsnum[v] > 2 and lowpt[v] = dfsnum[parent[v]]
then repeat w < pop(unfinished);
until w=w co the nodes popped together with the
node parent[v] form the b.c.c. with center v oc

== = e e e NN S S S S S S
DO WN MO O©OO ULk W =

e . e e e e e e e e e e e e e e’

S~~~

fi
end;

7)
8)
9) begin €O main program oc
0) S < 0; unfinished < empty _stack;
1) countl < 0;

2) for all v € V do if v ¢ S then dfs(v) fi od
3) end.

Program 15

all tree descendants w of v which are not tree descendants of another center. These
nodes w were not added to unfinished before v. Conversely, if w was not added to
unfinished not before v and is on unfinished when line (14) is executed then the call
dfs(w) is nested within the call dfs(v) (observe that we are about to complete the
call dfs(v)) and hence w is a tree descendant of v but not a tree descendant of any
other center. Thus lines (15) and (16) correctly enumerate the nodes in the b.c.c.
with center v. This establishes the correctness of our algorithm.

For the running time we only have to observe that each node is popped from
unfinished exactly once and hence the time spent in lines (15) and (16) is O(n). The
time spent in all other lines is O(n +m) by Lemma 1 of Section 4.5. We summarize
in

Theorem 3. The biconnected components of an undirected graph can be deter-
mined in time O(n + m). 1

In our example we have lowpt[f] = 3, lowpt[g] = 6, lowpt[e] = lowpt[d] = 2 and
lowpt[c] = lowpt[b] = lowpt[a] = 1. The first center found is f. Just prior to the

Version: 19.10.99 Time: 11:01 -37-

38 Chapter 4. Algorithms on Graphs

execution of line (15) in dfs(f) the content of unfinished is a,b,c, f. In line (15) f
is deleted. Then d, e and g are added to unfinished and so prior to the execution of
line (15) in dfs(g) the content of unfinished is a,b, c,d, e, g. In line (15) g is removed.
The next center found is d and so d and e will be removed. Finally, center b is found
and ¢ and b are removed in line (15) of dfs(b).

We end this section with an application of the s.c.c. algorithm to the computation of
the transitive closure of digraphs. Let G = (V, E) be a digraph. Let Vi, Va,..., Vi
be the (node sets of the) s.c.c.’s of G. Let G’ = (V', E’) be defined by

V' ={Vi,...,Vi} and
E' = {(V;,V}); v € V;,w € Vj exist such that (v,w) € E}.

Then G’ = (V', E') is an acyclic digraph. Let G'* = (V', E'™) be the transitive
closure of G'. Then G* = (V, E*), where

E* ={(v,w) €V xV; v€V;,w€V; and (V;,V;) € E'" for some i and 5}

is the transitive closure of G. The process described above is easily turned into an
algorithm. First, determine V3,..., Vj in time O(n + m). Secondly, construct G’ in
time O(n +m). Thirdly, compute the transitive closure of G’ in time O(k®) by the
methods described in Section 4.3. Finally, E* can be computed from G'* in time
O(k + m*), where m* = |E*|. We summarize in

Theorem 4. Let G = (V, E) be a digraph. Then the transitive closure of G can be
computed in time O(n+m* +k3), where m* is the number of edges in the transitive
closure and k is the number of s.c.c.’s of G.]

4.7. Least Cost Paths in Networks

A network N is a directed graph G = (V, E) together with a cost function
c: E — R. We are interested in determining the least cost path from a fixed
vertex s (the source) to all other nodes (the single source problem) or from each
node to every other node (the all pairs problem). The latter problem is also
treated in Chapter V.

A path p from v to w is a sequence vg, v1, ..., v, of nodes with v = vy, w = vy
and (v;,viy1) € E for 0 < i < k. The length of the path p is k and the cost ¢(p) of
the path is Zfz_ol ¢(vi, vi+1). The cost of the path of length 0 is 0. The path above
is simple if v; # v; for 0 < i < j < k. We define the cost p(u,v) of the least cost
path from u to v by

p(u,v) = inf{c(p); p is a path from u to v},

the infimum over the empty set being co.

Version: 19.10.99 Time: 11:01 -38—

4.7. Least Cost Paths in Networks 39

Example: In the example of Figure 13 we have u(a,e) = 1, u(e,a) = +o0, u(a,b) =
p(a,c) = p(a,d) = —co. (Note that the path ab(cdb)! from a to b has length 1 + 3i
and cost 3 —1.)

Figure 13. Graph with costs +o0o0 and —oo

We concentrate on the single source problem first, i.e., we are given a network
N = (V,E,c), ¢c: E - R, and a node s € V and we have to determine u(s,v) for
all v € V. Our algorithm for this problem is based on the following observation:
The costs pu(s,v) certainly satisfy the triangle inequalities

V(u,v) € E : u(s,u) + c(u,v) > u(s,v),

i.e., a path from s to v which consists of a least cost path from s to u followed by
the edge (u,v) can certainly be of no smaller cost than the least cost path from s
to v. Furthermore, for every v # s there must be at least one edge (u,v) € E such
that u(s,u) + c(u,v) = u(s,v), e.g., let (u,v) be the last edge on a least cost path
from s to v.

These observations lead to the following algorithm for determining least cost paths.
We start with a function cost[v], v € V, which overestimates u(s,v), e.g., the
function cost[s] = 0 and cost[v] = +oo for v # s will do. Then we look for an edge
(u,v) such that cost does not satisfy the triangle inequality with respect to edge
(u,v), i.e., costlu] + c(u,v) < cost[v]. Whenever such an edge is found we use it to
reduce cost[v] to cost[u] + c(u,v).

In the first formulation of our algorithm by Program 16 we do not only compute
the costs of the least cost paths but also the paths themselves, i.e., path[v] contains
a path of cost cost[v] from s to v stored as a sequence of nodes. We use (s) to
denote the path of length zero from s to s and we use “path[u] cat v” for extending
a path from s to u to a path from s through u to v.

Program 16 is nondeterministic. Any edge violating the triangle inequality
can be chosen in line (6). We will show that the correctness of the algorithm does
not depend on the sequence of choices made. However, the running time depends
heavily on it as the following example shows.

Example: Let N,, = (V,,, E,, ¢,) be the following network:

Version: 19.10.99 Time: 11:01 -39-

40 Chapter 4. Algorithms on Graphs

cost[s] < 0; path[s] < (s);
for allv € V, v # s do cost[v] < +o0;
path[v] < undefined
od;

while J(u,v) € E : cost[u] + c(u,v) < cost[v]
do choose any edge (u,v) € E with cost[u] + ¢(u,v) < cost[v];

cost[v] < cost[u] + c(u,v);

path[v] < path[u] cat v
od.

NN N N N N N N N
© 00 ~J O O i W N =
N e e N S N N N N

Program 16

Vi = {vi,us, 855 0 <i<n}U{s,},

E, = {(Si+1,), (Si+1,ui), (us, 8;), (v5,8;); 0 <i<n}and
cp - B, > R with

cn((8i+1,u:)) = cn((uis 85)) = en((vi,8i)) =0
en((sit1,vi)) = 2V

Also s = s,. Figure 14 shows Nj.

Figure 14. N3

If the edges are chosen in the order (s, un—1), (Un—1,80-1), (Sn, Vn-1), (Sn—1, Un—2),1
(Un—2,8n—2), (Sn—1,Vn—2),... in line (6) then the body of the while loop is executed
exactly |V, | — 1 = 3n times.

Now consider the following inductively defined sequence S,, of choices. On
N; we use S1 = (s1,0), (vo, S0), (S1,u0), (uo, So) of length 4 and on N,, we use
Sn = (Sn, vn—l), (vn—la Sn—l)a Sn—la (Sna un—l), (un—lv Sn—l), Sn—l of length |Sn| =
4+42-1S,-1] =4-(2" —1). Note that after using edges (sp,Vn—1), (Vn—1,Sn—1), Sn—1
we will have cost[s,] = 0, cost[u,_1] = oo, and cost[v] > 2"~ for all other nodes v.
The choice of edges (8n,un—1), (Un—1,8n—1) Will reduce cost[s,_1] to zero. We can
now run through sequence S,,_; again.]

Version: 19.10.99 Time: 11:01 —-40—-

4.7. Least Cost Paths in Networks 41

Lemma 1.
a) u(s,v) > —oo for all v € V iff the algorithm terminates.

b) If the algorithm terminates then u(s,v) = cost[v] for allv € V on termination.

Proof: a) “=": The following claim can easily be proved by induction on the
number of iterations of the loop.

Claim: Before any execution of line (6) the following holds true: path|v] is a path
of cost cost[v] from s to v and if path[v] = (vo,...,vg) then for all i < k we have
that (vo,...,v;) was the content of path[v;| previously. |

We will now show that path[v] is always a simple path from s to v if u(s,v) > —oo.
Since the number of simple paths is finite and since no variable path[v] can contain
the same path twice this implies termination.

Assume to the contrary that path[v] may be a non-simple path from s to v,
ie., path[v] = (vo,...,vi,...,0j,...,v) and u = v; = v; for some i < j. Then
p1 = (vo,...,v;) as well as pp = (v, ..., %;,...,v;) have been the content of path|[u]
at some point during the execution of the algorithm. Also ¢(p2) < c¢(p1) since
cost[u] decreases whenever path|u] is changed. However, ¢(p2) — c¢(p1) is the cost of
the cycle v;,...,v;. So the graph contains a cycle of negative cost. Going around
that cycle sufficiently many times we can make the cost of a path to v as small as
we want. Hence p(s,v) = —oo, contradiction. This shows that path[v] is always a
simple path.

“«<”: When the algorithm terminates we obviously have cost[v] > —oo for allv € V
on termination. Hence this direction follows from part b).

b) Suppose that the algorithm terminates and p(s,v) < cost[v] for some v € V on
termination. Then there must be a path p = (vo, ..., vx) from s = vo to v = v with
c(p) < cost[v]. Let p; = (vo,...,v;) be the prefix of p leading from s to v;, 0 < i < k.
There must be a minimal 7 such that ¢(p;) < cost[v;] on termination. Since ¢(pg) =0
and cost[vg] < 0 (recall s = vp) we deduce ¢ > 1, and thus cost|[v;—1] = ¢(pi—1) on
termination. This implies

cost[v;] > ¢(p;) = c(pi—1) + c(vi—1,v;)

= cost[v;_1] + c(vi—1,v;)

and hence the algorithm does not terminate because the triangle inequality for edge
(vi—1,v;) is violated. |

Lemma 1 states that the algorithm will terminate with the correct costs whenever
u(s,v) > —oo for all v € V. However, we have also seen that the sequence of choices
made in line (6) has a crucial influence on the running time. Also, we have to say
more about the test in line (5). How do we find out whether some edge violates the
triangle inequality?

Note first that when the loop is entered for the first time only the edges out
of s are candidates for selection in line (6). Assume now that whenever an edge

Version: 19.10.99 Time: 11:01 -41-

42 Chapter 4. Algorithms on Graphs

(u,v) is selected in line (6) we will also check all other edges (u,v’) going out of u
for satisfaction of the triangle inequality. Then the edges going out of u do not have
to be checked again until cost[u] is reduced. This observation leads to Program 17,
a refinement of our basic algorithm.

(1) cost[s] < 0; U « {s};
(2) for all v # s do cost[v] < +00 od;
(3) while U # 0
(4) do co if u ¢ U then cost[u] + c(u,v) > cost[v] for all (u,v) € E oc
(5) select any u € U and delete u from U,
(6) for all (u,v) € E
(7) do if costu] + c(u,v) < cost[v]
(8) then cost[v] < cost[u] + c(u,v);
(9) add v to U
(10) fi
(11) od
(12) od.
Program 17

Our main problem still remains: Which point u shall we select from U in
line (5)? The following lemma states that U always contains at least one perfect
choice: a node with cost[u] = u(s,u).

Lemma 2.
a) Ifv ¢ U then cost[v] + c(v,w) > cost[w] for all (v,w) € E.

b) Let +00 > u(s,v) > —oo and let vy, ..., vy be a least cost path from s = vy to
v = vg. If cost[v] > u(s,v) then there is an i, 0 < ¢ < k, such that v; € U and
cost[v;] = u(s,v;)-

¢) If pu(s,v) > —oo for all v € V then either U = () or there exists u € U with
cost[u] = p(s,u).

d) If a node u having cost[u] = pu(s,u) is always chosen in line (5) then the body
of the loop is executed at most n times.

Proof: a) (By induction on the number of executions of the while loop). The claim
holds certainly true before the first execution of the loop. Now suppose that v ¢ U
after execution of the body. Then either v ¢ U before execution and then cost[v]
was not changed and cost[w] for w # v was not increased in the body of the loop
and hence cost[v] + c(v,w) > cost[w] by induction hypothesis or v € U before
execution and then edge (v, w) has been considered in lines (7) and (8) and hence
cost[v] + ¢(v, w) > cost[w] by the algorithm.

Version: 19.10.99 Time: 11:01 —42—

4.7.1. Acyclic Networks 43

b) Let ¢ = min{j; cost[vj+1] > u(s,vj+1)}. Then i < k since cost[vg] > p(s,vi)
by assumption and i > 0 since pu(s,s) = 0 (note that u(s,s) < 0 would imply
[u(s,v) = 400 or u(s,v) = —oo] for all v € V') and hence u(s, s) = cost[s]. Since
i > 0 we have cost[v;] = p(s,v;). If v; were not in U then by part a) p(s,vi41) =
u(s,v;) + c(vi,vi41) = cost[v;] + ¢(vi,viy1) > cost[viy1], a contradiction to the
definition of ¢. Thus v; € U.

c) Let v € U be arbitrary. If cost[v] = u(s,v) then we are done. Otherwise there is
a node u € U on the least cost path from s to v with cost[u] = u(s,u) by part b).

d) If a node u with cost[u] = u(s,u) is always chosen in line (5) then no node can
reenter U after having left U, since cost[u] is reduced whenever a node is added
to U. Hence every node is deleted at most once from U, i.e., the body of the loop
is executed at most n times.]

Lemma 2 states that U always contains at least one perfect choice for the selection
process in line (5). Unfortunately, in the case of arbitrary real costs we do not
know any efficient method for making a perfect choice. We treat two special cases:
acyclic networks (the underlying graph is acyclic) and non-negative networks (the
function ¢ : E — R{ assigns non-negative costs to every edge). In these cases we
obtain O(n + m) and O(m + nlogn) algorithms, respectively. In the general case
we can only make sure that a good choice is made at each O(n)-th iteration of the
loop. This will lead to an O(n - m) algorithm.

4.7.1. Acyclic Networks

Let G = (V, E) be an acyclic graph and ¢: E — R be a cost function on the edges.
We assume that G is topologically sorted, i.e., V ={1,...,n} and E C {(3,5); 1 <
i < j<n}and s =1. In Section 4.2 we saw that a graph can be topologically
sorted in time O(n + m). We replace line (5) by

(5" select and delete v € U with u minimal.

Then u is always a perfect choice, i.e., cost[u] = p(s,u) when u is selected from U:
Indeed, by Lemma 2 there must be a node v € U on the least cost path from s to u
with cost[v] = u(s,v). Since the graph is topologically sorted we must have v < u
and hence v = u by the definition of « in line (5').

Line (5') steps through the nodes of G in increasing order. We can therefore
do completely away with set U and reformulate the algorithm as Program 18.

Theorem 1. In acyclic graphs the single source least cost paths problem can be
solved in time O(n + m).

Proof: Topological sorting takes time O(n + m). Program 18 also clearly runs in
time O(n + m). 1

Version: 19.10.99 Time: 11:01 —-43—

44 Chapter 4. Algorithms on Graphs

(1) cost[1] < 0;

(2) for all v > 2 do cost[v] + 400 od;
(3) for u from 1ton—1

(4) do for all (u,v) € E

(5) do cost[v] < min(cost[v], cost[u] + c(u,v))
(6) od

(7) od.

Program 18

There is a generalization of acyclic graphs which still allows for a linear time shortest
path algorithm: shortest-path-orderable graphs.

Definition: A digraph G = (V, E) with source s is shortest-path-orderable

with respect to s (or briefly, sp-orderable) if there is permutation ey, es,...,en
of E such that every simple path starting in s uses edges in increasing order. The
sequence e, ..., ey, is called an sp-order.

Figure 15 shows examples of sp-orderable and non-sp-orderable graphs. For the
two orderable graphs the edges are labelled a,b,c, ... corresponding to a possible
ordering. The third graph of Figure 15 is not sp-orderable since there is a simple
path using e before e’ and a simple path using e’ before e.

Figure 15. Two sp-orderable graphs and one graph which is not sp-orderable

Theorem 2. Let G = (V, E) with source s be sp-orderable and let ey, es,..., ey
be an sp-order of E. Then the single source least cost path problem can be solved
in linear time O(n + m) for any cost function ¢ : E — R.

Proof: Consider Program 19. It runs in time O(n + m) and computes a function
cost : V — R. If this function satisfies the triangle inequality, a fact that can be
checked in linear time, Program 19 corresponds to a run of Program 16 with the
edges considered in the order ey,..., e, and hence cost[v] = u(s,v) for all v by
Lemma 1b. Suppose now that the resulting cost function does not satisfy the trian-
gle inequality. Let W be a set of targets of edges violating the triangle inequality,
ie., W = {w; I(v,w) € E, cost|w] > cost[v] + c(v,w)}, and let CW be the set of
nodes reachable from a node in W.

Version: 19.10.99 Time: 11:01 —-44—

4.7.2. Non-negative Networks 45

cost[s] < 0;
for al v # s do cost[v] + 400 od;
for i< 1tom
do let e; = (v, w);
cost[w] = min(cost[w], cost[v] + c(v,w))
od.

Program 19

Claim: u(s,v) = cost[v] for v ¢ CW and p(s,v) = —oo forve CW.
Proof: We show first that u(s,v) > —oo implies u(s, w) = cost[w]. If u(s,w) > —oo

then u(s,w) is the cost of a simple path from s to w. Since ey, ..., €, is an sp-order
of G, p consists off edges e;,,e€;,,...,e;, with i; <iy <--- <. It is now obvious
that cost[w] = p(s,w) on termination of Program 19. Consider any node w with
w(s, w) = —oo next. Then there is a path p;pops from s to w such that ps is a cycle
and c(pz) < 0. Let py consist of edges e;,,es,,...,e;, where e;; = (vj,v;41) and
Vg+1 = V1. Then
k
Z(cost[vj+1] — cost[v;] — c(e;;)) = cost[vg41] — cost[vi] — Zc(eij)
j=1

=0—c(p2) >0

and hence there is some j with cost[vj;1] > cost[v;] + c(e;,), ie., vj41 € W. Also
w is clearly reachable from v;,; and hence w € CW.

We have now shown that u(s,w) = —oo implies w € CW and w ¢ CW implies
u(s,w) > —oo and hence u(s,w) = cost[w]. It remains to show that w € CW

implies u(s,w) = —oo. Let w € W, i.e., there is an edge e = (v, w) with cost[w] >
cost[v] + ¢((v,w)). Then either cost[w] # p(s,w) or cost[v] # p(s,v) and hence
either u(s,w) = —oo or pu(s,v) = —oo. In either case we have u(s,v) = —oo. This
completes the proof of the claim and of Theorem 2. it

The best algorithm known to decide whether a directed graph is sp-orderable and, if
need be, to compute an sp-order runs in time O(n?), cf. the bibliographic remarks.
Together with Theorem 2 this yields an O(n? + m) algorithm for the single source
shortest path problem for sp-orderable graphs which compares favorably with the
O(n-m) bound for arbitrary graphs; cf. Section 4.7.4. Furthermore, there are prac-
tically important subclasses of sp-orderable graphs where an order can be computed
in linear time; cf. Exercises 1101 and 1102.

4.7.2. Non-negative Networks

A network N = (V, E, ¢) is non-negative if ¢ : E — Rg assigns non-negative costs to
every edge. Non-negative networks arise very frequently in practice and therefore

Version: 19.10.99 Time: 11:01 —-45—

46 Chapter 4. Algorithms on Graphs

the least cost path problem for these networks has been studied intensively. This
section is divided into four parts. In the first part we reduce the least cost path
problem to a data structure problem, namely the efficient realization of a priority
queue. Different implementations of priority queues, which we treat in the second
part, yield different running times. We show how to achieve time O(m + nlogn),
O(m+n+/log C), and O(mloglog C) respectively; for the latter bounds it is assumed
that edge costs are integers in the range [0.. C]. In the third part we deal with the
one-pair problem and in the fourth part we describe a scaling approach for the least
cost path problem. In this approach edge costs are also assumed to be integral.
The method works in phases and computes successively better approximations to
the final solution. Although the achieved running time is only O(m - log,,, C),
the algorithm is very simple and serves as a first illustration of the scaling method.
Further applications of the method will be seen in the sections on matching and
network flow.

4.7.2.1. A Basic Algorithm for Non-Negative Networks

We replace line (5) of Program 16 by
(5") select and delete u € U with cost[u] minimal.

Then w is always a perfect choice, i.e., cost[u] = u(s,u) when u is selected from U:
By Lemma 2 there must be a node v € U on the least cost path from s to u with
cost[v] = u(s,v). Since u is selected we have cost[u] < cost[v] and since v is on the
least cost path from s to u and edge costs are non-negative we have pu(s,v) < u(s,u).
Therefore cost[u] < cost[v] = u(s,v) < u(s,u) and since cost[u] > p(s,u) always
we even have cost[u] = u(s,u).

How shall we implement set U7 What operations are required on set U and
function cost? In line (5”) we need to select and delete u € U with cost[u] minimal.
In line (7) we need to obtain the value cost[v] given node v and in line (8) we need
to change the function value at argument v. In line (9) we need to add v to U if it
is not already there. Finally, we need to initialize U and cost in lines (1) and (2).
A data structure supporting these operations is called a priority queue. A precise
definition is as follows.

Let K be any linearly ordered set with linear order < and let INF be any set.
A priority queue (over K and INF') is a partial function pq : I — K x INF,
where I is a set of items (in implementations of priority queues I is typically a set
of array indices or a set of storage locations). For a pair p = (k, inf) € K x INF
let key(p) = k and inf(p) = inf. The following operations on priority queues are
provided.

procedure Create(P(Q : priority queue,n : integer)
co creates a set I of n items and gives PQ the value pg, where pg, is the
function with empty domain. oc

Version: 19.10.99 Time: 11:01 —-46—

4.7.2.1. A Basic Algorithm for Non-Negative Networks 47

function Insert(PQ : priority queue; k : K, inf : INF) : item
co let pg be the function denoted by PQ and let ¢ € I — dom(pq) be any
“unused” item. Then P(Q is made to denote pq’ where

o [(kyinf) ifj =i,
”Q(J)‘{pq(j) £ A,

Also, the item i is returned by the function. oc

function Findmin(PQ : priority queue) : item
co Let pg be the function denoted by PQ and let ¢ € dom(pgq) be such that
key(pq(%)) < key(pq(j)) for all j € dom(pq). Then i is returned. If dom(pq) = 0
then this function is undefined. oc

function is_empty(PQ : priority queue) : boolean
co Let pg be the function denoted by PQ; returns true if dom(pq) = 0 and
false otherwise. co

function get_key(PQ : priority queue; i : item) : K
co Let pq be the function denoted by PQ;
then key(pq(7)) is returned if i € dom(pq). If i ¢ dom(pq) then the result is
undefined. oc

function get_inf(PQ : priority queue; i : item) : K
Let pg be the function denoted by PQ; Then inf(pgq(i)) is returned if ¢ €
dom(pq). If i ¢ dom(pq) then the result is undefined. oc

procedure Delete(P() : priority queue; ¢ : item)
co Let pg be the function denoted by PQ; then P(Q is made to denote pq’
where dom(pq') = dom(pq) — {i} and pq’(j) = pq(j) for all j € dom(pq'). oc

procedure Deletemin(P(Q : priority queue)
co Delete(PQ, Findmin(PQ)) oc

procedure Decrease_key(P() : priority queue; i : item, k : key)
co Let pq be the function denoted by PQ). This operation assumes i € dom(pq)
and key(pq(z)) > k. Then PQ is made to denote pq’ where

s\ (ka get_znf(PQ,])) lfJ =1
rq'(7) = {pq(j) otherwise.

ocC

In the least cost path problem we use a priority queue with K = [R;f and INF =V.
Rewriting Program 17 yields Program 20. In line (0f) we make P a priority queue
which can hold up to n items and initialize it with the empty function. In (1a) we
insert the pair (0,s) into PQ and remember the item created in I[s]. In (5a) we
select the item of minimal key, extract the node associated with it in line (5b) and
delete the item in (5c). In line (8a) we distinguish whether v was not added yet to

Version: 19.10.99 Time: 11:01 —-47—

48 Chapter 4. Algorithms on Graphs

PQ(cost[v] = oo) or whether v already belongs to PQ. In the first case we insert
the pair (cost[v],v) into P@Q and remember the new item in I[v], in the second case
we decrease the key of item I[v] to the new cost.

PQ : priority queue with K =R and INF = V;
I : array[l..n] of items;
cost : array[l..n] of K = Rg U {co};
i,7 :item, v,u : node, d : Rf U {oo};
Create(PQ,n);
I[s] < Insert(PQ,0,s);
cost[s] < 0;
for all v # s do cost[v] < +o0; I[v] < nil od;
while —is_empty(PQ)
do

i < Findmin(PQ);

u < get_inf (PQ,1);

Delete(PQ,1);

for all (u,v) € E

do if costu] + c(u,v) < cost[v]

then cost[v] < cost[u] + c(u, v);

if I[v] = nil
then I[v] « Insert(PQ, cost[v],v)
else Decrease_key(PQ, I[v], cost[v])
fi

~ ' O~ T ~—

~— T —

~—

~—

N M= O0000 WO OTOTUlLih W =M= MEOOOO
=]
oB

[T T G T S e e S e A A A Ry

A~~~
M~ — D O ~—
=
e

=

Program 20

Theorem 3. Program 20 solves the single source least cost path problem in non-
negative networks in time O(n + m + T'greate (n) +n- (Tfnsert (n) + TFindmin (n) +
Tyet_inf (1) + Tpetete(n)) + M - TDecrease_key()). Here Txyz(n) denotes the cost of
priority queue operations XYZ on a queue of size at most n.

Proof : For the correctness we only need to observe that Program 20 refines Pro-
gram 18. For the time bound we only need to observe that there are never more
than n items in PQ, that Create is executed once, that Findmin, get_inf, Delete and
Insert are executed at most once for each node and that Decrease_key is executed
at most once for each edge.]

Different implementations of priority queues are discussed in Section 4.7.2.2. We
close this section with an important observation about the sequences of nodes se-

lected in line (5").

Version: 19.10.99 Time: 11:01 —-48—

4.7.2.2.1. General Priority Queues 49

Definition: The usage of priority queue PQ is monotone if all calls Insert(PQ, k, . ..

and Decrease_key(PQ, ..., k) satisfy k > get_key(i) where ¢ is the item returned by
the most recent Findmin operation.]

Lemma 3. The least cost path algorithm uses its priority queue in a monotone
way.

Proof: Let i be an item returned in line (5a) of Program 20, let u be the associated
node, and let cost[u] be the associated cost. Then since edge costs are non-negative,
the new value inserted in line (9) is no smaller than cost[u] and the decreased value
of line (8d) is no smaller than cost[u]. Hence the key of the item selected in the
next iteration is at least cost[u]. This shows that the priority queue is monotone. I

4.7.2.2. Priority Queues

In this section we present several implementations of priority queues. Each im-
plementation gives us a concrete algorithm for the least cost path problem. We
divide the implementations into two groups: General priority queues and integer
valued queues. For the implementations in the first group the set K of keys can be
any linearly ordered set, for integer valued queues we have K = [0..C] for some
prespecified (in the Create operation) integer C.

4.7.2.2.1. General Priority Queues

The most simple implementation of priority queues (called the array implemen-
tation) uses three arrays PQ.K : array[l..n] of K and PQ.INF : array[l..n] of
INF and PQ.is_used : array[l..n] ofboolean for a priority queue created by a call
Create(PQ,n). The set I of items is equal to [1..n]. Then Create allocates the
three arrays and initializes PQ.is_used to false in time O(n). Insert(PQ,k,inf) de-
termines an unused item ¢ by linear search through the array PQ).is_used, declares 7
used, stores k and inf and returns ¢. All of this takes time O(n). Findmin scans
through the arrays PQ.is_used and P@Q).K and determines an item of minimum key
in time O(n). is_empty takes also O(n) by a scan through PQ.is_used, and finally
get_key, get_inf, Delete and Decrease_key take clearly time O(1). We summarize
in:

Theorem 4.

a) The array-implementation of priority queues supports the priority queue opera-
tions with time bounds T'¢regte () = Tnsert () = TFindmin (1) = Tis_empty(n) =
O(”) and Tget_key(n) = Tget_inf (’I’L) = TDelete (n> = TDecrease_key(n) = 0(1)

Version: 19.10.99 Time: 11:01 —-49—

50 Chapter 4. Algorithms on Graphs

b) The least cost path problem in non-negative networks can be solved within
time complexity O(n?).

Proof: Part a) follows from the discussion above and Part b) follows from Part a)
and Theorem 3.

For almost complete graphs, i.e., m = Q(n?), the O(n?) running time provided by
Theorem 4b is clearly optimal. If m = O(n?) then the running time is dominated
by the n calls of Insert, Findmin and is_empty.

A second implementation (the heap implementation) of priority queues
stores the pairs in range(pq) in a heap, cf. Section 2.1.2, ordered according to key val-
ues. More precisely, let a > 2 be an integer to be chosen later. A priority queue PQ
created by a call Create(PQ,n) is realized by four arrays PQ.K : array[l..n] of
K, PQ.INF : array[l..n] of INF, PQ.location_of-item : array[l..n] of integer
PQ.item_of location, a list unused_items, and an integer PQ).free. The set I of
items is equal to [1..n]. If pq is the function denoted by priority queue PQ then
the following four conditions hold

(1) PQ.free = |dom (pg)| +1,

(2) fori € dom(pq) and j = PQ.location_of_iteml[i]: pq(i) = (PQ.K[j], PQ.INF[j]),}
1< j < PQ.free, and PQ.item_of_location[j] = 1,

(3) unused_items is a list of the integers in [1..n] — dom(pq),
(4) for 2 < j < PQ.free: PQ.K[[(j —1)/a]] < PQ.K[j].

The first two conditions state that pairs in range(pq) are stored in locations
1..PQ.free—1 of the arrays PQ.K and PQ.INF and that the arrays location_of_item
and locit translate between items and locations. The third condition states that the
list unused _items contains exactly those items which do not belong to the domain
of pq and the fourth condition finally states that if we identify locations with the
nodes of a complete tree of degree a, i.e., the root is labelled 1, its children 2, 3, ...,
a + 1, and so on, then this tree has the heap property, i.e., the key of the parent of
any node is never larger than the key of the node itself. Figure 16 illustrates these
notions for ¢ = 3. Note that in complete a-ary tree the parent of node j > 2 is
labelled [(j —1)/a] and that the children of node j have labelsa-(j —1)+2, ...,
a-j+1.

Theorem 5.

a) The heap-implementation with parameter a supports the priority queue op-
erations with time bound Tgregte(n) = O(n), Trindmin(n) = Tis_empty(n) =
Tget_key(n) = Tget_inf (n) = 0(1); TDelete(n) = O(a ’ loga n) and TInsert(n) =
TDecrease_key (n) = O(loga ’I’I,)

b) For a > 2 the single source least cost path problem in non-negative networks
can be solved in time O(a - nlogn/loga + m -logn/loga)

Version: 19.10.99 Time: 11:01 -50—

4.7.2.2.1. General Priority Queues 51

Figure 16. The first tree shows the numbering of the nodes in a ternary
heap. The second tree shows key values satisfying the heap property. it
corresponds to array [4,7,13,5,8,12,9,17,14,13,5,7, 8|.

¢) The single source least cost path problem in non-negative networks can be
solved in time O(n + m - log n/ max(1,logm/n)).

Proof: a) Create needs to allocate four arrays of size n, a linear list of n elements
and takes therefore time O(n). is_empty, get_key and get_inf take clearly time O(1).
Findmin takes also time O(1) since the root of a heap always corresponds to an item
of smallest key and hence Findmin can return PQ.item_of_location[1]. Operation
Decrease_key(PQ,1, k) can be realized in time O(log, n) as follows. We start in the
location loc = PQ).location_of-item[i] and walk towards the root. As long as the
key stored in the parent location of loc is larger than k£ we move that key and the
corresponding information into location loc, update the correspondence between
locations and items, change loc to its parent and continue. The details are given
by Program 21. Since the depth of an a-ary tree with n nodes is O(log, n) the cost
of a Decrease_key operation is O(log, n). The operation Insert(PQ,k, inf) is only
slightly more complicated. We take the first item, say ¢, from the list unused_items,
establish the correspondence between i and location PQ.free, increase PQ).free by
one and then execute the program for Decrease_key(PQ,1, k). All of this takes time
O(log, n).

It remains to discuss Delete(PQ,i). Let loc be the location corresponding
to item ¢. If loc = PQ.free — 1 then we only have to decrement PQ.free. If
loc # PQ.free — 1 we move the content of location PQ).free — 1 to location loc
and then restore the heap property. If the content of that location became smaller
then we essentially perform a Decrease_key and need time O(log, n). If it became
larger then we scan through the children of location loc and find the location,
say locnew, with smallest key. This takes time O(a). We then interchange the
contents of locations loc and locnew and continue. Of course, we also update the
correspondence between locations and items. All of this takes time O(a - log, n).

b) Follows immediately from part a) and Theorem 3.

c) Follows from part b) with a = max(2, m/n). 1

It is worthwhile to look at Theorem 2 for some particular values of m. If m =
O(n) then running time is O(nlogn), if m = nlogn then running time is O(m -

Version: 19.10.99 Time: 11:01 -51-

52 Chapter 4. Algorithms on Graphs

procedure Decrease_key(P(Q : priority queue,i : item, k : key);
loc « PQ.location_of-item[i]; co loc is the location corresponding to pq(i) oc
inf < PQ.INFloc];
while loc > 1 and PQ.K[[(loc —1)/a]] >k
do locnew < [(loc —1)/a];
co We move the content of location locnew into location loc
and update the correspondence between items and locations. oc
PQ.K[loc] + PQ.K[locnew];
PQ.INF[loc] < PQ.INF[locnew];
PQ.item_of_location[loc| < PQ.item_of_location[locnew];
PQ.location_of _item[PQ.location_of_item|loc]] < loc;
loc < locnew
od
co We store the pair (k, inf) in location loc and establish the
correspondence between item ¢ and location loc. oc
PQ.K[loc] < k;
PQ.INF|loc] < inf;
PQ.item_of_location[loc] « i;
PQ.location_of-item|i] + loc;

Program 21

logn/loglogn), and if m = n!*'/* then running time O(k - m). So for sufficiently
dense graphs the running time is linear, but for sparse graphs the running time is
non-linear.

With a = 2 the heap implementation of priority queues supports all opera-
tions in time O(logn). We next describe the Fibonacci heap implementation which
supports Deletemin and Delete in (amortized) time O(log n) whilst achieving (amor-
tized) time O(1) for all other operations. This will lead to an O(m + nlogn) bound
for the single source least cost path problem in non-negative networks.

A Fibonacci heap (F-heap) represents a priority queue pq as a collection of
heap-ordered trees; each item i € dom(pq) uniquely corresponds to a node of one of
the trees in the collection. A tree is heap-ordered if for each non-root node v the
key of the item corresponding to v is no less than the key of the item corresponding
to the parent of v.

The storage representation of F-heaps makes use of the following types:

type node= record key : K;
inf : INF,
parent, leftsib, rightsib, child {node;
rank : integer;
marked : boolean
end;
item=1Tnode;

Version: 19.10.99 Time: 11:01 —-52—

4.7.8. General Networks 53

priority queue="Tnode;

Each node contains a pointer to its parent (the value of the pointer is nil for a
root) and to one of its children. The children of each node and also the roots of the
trees in a F-heap form a doubly-linked circular list (pointers leftsib and rightsib).
Finally, the rank field of each node contains the number of children of the node and
the marked field is a boolean flag which will be explained later on. A F-heap is
accessed by a pointer to a root of minimum key. Figure 17 shows a F-heap and its
storage representation.

A\ \
@p}g4|\\|\ﬂ<—4|\|\7|\|ﬂz}@p|4s{\m<—4|\ |1o|\|—1z>>
@H/|9I\I—I<—ZI—\I\\I\4I\I+)

Figure 17. A F-heap and its storage representation. The information,
rank and marked fields are not shown, keys are integers and nil-pointers
are indicated by [\].

We can now discuss the implementation of the various

4.7.3. General Networks

We will now treat the case of general networks N = (V, E,c), ¢: E — R. In this
case no efficient method exists which guarantees a perfect choice. However, if U
is organized as a queue, then between any two selections of the same node we will
have made one perfect choice.

More precisely, U is implemented as a queue U and a boolean array UB. We
use UQ in order to select elements in line (4) of Program 22 on a first-in first-out
basis. Furthermore, we use the boolean array representation of U in order to test

Version: 19.10.99 Time: 11:01 -53—

54 Chapter 4. Algorithms on Graphs

in line (11) whether v is already present in U and if not we add v to the end of the
queue. The complete algorithm is specified in Program 22.

—~
—
~

cost[s] + 0; UQ <+ 0; add s to the end of UQ;
UB(s] < true; count[s] < O;

(2) for all v # s do cost[v] < +o00; count[v] < 0; UB[v] < false od;
(3) while UQ #0
(4) do let u be the first element in UQ;
(5) count[u] < count[u] + 1;
(6) if count[u] > n + 1 then goto Exit fi;
(7) delete u from UQ; UB[u] « false;
(8) for all (u,v) € E
(9) do if cost[u] + c(u,v) < cost[v]
(10) then cost[v] < cost[u] + c(u,v);
(11) if —UB|[v]
(12) then add v to the end of UQ;
(13) UB|[v] « true
(14) fi
(15) fi
(16) od
(17) od,;
(18) Exit: if count[v] = n+ 1 for some v € V
(19) then “cycle of negative cost exists”
(20) else “cost[v] = u(s,v) for allv € V” fi.

Program 22

We have added the array of counters in order to ensure termination even in
the presence of cycles of negative costs. We still have to show that the counters do
not impede correctness. Queue U(Q is implemented as described in 1.4, i.e., either
by a linear list or by an array.

Theorem 6. In general networks the single source least cost path problem can be
solved in time O(n - €).

Proof: By virtue of the counters each node (except for maybe one) is selected at
most n times in line (4). Whenever node v is chosen the time spent in lines (4)
to (16) is O(outdeg(v)). Hence the total running time of the loop (3) to (17) is
O(n -), cy outdeg(v)) = O(n - e). The cost of the statements outside the loop is
clearly O(n). Correctness remains to be shown.

Claim: Assume pu(s,u) > —oo for allu € V. Let v be arbitrary. Then v is selected
at most n times in line (4).

Version: 19.10.99 Time: 11:01 —-54—

4.7.4. The All Pairs Problem 55

Proof: Let U; be set U when v is removed from U for the i-th time. Then U;
contains at least one element, say wu;, with cost[u;] = u(s, u;) by Lemma 2c). Since
U is organized as a queue u; is deleted from U before v is deleted for the (i + 1)-th
time. Since u; will never be added to U again (see proof of Lemma 2d)), we have
i <mn. il

In Exercise 15 it is shown that the time bound may be reduced to O(ky,q. - €) where
kmae is the maximal length (number of edges) of a least cost path from s to any
v € V. In Exercise 16 the algorithm above is related to dynamic programming.
Alternative approaches to the single source least cost path problem are discussed
in Exercises 18 and 19. A fast algorithm for planar graphs is described in Section
4.10.

Another improvement can be made for almost acyclic graphs. Let G = (V, E)
be a graph and let V = V3 U .-+ UV} be the partition of V into strongly connected
components. We order the s.c.c.’s such that (v,w) € E, v € V;, w € V; implies
i < j. Also we split the adjacency lists into two parts, the cyclic and the acyclic
part. For each node v € V;, the cyclic part contains all edges (v, w) with w € V;,
and the acyclic part contains all edges (v,w) with w € V;, j > i. We can now
modify our algorithm as follows. There are k& queues UQ,, ..., UQ, one for each
s.c.c.. In line (4) we always select the first element, say u, of the first (smallest
index) non-empty queue. Then in line (8) we only step through the cyclic part of
u’s adjacency list. Once a queue UQ); becomes empty we step through the acyclic
parts of the adjacency lists of all nodes v € V; and update the costs of the other
endpoints. An argument similar to the one used in the proof of Theorem 5 shows
that v € Vj is selected at most |Vi| times from UQ, (provided that pu(s,v) > —oo
for all v). Hence the running time is bounded by

k
o(e+2|vj|-|Ej|)
j=1

where (V;, E;), 1 < j <k, are the s.c.c.’s of graph G. If the s.c.c.’s are small then
this is a considerable improvement on Theorem 5. Also note that the modified
algorithm will work in linear time on acyclic networks.

Theorem 7. Let N = (V, E,c) be a network and let (V;,E;), 1 < j < k, be the
strongly connected components of G = (V, E). Then the single source least cost

path problem can be solved in time O(e + Zle \V;| - |E;)).

4.7.4. The All Pairs Problem

We now extend the solution of the previous section to a solution of the all pairs
least cost path problem; an alternative solution can be found in Chapter V.

Version: 19.10.99 Time: 11:01 —55—

56 Chapter 4. Algorithms on Graphs

Let N = (V, E,c) be a network. Suppose that we have a function a : V. — R
such that
V(u,v) € E: a(u)+ c(u,v) > a(v).

Consider cost function ¢ : E — R with
c(u,v) = a(u) + c(u,v) — a(v)

for all (u,v) € E. Then ¢ is a non-negative cost function. Let f(z,y) be the cost
of the least cost path from x to y with respect to cost function ¢. There is a very
simple relation between p and ji.

Lemma 4. Let u and i be defined as above. Then ji(z,y) = u(z,y) + a(z) — a(y).

Proof: Let p = (vy,...,vx) be any path from & = vy to y = vg. Then

e(p) =) &(vi,vit1)

(a(vi) + e(viy vit1) — a(vit1))

o

k—1
= a(vg) + Z c(vi, vit1) — a(vg)

i=0
= c(p) + az) — a(y).

Since p is an arbitrary path from z to y we infer ji(z,y) = p(z,y) + a(z) — a(y). 1

Lemma 4 implies that we can reduce a general least cost path problem to a non-
negative least cost path problem if we know a function a having the required prop-
erties. But solving one single source problem will give us (essentially) a function,
namely u(s,v) with the desired properties. There is only one problem we have to
cope with: u(s,v) might be infinite and the a’s are required to be real. We will
overcome this difficulty by augmenting the network as described below.

Theorem 8. The all pairs least cost path problem can be solved in time
logn
0 (v ¢ i)

Proof: Let N = (V,E,c) be a network and let s € V be arbitrary. As a first
step we will extend N to a network N’ = (V, E’, ') by adding some edges, namely
E'=FEU{(s,v); v e V,v#s}, and

o (u,v) = {c(u,v) if (u,v) € E;

large if (u,v) € E' — E,

Version: 19.10.99 Time: 11:01 -56—

4.8. Minimum Spanning Trees 57

where large = >°, ,)ep |c(u,v)|. Let p(z,y) and p'(z,y) be the cost of the least
cost path from z to y in N and N’ respectively. Then p'(s,v) < +oo for all
v € V because of the augmentation. Also N’ contains a cycle of negative cost iff
N contains a cycle of negative cost. This can be seen as follows: If N’ contains a
cycle of negative cost, then N’ contains a simple cycle of negative cost. Then each
edge of E' is used at most once in this cycle. It cannot contain an edge of E' — FE
because then the length of the cycle would be at least large — 3", , 5 |c(u,v)| > 0.
Hence N contains a cycle of negative cost.

Next we use the algorithm of Section 4.7.3 to find out whether N’ (and hence N)
has a cycle of negative cost and if not to determine u(s,v) for all v € V. In the
first case the algorithm stops, in the second case we use a(v) = u(s,v) to transform
the all pairs problem on a general network into a set of n single source problems
on a non-negative network. Using the methods of 4.7.2 we obtain the time bound
O(e-n+n-e-logn/max(1l,log(e/n))). |

4.8. Minimum Spanning Trees

Let N = (V,E,c) be an undirected network, i.e., (V, E) is an undirected graph
and ¢ is symmetric (¢(v,w) = ¢(w,v) for all (v,w) € E). A tree A = (V,T) with
T C E and |T| = n — 1 is called a spanning tree of N. The cost of spanning
tree A is ¢(A) = 32, y)er ¢(v, w). It is a minimum spanning tree (or least cost
spanning tree) if ¢(A) < ¢(A’) for all other spanning trees A’. Throughout this
section we assume that (V, E) is connected. Thus e > n — 1.

Figure 18. A network and one of its minimum spanning trees

Program 23 is a common skeleton for many algorithms for computing minimum
spanning trees.

Lemma 1. Program 23 computes a minimum spanning tree.

Proof : We show by induction on m = [Ty |+|T%|+...+|T,| that there is a minimum
spanning tree A = (V,T) with T; C T for all i. If m = 0 then there is nothing

Version: 19.10.99 Time: 11:01 57—

58 Chapter 4. Algorithms on Graphs

) for alli € V do V; « {i}; T; < 0 od;

) do n — 1 times

) choose any non-empty V;

) choose (v, w) € E such that v € V;, w ¢ V; and c(v,w) < (v, w')
for all (v',w") € E with v’ € V;, w' ¢ V;;

(5) let j be such that w € Vj;

(6) Vi ViUV Vi < 0;

(7) T; %TiUTjU{(U,w)}; T} «—0
(8) od.

Program 23

to show. So let us turn to the induction step. By induction hypothesis there is
a minimum spanning tree A = (V,T) with T; C T for all ¢. Let (v,w) € E be
the edge chosen in line (4). If (v,w) € T then we are done. If (v,w) ¢ T then
(V,T U {(v,w)}) contains a cycle. Hence there must be an edge (v',w') € T such
that v' € V;, w' ¢ V;. We have ¢(v,w) < ¢(v',w’) by the choice of (v, w). Hence
T —{(v,w")} U{(v,w)} is also a minimum spanning tree. Finally, case m =n —1
implies the correctness of the algorithm.]

Various details are to be filled in. What set V; should we choose in line (3), how
do we find (v,w) in line (4) and how do we represent sets V;? Let us solve the
latter problem first. We use the Union-Find data structure of Section II1.8.3 to
represent sets V;. Then line (6) is a Union operation (and we execute n — 1 of
them) and testing whether both endpoints of edge (v, w) € E belong to the same
V; corresponds to two Finds. Since this test has to be done at most once for every
edge (v,w) € E the number of Finds is O(e). Thus the total cost of handling sets
V; is O(e - a(e,n)) where « is defined in Section I11.8.3.

The former questions are more difficult to solve. We discuss three strategies:
considering edges in order of increasing weight, always growing component V; and
growing components uniformly.

Theorem 1.

a) Let E = {e1,es,...} be sorted according to cost, ie., c(e1) < c(ez) < ---.
Then a minimum spanning tree can be constructed in time O(e - a(e,n)).

b) A minimum spanning tree can be constructed in time O(elogn).

B9 ad) (0Bt B Bhgrdd B,Py
(4') while v and w belong to the same component
(4") do let (v, w) be the next edge on E od;

Correctness of this refinement follows immediately from Lemma 1. Also, the bound
on the running time follows directly from the discussion above.

Version: 19.10.99 Time: 11:01 —-58—

4.8. Minimum Spanning Trees 59

b) Follows from part a) and the fact that we can sort the set of edges in time
O(eloge) = O(elogn). |

We show next that we can improve upon Theorem 1 for dense graphs.

Theorem 2. A minimum spanning tree can be constructed in time

o (max(i?lgo;e/n)) '

Proof: We always choose V; in line (3), i.e., we grow the spanning tree starting at
node 1. In order to facilitate the selection of edge (v, w) in line (4) we maintain a
priority queue PQ for set {(c(w),v,w); w ¢ Vi} ordered according to c¢(w) where
c(w) = min{c(u, w); v € V1} and v is such that ¢(w) = ¢(v, w). Given this definition
line (4) corresponds to operation Deletemin on priority queue PQ. Suppose that
edge (v,z) is chosen in line (4). In line (6) we have to add point = to Vi and
we have to update priority queue PQ. More precisely, for every edge (z,w) € E
with w ¢ V; we have to check whether ¢(z,w) < ¢(w) and if so we have to change
element (c(w), ,w) of PQ to (¢(z,w),x,w). In order to do this efficiently we use
an array P[1..n] of pointers. Pointer P[w] points to element (c(w), ,w) on PQ
if w ¢ V5 and is nil otherwise. With the help of array P[1..n] line (6) reduces
to O(deg(z)) operations Demote™ (cf. II1.5.3.1) on priority queue PQ. Thus the
cost of constructing a minimum spanning tree is the cost of n Deletemin, O(n)
Insert and O(e) Demote™ operations on PQ plus the time needed for initializing
the priority queue. Initially, PQ = {(c(1,w),1l,w); w # 1 and (1,w) € E} and
hence the initialization corresponds to deg(1) = O(n) Insert operations.

If we realize P(Q) as an unordered (a, 2a)-tree (cf. I11.5.3.1) with a = max(2,e/n)jj
then the cost of a Delete is O(a - logn/loga), of a Deletemin and an Insert oper-
ation O(a - logn/loga), and of a Demote™ O(logn/loga). Hence the total cost is
O(elogn/ max(1,log(e/n))). |

Theorem 2 is most significant for dense graphs. If e = n'*t'/* for k € N then the
running time is O(k - e€). For sparse graphs, say e = O(n), the running time is
O(nlogn). Can we do better for sparse graphs?

We end this section giving a brief description of an O(eloglogn) algorithm.
This algorithm is based on two ideas, on a strategy for growing components uni-
formly and on a special purpose priority queue. Put sets V1, V3, ..., V, into a queue
@ and replace lines (3) and (6) by

(3") let V; be the first element of queue Q;
and

(6"a) delete V; and V; from Q;
(6"5) Vi ViUVji Vs 0
(6”"c) add V; to the end of Q;

Version: 19.10.99 Time: 11:01 —-59—

60 Chapter 4. Algorithms on Graphs

The selection strategy described above selects components in a round-robin fashion.
For the analysis we conceptually divide the algorithm into stages. Stages are defined
as follows. We initially add a special marker to the end of @ and start stage O.
Whenever the special marker appears at the front of queue @ we finish a stage,
move the marker to the end of the queue, and start the next stage.

Lemma 2.

a) All sets selected at line (3") in stage k have size at least 2% and all sets produced
in line (6""b) have size at least 2K+1.

b) The number of stages is at most logn.

Proof :

a) We use induction on k. The claim is clearly true for ¥ = 0. If V; is chosen in
stage k > 0 and combined with V; then V; and V; are created in stage k—1 and
hence have size at least 2* each, by induction hypothesis. Thus |[V;uv;| > ok+1,

b) The algorithm terminates when a set of size n is produced in line (6). Hence
the maximal stage number k must satisfy 2¥*! < n.]

Lemma 2 has an important consequence. Call a point v active during an iteration
of loop (2) to (8) if v belongs to component V; selected in line (3"). Then any node
v can be active at most once in a stage and hence can be active at most logn times
by Lemma 2b). In other words, any fixed node v has to be considered at most logn
times in line (4).

We can use this fact for deriving another O(elogn) algorithm as follows: In
line (4) we consider all nodes v € V; and determine the least cost edge (v, w) with
w ¢ V;. This can certainly be done in time O(deg(v)). Since a node is active at
most log n times the total cost of this algorithm is O(}_, deg(v)-logn) = O(elogn).

In order to obtain an O(eloglogn) algorithm we need two additional concepts:
shrinking the graph and a special purpose priority queue. Suppose that we execute
the algorithm above for loglog n stages; this will take O(eloglogn) time units and
build up components of at least 2!°61°8™ — Jog n vertices each; let Uy, ..., Uy, m <
n/logn, be the components after stage loglogn. Define network N’ = (V', E', ')
as follows: V' = {1,...,m}, E' = {(i,7); Fv € U;,w € U; such that (v,w) € E}
and ¢/(7,7) = min{c(v,w); v € U;,w € U;}. N' can be constructed from N in time
O(e); cf. Exercise 2. We still have to compute a minimum spanning tree of N’'. For
every node v of N’ we divide the edges incident to v into deg(v)/logn groups of
logn edges each. We sort each group according to cost within O((logn)loglogn)
time units per group. Thus the total preprocessing time is O(e loglogn).

In line (4) we proceed as follows. For every node v € V; we inspect every
group. For every group we inspect the edges in order of increasing cost and discard
edges which do not lead outside V;. When this process is finished we are left with
[deg(v)/log n] edges leading from v to nodes outside V;. We can certainly find the
one of minimal cost in time O([deg(v)/logn]). Thus the cost of finding minimum
cost edges going out of v is O(1 + deg(v)/logn + number of discarded edges) per

Version: 19.10.99 Time: 11:01 —-60—

4.9.1. Algorithms for Mazimum Network Flow 61

stage. Since every edge is discarded at most once, since there are only logn stages
and since N’ has only n/logn nodes the total cost is O(n + e). We have

Theorem 3. A minimum cost spanning tree of an undirected network can be
computed in time O(eloglogn).

Proof : By the discussion above.]

We finally come to an improvement for planar networks. In a planar graph we
always have e < 3n — 6, cf. 4.10, Lemma 2. Suppose that we apply the shrinking
process after every stage. Let IN; be the network after stage i. Then N; is planar
and hence e; < 3n; — 6 where e; (n;) is the number of edges (nodes) of network
N;. Also stage i + 1 takes O(e;) time units and N;11 can be constructed from N;
in time O(e;). Thus the total cost is

=0 =0

Theorem 4. Let N = (V, E,¢) be a planar undirected network. Then a minimum
cost spanning tree can be computed in time O(n).]

4.9. Maximum Network Flow and Applications

4.9.1. Algorithms for Maximum Network Flow

A directed network N = (V, E,¢) consists of a directed graph G = (V, E) and a
capacity function ¢ : E — R™. Let s,t € V be two designated vertices, the source s
and the sink ¢. A function f : E — R is a legal (s, t)-flow function (or legal flow
for short) if it satisfies
a) the capacity constraints, i.e., 0 < f(e) < ¢(e) for all e € E;
b) the conservation laws, i.e., > .cinw) f(€) = Xecout(v) f(€) for all nodes v €
V —{s,t}. Here in(v) resp. out(v) is the set of edges entering resp. leaving v.

If f: E—Ris alegal low function then

val(f)= Y fle)— > f(e)

e€out(s) e€in(s)

is the flow value of f. The maximum network flow problem is to compute a
legal flow function with maximum flow value. In this section we will describe two al-
gorithms for achieving this goal. On the way we will derive a powerful combinatorial
result: the max flow-min cut theorem.

Version: 19.10.99 Time: 11:01 -61-

62 Chapter 4. Algorithms on Graphs

Figure 19. Graph with capacity/flow

Definition: An (s,t)-cut is a partition S,7 of V, ie., V = SUT, SNT = 0, such
that s € S, t € T. The capacity of cut (S,T) is given by

e(S,T) = Z c(e). 1

e€EEN(SXT)

The capacity of a cut (S,T) is thus the total capacity of all edges going from S
to T. The easy direction of the min cut-max flow theorem is given by

Lemma 1. Let f be a legal flow and let (S,T) be an (s,t)-cut. Then
val(f) < ¢(S,T).

Proof: We have
val(f)="_ fl)— Y fle)

e€out(s) e€in(s)

=X | D fle= > f

vES Le€out(v) e€in(v)

= > fo- > i

e€BN(SxT) e€EN(TxS)
<¢e(S,T).

Here the second equality follows since the conservation law holds for all v € S —{s}.
The third equality follows since every edge e = (u,v) € EN(S x S) is counted twice,
positively since e € out(u) and negatively since e € in(v) for some u and v. Finally,
the inequality follows since f(e) < ¢(e) for alle € EN(S x T) and f(e) > 0 for all
ec EN(T x 9). 1

Most algorithms for maximum network flow work iteratively and are based on the
concept of an augmenting path, i.e., they start with any legal initial flow, say the
flow function which is zero everywhere, and then use augmenting paths to increase
the flow. In the example of Figure 19 we use the edge label a/b to denote capacity a
and flow b.

Version: 19.10.99 Time: 11:01 —-62—

4.9.1. Algorithms for Maximum Network Flow 63

There are three augmenting paths in this example: s,1,¢ with bottleneck
value 9; s,2,¢t with bottleneck value 9; s,2,1,¢ with bottleneck value 1. Paths
s,1,t and s,2,t can be used to increase the flow value by 9 in an obvious way.
The use of path s,2,1,¢ is more subtle. We might send one additional unit from
s to 2. This relieves us from the obligation to push one unit from 1 to 2 and we
can therefore send this unit directly from 1 to ¢. Augmentation along path s,2,1,¢
changes the flow as shown in Figure 20.

Figure 20. After augmentation by 1 along path s,2,1,¢

All shortest (= minimum cardinality) augmenting paths are captured in the
layered network LN with respect to the legal flow function f which is defined as
follows. Let

E; = {(v,w); (v,w) € E and f(e) < c(e)}

and let
Ey, = {(w,v); (v,w) € E and f(e) > O}a

i.e., edges in F; can be used to push flow forward and the edges in E5 can be used to
push flow backward. If e = (v, w) € E then we use e; to denote edge (v, w) € Eq (if
it is there) and ey to denote edge (w,v) € Ey (if it is there). Also¢: E{UE; — R™
is given by

c(e;) =c(e) — f(e) fore; € Eq

and
c(ez) = f(e) for es € Es.

Note that E; U E3 is a multiset because if e = (v,w) € E and e’ = (w,v) € E then
e1,€es,€l,eh € E1UE, is possible. For the example of Figure 19 we obtain the graph
of Figure 21. Edges in E; are drawn solid and edges in E» are drawn dashed.

Figure 21. FEi, E> and ¢ for original graph

Version: 19.10.99 Time: 11:01 -63—

64 Chapter 4. Algorithms on Graphs
Next, let Vo = {s} and
Visi={weV-(WVWuU---UV); veV,;: (v,w) € E;UEy}
for i > 0, and let V. = ;5o Vi- Then LN = (V,(E1 U E3) N U;50(Vi X Vita),0)

is the layered network with respect to flow function f. In our example we obtain
Figure 22.

Vo U1 V2

Figure 22. LN for original graph

Any path from s to ¢ in the layered network is an augmenting path and can be
used to increase the flow. More generally, we have

Lemma 2. Let f be a legal (s,t)-flow in network N and let LN = (V,E,¢) be
the layered network with respect to f.

a) f is a maximum flow ifft ¢ V.

b) Let f be a legal (s,t)-flow in LN. Then f' : E — R with

f'(e) = f(e) + fler) — f(e2)

is a legal flow in N with flow value val(f) + val(f). Here f(e;) is defined to be
zero ife; ¢ E.

Proof: b) We have to show that f; satisfies the capacity constraints and the con-
servation law. Let e € E be arbitrary. Then

0< f(e) = fle2) (since f(e) =c(e2) > f(e2))
< f'(e) (since f(e1) > 0)
< f(e)+f(er) (since f(e2) > 0)
< c(e) (since f(e1) < &(er) = c(e) — f(e)),

Version: 19.10.99 Time: 11:01 —64—

4.9.1. Algorithms for Mazimum Network Flow 65

i.e., f' satisfies the capacity constraints. Next, let v € V —{s,t} be arbitrary. Then

Yo - Y fle
)

e€out(v) e€in(v

= Z f(e) — Z fle) + Z Fler) + Z fle2)
e€out(v) e€in(v) e€out(v) e€in(v)
—| > fle+ D flea)
e€in(v) e€out(v)
=040

since f and f satisfy the conservation laws. Note that e; € E, emanates from
node v if e € in(v) and that e; ends in node v if e € out(v). Finally, the flow value

of fi is clearly val(f) + val(f).

a) “=": If t € V then there is a path from s to ¢ in the layered network. Let p be
any such path and let € > 0 be the minimal capacity of any edge of p. Then there
is clearly a flow of value € in LN, namely f(e) = ¢ for all edges e of p and f(e) =0
otherwise. Hence f is not maximum by part b).

“<": Let S=Vandlet T=V —S. Thens € Sandt €T, ie., (S,T) is an
(s,t)-cut. Furthermore, (Eq U E5) N (S x T') = () since no node of T is added to the
layered network. Thus f(e) = c(e) fore € S x T and f(e) =0fore € T x S. We
conclude that the inequality in the proof of Lemma 1 turns into an equality and
hence val(f) = ¢(S,T). Since val(g) < ¢(S,T) for any legal flow g we infer that f
is a flow with maximum flow value.]

It seems that we have not got very far. In order to increase the flow through
network N we have to find a (large) legal flow through layered network LN. For-
tunately, an approximation to the maximum flow in LNV is good enough. More
precisely, it suffices to compute a blocking flow in LN.

Definition: A legal flow f in layered network LN is blocking if for every path
s =g B Bu B ﬂh)k =t from s to t at least one of the edges is saturated,
ie., f(e;) = c(e;) for at least one 7, 1 <7 < k. 1

Now we outline the basic maximum flow algorithm in Program 24.
Two questions arise: How can we find a blocking flow in a layered network and

how many iterations are required? We turn to the second question first.

Definition: Let f be a (non-maximum) legal flow in N and let LN be the layered
network for f. Then k, where t € V}, is called the depth of LN.]

Version: 19.10.99 Time: 11:01 —65—

66 Chapter 4. Algorithms on Graphs

(1) let f(e) «— 0 for all e € E;

(2) construct layered network LN = (V, E, &) from f;
(3) whileteV

(4) do find a blocking flow f in LN;

(5) update f by f as described in Lemma 2b);
(6) construct layered network LN from f

(7) od.

Program 24

Lemma 3. Let k; be the depth of the layered network used in the i-th iteration,
i1=1,2,.... Then k; > k;_1 for i > 2.

Proof: Let LN; be the layered network used in the i-th iteration. In LN; there is
a path p of length k; from s to t.

e e e €k;—1 €k
s:v04v1—2>v2—3>... = Uki—l_ivk,- =1t

For 0 < j < k;, let d; be the length (= number of edges) of the shortest path from
s to vj in LN;_q, i.e., v; belongs to the d;’s layer of LN;_;. If v; is not a node of
LN;_1 then dj = 0.

Claim: For all i > 2 holds:
a) If there is an edge from vj_q to v; in LN;_; thend; = d;_1 + 1.
b) If there is no edge from v;_; to v; in LN;_, then d; < d;_;.
c) ki—1 < k;.

Proof: a) Obvious since network LN;_ is layered, i.e., if v;_; belongs to layer
d;_, and there is an edge from v;_; to v; in LN;_, then v; belongs to layer d;_; +1.

b) Let us assume for the sake of contradiction that d; > d;_1 + 1. Let f;_; resp.
fi be the flow in network N which gives rise to the construction of layered network
LNi_l resp. LN,'. Then fi_l(’l)j_l,’l}j) = c(vj_l,vj) > f,'(’l)j_l,’l)j) if (’Uj_l,’l)j)_E E
or fi_1(vj,vj-1) = 0 < fi(vj,vj-1) if (vj,vj_1) € E because (vj_1,v;) ¢ E;_1
and (vj_1,v;) € E;. In either case we conclude that (v;,v;_1) € F;_; and hence
dj_1=d;+1. Thusd; =d;_; —1<d;_;, contradiction.

c) Since vg = s and hence dyp = 0 we conclude from parts a) and b) that d; < j.
Also, d; = j for all j < k; is only possible if edge e; from v;_; to v; is present in
LN;_, for all j > 1. Thus d; = j for all j < k; implies that there is some path
p from s to ¢t which exists in LN;_; and LN;. This contradicts the fact that f;
is obtained from f;_; by “adding” a blocking flow with respect to layered network
LN;_1. We conclude that d; < j for some j < k; and hence di, < k; by parts a)
and b). We can now complete the proof of the claim and the lemma by observing
that k;_1 = dj, by definition. i1

Version: 19.10.99 Time: 11:01 —-66—

4.9.1. Algorithms for Mazimum Network Flow 67

Corollary 1. The number of iterations is at most n.

Proof: Let k; be the depth of the layered network used in the i-th iteration, ¢ > 1.
Then k; > 1 since s # t, k;_1 < k; by Lemma 3 and k; < n for all . Hence the
number of iterations is at most n.]

Better bounds on the number of iterations can be derived for restricted networks.
In particular, we will derive considerably smaller bounds for (0,1)-networks in Sec-
tion 4.9.2. We will next describe two algorithms for constructing blocking flows in
layered networks, first an O(n?) algorithm and then an O(e - (logn)?) algorithm.

Let LN = (V,E,c) be a layered network, ie., V. = [Uyc;<; Vi for some k,
E C Up<ick(Vi X Vig1), Vo = {s} and ¢ : E — R". We may assume w.lo.g., ie.,
the condition can be established in linear time by simple graph exploration, that
every node v € V is reachable from s and that ¢ can be reached from all nodes. In
particular, V3 = {t} in this case. The O(n?) algorithm is based on the concept of
the potential of a node. Let f be a legal flow and let v € V. The potential of
node v with respect to flow f is given by

e€out(v) e€in(v)

i.e., the potential of node v is the maximum possible increase in flow through node v.
Also
PO* = min{PO(v); v € V}

is the minimal potential of any node in V. It is now quite simple to increase the
flow by PO*. Let v be any node with PO(v) = PO*. Starting at node v we forward
PO* additional units from node v through higher layers to node ¢ and we suck PO*
additional units flow into node v through lower layers. Forwarding the flow is done
as follows. We proceed layer by layer, starting at the layer containing v. When
we consider layer V; we have determined a subset S; C V; of nodes which holds an
additional amount of PO* units of flow, i.e., PO* = }_ s S(z) where S(z) is the
excess of flow available in node x € S;. We consider the nodes in S; in turn and
push their excess of flow into the next layer. Since PO* < PO(w) for all w no node
can receive more flow than it can handle. We continue in this way until we have
pushed the additional flow all the way to ¢. Similarly, we work our way back from
node v towards source s and suck PO* additional units of flow into the network.

In this way we increase the flow by PO* units. After having done so, we simplify
the network by deleting saturated edges and useless nodes, i.e., nodes which are not
connected to either s or ¢, and edges incident to useless nodes. Note that at least
node v will be deleted from the network. (Remark: It would simplify the algorithm
if we forwarded additional flow starting at s. Correctness would not be impeded,
however efficiency might suffer.) If the network is not empty after the simplification
we repeat the process. Since the simplification deletes at least one node from the
network the number of iterations is clearly O(n).

Version: 19.10.99 Time: 11:01 —-67—

68 Chapter 4. Algorithms on Graphs

We will next describe the algorithm in more detail. We assume that for every
node v € V the set of ingoing and the set of outgoing edges are ordered in some way.
Also set S; C V] is realized as a bit vector and as a linear list. In this way we can
test v € S, add an element to S; and delete some element from S; in time O(1). In
addition, we store for every node z € X the excess (deficit) of flow available at node
z in S[z]. The procedure forward of Program 25 is fundamental to the algorithm; it
forwards the flow from node z into the next layer. There is a symmetric procedure
suck which sucks the flow into node z from the previous layer.

(1) procedure forward(z, S, h);
co z is a node in layer V}, and there are S units of additional flow
available in z. These S units are pushed into nodes in layer V341 oc
while § >0
do let e = (z,y) be the first edge out of z;
delta « min(S, c(e) — f(e));
increase flow along e by delta, add y to Spy1 (if it is not already there),
increase S[y| by delta, and decrease c(e) by delta;
S + S — delta;
if c(e) = 0 then delete e from the graph fi
od;
remove z from Sj, and set S[z] to zero;
if (out(z) =0 and = # t) or (in(z) =0 and = # s)
then add z to set del fi
end.

W N
~— N

NN SN AN
(53]

== =~~~
N = O © 0o~
N N N e e e N

o~~~

Program 25

In set del we collect all nodes which have to be deleted from the network
because either they cannot be reached from s or ¢ cannot be reached from them.
The running time of a call of forward is O(1+# edges deleted in line (7)), because at
each execution of the loop body (except maybe the last) an edge is deleted and since
the cost outside the loop is clearly O(1). The complete algorithm for computing a
blocking flow is given by Program 26.

Procedure simplify(del) removes all nodes (and edges incident to them) in
del from the network. Also if some other node z loses its last ingoing (outgoing)
edge during this process then z is also deleted. It is easy to see that simplify can be
implemented to run in time proportional to the number of nodes and edges removed
from the graph; an algorithm similar to Program 26 used for topological sorting will
do. The details are left to the reader (Exercise 27).

Theorem 1. Let LN be a layered network. Then a blocking flow can be computed
in time O(n?).

Proof: Correctness of Program 26 follows from the fact that nodes (edges) are
removed only if all paths from s to ¢ through that node (edge) are blocked.

Version: 19.10.99 Time: 11:01 —68—

4.9.1. Algorithms for Mazimum Network Flow 69

for all x € V do S[z] + 0 od;

for alll,0 <[<k, do S; « 0 od;

del <+ 0;

while LN is not empty

do compute PO[v] for all v € V| let PO* = min{PO[v]; v € V} and
let v € V} be such that PO* = PO[v];
S[v] «+ PO*; S; « {v};
for h from [to k-1
do for all z € Sy, do forward(z, S[z],h) od od;
S[v] «+ PO*; S; + {v};
for h from [step —1 to 1
do for all z € S, do suck(z, S[z],h) od od;
simplify(del)

od.

AN AN NN N
U W N =
N N’ N e

= e e~~~
W N RO © 0o~
N N N e e e e

o~~~ P~

Program 26

The cost of lines (1) to (3) is clearly O(n). Also, loop (4) to (13) is executed
O(n) times since at least one node, namely v, is removed from the graph in line (12).
The cost of an execution of the loop body outside the calls of forward, suck and
simplify is clearly O(n) and hence O(n?) if summed over all O(n) iterations. Since
the cost of a call of forward (suck) is O(1 + # deleted edges), since forward (suck)
is called at most once for each node during an execution of the loop body and since
every edge is deleted at most once the total cost of all calls of forward (suck) is
O(n? + e) = O(n?). Finally, the total cost of all calls of simplify is O(e). 1

The algorithm can be made to run faster in (0,1)-networks, i.e., networks where
c(e) =1 for all e € E. Exercise 28 describes an implementation with running time
O(e). We will later describe a simpler O(e) algorithm for computing blocking flows
in (0,1)-networks.

Theorem 2. Let N = (V,E,¢), s,t € V, be a network. Then a maximum flow
from s to t can be computed in time O(n3).

Proof: A maximum flow can be computed by O(n) applications of the blocking
flow algorithm to layered networks. The construction of the layered network and
the computation of a blocking flow takes time O(n?). The time bound follows. 1

It is now easy to derive the min-cut max-flow theorem.

Theorem 3. Let N = (V,E,¢c), s,t € V, be a network. Let fmaz be the maximum
flow value of any legal (s,t)-flow function and let ¢cmin be the minimal capacity of
all (s,t)-cuts. Then

fmaz = cmin.

Version: 19.10.99 Time: 11:01 —-69—

70 Chapter 4. Algorithms on Graphs

Proof : Note first that cmin exists because there is only a finite number of (s, t)-cuts.
Also, fmaz exists because we have an O(n3) algorithm for computing a maximum
flow from s to t. fmaxr = cmin remains to be shown. We have fmaz < cmin by
Lemma 1. Finally, let f be a flow function with val(f) = fmaz. If we construct the
layered network with respect to f then ¢ is not added to the network. The proof of
Lemma 2a) shows how to construct an (s,t)-cut (S,T) such that fmaz = val(f) =
¢(S,T). Since ¢(S,T) > cmin, this proves fmaz > cmin. 1

Our second algorithm for computing blocking flows is based on dfs and is particu-
larly well suited for sparse networks, i.e., e < n2. The basic idea is quite simple.
Starting at s we construct a path by always taking the first edge out of every node
until we either reach ¢ or reach a dead-end v, i.e., a node v with out(v) =) and
v # t. In the second case we back up one node, delete all edges leading into v from
the graph and continue. In the first case we compute the bottleneck capacity € of
the path, i.e., the minimal capacity of any edge on the path, increase the flow along
the path by €, decrease the capacities by €, and delete all saturated edges from the
graph. Having done so, we construct the next path starting at node s.

Theorem 4. The algorithm above constructs a blocking flow in a layered network
in time O(e - n). In a (0,1)-network it runs in time O(e).

Proof: Correctness is obvious. The bound on the running time is derived as follows.
As before k denotes the depth of the layered network. Observe first, that a path
from s to t is constructed in time O(k+ # of edges found to be ending in dead-ends)
and that at least one edge on the path is saturated by increasing the flow. Hence
at most O(e) paths are constructed for a total cost of O(k - e + €) = O(e - n).

One additional observation is needed for (0,1)-networks. In (0,1)-networks all
edges on the constructed path are saturated and hence the cost of constructing a
path from s to t is proportional to the number of deleted edges. The claimed time
bound follows. 1

We will next describe an improved implementation of the algorithm above which
reduces the time bound to O(e - (logn)?). In the algorithm above, whenever we
succeed in constructing a path from s to ¢t we saturate edges and then forget about
the constructed path. A more economical way to proceed is to keep the remnants
of the path as path fragments (PF’s). In the example of Figure 23 we split the path
into three PF’s p, pf; and pf,.

pf pf!

- ES

Figure 23. Splitting a path into three path fragments

\J

Version: 19.10.99 Time: 11:01 -70-

4.9.1. Algorithms for Mazimum Network Flow 71

We will always use p to denote the path fragment starting in s. We will
maintain the invariant that at most one PF goes through every node v, i.e., that
there is at most one path fragment pf such that v is a node of pf but not the last
node of pf. In other words the PF’s form a forest with edges directed towards the
roots. We can now start to construct a new path from s to ¢ starting at the last
vertex last(p) of PF p.

There are four ways of changing path p. If there is a path fragment which goes
through last(p), say pf, then we split pf at last(p) and concatenate one of the parts
to p. If last(p) is the first vertex of pf then the splitting is trivial. See Figure 24.

of

p p

Figure 24. The first two ways of changing path p

If there is an unblocked edge out of last(p) then we add this edge to p. If last(p)
is a dead-end, i.e., there is neither a PF going through last(p) nor an unblocked
edge leaving last(p), then we shrink p by deleting its last edge. Finally, if last(p) = ¢
then we saturate some of p’s edges and split p into path fragments. The details are
as described in Program 27.

(1) p + path consisting of s only;

(2) while s is not a dead-end

(3) do extend p by adding an unblocked edge out of last(p);

(4) while a PF pf goes through last(p)

(5) do split pf at last(p) into pf’ and pf";

co pf’ ends in last(p), pf" starts in last(p) oc

compute the capacities of pf’ and pf”;

concatenate pf” to the end of p and update p’s capacity

if last(p) =t

then increase the flow along p by the capacity of p, split p into PF’s
by deleting all saturated edges, compute the capacities
of the fragments and let p be the fragment starting in s

(6)
(7) od;
(8)
(9)

(10) fi;

(11) while last(p) is a dead-end and s # last(p)

(12) do delete the last edge from p and update p’s capacity
(13) od

(14) od.

Program 27

Version: 19.10.99 Time: 11:01 -71-

72 Chapter 4. Algorithms on Graphs

There are two points which we have to deal with now. How do we maintain
the invariant and can we always execute line (3)?

Lemma 4. The following holds at all times during the execution of Program 27:
a) For every node v there is at most one path fragment going through v.

b) Whenever line (3) has to be executed there is an unblocked edge out of last(p)
and no PF goes through last(p).

Proof: (By induction on the number of steps executed.) Claims a) and b) are
certainly true prior to the first execution of the loop body. Suppose now that a)
and b) hold prior to execution of line (3). We will show that a) and b) hold at
the end of the loop body. Since b) holds line (3) can be executed and execution of
line (3) does not impede the truth of part a). Nor does the execution of lines (4)
to (7). Before executing line (8) we know that no PF goes through last(p). We
claim that this is also true after executing lines (8) to (10). The claim is obvious
if last(p) # t. If last(p) = t then we reset p to an initial segment p’ of p. Since
the edge on p which emanates from last(p’) is saturated in (9) and since a) holds
we conclude that no PF goes through last(p’). Thus a) holds prior to execution
of line (11) and no PF goes through last(p) at this point. Execution of lines (11)
to (13) certainly does not affect a). Also these lines ensure that no PF goes through
last(p) (this fact is an invariant of line (12) because of a)) and that either last(p) = s
or that there is an unblocked edge out of last(p). Thus b) and a) hold prior to the
next execution of line (3) because of the test in line (2). 1

Lemma 4 implies the correctness of Program 27. Let us turn to efficiency next. We
need to discuss two points: how to represent path fragments so that the various
operations on them can be done fast and how to derive bounds on the number of
executions of the various statements.

Path fragments are stored as balanced trees. More precisely, we store the edges
of a PF in the leaves of a (2,4)-tree in the natural order: Then every vertex z of
the tree represents a path pf(z) in the network, namely the path comprised of the
edges stored in the subtree rooted at z. We store two informations about path
pf(z) in vertex z: f(z) (flow) and c¢(z) (capacity). The flow field f(z) indicates
that f(z) units of low have been pushed through pf(z) without distributing these
units over the subpaths. Thus, if e is an edge of the network, the flow through e is
given by) f(z) where the summation is over all vertices z on the path from the
leaf representing edge e (note that this leaf is uniquely defined by Lemma 4a)) to
the root of the tree representing the path fragment containing e. Field ¢(z) is the
minimal residual capacity (= capacity — flow) of any edge in pf(z) ignoring the
flow associated with proper ancestors of z. Thus

o) = min [ele)= Y 1)

e€pf(y€Ever(e,z)

Version: 19.10.99 Time: 11:01 —72—

4.9.1. Algorithms for Mazimum Network Flow 73

where ver(e, z) is the set of vertices of the tree path from the leaf representing e
to z (the leaf representing e and the vertex z are included). In particular, if z is
the root of a tree then ¢(z) is the residual capacity of pf(z), i.e., ¢(z) and no more
additional units of flow can be pushed through pf(z).

Lemma 5.

a) If pf, and pf, are path fragments with last(pf,) = first(pf,) then pf, and pf,
can be concatenated in time O(logn).

b) Let pf be a PF represented as a balanced tree and let v be a node of pf. Then
pf can be split at v in time O(logn). Also, if the residual capacity of pf is zero
then a saturated edge of pf can be located in time O(logn).

Proof: For both parts we need to push flow information into trees. If z is a vertex
with sons z;, 1 = 1,2,..., then

(f(2:),¢(2i)) = (f(z) + £(2), e(zi) — f(2));
(£(2), ¢(2)) (0,¢(2))

is a consistent change of the information fields associated with vertices z, z1, 22, - - - .
Also, it pushes flow from vertex z into the subpaths represented by vertices z;,
i=1,2,....

a) Let T; of height h; be the tree representing pf;, i = 1,2. Assume w.l.o.g. that
h1 < hs. Then we concatenate 77 and T3 by first pushing the flow down the left
spine of T for hy — h; + 1 levels and then concatenating T; and 75 as described in
Section III.5. Note that the flow and capacity field of the vertices affected by the
operation are easily computed. More precisely, the flow field is set to zero and the
capacity field is set to the minimum residual capacity of the sons. This shows that
Ty and T» can be concatenated in time O(|hy — h1| + 1).

b) Let T represent path fragment pf and let v be a node in pf. Note first, that v
corresponds to a “gap” between two leaves of T' in a natural way. Let e be the edge
(leaf) following v in pf. We prepare the splitting by tracing the tree path from e to
the root of T" and then push the flow down this path. This changes the flow field
of all vertices on the tree path to zero and therefore they can be safely removed.
Splitting is completed by a sequence of concatenations as in ordinary (2,4)-trees.
Finally, we show how to find a saturated edge if the residual capacity of pf is
zero. Push the flow from the root z of T into its sons. Then 0 = ¢(z) = min(c(z;))
where z; ranges over the sons of z. Therefore one of the sons has a zero capacity
field. If we continue in this way we find a saturated edge in time O(logn). 1

Lemma 6. A single execution of lines (3), (5), (6) and (12) takes time O(logn).
A single execution of line (9) takes time O(dlogn) where d is the number of edges
deleted in line (9).

Version: 19.10.99 Time: 11:01 —73-

74 Chapter 4. Algorithms on Graphs

Proof: Follows immediately from Lemma 5. Note that line (3) can be visualized
as constructing a path fragment consisting of a single edge and concatenating it
with p.]

Now we are (almost) able to determine the running time of the improved algorithm.
Note first that the total time spent outside lines (4) to (7) is O(elogn) because the
number of executions of the loop body is at most e, because the total number of
edges deleted in lines (9) and (12) is at most e, and because the cost of handling
an edge is O(logn) by Lemma 6. It remains to bound the costs arising in lines (4)
to (7), i.e., we need to bound the number of executions of lines (5) and (6). Call
this number K. We show K = O(elogn) in a two step process. As a first step
we rephrase the problem of bounding K as a game problem (which bears great
resemblance to the Union-Find Problem studied in Section II1.8.3) and as a second
step we derive a bound on the number of moves in the game. The argument will
be similar to the one used in Section II1.8.3.

For step one we conceptually assign non-negative integers to path fragments
as follows. To path fragment p (starting at s) no number is ever assigned. When
p is split in line (9) into path fragments p, pf;, pfy, ..., pf, (in this order from s
to t) then we assign integer L + ¢ to pf;, 1 < i < k, where L is the largest integer
given to a PF prior to that point. Also if we split PF pf into pf’ and pf” and
concatenate pf” to p, then pf’ inherits the number of pf provided that pf’ is non-
trivial. We use num(pf) to denote the number assigned to PF pf. We clearly have
1 < num(pf) < e for all path fragments pf since new numbers are assigned only in
line (9) and assigning a new number corresponds to deleting an edge. We need one
more property of path fragment numbers. If pf, and pf, are PF’s then pf, points
to pf, if pf, goes through last(pf;). We have

Lemma 7. At all times during the execution holds:
a) If pf is a PF then pf points to at most one other PF.

b) If pf; points to pf, and pf, # p then num(pf,) < num(pf,).

Proof : a) Follows directly from Lemma 4a) since there is at most one path fragment
going through last(pf) by that lemma.

b) (By induction on execution time.) New path fragments are created in lines (5)
and (9). Line (9) ensures that b) holds true since “large” numbers are assigned to
the newly created path fragments and since the newly created path fragments do
not point to any other path fragment by part a). Line (5) keeps b) true since pf’
inherits num(pf), since pf' is a subpath of pf, and since pf’ points to p after its
creation and therefore to no other path fragment by part a).]

We can now view our algorithm as manipulating a set S C {(z,y); 1<z <y<e}
of pairs, namely S = {(num(p), num(q)); p,q are PF’s and p points to ¢}. Set S is
manipulated in stages, where a stage corresponds to a single execution of the body
(3) to (14) of the main loop. Thus the number of stages is at most e. In a stage we

Version: 19.10.99 Time: 11:01 -74—

4.9.1. Algorithms for Mazimum Network Flow 75

remove a number of pairs in lines (4) to (7), say (z1,v1), (z2,92), ---, (g, yr) for
k > 0. These pairs form a chain, i.e., y; = 2,y2 = Z3,...,Yp_1 = T, because if
y; = num(pf;), x1 = num(pfy) then pf; must point to pf;,,, 0 <i < k, and p must
point to pf, prior to line (4). See Figure 25. Thus K < D+e where D is the number
of pairs removed in lines (4) to (7). In a stage we add some pairs to S in line (9).
If (z,y) = (num(pf;), num(pf,)) is a pair added in line (9) then y = num(pf,) is a
“new” number. In particular, if pair (z,y’) was deleted at some previous stage and
pair (u,v) was deleted at the same stage then y > v.

Pfr

pf1
Pfo
p

Figure 25. A chain of path fragments

Readers familiar with the Union-Find Problem, Section III1.8.3, should see a
similarity at this point. Consider the Union-Find data structure with path com-
pression but without the weighted union rule. If one numbers nodes as they are
created then upward links correspond to pairs (z,y) with < y. Also path com-
pression removes a chain of pairs and adds some new pairs with a “large” second
component.

Theorem 5. Let N and M be integers. Consider a process operating on
the set S C {(z,y); 1 < z < y < M} in N stages. Initially, S is a set
of pairs satisfying (z,y) € S,(z,y') € S = y = y'. In each stage a chain
(z1,22), (z2,23),...,(xx—1,xk) Of pairs is removed from S and some set of pairs
(z,y) is added to S. Let the added pairs (z,y) satisfy

(1) If(z,y) is added to S then no (z,y') is currently in S and (z,y) never belonged
to S previously.
(2) If (z,y') for some y' was deleted at some previous (including the present) stage

and pair (u,v) was deleted at the same stage then y > v.

Under these assumptions at most (N + M)[log M| pairs are removed from S.

Proof: The proof is based on the following idea. If we delete a large chain
(z1,22),...,(xx_1,xr) at some stage then all pairs (z;,y) added later on must
satisfy y > xp. Therefore all these edges must have a large “reach” y — x;. But no
pair can have a “reach” exceeding M and hence this cannot happen very often. The

Version: 19.10.99 Time: 11:01 —75—

76 Chapter 4. Algorithms on Graphs

details are as follows. Let F' be the set of pairs deleted. We divide F' into classes
according to the reach of the edges in F', namely

M; ={(z,y) €F; 2 <y—x <2} for 0 <i < [logM] — 1.
Furthermore, let
L; = {(z,y) € M;; no (u,v) € M; with v > y is removed
from S at the same stage as (z,y)}-

Note that the definitions make sense since no pair can be added twice to S by
property (1).
Claim 1. |L;| < N.

Proof: Obvious, since the edges removed at a stage form a chain and since there
are only IV stages.]

Claim 2. For all z and i there is at most one y such that (z,y) € M; — L;.

Proof: Assume (z,y1), (z,y2) € M; — L; where y; < yo. When (z,y;) is removed
from S a pair (u,v) € M; with v > y; is also removed from S at the same stage,
since (z,y1) ¢ L;. Since the set of pairs removed at a stage form a chain we also
have y; < u. Next observe that y2 > v by property (2). Thus

y2—w20—x2v—u+y1—m22i+2i:2“'1,

since (z,y1), (u,v) € M; and hence v — u > 2¢ and y; — z > 2. We conclude that
(z,y2) ¢ M;, contradiction. 1

The proof is now easily completed. Claims 1 and 2 yield

[log M]—1
|F| = Z |M; — Li| + |Li| < (M + N)[log M1,
i=0
since | M; — L;| < M by Claim 2 and |L;| < N by Claim 1. 1

Theorem 6.

a) Let LN be a layered network with n nodes and e edges.
Then a blocking flow can be computed in time O(e - (logn)?).

b) Let N = (V,E,c¢), s,t € V, be a network with n nodes and e edges.
Then a maximum (s, t)-legal flow can be computed in time O(e - n - (logn)?).

Proof :

a) Theorem 5 (M = N = e) implies that the number of executions of lines (5)
and (6) is O(elogn). Thus the total running time is O(e- (log n)?) by Lemma 6
and by the discussion following it.

b) Follows from part a) and Corollary 1. 1

Version: 19.10.99 Time: 11:01 —T76—

4.9.2. (0,1)-Networks, Bipartite Matching and Graph Connectivity 77

Theorem 5 can be used to show an O((n + m) - log(n + m)) bound on the cost of
n unions and m finds when path compression is used but the weighted union rule
is not used (cf. Chapter III).

Theorem 6 can be slightly improved. Sleator/Tarjan (cf. Sleator (80)) have
shown that a clever use of dynamic weighted trees (cf. IIL.6) instead of balanced
trees reduces the cost of blocking flow computations to O(e log n) and hence the cost
of the maximum flow problem to O(e-nlogn). Finally, the algorithm above can be
used to compute the maximum flow in an (s, ¢)-planar network in time O(nlogn);
see Exercise 29 for a detailed discussion. The main additional insight required is
that a single blocking flow computation suffices to compute a maximum flow.

4.9.2. (0,1)-Networks, Bipartite Matching and Graph Connectivity

In this section we will specialize the network flow algorithms to (0,1)-networks, or
more generally bounded networks, and then apply it to compute maximum match-
ings in bipartite graphs and to compute the vertex connectivity of graphs.

Definition: Let d € N. A network N = (V,E,c) is d-bounded if c(e) €
{1,2,...,d} for all e € E. A 1-bounded network is commonly called (0,1)-
network.]

If we apply any of our maximum flow algorithms to d-bounded networks then all
intermediate flows f are integral, i.e., f(e) € Ny for all e € E. In particular, the
maximum flow is integral. We already observed that a blocking flow in a (0,1)-
network can be computed in linear time. More generally, we have

Lemma 8. Let N be a d-bounded network. Then a blocking flow can be computed
in time O(d - €).

Proof : Use the proof of Theorem 4 and observe that an edge can be used at most
d times in any path from s to ¢.]

From Lemma 8 we conclude that maximum flows in d-bounded networks can be
computed in time O(d-e-n). Actually, a much better time bound holds for small d
and can be shown by a more careful analysis of our network flow algorithms. More
precisely, we show improved bounds on the number of phases executed by the
algorithm.

Let N = (V, E,c) be a network. Let s,¢t € V and let f be a legal flow. Let By =
{(v,w); f(v,w) < ¢(v,w)} and let Ey = {(w,v); f(v,w) > 0}; cf. the definition
of layered network. Let AN = (V, E,UEs,¢) where ¢(v,w) = ¢(v,w) — f(v,w) for
(v,w) € E; and &(w,v) = f(v,w) for (w,v) € E; and E;UE; is the disjoint union of
E, and E5. Then constructing the layered network with respect to N and f is the
same as constructing the layered network with respect to AN and the flow function
which is zero everywhere.

Version: 19.10.99 Time: 11:01 =T7-

78 Chapter 4. Algorithms on Graphs

Lemma 9. Let N be a network and let fmaz be the value of a maximum (s,t)-flow.
Let f be any legal (s,t)-flow, let AN be defined as above and let fmaz be the value
of a maximum (s,t)-flow in AN. Then

fmaz = fmaz + val(f).

Proof: Let (S,V — S) be any (s,t)-cut. We use ¢(S,V — S) and &(S,V — 5) to
denote the capacity of cut (S,V — S) with respect to N and AN, respectively. We

have
S, v-9= > &uvuw)
veES,WEV-S
= Z [(c(v,w) — f(v,w)) + f(w,v)]
vES,WEV -8
=SV -8 Y (flow) — fw,v)

veEV,wevV—-9§
=¢(S,V —8) — val(f).

Therefrom we conclude that cmin = cmin — val(f) where cmin and cmin are the
minimum capacities of any (s,t)-cut in N and AN, respectively. An application of
Theorem 3 (min cut = max flow) completes the proof. 1

Lemma 9 states that the augmenting network AN has the potential of increasing the
flow to its maximum value. The layered network captures all shortest (s,t)-paths
in AN.

Lemma 10. Let N be a d-bounded network. Then the number of phases is at
most 3 - d'/3 . n?/3.

Proof: Let fmaz be the value of a maximum (s, t)-flow. If fmaz < d*/3 - n?/% then
the claim holds true since every phase increases the flow by at least one. So let us
assume fmaz > d'/3 - n?/3. Consider the phase, say the I-th phase, which increases
the flow to at least fmaz —(d'/2-n)?/3. Then there are at most d'/3-n?/3 phases after
phase [since every phase increases the flow by at least one. We complete the proof
by showing that [< 2-d'/3.n2/3, ie., that flow value fmaz — d'/? . n?/3 is reached
in at most 2 - d'/3 - n?/3 phases. Since the depth of the layered network grows by at
least one in every phase (Lemma 3), it suffices to show that k;, the depth of layered
network LN used in phase [, is at most 2-d'/3-n2/3. Let LN = (V,UV1U- - -UV4, E, &),
where k = ki, Vo = {s}, t € Vi, and E C |J,;(Vi X Vi41) be the layered network used
in phase [. LN is constructed with respect to flow f.

Let W; =VoU---UV;, 0 <i < k. Then (W;,V —W;) is an (s, t)-cut and hence
&(W;i, V —W;) > fmaz = fmaz —val(f) > d*/3-n?/3 by the proof of Lemma 9. Next
observe that all edges of AN which emanate in W; and end in V —W; actually start in

Version: 19.10.99 Time: 11:01 —78-

4.9.2. (0,1)-Networks, Bipartite Matching and Graph Connectivity 79

V; and end in V;; by the definition of layered network LN. Hence ¢(W;,V —W;) <
2-d-|V;| - |Vig1] since there are at most 2 - |V;| - |V;41] edges from V; to V;i1.
(The 2 is due to the fact that (v,w) € E; and (v,w) € E, is possible.) Thus
[Vi| - [Vig1| > (n/d)?/% /2 and hence |V;| + |Vig1| > (n/d)'/? for 0 < i < k. Summing
this inequality for ¢, 0 < ¢ < k, we obtain

2|V 2 k- (n/d)*/?

or
kE<2.d'/3.n?3, 1

Theorem 7. Let N be a d-bounded network. Then a maximum flow can be
computed in time O(d*® - n?/3 - ¢).

Proof: Obvious from Lemmas 8 and 10.]

One restricted form of (0,1)-networks is particularly important, namely simple (0,1)-
networks.

Definition: A network N = (V, E,c) is simple if indeg(v) < 1 or outdeg(v) < 1
forallv e V.]

Theorem 8. Let N = (V, E,c) be a simple (0,1)-network. Then a maximum flow
can be computed in time O(n'/? - ¢).

Proof: A phase of the network flow algorithm takes time O(e) by Theorem 4. It
therefore suffices to show that the number of phases is O(n'/2). We use an argument
similar to Lemma 10.

Let fmaz be the value of a maximum (s,t)-flow. If fmaz < n'/? then there
is nothing to show. If fmaz > n!/2 then consider the phase, say the I-th, which
increases the flow to fmaz — n'/2. Then there are at most n'/? phases following
phase [. It remains to be shown that the layered network LN used in phase [has
depth at most n'/2.

Let f be the legal (s,t)-flow obtained by our algorithm just prior to phase [
and let AN be the augmenting network with respect to f. We claim that AN is
a simple network. This can be seen as follows. Let v € V be arbitrary. Assume
that indeg(v) = 1, the case outdeg(v) = 1 is similar. If f(e) = 0 for in(v) = {e}
and hence f(e’) =0 for all ¢’ € out(v) then v certainly has indegree one in AN. If
f(e) =1 for in(v) = {e} and hence f(e’) =1 for exactly one e € out(v) then v has
also indegree at most one in AN. This follows from the fact that the direction of e
and ¢ is reversed for constructing the augmenting network. Thus AN is a simple
network.

Version: 19.10.99 Time: 11:01 —79—-

80 Chapter 4. Algorithms on Graphs

By Lemma 9, AN permits an (s,t)-flow of fmaz — val(f) > n'/2. Consider a
maximum (s,t)-flow f in AN. We may assume that f is integral, i.e., f(€) € {0,1}
for all edges of AN. Since AN is a simple network, f defines wal(f) > n'/? paths
from s to ¢ which have no common vertex other than s and ¢. Hence any one of
these paths can have at most n'/? intermediate nodes. This shows that the layered
network used in phase [has depth at most nl/2.

We have thus shown that the number of phases is O(n'/?) and hence the total
running time is O(n'/2 - e). 1

We end this section with two applications of simple (0,1)-network flow: bipartite
matching and graph connectivity.

Let G = (V,E) be an undirected graph. A matching M is a set of edges
M C E such that no two edges e1,es € M, e; # es, share an endpoint. A maximum
matching is a matching of maximum cardinality. An undirected graph G = (V, E)
is bipartite if there is a partition V;, V5 of V such that £ C V; x V5. In bipartite
graphs, the nodes of Vi (V2) are often called girls (boys). Then (v,w) € E can
be interpreted as “girl v can go along with boy w”. Matching in arbitrary graphs
allows for homosexuality.

Theorem 9. Let G = (V1UV;, E), E C V; x V3, be a bipartite graph. A maximum
matching can be computed in time O(n'/? - e).

Proof : Define a simple (0,1)-network N = (V;UV,U{s,t}, E, c) as follows. Add two
nodes s and ¢, connect s to all vertices in V7, direct all edges in E from V; to V5 and
connect all vertices in V5 to ¢t. Also assign capacity one to all edges. Then integer-
valued flows in N are in one-to-one correspondence to matchings in G. (Figure 26
shows a matching and the corresponding flow by wiggled edges.) By Theorem 8a)
maximum flow in N can be computed in time O(n'/? - ¢). 1

Figure 26. Bipartite matching reduced to a flow problem

We will next turn to vertex connectivity of undirected graphs. Let G = (V, E)
be an undirected graph and let a,b € V be such that (a,b) ¢ E. Set S CV —{a, b}
is an (a,b)-vertex separator if every path from a to b passes through a vertex
of S. In other words a and b belong to different connected components of G — S.
The minimum cardinality of any (a,b)-vertex separator is denoted by N(a,b). If
(a,b) € E we set N(a,b) = +00.

Version: 19.10.99 Time: 11:01 —-80—

4.9.2. (0,1)-Networks, Bipartite Matching and Graph Connectivity 81

Lemma 11. Let G = (V, E) be an undirected graph and let a,b € V' be such that
(a,b) ¢ E. Then N(a,b) can be computed in time O(n'/? - ¢).

Proof: Construct a simple network N = (V, E, ¢) as follows. Let V' = {v'; v € V'}
and V" = {v'; v € V}; let V. = V'UV" and E = {(v',v"); v € V} U
{(",w"), (w",v"); (v,w) € E}. Finally, let ¢(v',v"”) = 1 for v € V and let
¢(v",w') = é(w",v') = oo for (v,w) € E. The construction is illustrated by Fig-

Figure 27. Computation of N(a,b)

Claim: N(a,b) is equal to the maximum flow from a", the source, to b, the sink,
in network N.

Proof: “<”: Let (A, V —A) be a minimal (a”,¥')-cut in network N. Let § = {v; v’ €
A,v" € V—A}. Then clearly ¢(A,V —A) > |S|. Also, S is an (a, b)-vertex separator

and hence |S| > N(a,b). This can be seen as follows. Let a = vg,v1,...,v5 =bbea
path from a to b in G. Consider path vy, vy, vy, v5,...,v/_;, v from a” to b’ in N.

At least one of its edges must go across the cut defined by A. It cannot be one of
the edges (v/,v},) because these edges have capacity co and cut (4,V — A) has
finite capacity. Note that cut (4,V — A) has finite capacity because it is a minimal
cut and since there are cuts, e.g., A = {a"} U (V' — {b'}), of finite capacity.

“>”: Let S CV —{a,b} be an (a, b)-vertex separator with |S| = N(a,b). Define
A = {z € V; z can be reached from a’ without using an edge (s’,s") for s € S}.
Then b’ ¢ A and hence (A,V — A) is an (a”,b')-cut of network N. Also, v' € A
implies v"" € A for v € V — S. Hence &(A4,V — A) < |S| = N(a,b). 1

It is easy to see that the maximum flow from a” to b’ does not change if we change
all capacities to 1. In this way we obtain a simple (0,1)-network. A maximum
flow in this network and hence also N(a, b) can be computed in time O(n'/2 - ¢e) by
Theorem 8.]

The vertex connectivity ¢ of an undirected graph G = (V, E) is the minimal
connectivity number of any pair of unconnected vertices. More precisely

_n-1 if G is complete;
min{N(a,b); (a,b) ¢ E} otherwise.

Version: 19.10.99 Time: 11:01 -81-

82 Chapter 4. Algorithms on Graphs

Theorem 10. Let G = (V,E) be an undirected graph and let ¢ be its vertex
connectivity.

a) c can be computed in time O(c-n%/? - e) = O(n'/? . €?).

b) Let € > 0 and assume e < n?/4. Then there is a randomized algorithm which

computes ¢ in expected time O((—loge) - n3/2 - €) with probability of error at
most €.

Proof : Both parts are based on the following simple observation.

Claim 1. Assume ¢ < n— 1. Let ¢ = N(z,y) for some nodes z,y € V and let
S, |S| = ¢, be an (z,y)-vertex separator. Then ¢ = min{N(a,b); b € V} for all
aceV-S.

Proof: G — S consists of at least two components. Let b be a node which does
not belong to the same component as a. Then S separates a from b and hence

N(a,b) < |S| =c. Thus ¢ = N(a,b) by definition of c. 1
a) Claim 1 suggests Program 28. Let vy,v3,vs,...,v, be some ordering of V.
Correctness of Program 28 can be seen as follows. It is ¢ = min{ci,co,...,Cc+1}

by the claim above. Also C' > ¢ and C = min{ecy,...,¢;} always. The algorithm
terminates with ¢ < C < 7 and hence C = ¢. Also C = ¢ whenever i > ¢ + 1. Thus
¢+ 1 iterations suffice.

) C <+ o051+ 1;

) while C > i

) do ¢; < min{N(v;,v); v € V};
) C + min(C,¢;); i+ i +1
) od.

Program 28

The running time is determined by line (3). A single execution of line (3) takes
time O(n3/2.e) by Lemma 11. Hence the total running time is O(c-n3/2-e). Finally
observe that ¢ < min{deg(v); v € V} < 2-e/n since) . deg(v) =2-e.

b) Since ¢ < 2-e/n, cf. the proof of part a), and e < n?/4 by the assumption we
have ¢ < n/2.

Claim 2. Choose a € V at random. Then

prob(c > min{N(a,b); be V}) <1/2.
Proof : This is almost obvious from Claim 1. Let S be defined as in Claim 1. Then
|S| <n/2 and

prob(c > min{N(a,b); b € V}) < prob(a € S) < 1/2. 1

Version: 19.10.99 Time: 11:01 —-82—

4.9.8. Weighted Network Flow and Weighted Bipartite Matching 83

Claim 2 suggests the randomized algorithm of Program 29 for computing c.

(1) k< —loge; C + oo

(2) do k times

(3) choose a € V at random;

4) C < min(C,min{N(a,b); b € V})
(5) od.

Program 29

The running time of Program 29 is clearly O((—loge) - n3/2 . €). Also, the
probability that C > ¢ upon termination is at most (1/2)¥ = € by Claim 2. 1

4.9.3. Weighted Network Flow and Weighted Bipartite Matching

A weighted network flow problem is given by N = (V, E, cap, cost) and nodes
s,t € V. Here cap : E — R™ gives the capacity of an edge (we used c instead of
cap so far) and cost : E — R is the cost of transporting one unit of flow across an
edge. Throughout this section we assume that capacities are integers. Let f be a
legal (s,t)-flow. Then the cost of f is given by

cost(f) = Z f(e) - cost(e).
ecE

The weighted network flow problem is then to compute a legal (s,t)-flow with
maximum flow value and (among these) minimal cost. More generally, we might
look for a flow function f with val(f) = v for some predefined v and minimal
cost. In this section we will see that a minimal cost flow with flow value v can be
computed in time O(v-e-(logn)/log(e/n)). At the end of this section we will apply
this result to weighted bipartite matching and derive an O(n - e - (logn)/log(e/n))
algorithm for it.

The theory of weighted network flow is a natural extension of the theory of
ordinary network flow. Let N = (V| E, cap, cost) be a network, s,t € V, and let
f: E — R be a legal (s,t)-flow. We define the augmenting network with respect to
N and f as we did in the previous section. More precisely, AN = (V, E, cap, cost),
where E = E; UFE, and E; = {e € E; f(e) < cap(e)} and Ey = {(w,v); (v,w) =
e € E and f(e) > 0}. For e € E we use e; to denote the edge corresponding to e in
E;,i=1,2. Also

. cap(e) — f(e) ife=ey;
cap(e) = {f(e)() () ife=e,

and

——,y _ | cost(e) ife=ey;
cost (&) = { —cost(e) if € = es.

Our first lemma connects minimality in cost with the existence of cycles of negative
cost in the augmenting network.

Version: 19.10.99 Time: 11:01 —-83—

84 Chapter 4. Algorithms on Graphs

Lemma 12. Let f be a legal (s,t)-flow with val(f) = v and let AN be the aug-
menting network with respect to f. Then f has minimal cost among all (s, t)-flows
with value v iff there is no cycle of negative cost in AN.

Proof: “=7: (Indirect.) It is clear that a negative cost cycle can be used to decrease
the cost of f without changing the flow value.

“<”: (Indirect.) Assume that f does not have minimal cost, i.e., there is a legal
(s,t)-flow g with val(g) = val(f) and cost(g) < cost(f). Let AN = (V, E, cap, cost)
be the augmenting network with respect to f. Consider h : E — R defined by

_. | max(0,g9(e) — f(e)) if €= e;
h(e) = {max(O,f(e) —g(e)) ife=ea.

Claim 1. h is a legal (s,t)-flow in AN with val(h) = 0 and cost(h) < 0.

Proof: We show first that A has negative cost. Note that for all e € E we have
h(ey) - cost(e1) + h(ez) - cost(ez) = (g(e) — f(e)) - cost(e) and hence

cost(h) =) _ h(e) - cost(e)

eck

=) "[h(ex1) - cost(er) + h(ez) - cost(es)]
e€E

= Z(g(e) — f(e)) - cost(e)
eeFE

= cost(g) — cost(f) < 0.

Next we show that h satisfies the conservation laws. Note that for all e € E
h(e1) — h(ez) = g(e) — f(e) and hence for all v € V (out(v) is the set of edges
emanating from v in AN and similarly for in(v)):

> n@E - Y k)

ecout(v) e€in(v)
= Y (h(er) —h(e2)) — > (hler) — h(ez))
e€out(v) e€in(v)
= Y (gle)=fle)) = D (g(e) — f(e))
e€out(v) e€in(v)
= > 9&- > 9(6)][>, flo- X f@
e€out(v) ec€in(v) e€out(v) e€in(v)
0—0 if v# s,t;

=< wal(g) —val(f) ifv=s;
—val(g) + val(f) ifv=t.

Version: 19.10.99 Time: 11:01 —84—

4.9.8. Weighted Network Flow and Weighted Bipartite Matching 85

In any case, this shows that h satisfies the conservation laws and that val(h) = 0.
Finally, it is trivial to see that h satisfies the capacity constraints.]

Flow function h has zero flow and negative cost. It is intuitively clear, that h is
circular in some sense. More precisely, we show that A can be decomposed into a
set of flows around cycles. It is then easy to conclude that one of the cycles must
have negative cost.

Claim 2. There are hy,hy, ..., hy : E—R§, m <e, such that
1) h(e) =Y, h;i(e) foralle € E.
2) For every i, 1 < i < m, there is a directed cycle wg,wy,...,wr = wy in AN
such that h,‘(’lj)j,w]'+1) = hi(wl,wH_l) for 0 < j <l <k, and hl(é) = 0 for
edges not on the cycle.

Proof: (By induction on the number k of edges & € E with h(€) #0.) If k = 0 then
there is nothing to prove. So let us assume k > 0. Let vy be any node such that there
is an edge (vo,v1) € E with h(vo,v1) # 0. Since 3 crmny) (E) = Xecimnr) ME)
and h(€) > 0 for all € € E there must be vy such that (vy,vs) € E with h(vy,vs) # 0.
Continuing in this fashion we construct a path vg,v1,vs,...,v, in AN with v, = v;
for some j < r.

We take v;,vj41,...,v, as the desired cycle and define hy : E € [R(T by
hi(vi,vi41) = min{h(vy,vi41); j <1 < r} for j <1 < r and hy(€) = 0 for all
edges € not on the cycle.

Finally, let b’ = h — hy. Then h' is a legal (s, t)-flow with flow value 0. Also
there is at least one edge € less with h'(€) # 0. 1

The proof of Lemma 12 is now readily completed. It is cost(h) = >, cost(h;)
and hence cost(h;) < 0 for some 7, 1 < i < m. Let C be the cycle underlying h; and
let € be the flow along the edges of C. Then cost(h;) = € cost(C) where cost(C) is
the cost of cycle C interpreted as a path in network AN.]

Lemma 12 can be used to design an algorithm for minimizing the cost without
changing the flow value (Exercise 32). What is more important, we can use
Lemma 12 to show that the augmenting along minimum cost paths does not destroy
the cost minimality.

Lemma 13. Let f be a minimal cost flow with val(f) = v and let AN =
(V, E,cap, cost) be the augmenting network with respect to f. Let p be a min-
imum cost path from s to t in AN, let f' be a legal (s,t)-flow in AN which is
non-zero only along p (i.e., f' sends some units of flow from s to t along p). Then
f"" where

['(€) = F(e) + f'(er) ~ f'ex) forallec B

is a minimum cost flow of value val(f) + val(f’).

Version: 19.10.99 Time: 11:01 —-85—

86 Chapter 4. Algorithms on Graphs

Proof: f" is certainly a legal (s,t)-flow with value val(f) + wval(f'). A formal
proof can be given along the lines of Lemma 2b). It remains to be shown that
f"" has minimal cost. Assume otherwise. Then there is a negative cost cycle C
in the augmenting network AN"' constructed with respect to f”. We will derive a
contradiction as follows.

If cycle C exists in AN then f was not optimal, contradiction. So C' cannot
exist in AN, i.e., there is at least one edge (v, w) on path p such that C uses this
edge in reverse direction. Let (v, w) be the first such edge. See Figure 28.

Figure 28. Construction for Lemma 13

Let path p’ from s to ¢ be constructed as follows. Follow p from s to v, then
follow C until C intersects p for the next time, say in point x, then follow p from
x to t. Let cycle C' be constructed as follows. Follow p from w to y, where y
is the point following = on cycle C, and then follow C' from y to w. Note that
cost(p') + cost(C") = cost(p) + cost(C) since the cost of edge (v, w) is the negative
of the cost of edge (w,v). Continuing in this way we obtain an (s, t)-path p” from
stotin AN and a cycle C" such that cost(p")+ cost(C") = cost(p) + cost(C) and
p"” and C" use no edge in reverse order. Thus C” is a cycle in network AN. Since
cost(C') < 0 we either have cost(C") < 0, a contradiction to the optimality of f, or
cost(p") < cost(p), a contradiction to the fact, that p is a least cost path from s to
tin AN.]

Lemma 13 gives rise to a minimum cost flow algorithm formulated in Program 30.

(1) construct a minimal cost flow with flow value 0 (cf. Exercise 32);
(2) while val(f) < v

(3) do let AN be the augmenting network with respect to f;

(4) let p be a least cost path from s to ¢ in AN;

(5) let € be the minimal capacity of any edge in p;

(6) increase the flow along p by min(e, v — val(f))

(7) od.

Program 30

Version: 19.10.99 Time: 11:01 —86—

4.9.8. Weighted Network Flow and Weighted Bipartite Matching 87

Theorem 11. Let N = (V, E, cap, cost), s,t € V, be a network with integer
capacities and let v € R*. Then a minimum cost flow with value v (if it exists) can
be computed in time O((1 4+ v) -n - e).

Proof: Correctness of the algorithm above is obvious from Lemma 13. A single
execution of the loop body takes time O(e) for lines (3), (5) and (6), plus O(n - e)
for line (4). The time bound for line (4) follows from 4.7.3, Theorem 5. Finally,
since capacities are integers, the flow is increased by at least one in every iteration
(except maybe the last). Thus the total running time is O((1 +v) - n - e). 1

In line (4) of Program 30 one has to solve single source least cost problems. In
Section 4.7.4 we saw that arbitrary edge costs can sometimes be transformed into
non-negative edge costs by means of a potential function. More precisely, we pro-
ceeded as follows. Given a weighted graph (V| E, cost) and s € V we computed
u(s,v), the cost of the least cost path from s to v. We used pu(s,v) as a potential
function and turned all edge costs into non-negative edge costs by

cost(v, w) = cost(v,w) + u(s,v) — pu(s,w).

A similar approach works here. Let AN be the augmenting network with respect
to minimal cost flow f and let p be a minimal cost path from s to ¢ in AN. After
increasing the flow along p we obtain flow f’. Let AN’ be the augmenting network
with respect to f'. Then AN and AN’ are very similar. The only difference is that
some edges of path p are removed from, and the reverse of some edges of path p
are added to AN to obtain AN’. Also if a reverse edge is added then its cost is the
negative of the cost of the edge. Let u(s,v) be the cost of the least cost path from
s to v in AN. We claim that we can use pu(s,v) as a potential function for least
cost path computations in network AN’.

Lemma 14. Let AN' = (V,E’, cap’, cost’) and let u(s,v) be the cost of a least
cost path from s tov in AN, v € V. Let

cost(v, w) = cost' (v, w) + pu(s,v) — p(s,w)

for all (v,w) € E'. Then cost(v,w) > 0 for all (v,w) € E'.

Proof: We distinguish two cases: Edge (v,w) is the reverse of an edge of path
p or it is not. If it is not then cost'(v,w) = cost(v,w) where cost is the cost
function of network AN and the claim is true since the distances satisfy the triangle
inequality. If (v, w) is the reverse of edge (w, v) and (w, v) belongs to p then u(s,v) =

p(s,w) + cost(w,v) since p is a least cost path and cost'(v,w) = —cost(w,v) by
definition of AN'. Hence cost(v, w) = 0. 1

Version: 19.10.99 Time: 11:01 —87—

88 Chapter 4. Algorithms on Graphs

Lemma 14 almost implies that we only have to solve single source least cost path
problems with non-negative edge costs in line (4). However, there is still a small
problem to solve. If we transform edge costs as described in Lemma 14, then we
compute ji(s,v), the least cost of a path from s to v in AN’ with respect to cost
function cost, in line (4). However, we need to know p'(s,v), the least cost of a
path from s to v in AN’ with respect to cost function cost’, in order to be able
to transform edge costs for the next iteration. This difficulty is easily surmounted.
Note that

fi(s,v) = w'(s,0) + p(s,) — p(s,v)
= :u'l(sav) — u(s,v)

for all v € V. Hence p/(s,v) is easily computed from pu(s,v) and u(s,v). We
summarize in

Theorem 12. Let N = (V,E, cap, cost), s,t € V, be a network with integer
capacities and let v € RT. Then a minimum cost flow from s to t with value v
can be computed in time O(v - e - (log n)/ max(1,log(e/n))).

Proof : Follows immediately from the discussion above, and 4.7.2, Theorem 2.]

We end this section with a short discussion of weighted bipartite matching. Let
G = (V1UV,, E), E C Vi x V3, be a bipartite (undirected) graph. Let cost : E — R™
be a cost function. If M C F is a matching then the cost of M is defined by

cost(M) = Z cost(e).

eeM

Theorem 13. Let G = (V4 U V3, E) be a weighted bipartite graph, let cost : E —
R* be a cost function and let v < n, v € N. Then a matching of cardinality v (if it
exists) and minimal cost can be computed in time

O(n - e- (logn)/ max(1,log(e/n)))-

Proof: The proof is very similar to the proof of Theorem 9. Define network N =
({5, t}UV1UVa, E, ¢ap, cost) by E = ({s}xV1)UEU(Vax{t}), cap(€) = 1 foralle € E
and cost(€) = cost(€) for & € E and cost(€) = 0 for € € E — E. Then matchings
and flows are in one-to-one correspondence and hence a matching of cardinality v
and minimal cost can be computed in time O(n - e - (logn)/ max(1,log(e/n))) by

Theorem 12. |

Version: 19.10.99 Time: 11:01 —88—

4.10. Planar Graphs 89

4.10. Planar Graphs

This section is devoted to planar graphs. We will treat five topics. We start with
a linear time algorithm for 5-coloring planar graphs and then show how to test
planarity and to construct a combinatorial embedding in linear time. The third
topic is an O(nlogn) algorithm for the construction of a straight-line embedding
and the fourth topic is the planar separator theorem which makes the family of
planar graphs amenable to divide-and-conquer algorithms. The final topic is one
particular algorithm based on the divide-and-conquer paradigm: a single source
least cost path algorithm for planar graphs.

A (topological) planar embedding of an undirected graph G = (V, E) is
a function £ that maps the vertices of G to distinct points in R? and each edge
{u,v} € E to a Jordan curve in R? from &(u) to £(v) such that for all e = {u,v} €
E, E(e)N(E(V)UE(E\{e})) = {E(u),E(v)} (i-e., edges do not cross). G is planar
if there exists a planar embedding of G.

Let £ be a planar embedding of a planar graph G = (V, E). The faces of £
are the connected regions of R*\&(V U E). The boundary (induced by £) of a
face F' of £ is the subgraph of G consisting of those elements £ € V U E for which
there exist points in F' arbitrarily close to £(¢). If G is biconnected and |V| > 3,
the boundary of each face of £ is a simple cycle. Let D be the set of darts of
the directed version of G, and for each dart e = (u,v) € D, let ®¢(e) be the dart
e’ = (u,w) € D such that £({u,w}) is the first curve in £(F) with endpoint £(u)
encountered after £(e) in a clockwise scan around £(u). ®¢ is a permutation of D
known as the combinatorial planar embedding corresponding to £ or induced by £.
Note that ®¢ is equivalent to a cyclic ordering of the edges incident to any vertex v.
A permutation @ of D is called a combinatorial planar embedding if & = &
for some planar embedding £. The graph (D, {((u,v), ®¢((v,u))); (u,v) € D}),
which is the union of vertex-disjoint directed simple cycles, is called the face cycle
graph of £, and its cycles the face cycles of £. The intuitive meaning of a face
cycle C of £ is that it corresponds to a walk inside a particular face F of £ along
the image R under &£ of the elements on the boundary of F', always keeping F to
the left and R to the right (cf. Fig. 101). The face cycle C is said to be a face cycle
of F. If G is connected, each face of £ has precisely one face cycle. A face is said to
be incident on the vertices and edges on its boundary, and the vertices and edges
on its boundary are said to border the face. Among the faces there is exactly one
which is unbounded. It is called the outer or infinite face.

Lemma 1. Let £ be any planar embedding of a graph G, let F be a face of £ and
let B be the boundary of F. Then there is an embedding £’ of G in which B is
the boundary of the outer face. Moreover, £ and €' induce the same combinatorial
embedding.

Proof: Let £ be any embedding of G and let F' be any face of £, which is not the
outer face. Then there is a sequence Fy, F1, ..., Fy of faces such that Fj is the outer
face, F, = F and F; and F;;; have a common edge in their boundaries. Let e be

Version: 19.10.99 Time: 11:01 —89—

90 Chapter 4. Algorithms on Graphs

IN__ 71
7/ /<//

_—

Figure 101. A planar embedding and its face cycles

an edge which is on the boundary of Fy and F;. By changing the embedding of e,
cf. Figure 102, we can make the boundary of F; the boundary of the outer face.
Continuing in this fashion we obtain the desired embedding &’'.]

Fo
e == e F

Figure 102. Changing the embedding of edge e
Lemma 2. Let G = (V, E) be a planar graph. Then m < 3n — 6 for n > 3.

Proof: Tt clearly suffices to prove the lemma for connected planar graphs. We
first prove Euler’s formula which relates the number of edges, nodes and faces of a
connected planar graph.

Claim: Let £ be a planar embedding of a connected planar graph G with n nodes
and m edges and let f be the number of faces. Then n+ f =m + 2.

Proof: We use induction on m. If m = 0 then n = f = 1 and the claim holds. If
m > 0 and there is a node of degree 1 then removal of this node yields an embedding
of a connected graph with one less node, one less edge and the same number of faces
and the claim follows immediately from the induction hypothesis. If m > 0 and
there is no node of degree 1 then £ contains a cycle. The removal of one of the
edges of the cycle yields an embedding of a connected graph with the same number

Version: 19.10.99 Time: 11:01 -90-

4.10. Planar Graphs 91

of nodes, one less face and one less edge, and again the claim follows immediately
from the induction hypothesis.]

Let £ be any embedding of G. Then the face cycle graph of £ consists of one cycle
for each face and this cycle consists of at least three darts of G since G is connected
and n > 3. Thus 3f < 2m and hence n +2m/3 > m+2 or m < 3n — 6. 1

Lemma 2 is helpful in at least two respects. First, it implies that an O(n + m)
algorithm on planar graphs is really an O(n) algorithm and secondly it implies that
a planar graph has a large fraction of nodes of small degree. More precisely, let ngy
be the number of nodes of degree d. Then). n;-j = 2m and }_; n; = n and hence
>-;mjJ <>2;6n; —12 by Lemma 2. Thus

Zj2d+1(j - 6)"1’ +12
6 .

(n1+"'+nd)2

In particular, ny +---+ngs > 2, i.e., there are at least two nodes of degree at most 5,
andni+---4ng > D5, n;/6 = (n—(n1+---+ne))/6, i.e., at least 14% of the nodes
have degree at most 6. The fact that a large number of nodes have small degree can
sometimes be exploited to design divide-and-conquer algorithms for planar graphs.
One such algorithm is treated in Section 8.3 on Voronoi diagrams and searching
planar subdivisions. Another consequence of Lemma 2 is the following

Lemma 3. Every planar graph is 5-colorable, i.e., if G = (V, E) is planar then there
is a mapping ¢: V — {1,2,3,4,5} such that c(u) # c(v) for all edges {u,v} € E.

Proof: We use induction on the number of nodes of G. Let v € V be any node of
degree at most 5. If the degree of v is 4 or less then a 5-coloring of G —v can clearly
be extended to a 5-coloring of G. So let us assume that v has degree 5. Then there
must be neighbors and y of v such that {z,y} is not an edge of G. Otherwise,
the neighbors of v would form a Kj, i.e., a complete graph on 5 nodes, and hence
G were not planar since a K5 has 5 nodes and 10 edges and hence is not planar by
Lemma 2. Consider the graph G’ obtained from G — v by identifying the nodes x
and y, i.e., G’ has the vertex set V' =V — {v,y} and the edge set

E' = {{u,w}; u,w € V' and {u,w} € E}U
{{z,w}; w e V' and {y,w} € E}.
The graph G’ is clearly planar (Figure 103 indicates how a planar embedding of G’
can be obtained from a planar embedding of G) and hence G’ is 5-colorable by

induction hypothesis. Thus G — v is 5-colorable with nodes # and y having the
same color and hence G is 5-colorable.]

Version: 19.10.99 Time: 11:01 -91-

92 Chapter 4. Algorithms on Graphs

Figure 103. A planar embedding of G yields a planar embedding of G’

The proof of Lemma 3 directly yields a 5-coloring algorithm with O(n?) running
time. The key idea for a linear time algorithm is the observation that we can require
the nodes z and y to have small degree. Let us call a node v small if deg(v) < 11,
and large otherwise and let us call a node v good, if either deg(v) < 4 or deg(v) =5
and v has at most one large neighbor.

Lemma 4.
a) A planar graph contains at least one good node.

b) Let v be a good node of degree 5. Then there are small neighbors z, y of v
such that {z,y} ¢ E.

Proof: a) Let ng be the number of nodes of degree d. If ny + - -+ + ng > 0 then we
are done. Otherwise

Y im;<6n-12<6-) n;

i>5 i>5

by Lemma 2 and hence

N =

ns>» (j—6)m;>> (j—6)-n;>5 > j-ny

i>6 §>12 i>12

Suppose now that a good node does not exist. Then every node of degree 5 has at
least two large neighbors and hence the number of edges incident to large nodes is
at least 2 - ng, i.e., Z,’>12j -n; > 2-ns. This contradicts the inequality derived
above. B

b) Let N be the set of small neighbors of v. Then |N| > 4 and if {z,y} € E for all
z,y € N then N U{v} contains a K5 and hence G is not planar, a contradiction. I

Lemmas 3 and 4 suggest the following algorithm for 5-coloring a planar graph. We
start by determining the set M of good nodes. This takes time O(n). We keep the
set M as a doubly linked linear list L. For each node v € M we have a pointer
to the item on the list L which represents v. Then v can be deleted from M in
constant time, an element of M can be selected in constant time and elements can
be added to M in constant time.

Version: 19.10.99 Time: 11:01 -92—

4.10. Planar Graphs 93

Let v be any node in M. If the degree of v is four or less, then we delete v
from M, update M (cf. below), color G — v by applying the algorithm recursively,
and finally color v. If v has degree 5, then let x and y be small neighbors of v with
{z,y} ¢ E. The nodes = and y exist by Lemma 4 and can be found in time O(1).
We delete v from the graph, identify = and y (this takes time O(1), since v, z and
y are small) and update M (cf. below). We then color G’ recursively and finally
extend the coloring to G. We still need to explain how to update M. When v
is deleted from the graph some nodes may become small and hence some of their
neighbors good. All of this can certainly be checked in time O(1). Similarly, when
and y are identified, then x may become large and a common neighbor of z and y
may become small. Again, all of this and the effect on M is easily determined in
constant time. Thus time O(1) suffices to color an additional node and hence the
algorithm runs in time O(n).

Theorem 1. A 5-coloring of a planar graph can be computed in linear time.]

Our next topic is a linear time planarity testing algorithm. Since a graph is planar
iff its biconnected components are (cf. Section 4.6 for a linear time algorithm to
compute the biconnected components of a graph) we can restrict our attention to
biconnected graphs. Also we can confine ourselves to graphs with m < 3n — 6 by
Lemma 2. The planarity testing algorithm is an extension of depth-first-search. In
the sequel we will always identify nodes with their DFS-number. A DFS on the
directed version of G = (V, E) partitions the darts of G into the sets T, F' and B.
For the planarity testing algorithm we consider the directed graph (V,TUF~!) and
call the edges in T tree edges and the edges in F~! back edges. Also, we write
B instead of F~!. Note that this notation differs slightly from the one used in
Section 4.5. There, reversals of tree edges were also called back edges.

We will now describe the idea underlying the planarity algorithm. Let C be
any cycle starting in the root of the dfs-tree and consisting of tree edges followed
by one back edge. Such a cycle exists since G is assumed to be biconnected. For
every edge e = (z,y) emanating from the cycle, i.e., z lies on C but e is not an
edge of the cycle we consider the segment S(e) defined as follows. If e is a back
edge then S(e) is the cycle formed by the tree path from y to = together with the
edge e. If e is a tree edge then S(e) consists of the subgraph spanned by the set
Vie) ={w; y % w} of nodes reachable from y by tree edges, all back edges starting

in a node in V'(e) and ending in a node on cycle C' (which is then an ancestor of z),
and the tree path from the lowest attachment of S(e) to cycle C to node y.

Example: In Figure 104 the cycle C consists of the tree path from node 1 to
node 9 and the back edge (9,1). The four edges (9,10), (7,5), (7,13) and (6,4)
emanate from the cycle. The segment S((9,10)) consists of the subgraph spanned
by {10,11,12}, the back edges (11,8), (11,7) and (12,5), and the tree path from 5
to 10. The segment S((9,10)) is attached to the cycle in the nodes 9, 8, 7 and 5. I

Version: 19.10.99 Time: 11:01 -93-

94 Chapter 4. Algorithms on Graphs

Figure 104. A dfs-tree of a planar graph

We test the planarity of G in a two step process. In the first step we test
whether C + S(e), the graph consisting of cycle C' and segment S(e), is planar
for every edge e emanating from cycle C. This is equivalent to testing whether
the segment S(e) has a strongly planar embedding, i.e., an embedding where all
attachments of S(e) to the cycle C lie on the boundary of the outer face. In order
to test the strong planarity of S(e) we will use the algorithm recursively. Suppose
now that the segments S(e) are all strongly planar. We then try in a second step to
merge the embeddings found in step one. The merging process has to decide for each
segment S(e) whether it should be placed inside or outside the cycle C. For this
purpose, it only needs to take into account the set of attachments of the different
segments emanating from C and their interaction. In our example, the segments
S((7,5)) and S((6,4)) have to be embedded on different sides of C' because these
segments “interlace”.

We will next describe the theory behind both steps in detail. With an edge e =
(z,y) we associate a cycle C(e) and a segment S(e) as follows. If e is a back edge
then C(e) and S(e) consist of the tree path from y to z and the edge e. If e is

a tree edge then let V(e) = {w; y?"}w} be the set of tree successors of y and let

lowpt[y] = min{z; (w, 2) is a back edge and w € V(e)} be the lowest endpoint of a
back edge starting in V'(e). The cycle C(e) consists of a tree path from lowpt[y] to w,

Version: 19.10.99 Time: 11:01 94—

4.10. Planar Graphs 95

where w € V(e) and (w, lowpt|y]) € B and such a back edge. The segment S(e)
consists of C(e), the subgraph spanned by V(e) and all back edges starting in a
node in V' (e). Note that the segment S(e) is uniquely defined but that there may be
several choices for the cycle C(e). We divide the tree path underlying the cycle C(e)
into two parts, its stem and its spine. The stem consists of the part ending in z.
The spine is empty if e is a back edge and it is the part starting in y if e is a tree
edge.

In our example, the cycle C((9,10)) consists of the tree path from 5 to 12
followed by the back edge (12,5). The stem is the tree path from 5 to 9 and the
spine is the tree path from 10 to 12. The cycle C((1,2)) consists of the tree path
from 1 to 9 and the back edge (9,1). Its stem is the node 1.

A segment S(e) is called strongly planar if there is an embedding of S(e)
such that the stem of the cycle C(e) borders the outer face. An embedding with
this property is called a strongly planar embedding of S(e). Let wg,wq,...,w,
with e = (w,, y) be the stem of C(e). A strongly planar embedding of S(e) is called
canonical (reversed canonical) if for all ¢, 0 < 7 < r, the edge {w;, w;+1} imme-
diately follows (precedes) the edge {w;,w;_1} in the counterclockwise ordering of
edges incident to w;. Note that every strongly planar embedding is either canonical
or reversed canonical.

In Figure 104 the embeddings of segments S((9,10)) and S((7,13)) are both
strongly planar, the embedding of S((7,13)) is canonical and the embedding of
S((9,10)) is reversed canonical.

Lemma 5. Let G be a biconnected graph and let e be the unique tree edge starting
in the root of the dfs-tree. Then S(e) = G and G is planar iff S(e) is strongly planar.

Proof: Let e = (1,2) be the unique tree edge incident to node 1. Then V(e) =
{2,...,n} and hence S(e) = G. Also, the stem of C(e) consists only of vertex 1
and hence S(e) is strongly planar iff it is planar by Lemma 1. |

Lemma 5 shows that we can confine ourselves to a test of strong planarity. Now
let eg be an edge and C = C(eg) be the cycle associated with eg. An edge e = (z,y)
is said to emanate from C if z lies on the spine of C' but e does not belong to C.
Clearly, if e emanates from C(eg) then the stem of C(e) is part of the tree path
underlying C(egy) and S(e) is a subgraph of S(eg). Also, S(eg) is the union of C(eg)
and the segments S(e), where e emanates from C(ep). The basis of step 1 of the
planarity algorithm is the following

Lemma 6. Let C = C(eg) be a cycle and let e emanate from C. Then C + S(e)
is planar iff S(e) is strongly planar.

Proof: “=": Consider any embedding of C + S(e). The cycle C divides the plane
into a bounded and an unbounded region. We may assume w.l.o.g. that the edge
e = (z,y) lies in the bounded region. Hence all nodes in V(e) must lie in the
bounded region since every node in V' (e) is reachable from y without passing through

Version: 19.10.99 Time: 11:01 —-95—

96 Chapter 4. Algorithms on Graphs

a node of C. If we remove the part of cycle C between x and lowpt[y] then we have
the desired strongly planar embedding of S(e).

“<”: Given a strongly planar embedding of S(e) we can clearly add the missing
part of C to obtain an embedding of C + S(e). 1

For step 2 of the algorithm we need the concepts of attachments and interlacing.
Let C = C(eg) and let e = (z,y) emanate from C. The set A(e) of attachments
of segment S(e) to cycle C is defined to be the set {z,y} if e is a back edge and
the set {z} U{z; (w,z) is a back edge, w € V(e) and z ¢ V(e)} if e is a tree edge.
Two segments S(e) and S(e’) where e and e’ emanate from C are said to interlace
if either there are nodes ¢ < y < z < u on cycle C such that z,z € A(e) and
y,u € A(e’) or A(e) and A(e’) have three points in common (cf. Fig. 105; note that
the segments shown may have further attachments).

Figure 105. Interlacing segments

Clearly, interlacing segments cannot be embedded on the same side of C. The
interlacing graph IG(C) with respect to cycle C is defined as follows: The nodes
of IG(C) are the segments S(e) where e emanates from C. Also, S(e) and S(e’)
are connected by an edge iff S(e) and S(e’) interlace. The interlacing graph for the
cycle C((1,2)) of Figure 104 is shown in Figure 106. This graph is bipartite with
segments S; and S3 forming one of the sides of the bipartite graph. Note also that
the planar embedding of the graph of Figure 104 has S; and S; on one side of C
and S3 and S4 on the other side of C.

S1 = S((ga 10)) S((77 13)) =S

53 =5((7,5)) 5((6,4)) = Sa
Figure 106. Interlacing graph

Lemma 7. Let ey be a tree edge, let C = C(eg) = wo?wl?---?wk Fwo

and let eg = (wy,wp41). Let eq,..., ey, be the edges leaving the spine of C, i.e.,

Version: 19.10.99 Time: 11:01 -96—

4.10. Planar Graphs 97

they leave the cycle in nodes wj, r < j < k. Then S(eo) is planar iff S(e;) is
strongly planar for every i, 1 < ¢ < m, and IG(C) is bipartite, i.e., there is a
partition L, R of {S(e1),...,S(em)} such that no two segments in L resp. R in-
terlace. Moreover, segment S(eg) is strongly planar iff in addition for every con-
nected component B of IG(C): either {wy,...,wr—1} N Ug(e)epnr A(e) = 0 or

{wla s awT—l} N US(e)EBﬂR A(e) =0.

Proof: “=7”: Note first that S(eg) = C + S(e1) + -+ + S(em). Hence, if S(ep) is
planar then C + S(e;), 1 < i < m, is planar and hence S(e;) is strongly planar
by Lemma 6. Consider any planar embedding of S(eg). Let L = {S(e;); S(e;) is
embedded inside cycle C, 1 < i < m} and let R be the remaining segments. Then
no two segments in L resp. R interlace because interlacing segments have to be
embedded on different sides of C. Hence IG(C) is bipartite. Finally, assume that
S(eg) is strongly planar. Consider any strongly planar embedding of S(ep), i.e.,
tree path wg — wq — wa — - - - — w, borders the outer face. Then no segment S(e;),
1 < i < m, which is embedded outside C can have an attachment in {wy,...,w,_1}
and hence {w1,..., wr—1} NUg()cr A(e) = 0.

“«<": The proof of this direction is postponed. It will be given in Lemma 9.]

Lemma 7 suggests an algorithm for testing strong planarity. In order to test strong
planarity of a segment S(eg), test strong planarity of the segments S(e;), 1 < i < m,
construct the interlacing graph and test for the conditions stated in Lemma 7.
Unfortunately, the size of the interlacing graph might be quadratic and therefore
we cannot afford to construct the interlacing graph explicitly. Rather, we compute
the connected components (and their partition into left and right side) of IG(C)
and an embedding of S(ep) = C + S(e1) + --- + S(em) by considering segment by
segment. We start with cycle C' and then try to add segment by segment. We will
consider the segments S(e1),...,S(en) in an order such that adding a canonical
embedding of S(e;+1) to an embedding of C + S(e1) + --- + S(e;) can always be
achieved (if at all) in a particularly simple way, namely by moving some of the
S(er), | < i, to the other side of C' and then adding S(e;+1) inside C' and close
to the tree path underlying C, cf. Figure 111. In that figure the segment S(e;+1)
emanates from w;, ;41 = (w;,y) and z = min A(e;;+1) is the lowest attachment
of S(eij+1). Also, there is a face F' inside C such that the tree path from z to w;
is on the boundary of F. Clearly, a canonical embedding of S(e;+1) can be added
inside F to the embedding of C' + S(ey) + - -- + S(e;) in this case.

In order to follow this embedding strategy we should first consider all segments
emanating from wyg, then all segments emanating from wg—_1, For any node
w; we consider the segments emanating from w; in the order of lowest attachment,
considering the segments with lower attachment first. Among the segments em-
anating from w; and having the same lowest attachment, say w; with ¢ < j, we
first consider the segments having only w; and w; as attachments and then all the
others (there can be at most two segments of the latter kind because any two such
segments interlace). We will now show how to compute this ordering on the edges

Version: 19.10.99 Time: 11:01 97—

98 Chapter 4. Algorithms on Graphs

emanating from C. We do so by showing how to reorder the adjacency list of each
node such that the order of the adjacency list corresponds to the order defined
above. For every node v let

lowpt[v] = min({v} U {z; v ?*3 w2 for some w € V}), and

lowpt2[v] = min({v} U {z; v %}w =7 for some w € V and z # lowpt[v]}).

lowpt[v] is the lowest node reachable from v by a sequence of tree edges followed by
one back edge. Since G is assumed to be biconnected we have lowpt[v] < v for all
v # 1. lowpt2[v] is the second lowest node reachable from v in this way, if there is
one. The default value for both functions is v. The functions lowpt and lowpt2 are
easily computed during dfs since

lowpt[v] = min({v} U {z; (v,2) € B} U {lowpt[w]; (v,w) € T})
and
lowpt2[v] = min({v} U {z; (v,2) € B and z # lowpt[v]}
U {lowpt[w]; (v,w) € T, lowpt[w] # lowpt[v]}
U {lowpt2[w]; (v,w) € T}).

These equations suggest to compute lowpt and lowpt2 by two separate applications
of dfs. In the first application of dfs one computes lowpt and in the second applica-
tion one computes lowpt2 using lowpt. We leave it to the reader to show that one
dfs suffices to compute both functions. For an edge e = (w;,y) let

lowpt[e] = if e € B then y else lowpt[y] fi.

Then lowptle] = min A(e) and |A(e)| > 3 iff e € T and lowpt2[y] < w; for any
edge e = (wj,y) emanating from the cycle C. We want to reorder the adjacency
list of w; such that an edge e = (wj,y) is before an edge ¢’ = (wj,y’) if either
lowpt[e] < lowpt[e'] or lowpt[e] = lowpt[e'] and |A(e)| = 2 and |A(e')| > 3. Let
¢: E — N be defined by

2w if (v,w) € B;
c((v,w)) = < 2 lowpt|w] if (v,w) € T and lowpt2[w] > v;
2 - lowptlw] +1 if (v,w) € T and lowpt2[w] < v.

Then reordering an adjacency list according to non-decreasing values of ¢ yields
the desired ordering of outgoing edges. We can do the reordering in linear time
by bucket sort. Have 2n initially empty buckets. Step through the edges of G one
by one and throw edge (v,w) into bucket ¢((v,w)). After having done so we go
through the buckets in decreasing order. When edge (v, w) is encountered we add
(v, w) to the front of v’s adjacency list.

Version: 19.10.99 Time: 11:01 —98—

4.10. Planar Graphs 99

In our example, the edges out of node 7 are ordered (7, 8), (7,13),(7,5) and the
edges out of node 11 are ordered (11,12),(11,7),(11,8).

From now on, we assume that adjacency lists are reordered in the way described
above. The reordering has the additional property that a cycle C(ep) for a tree edge
eo = (z,y) is very easy to find. We start at node y and construct a path by always
taking the first edge out of each node until a back edge is encountered. This path
is a spine of C(ep), as is easily verified.

We now resume the discussion of how to deal with the interlacing graph. As
in Lemma 7, C' = C(ey),

C=wy=>wi = =W, =W
T T T B

and eg = (w,,w,+1) for some r. Let ey, ..., e, be the edges leaving the spine of C
in order, i.e., the edges leaving wj, are considered first and for each w; the edges
are ordered as described above. Let IG;(C) be the subgraph of IG(C) spanned by
S(e1),...,S(e;). If IG;(C) is non-bipartite then so is IG(C') and hence S(ey) is not
strongly planar. If IG;(C) is bipartite then every connected component (= block)
of IG;(C) is. If B is a block of IG;(C) then we use LB, RB to denote the partition
of B induced by the bipartite graph.

Our next goal is to describe how the blocks of IG;11(C) can be obtained from
the blocks of IG;(C). Let e;11 = (wj,y). For every block B of IG;(C) let

ALB = {wp; 0 < h < j and wy, € A(e) for some S(e) € LB}
be the set of attachments (below w;) of segments in LB. ARB is defined similarly.

Lemma 8. If IG;(C) is bipartite, then:

a) There is some ordering of the blocks of IG;(C), say By, Ba,...,Bn, Brt1,---
such that
ma.x(ALBl U ARBZ) < min(ALBH_l U ARBH_l)

for 1 <l < h and ALB, = ARB; =0 forl > h.

b) IG;+1(C) is bipartite iff for alll, 1 <1 < h, either max ALB; < min A(e; 1) or
max ARB; < min A(e;y1).

c) If IG;+1(C) is bipartite then the blocks of IG;+1(C) can be obtained as fol-
lows: Assume w.lo.g. that max ALB; < min A(e;41) for all I. (This can
always be achieved by interchanging LB and RB for some blocks B.) Let
d = min({l/; max ARB; > min A(e;41)}U{h+1}). Then the blocks of IG;11(C)
are By,...,Bg_1,BgU---UBpU {S(ei-l—l)}th-i-la R

d) If IG;1(C) is bipartite and S(e;), 1 < Il < i + 1, are strongly planar then
there is a planar embedding of C'+ S(e1) + - - -+ S(e;+1) such that all segments
in |J; LB, are embedded inside C and all segments in |J, RB; are embedded
outside C.

Version: 19.10.99 Time: 11:01 —-99—

100 Chapter 4. Algorithms on Graphs

Proof: We use induction on i. For i = 0 little remains to be shown. IG((C) is
empty and IG1(C) consists of a single node. This shows a), b) and c¢). For part d)
we only have to observe that S(e;) can be embedded inside as well as outside C, if
S(eq) is strongly planar.

So let us turn to the case i > 0. We will show parts b), c), a) and d) in this order.
b) “=": Note first that it suffices to show the following

Claim 1. Ifmax ALB; > min A(e;+1) for some [then there is a segment S(e) € LB,
such that S(e) and S(e;4+1) interlace.

Suppose that we have shown Claim 1. If there were [, 1 < | < h, such that
max ALB; > min A(e;11) and max ARB; > min A(e;+1) then S(e;y1) interlaces
with a segment S(e) € LB; and a segment S(e') € RB; by Claim 1. Since S(e)
and S(e') belong to the same block there is a path from S(e) to S(e’) in IG;(C).
Since IG;(C) is bipartite this path necessarily has odd length. Together with edges
{S(e), S(ei+1)} and {S(e;+1),S(e')} we obtain an odd length cycle in IG;+1(C).
Hence IG;41(C) is non-bipartite, a contradiction. We still have to show Claim 1.

Proof of Claim 1: Let z = min A(e;+1). Since max ALB; > z there must be a
segment S(e) € LB; such that w € A(e) for some w with z%w%wj. Edge e

emanates from node w, for some p > j.

Case 1: p>j.

Then z%w%wj %wp, z,w; € A(ej+1) and w,w, € A(e). Hence segments S(e)
and S(e;+1) interlace (cf. Figure 107).

S(eit1)

Figure 107. Casel

Case 2: p=3.

Let e = (wj,u). Since e is considered before e;4; and hence min A(e) < z, edge
e cannot be a back edge. (If it were a back edge then min A(e) = u = w > z, a
contradiction.) Hence e is a tree edge and min A(e) = lowpt[u].

Version: 19.10.99 Time: 11:01 -100-

4.10. Planar Graphs 101

Case 2.1: lowpt[u] < z.
Then lowpt|u] %z%w%wj, lowpt[u],w € A(e) and z,w; € A(ej+1). Hence seg-
ments S(e) and S(e;+1) interlace (cf. Fig. 108).

S(eiv1) § w9

lowpt [u] 4
Figure 108. Case 2.1

Case 2.2: lowpt[u] = 2.

Since w € A(e) we have lowpt2[u] < w;. Since e is considered before e; ;1 we must
have |A(e;+1)| > 3, and hence edge e; ;1 cannot be a back edge. Rather, it must
be a tree edge and we must have lowpt2[y] < wj. If lowpt2[y] # lowpt2[u], say

lowpt2|[y] % lowpt2[u], then we have z %) lowpt2[y| _?t) lowpt2[u] % wj, 2, lowpt2[u] €

A(e), and lowpt2]y], w; € A(e;+1). Hence S(e;+1) and S(e) interlace (cf. Fig. 109).
If lowpt2[y] = lowpt2[u] then A(e) and A(e;+1) have three points in common and
hence S(e;) and S(e;4+1) interlace (cf. Figure 110). 1

“<”: Assume now that max ALB; < min A(e;41) or max ARB; < min A(e;41) for
alll; 1 <[< h. By interchanging LB; and RB, if necessary, we can achieve that
max ALB; < min A(e;y1) for all [, 1 <1 < h.

Claim 2. Let S(e) € |J, LB; be arbitrary. Then S(e) and S(e;+1) do not interlace.
Proof: A(e;j+1) C {w; min A(e;41) %w %)wj} and A(e) C {w; w %)minA(eiH) or

w; %)w} Hence S(e) and S(e;+1) do not interlace. 1

The bipartiteness of IG;+1(C) now follows from Claim 2 because it is safe to add
S(ei+1) to the “left side” of the interlacing graph.

Version: 19.10.99 Time: 11:01 -101-

102 Chapter 4. Algorithms on Graphs

Y
u
h
wj
S(eit1)
p lowpt2[y] S(e)
z | lowpt|u]

Figure 109. Case 2.2, lowpt2[y] # lowpt2]u]

Y

S(eir1)

lowpt2[y] | lowpt2[u]

z | lowpt|u]

Figure 110. Case 2.2, lowpt2[y] = lowpt2][u]
c) Assume that IG;41(C) is bipartite. Then for all I, 1 < | < h, max ALB; <
min A(e;4+1) or max ARB; < min A(e;4+1) by part b). By interchanging LB; and

RBy, if necessary, we can achieve max ALB; < min A(e;41) for all [, 1 <[< h. Let
d = min({l; max ARB; > min A(e;+1)} U {h + 1}).

Claim 3. For all l: There is a segment S(e) € RB; such that S(e) and S(e;+1)
interlace iff d <1 < h.

Version: 19.10.99 Time: 11:01 -102—-

4.10. Planar Graphs 103

Proof: “<”: Let d <1 < h. Then

min A(e;+1) < max ARBy [by definition of d]
< max ARB, [by induction hypothesis, part a) and d <]
< wj [since I < h]

and hence there is a segment S(e) € RB; such that S(e) and S(e;41) interlace by
Claim 1.

“=”: (Indirect.) Let l < dor! > h and let S(e) € RB;. Then A(e) C {w; w; %}w}

if I > h and A(e) C {w; wj%;)w or w%;)minA(ei_,_l)} if | < d. The for-

mer inclusion follows from the definition of A, the latter inclusion follows from
the definition of d, and part a) of the induction hypothesis. Also A(e;+1) C
{w; min A(e;1) %)w %) w;} and hence S(e) and S(e;+1) do not interlace. 1

We conclude from Claims 2 and 3 that S(e;+1) is connected to segments in blocks
Bg,...,Bp. Hence the blocks of IG;41(C) are By,...,B4_1,B4 U --- U By U
{S(ei+1)}, Bh+1,.... Let B =By U---UBp U{S(e;+1)} be the new block. Then
B can be partitioned into LB and RB where LB = |J ;< LB U {S(ei41)}
and RB = U <;<p RBi. Moreover, if d < h, max ARB; < minARBji; <
max ARBg11 < -+ < min ARB, < max ARBj, by part a) and max ALB; <
min ALBgy; < max ALBgiq < --- < min ALB, < max ALB;, < minA(e;+1) by
part a) and the assumption that max ALB; < min A(e;4q) for all [, 1 <1 < h.

a) Follows immediately from part c). The ordering of the blocks of IG;,1(C) given
in part c) satisfies the conditions required in part a). This follows immediately from
the discussion completing the proof of part c).

d) Assume that IG;+1(C) is bipartite and that S(e;), 1 <1 < i+ 1, are strongly
planar. Let Bi, Bj, ... be the blocks of IG;+1(C). By part c¢) we have B} = By,
ey B:j—l = Bd—l; B(Ii = Bd U---u Bh U {S(6i+1)}, B(Ii+1 = Bh+1, ey where Bl,
By, ... are the blocks of IG;(C). Moreover, LB; = LB;, RB; = RB,; for | < d,
LB:1+Z = LBh+l, RB&_H == RB}H_[for | Z 1 and LBI == Udglgh LBl U {S(ei+1)}
and RB, =J a<i<p BB;. By induction hypothesis there is a planar embedding of
C + S(e1) + -+ + S(e;) such that all segments in | J, LB; are embedded inside C
and all segments in |J, RB; are embedded outside C. By the proof of Claim 2 no
segment S(e) € |J; LB, has an attachment w which lies strictly between min A(e;41)
and wj. Thus there is a face F' inside C such that the tree path from min A(e;+1) to
wj is part of the boundary of F. All attachments of S(e;+1) lie between min A(e;41)
and w; inclusively. Moreover, S(e;+1) is strongly planar and hence there is a planar
embedding of S(e;+1) where the tree path from min A(e;11) to w; borders the outer
face. We can add this embedding to the embedding of C + S(e;) + - -+ + S(e;) by
putting it inside face F. In this way we obtain a planar embedding of C' + S(e;) +
-+ S(e;11) (cf. Fig. 111). This completes the proof of Lemma 8. 1

Version: 19.10.99 Time: 11:01 -103-

104 Chapter 4. Algorithms on Graphs

S(€i+1)

min A(e;4+1)

Figure 111. Addition of S(e;41) inside F
Lemma 9. The if-part of Lemma 7 holds.

Proof: If IG(C) is bipartite and S(e;), 1 < ¢ < m, is strongly planar then by
Lemma 8d) there is an embedding of C'+ S(e1) + -+ + S(em) = S(eop) such that
all segments in |J, LB; are embedded inside C' and all segments in |J, RB; are
embedded outside C. In particular, S(ep) is planar. Assume now that in addition
ALB N {wy,...,wr—1} = 0 or ARB; N {wy,...,w,—1} = 0 for all [where ALB,
and ARB; are defined with j =r+ 1, i.e., when all edges ey, ..., e, are embedded.
We may assume w.l.o.g. (by interchanging L and R for some blocks) that ARB; N
{w1,...,wp_1} = 0 for all [. Thus outside C there are no attachments to nodes
w1, ..., w,_1 and hence there is a face F' outside C such that the stem wy,...,w,
of S(eg) borders F. Lemma 1 allows us to turn F' into the outer face and yields a
canonical embedding of S(ep). 1

We illustrate Lemma 9 on our example. Let C' be the cycle which runs from node 1 to
node 9 along tree edges and then back to node 1. There are four segments emanating
from this cycle: S; = S((9,10)), S = S((7,13)), Ss = S((7,5)) and Sy = S((6,4)).
All four segments are strongly planar. When segment Sy = S((7, 13)) is considered,
we have: IG1(C) has one block B; consisting of segment S;. Say S; belongs to
RB;. Then ALB; =0 and ARB; = {5}. Lemma 8b) is satisfied and hence IG2(C)
is bipartite. We have d = 1 in Lemma 8c) and hence IG5(C) has only block By,
say LB1 = {S2} and RBy = {S1}. Then ALB; = {3,4} and ARB; = {5} when S3
is considered. IG3(C) is bipartite and has two blocks By and B, say LBy = {S2},
RB1 = {S1}, RBy = {S3}. Then ALB; = {3,4}, ARB, = {6}, ARB> = {5},
ALB; = () when S} is considered. S, forces us to merge blocks B; and By, i.e.,d =1
in Lemma 8c), and hence IG4(C) has only one block By. Moreover LB1 = {S3, S4}
and RBl = {51,53}.

It is now easy to derive an efficient way of dealing with the interlacing graph
from Lemma 8. Suppose that we processed edges e1,...,e; already and want to
process edge e; 1 next. At this point we keep blocks By, ..., By in a stack S where

Version: 19.10.99 Time: 11:01 -104-

4.10. Planar Graphs 105

h is defined as in Lemma 8a). Also for each [, 1 <[< h, we maintain the multi-sets
ALB; and ARB; in a doubly linked list. The lists ALB; and ARB,; are ordered
according to DFS-numbers. From the stack position corresponding to B; we have
pointers to the front and back end of lists ALB; and ARB;. The test for bipartiteness
of IG;+1(C) given in Lemma 8b) is now easily implemented by Program 31.

l+<h+1;

while max(ALB;_1 U ARB;_1) > lowpt[e; 1]

do if ALB;_; is non-empty and max ALB;_; > lowpt[e; 1]
then interchange LB; 1 and RB;_1 fi;
if ALB;_ is non-empty and max ALB;_1 > lowpt[e;11]
then IG;41(C) is not bipartite and hence

the graph can be declared non-planar fi;

l<1-1

od;

d <1

Program 31

The running time of Program 31 is clearly O(h — d + 2). Also, it correctly
computes d as defined in Lemma 8c). The new blocks of IG;1(C) are now easily
formed by Program 32.

ALB <« ARB + 0;
for [from d to h
do ALB < ALB concatenated with ALB;
ARB + ARB concatenated with ARB,
od;
ALB + ALB concatenated with (A(e;1+1) — {w;});
pop Bn,-..,Bg from stack S;
add B to stack S.

Program 32

Again the running time of Program 32 is clearly O(h — d + 2) provided we are
given (A(ej+1) — {w;}). Also, it correctly computes lists ALB and ARB. Note that
these lists are ordered according to the remark at the end of the proof of Lemma 9c).
We can now give the complete planarity testing algorithm, see Program 33.

Lemma 10. Program 33 tests strong planarity in linear time and space.
Proof: Observe first that line (1) determines the spine of cycle C(eg) in time pro-
portional to the length of the spine. The stem wy,...,w, is not explicitly con-

structed; we only mention it in order to keep the same notation as in Lemmas 7

Version: 19.10.99 Time: 11:01 -105—

106 Chapter 4. Algorithms on Graphs

(0) procedure stronglyplanar(eq : edge);
co tests whether segment S(eg), eg = (z,y), is strongly planar.
If so, it returns the ordered (according to dfsnum) list of
attachments of S(ep) excluding x oc
(1) find the spine of cycle C(ep) by starting in node y and always
taking the first edge on every adjacency list until a back edge is
encountered. This back edge leads to node wy = lowpt[y].
Let wy, ..., w, be the tree path from wy to £ = w, and
and let w,4+1 = y,...,w; be the spine constructed above;
let S be an empty stack of blocks;
for j from k downto r + 1
do for all edges €’ (except the first) emanating from w;
do stronglyplanar(e');
let A(e') be the ordered list of attachments of S(e’)
as returned by the successful call stronglyplanar(e');

NN AN SN N
S O i W N
S N N’ N

(7) update stack S as described in Programs 31 and 32

(8) od;

(9) let By, be the top entry in stack S;
(10) while max(ALBy U ARBy) = wj_q
(11) do remove node w;_1 from ALBj, and ARBy;
(12) if ALBy, and ARB}, become empty
(13) then pop Bj, from the stack; h <+ h — 1 fi
(14) od
(15) od;

co if control reaches this point then IG(C) is bipartite.
We will now test for strong planarity and compute A(eg) oc
(16) L« 0; co an empty list oc
(17) for [from 1 to h
(18) do if max ALB; > w; and max ARB; > w;
(19) then declare S(eg) not strongly planar and stop fi;
(20) if ALB; # 0 and max ALB; > w;
(21) then L <~ L conc ARB; conc ALB,
(22) else L < L conc ALB; conc ARB fi
(23) od,;
(24) return L
(25) end.
Program 33

and 9. Next we argue that bipartiteness of IG(C) is tested correctly. The cor-
rectness of loop (4)—(8) is obvious from the discussions above. Suppose now that
we processed all edges emanating from w;. In order to prepare for processing the
edges emanating from w;_; we only have to delete all occurrences of w;_; on lists
ALB; and ARB,. This is done in lines (9)—(14). Note that all occurrences of w;_;

Version: 19.10.99 Time: 11:01 -106—

4.10. Planar Graphs 107

must be in the top entries of stack S by Lemma 8a). Hence lines (9)-(14) work
correctly. When control reaches line (16) the interlacing graph IG(C) is bipartite
and hence S(eg) is planar. Moreover, for every block B in the stack S the lists
ALB and ARB contain exactly the attachments below w, of segments in the block.
In line (18) we now test the condition for strong planarity given in Lemma 7. It
states that for all blocks B of IG(C) either {wy,...,wr—1} N Ug(e)erp Ale) = 0
or {wi,...,wr—1} N Ug(e)erp Ale) = 0. Of course, we can always interchange L
and R such that the former is the case. It remains to argue that lines (20)
to (22) correctly compute the ordered set A(ep) — {z} of attachments. Let [
be minimal such that max(ALB;, U ARB;,) > wy. Then ALB; U ARB; C {wo}
for | < lp and either ALB;, C {wo} or ARB;, C {wo} by line (18). Also
IIllIl(ALBl U A.RB[) Z max(ALBl_l UARBl_l) Z max(ARBlO U ALB[O) for [> lo by
Lemma 8a) and hence either ALB; =0 or ARB; = () for | > Iy by line (18). Thus
lines (20) to (22) work correctly and the correctness proof is complete.

We still have to analyze the running time. Note first that stronglyplanar is
called at most once for each edge. Also, each tree edge belongs to exactly one
spine. Hence the total time spent in lines (1), (2), (3), (4), (5) (without counting
the time spent within recursive calls), (6), (8), (9) and (16) is O(m). Let us look at
line (7) next. Observe that line (7) is executed at most once for each edge. Also,
at most one block is pushed on stack S in one execution of line (7), and execution
time of line (7) is proportional to the number of entries removed from stack S.
Since only m elements are added to stacks S altogether, only m elements can be
removed and hence the total time spent in line (7) is O(m). The same argument
shows that the total time spent in lines (17)—(23) is O(m), because the time spent
in these lines is proportional to the number of elements removed from stacks S in
these lines. Lines (10)—(14) still remain to be considered. Only endpoints of back
edges are placed on lists ALB and ARB. No back edge is placed twice on a list and
each back edge is removed at most once. Hence the total cost of lines (10)-(14)
is O(m). 1

Theorem 2. Let G = (V,E) be a graph. Then planarity of G can be tested in
time O(n).

Proof: If m > 3n — 6 then G is non-planar. If m < 3n — 6 then we can divide
G into its biconnected components in time O(m) = O(n). For each biconnected
component we can test its planarity in linear time. Also, a graph is planar iff its
biconnected components are planar.]

At this point we have developed an O(n) algorithm for testing planarity. Suppose
now that G = (V, E) is a planar graph. Does a successful planarity test also tell
us something about a planar embedding? We show that it does; more specifically,
we show how to extend the planarity test such that it computes a combinatorial
embedding. Recall that a graph G = (V, E) together with a cyclic ordering o of

Version: 19.10.99 Time: 11:01 -107-

108 Chapter 4. Algorithms on Graphs

the edges incident to any node v € V is called a planar map (or combinatorial
embedding) if there is a planar embedding of G such that the cyclic ordering o
agrees with the clockwise ordering of the edges in the embedding. Figure 112 shows
a planar map (think of the adjacency lists as circular lists) and a corresponding
embedding.

1 3
Figure 112. Planar map and its embedding

We now show how the planarity testing algorithm can be used to turn a pla-
nar graph into a planar map. Let G = (V,E) be a planar graph. Consider an
application of the planarity testing algorithm to graph G. Let C' = C(ep) be
the cycle associated with some edge e¢ and let eq,...,e, be the edges emanat-
ing from the spine path. The planarity testing algorithm computes the blocks
(and their partition into sides) of IG(C'). More precisely, it computes a mapping
a: {S(e1),...,S(em)} = {L,R} such that no two segments with the same label
interlace and such that (cf. Lemmas 8d and 9) there is a canonical embedding of
S(ep) with precisely the segments S(e;) with a(S(e;)) = L, embedded inside C.
The mapping « can be computed as follows. Let B be the block of IG(C) which
contains S(e). Our procedure stronglyplanar computes B iteratively. The construc-
tion of B is certainly completed when B is popped from stack S. Let a(S(e)) = R
if S(e) € RB at that moment and let a(S(e)) = L otherwise. With this extension,
algorithm stronglyplanar computes mapping « in linear time.

Suppose now that we have computed the mapping o and run algorithm stronglyplanar|i
again. We can then avoid all flipping of sides by embedding the segments S(e;) as
prescribed by a. More precisely, when a(S(e;)) = L then we add a canonical em-
bedding of S(e;) inside C' and when a(S(e;)) = R then we add a reversed canonical
embedding of S(e;) outside C to the embedding of C+S(e1)+- - -+ S(e;—1). Finally,
we turn the obtained embedding of S(eg) = C+ S(e1)+: -+ S(en) into a canonical
embedding of S(eg) by the construction of Lemma 1 (cf. the proof of Lemma 10).
Note that the construction of Lemma 1 does not change the combinatorial embed-
ding.

Similarly, a reversed canonical embedding of S(ep) can be determined by in-
terchanging the roles of L and R, i.e., if a(S(e;)) = L then a reversed canonical
embedding of S(e;) is added outside C and if a(S(e;)) = R then a canonical em-
bedding of S(e;) is added inside C.

In summary, we have shown that a canonical or reversed canonical embedding
of S(ep) can be constructed by adding appropriate embeddings of the segments S(e;)

Version: 19.10.99 Time: 11:01 -108-

4.10. Planar Graphs 109

as directed by the mapping a. The remaining question to be addressed is whether
a canonical or reversed canonical embedding of S(eg) is needed in the embedding
of G. Let S be the set of edges for which stronglyplanar(e) is called. Define the
type t(e) € {canonical, reversed_canonical} as follows. If e = (1,2) then t(e) =
canonical. If e € S, e # (1,2), let ey € S be such that stronglyplanar(e) is called by
stronglyplanar(ep). Then t(e) = canonical if either t(eg) = canonical and a(S(e)) =
L or t(eg) = reversed_canonical and a(S(e)) = R, and t(e) = reversed_canonical
otherwise. The significance of the type t(e) of an edge e lies in the fact that the
induced embedding of the subgraph S(e) in a canonical embedding of S((1,2)) = G
is a t(e) embedding for all edges e € S. It is clear that the types t(e) for e € S can
be computed in linear time.

We can no extend procedure stronglyplanar such that it computes a planar
map corresponding to a canonical embedding of S((1,2)) as follows. We start with
an embedding of the cycle C((1,2)). A call stronglyplanar(e), e € S — {(1,2)}
adds the spine of C(e) and the back edge belonging to C(e) to the embedding.
Let wy,wpy1,...,wg, wo) be the spine followed by the back edge (wg,wp). If
t(e) = canonical (reversed_canonical) then the dart (w,,w,4+1) is inserted imme-
diately after (before) the dart (w,, parent[w,]) and into the clockwise ordering of
edges around w, and the dart (wop, wy) is insert immediately before (after) the dart
(wo, active_edge[wy)) into the clockwise ordering of darts around wy; also the nodes
w;, v+ 1 < ¢ <k, and the two incident edges are added to the planar map. Here,
parent is a precomputed array which contains for each node w # 1 the parent of w
in the tree T, i.e., parent[w] = v iff (v,w) € T, and active_edge is an array with
active_edge[w] = e if e = (v, w) € T and the edge e’ € S for which stronglyplanar(e')
is currently active starts in V'(e), and active_edge[v] = nil otherwise. It is clear that
the array parent can be precomputed in linear time and the array active_edge can be
maintained in linear time. It is also clear, that adding the path w,, w,41, ..., wg, W
to the planar map takes time proportional to the number of edges added and hence
a planar map can be computed in linear time. we summarize in

Theorem 3. Let G = (V,E) be a planar graph. Then G can be turned into a
planar map (G, o) in linear time.

In our example we have S = {(1,2),(9
(7,5),(6,4)}, a((6,4)) = o((7,13)) = L, a((9)) =«
R, a(11,8)) = a((11a7)) =L a(13a4)) =1Lt)
t((13,4)) = t((12,10)) = canonical and t((9, 10)) = t((7,5)) = t((11,8)) =
t((11,7)) = reversed_canonical. When edge (7,5) is added to the embedding, we
have active_edge[5] = (5,6) and hence (7,5) is inserted before (7,6) in the order
around 7 and (5,7) is inserted after the dart (5,6) in the order around 5. Alto-
gether the planar map shown in Figure 113 is constructed.

A planar map is still a combinatorial object, it is not yet a drawing of a graph.
We will now show how to produce drawings, in fact we show how to compute
drawings where nodes are mapped into grid points and edges are mapped into

p—
(=)
\/
/—\
p_n
(=)
—~
—
e Y

Version: 19.10.99 Time: 11:01 -109-

110 Chapter 4. Algorithms on Graphs

Figure 113. The planar map constructed for the graph of Figure 106

straight-line segments, (cf. Fig. 114). Such an embedding is called a straight-line
or Fary embedding.

Version: 19.10.99 Time: 11:01 -110-

4.10. Planar Graphs 111

Figure 114. A straight-line embedding of the graph of Figure 115

Theorem 4. Any planar graph with n nodes has a straight-line embedding into
the 2n — 4 by n — 2 grid, i.e., vertices are mapped into elements of {0,...,2n —
4} x {0,...,n — 2} and edges are mapped into straight-line segments. Also, such
an embedding can be constructed in time O(nlogn).

Let G be a planar graph. We may assume w.l.o.g. that we have a combinatorial
embedding of G and that G is triangulated, i.e., every face is a triangle. Note that a
combinatorial embedding can be computed in linear time by Theorem 3 and that the
obtained planar map can be triangulated in linear time by subdividing faces with
more than three vertices (cf. Exercise 337). Figure 115 shows a triangulation of the
planar map of Figure 113. Our strategy for computing a straight-line embedding
works iteratively, i.e., we start with a single triangle and then add node after node.
The basis for the iteration is the following Lemma 11.

Lemma 11. Let (G, o) be a triangulated planar map with outer face u,v,w. Then

there is a labelling vi = u,v2 = v,vs3,v4,...,U, = w of the nodes meeting the

following requirements for every k, 4 < k < n.

(1) The subgraph Gr_1 C G induced by vy,vs,...,v,_1 is biconnected, and the
boundary of its outer face is a cycle Cy_1 containing the edge {u,v}.

(2) The nodes of G lying inside or on the cycle Cy_, are exactly the vertices
Vi1y+++yVk—-1-

(3) vy is in the outer face of Gg_1, and its neighbors in Gy_; form an (at least
2-element) subinterval of the path Cy_1 — {u,v} (cf. Fig. 116).

Version: 19.10.99 Time: 11:01 -111-

112 Chapter 4. Algorithms on Graphs

Figure 115. A triangulation of the planar map of Figure 113. The
additional edges are drawn light.

Moreover the labelling can be computed in linear time.

Uk

Gr-1

U v
Figure 116. The vertex vy is attached to a subinterval of the path Cx_1 — {u,v}

Proof : Let vs be the unique vertex such that the triangle u, v, v3 is a bounded face
of G. Then (1) and (2) hold for £ > 4. Assume inductively that vq,...,vx_1 have

Version: 19.10.99 Time: 11:01 -112-

4.10. Planar Graphs 113

been defined and that (1) and (2) hold for the subgraph Gy_1. Let wq,...,w,, w1
with w; = u, w, = v be the cycle Gx_1 and let K = {z; z ¢ {v1,...,vk-1}
and z is adjacent to at least two vertices on the cycle Cr_1}. For z € K let
min(z) = min{é; w; is a neighbor of z}, max(z) = max{i; w; is a neighbor of
z} and let C(z) be the cycle z, Win(:); Wmin(z)+1> - - - » Wmax(z), 2- Let zg € K be
such that the cycle C(zp) contains a minimal number of nodes in its interior. We
claim that withe vy = 2y requirement (3) is met and that (1) and (2) hold for the
subgraph Gy.

Note first that K #) since for every edge e¢; = {w;,w;+1}, 1 < i < r, there
is a unique node z(e;) outside Ck_; such that the triangle w;,w; 1, 2(e;) is a face
of G. The nodes z(e;) belong to K, 1 <i < r, and hence K #). So z¢ exists. Note
next that the cycle C(zp) contains no node in its interior because otherwise there
would be a node z € K in its interior such that C(z) contains even fewer nodes
in its interior. This also implies zg # w of k < n since min(w) = 1, max(w) = r
and hence C(w) has non-empty interior if ¥ < n. Finally, since G is triangulated
zp must be connected to all nodes w;, min(zp) <7 < max(zp). This proves (3) and
also that (1) and (2) hold for Gx. Thus the disired labelling exists.

It can be computed in linear time as follows. We maintain a partition of the
unlabelled nodes # w into classes:

A: no neighbor labelled yet
B: exactly one neighbor labelled

i: more than one neighbor labelled and the labelled neighbors form ¢ intervals in
the cyclic ordering of edges around the node, 7 > 1.

We start with only nodes u and v labelled and an initial partition which can cer-
tainly be computed in linear time. Assume now that we have determined nodes
v1,...,VUg_1 already. We then choose any node in class 1 and label it v;x. Note that
class 1 is never empty by the argument given in the existence proof of the labelling.
Conversely, let z be any node in class 1. Then certainly z € K. Also, z is adjacent
to all nodes w;, min(z) < ¢ < max(z), since z belongs to class 1. Assume now
that one of the triangles z,w;, w;+1 where min(z) < ¢ < max(z) is not a face of G
and hence contains a node in its interior. Any node in the interior of this triangle
is unlabelled and one of the nodes must be adjacent to z since G is triangulated.
Thus z dose not belong to class 1, a contradiction. After labelling v we consider
all unlabelled neighbors of v, and update their class membership as follows. Let
z be any such neighbor. If z belongs to class A then it is moved to class B. If z
belongs to class B then it is moved to either class 1 or class 2 and if v belongs to
class 7 then it is moved to either class ¢ — 1 or ¢ + 1 or stays in class i. For each
neighbor z this decision takes constant time end hence the time required to label vy
is proportional to the degree of v. Thus the entire labelling is computed in linear
time.]

In the example of Figure 115, we may choose u = 1, v = 2, w = 9 and use the
labelling v1 =1, voa =2, v3 =3, v4 =4, v5 =5, vg = 6, vy = 13, vg = 7, vg = 11,

’Ulo = 8, V11 = 12, V12 = 10 and v13 = 9'

Version: 19.10.99 Time: 11:01 -113-

114 Chapter 4. Algorithms on Graphs

P(wp, wq)
Wp+1 .° '
w
y Wq— wq
w3 ?. "' ,’/
w2 q
w; =v1 =1u Wy = Ug =V

Figure 117. Gy

We can now describe the iteration in more detail. We start by placing v; at
(0,0), v2 at (2,0) and vz at (1,1). Assume inductively, that we embedded Gy as a
mountain range (cf. Fig. 118) with base {u, v}, i.e.,

(1) vy is at (0,0), vs is at (2k—4,0) and all points of G, are embedded onto lattice
points of the first quadrant;

(2) If wy = vy, ws,...,w, = vy denote the vertices on the outer face of Gy, (in the
order of their appearance), denotes the z-coordinate of w;, then

z(wy) < z(wsz) < --- < z(w,);

(3) The line segments L(w;, w;+1), 1 <7 < r, all have slope +1 or —1.

Note that (3) implies that the Manhattan distance between any two nodes w; and w,
of the outer face is even. (The Manhattan distance of (z,y) and (z',y’) is |z —z'| +
|y —y'|- Hence, if i < j, then the intersection of the line with slope +1 through w;
and the line with slope —1 through w; is a lattice point P(w;, w;).

Let wp,wp41,...,w, be the neighbor of vgy1 in Gi41 (1 < p < g < 1),
(cf. part (3) of Lemma 11). The idea is to place the node vy at the lattice
point P(w,,w,). This may fail because e.g. w, may not be visible from that lat-
tice point; cf. Figure 117. To make sure that all nodes wy, wp41, ..., w, are visible
from P(w,,w,) we deform the embedding such that the slope of the line segment
L(wp,wpt+1 becomes less than 1, the slope of the line segment L(wgy1,wq) be-
comes larger than —1, and the slopes of all other line segments on the boundary
of the outer face remain the same. One way to achieve this is to first move nodes
Wpt1, WP + 2, ..., w, one unit to the right and then to move nodes wy, wg1,...,wr
one further unit to the right. However, in order to not destroy the straight-
line embedding of Gx_1 we may also have to move some other nodes of Gj.
For this purpose, we maintain for each node w; on the outer face of G a set
M(k,w;) C {v1,...,vr} such that

(4) w; € M(k,w;) iff j > i

Version: 19.10.99 Time: 11:01 -114-

4.10. Planar Graphs 115

(5) M(k,w1) 2 M(k,wz2) 2 --- 2 M(k,w,)

(6) For any sequence aj, ..., a, of non-negative numbers, if we sequentially trans-
late all vertices in M (k,w;) with distance o; to the right (i = 1,2,...,7),
then the embedding of Gy remains a Firy embedding. (Note that many ver-
tices will move several times; e.g., all points in M (k, w;) \ M (k,w;+1) will be
translated by a3 + as + --- + «;.) For k = 3 these conditions are met by
straight-line embedding v; — (0,0), v2 — (2,0), vs — (1,1) and by the sets
M(3,v1) = {v1,v2,v3}, M(3,v2) = {v2,vs}, M(3,v3) = {vs}. We can now de-
scribe how to embed node v;. We apply (6) with o,41 = a; = 1 and all other
a; = 0 to find a new straight-line embedding of G. This assumes p+1 < ¢. If
p+ 1 = g then we apply (6) with oy = 2 and all other o; = 0. The Manhattan
distance between w, and the new location of w, is still even, thus we can place
vg+1 at the intersection of the lines with slope +1 and —1 through w, and
the new location of w,, respectively. Conditions (1), (2) and (3) will trivially
remain true for this new embedding of Gg41. (cf. Fig. 118)

P(wp7wq)

Figure 118. G411

The nodes of the outer face of G411 are u = wy,ws, ..., Wp, Vk41, Wy, - - ., Wyp =
v. For each member z of this sequence we have to define a set M(k + 1,z) C
V(Gk+1). Let
Mk +1,w;) = M(k,w;) U {vg41} for i < p,
M(k + 1avk+1) = M(kawp+1) U {Uk+1}a
M(k+1,wj) = M(k,w;) for j > q.
It is obvious that these sets have properties (4) and (5). To check that property (6)
remains true as well consider any sequence of nonnegative numbers a(wy), ..., a(wp), a(vkt1),
For all z on the outer face of Gj1 translate the set M(k + 1, z) with distance a(z)
to the right. Observe that after this motion the part of G4 below the polygon

WiWs ... Wy, (ie., Gg) remains straight-line embedded (by condition (6) applied
to G with a; = (w1), ..., ap = 1+ a(wp), apt1 = 1+ a(vk+1), ag = 1 + a(wy),

Version: 19.10.99 Time: 11:01 -115-

these nodes were

116 Chapter 4. Algorithms on Graphs

ag+1 =1+ a(wgs1), - -, am = 1+ a(wy,) and every other a; =0if p+1 < g and
a1 = a(w), .., ap = a(wy), ag = 2 + a(wit1) + a(wy), agr1 = a(wgy), -,
a(wy,) if p+1 = ¢). On the other hand, it is easy to see that the part of G4, above
WLW3 . . . Wy, (1.e., vg41 and the upper contour of G) remains straight-line embed-
ded too, since during the motion the subgraph induced by wp41,wp42,. .., we—1
and v4+1 moves rigidly (to a distance a(w;i) + --- + a(wp) + @(vk+1)). The final
output of our algorithm is a straight-line embedding £ of G,, = G satisfying condi-
tions (1), (2) and (3) with k¥ = n. This immediately implies that every point ov G is
embedded in some lattice pont of the triangle determined by &£(v;) = £(u) = (0, 0),
E(va) = E(v) = (2n — 4,0) and E(v,) = E(w) = (n — 2,n — 2). This proves the
existence of the desired embedding.

It is easy to derive an Q(n?) algorithm from the constructive existence proof.
A less direct implementation which avoids the explicit construction of embeddings
for the intermediate graphs achieves a running time of O(nlogn). We describe this
implementation next.

Let px (1) = (xx (1), yx (1)) be the position of node vy, in the embedding of Gy, k <
l. We are interested in pi(n) but in order to make the construction work we deal with
the more general problem of computing pg(1). clearly, zx (1) = zx(k)+ (zx (1) —zx(k))
and yx(l) = yx(k), i.e., the position of vy in G; is given by the position pg(k) of vy
in Gy, and the shift distance shift,(l) := zx(l) — z (k) of v when passing from Gy,
to Gj.

Lemma 12. The positions pg(k), pr(n), k = 1,2,...,n can be computed in
time O(n) plus the time to compute O(n) shift distances.

Proof: Clearly, knowing py(k) and shift;(n) we can compute pg(n). So we only
have to deal with the computation of pg(k), ¥ = 1,2,...,n. For node vy let
ViysViy, - - -, Vs; De the neighbors of vy in Gj—1 in counterclockwise order; this nodes
where called wy, wp41,--.,w, in the existence proof. Set first, = i1, secondy = iy
and lasty, = i; and observe that the functions first, second and last can be computed
with no extra effort when computing the labelling; cf. Lemma 11. Then pg(k) is
given by the intersection of the line with slope +1 through pgst, (k) and the line
with slope —1 through pigs, (k). Also, psrst, (k) is determined by pgys, (firsty,)
and shift s, (k) and similarly for pjes, (k). We conclude that the sequence pi(k),
k=1,2,...,n, can be computed in linear time if the quantities shifts,,, (k) and
shift 1, (k), 4 < k < n, are known. 1

For the computation of shift distances we first derive an economical encoding of the
sets M(l,vy). Define sequences m, 73, ..., T, as follows. Let m3 = (1,2) and obtain
Tk+1 from 7 by inserting k + 1 just to the left of secondy and n+ k + 1 just to the
left of last) where secondy and lasty are defined as in the proof of Lemma 12.

Lemma 13.

Version: 19.10.99 Time: 11:01 -116-

4.10. Planar Graphs 117

a) Let vg be a vertex on the outer face of G;. Then

v; € M(l,vg) iff i <1 and k precedes i in m,

ork =1.

b) shifty() = |{j; k<j<lork<j—n<lI

and j precedes k in m, }|

Proof: a) We use induction on max(k, 7). For max(k, i) = 2 the claim is obvious. So
let us suppose max(k,¢) > 2 and k # i. Assume first that ¢ < k. Then v; € M (I, vx)
iff v; € M(k — 1,Vsecond,) by the definition of M (k,vr), and k precedes i in m, iff
secondy precedes ¢ in m, by the definition of m,. So the claim follows directly
from the induction hypothesis. Assume next that i > k. Then i € M(i,vy) iff vy
precedes v; on the boundary of G; iff v;, precedes vsecong; On the boundary of G;_4
iff k precedes ¢ in 7, and the claim is shown.

b) Consider the addition of a node vj, £ < j < I. Then node v, is moved two
units to the right if vy, € M(j — 1,vi45¢,;) and vy is moved one unit to the right if
vk € M(j — 1,Vsecond;) — M(j — 1,v1a5¢,;). By part a) and the construction of m,
this is equivalent to j + n and j precede k in m, and j but not j + n precedes k
in m,. This proves part b). |

It is now easy to translate the computation of shift distances into a range query
problem. Let S be the following set of points

§ = {(1,1), (2,20 — 3)} U{(k, w3 (B)), (K, m (n + B); 3 <k <)
and let R(k,l) be the rectangle
R(k,1) ={(j,9); k<j<landy<m '(k)}.
Then
IR(E,D)NS| = |{j; k<j<lork<j—n<lI
and j precedes k in 7, }|

= shift,(1).

A query of the form “determine the cardinality of the intersection of a rectangle R
and a set S of points” is called a rectangular range counting query. Our rectangles
are 3-sided because there is no restriction on y from below in the definition of R(k,).
In the section on segment trees in Chapter 8 it is shown that 3-sided rectangular
range counting queries can be precessed in time O(log N) with a preprocessing time
of O(NlogN), where N = |S|. (In the first edition, only O((log N)?) is shown).
We summarize in:

Version: 19.10.99 Time: 11:01 -117-

118 Chapter 4. Algorithms on Graphs

Theorem 5. A straight-line embedding of a planar graph of n nodes can be com-
puted in time O(n+ P(n)+n-Q(n)) where P(n) is the preprocessing time of 3-sided
rectangular range counting and Q(n) is the query time.]

With the results of Chapter 8 the proof of Theorem 5 is now completed.

Theorem 6. Let G = (V,E) be a planar graph. Then G can be turned into a
planar map (G, o) in linear time.]

Planar graphs have more structure than general graphs and are therefore in many
respects computationally simpler than general graphs. The planar separator theo-
rem (Theorem 3 below) makes planar graphs amenable to divide and conquer algo-
rithms. It states that a planar graph can be split into about equal sized subgraphs
by the removal of only O(y/n) nodes.

Theorem 7. Let G = (V, E) be a planar graph and let w : V — R¢ be a weight
function on the vertices of G. Let W =} ., w(v) be the total weight of G. Then
there is a partition A, S, B of V such that

1) W(A) = Sy w(v) < 2W/3, W(B) < 2W/3;
2) |5 < 4ym;

3) S separates A from B, i.e., EN (A x B) = {;

4) Partition A, S, B can be constructed in time O(n).

Proof: Assume first that G is connected. Let s € V' be arbitrary and let L(t) =
{v; v € V and the shortest path from s to v has length ¢} for ¢ > 0. Then L(0) =
{s}. Let r be maximal such that L(r) # (. Add empty levels L(—1) = L(r+1) = 0,
for convenience. Let ¢; be such that

W(LO)U--- UL(t — 1)) < W/2 < W(L(0)U--- UL(t)),

let t9 < t; be such that |L(tp)| + (t1 — to) < 24/n and let t5 > ¢; be such that
|L(t2)| + (2 —t1 — 1) < 24/n.

Claim 1. tg, t; and t5 exist.

Proof: The existence of t; is obvious. If ¢; < y/n then we can choose to = —1. If
t1 > /n then |L(t; — y/n)| + -+ + |L(t1)| < n and hence |L(tp)| < +/n for some ¢y,
t1 —v/n <tg <t1. Thus |L(tp)| +t1 — to < 24/n. In either case we have shown the
existence of 3. The existence of ¢4 is shown similarly.]

Let us take a closer look at W(L(tg + 1) U--- U L(ta — 1)). If this weight is at
most 2WW/3 then let S = L(ty) U L(t2), let A be the heaviest of the three sets
LO)U---LE(to—1), L(tp+1)U---UL(ts — 1), L(ta + 1) U--- U L(r) and let B be
the union of the remaining two sets. Then W(A) < 2W/3 and W (B) < 2W/3.

Version: 19.10.99 Time: 11:01 -118-

4.10. Planar Graphs 119

Let us assume now that W (L(tp + 1) U--- U L(t2 — 1)) > 2W/3. Construct
planar graph G’ as follows. Delete levels 5 and above from the graph and shrink
all nodes in level ¢, and below to a single node, i.e., replace all nodes in level ¢3 and
below by a single node and connect this node to all nodes in L(¢g+1). The planarity
of G’ can be seen as follows. Consider a planar embedding of G and identify a tree
of paths from s to all nodes in L(¢p + 1). Then delete all nodes in level ¢, and
below, make s the new node and draw the new edges along the tree paths. Note
that graph G’ has a spanning tree with radius ¢t —tg—1, i.e., the newly constructed
node is the root and all other nodes have distance at most to — tg — 1 from the root.

Claim 2. Let G = (V, E) be a connected planar graph having a spanning tree of
radiusr and let w : V — [Ra' be a weight function. Then there is a partition A, S, B
of V such that W(A) < 2W/3, W(B) < 2W/3, |S| < 2r+1, S contains the root of
the spanning tree, and S separates A from B. Moreover, partition A, S, B can be
found in time O(n).

Suppose that we have shown Claim 2. Clearly, all steps of the proof preced-
ing Claim 2 can be carried out in linear time, i.e., the construction of levels
L(0), L(1),..., L(r), determination of to, t; and ¢z, and construction of G'. By
Claim 2 we can find a partition A’, S’, B’ of the nodes of G’ such that S’ contains
at most 2(¢3 —tp — 1) + 1 nodes one of which is the node which replaced levels ¢
and below. Let S = L(tp) U L(t2) U (S" — {new node}). Then

IS| < [L(to)| + |L(t2)| + 2(t2 — to)
= |L(to)| + 2(t1 — to) + |L(t2)| + 2(ty — t1 — 1) + 2
<2yn—1+2yn—1+2
= 4/n.

The removal of S from G splits G into sets L(0)U---UL(tg—1), A’,B’, L(t2+ 1)U
-+ +U L(r) none of which has weight exceeding 2W/3. It is easy to form sets A and
B from these four sets such that W(A4) < 2W/3 and W(B) < 2W/3. Moreover,
partition A’,S’, B’ and hence partition A, .S, B can be found in linear time.

Proof of Claim 2: If there is v € V with w(v) > W/3 then let S consist of v and the
root of the spanning tree, let A =0 and let B = V — S. Clearly, partition A, S, B
has all desired properties.

So let us assume next that w(v) < W/3 for all v € V. Extend G to a planar
map G; this can be done in time O(n) by Theorem 6. Add edges to G such that
every face becomes a triangle, cf. Exercise 3302. Let T be a spanning tree of G
of radius at most r. Every non-tree edge of G forms a simple cycle with some of
the tree edges. This cycle has length at most 2r + 1 if the root belongs to the
cycle and has length at most 2r — 1 otherwise. Every such cycle separates its inside
from its outside. It therefore suffices to show that there is one such cycle such that
neither the inside nor the outside has weight exceeding 2W/3. More precisely, if e
is a non-tree edge, let C(e) by the cycle defined by e, let WC(e) be the weight of

Version: 19.10.99 Time: 11:01 -119-

120 Chapter 4. Algorithms on Graphs

cycle C(e), i.e., WC(e) = >_,cc() w(v) and let WI(e) be the weight of the nodes
in the interior of C(e).

In Figure 119 (tree edges are drawn solid, non-tree edges are drawn dashed) we
have for e = (2,6), C(e) = (2,1,5,7,6), WC(e) = w(2) +w(1) +w(5) + w(7) + w(6)
and Wi(e) = w(3) + w(4).

- -
— - -

-

Figure 119. Example for Claim 2

We have to show that there is a non-tree edge e such that WI(e) < 2W/3 and
WI(e) + WC(e) > W/3. Programs 34 and 35 compute WI(e), WC(e), and C(e)
for (all) non-tree edges e.

begin for all non-tree edges e do WC'(e) <—undefined od;
for all non-tree edges e
do if WC(e) is undefined then cycle(e) fi od

end

Program 34

Program 34 makes use of procedure cycle (see Program 35) which computes
C(e), WI(e) and WC(e) for non-tree edge e. The body of cycle is basically a case
distinction according to the type of edges in the triangle inside C(e) with edge e on
its boundary. This case distinction is illustrated in Figure 120. The main program
cycle is called at most once for every non-tree edge e.

procedure cycle(e: non-tree edge);

co computes C(e) as a doubly linked list and weights WI(e) and WC(e);
stops computation if C(e) is desired cycle oc

let e = {z, 2z}, and let y be the third node of the triangle inside C(e)

which has e as an edge;

Version: 19.10.99 Time: 11:01 -120-

4.10. Planar Graphs 121

Figure 120. The 4 cases of cycle

Case 1: {z,y} and {y, 2z} are tree edges.
Then triangle (x,y, z) is a cycle C(e) and hence C(e) < (z,y,z), WI(e) < 0 and
WC(e) < s(z) + w(y) + w(z).

Case 2: {z,y} is a tree edge, and {y, z} is not, and edge {z,y} lies on cycle C(e),
i.e., y is closer to the root of the spanning tree than z.

cycle({y, 2});
C(e) + x concatenated with C({y, z});

WC(e) + WC({y,z}) + w(z);
WiI(e) < WI({y, z})-

Case 3: {z,y} is a tree edge, {y, z} is not, and edge {z,y} does not lie on cycle
C(e), i.e., y is farther away from the root of the spanning tree than x.

cycle({y, 2});
C(e) + C({y, #z}) minus node y;

WC(e) « WC({y,z}) — w(y);
Wi(e) « WI({y,z}) + w(y).

Case 4: Neither {z,y} nor {y, z} are tree edges.

cycle({z,y});

cycle({y, 2});

let p be the tree path from y to C(e) including y and excluding v where v is the
node on C(e) where p meets C(e). The node v can be found in time O(|p|) where
|p| is the number of nodes of p as follows. The calls cycle({z,y}) and cycle({y, z})
return the cycles C({z,y}) and C({y, z}). We walk along these cycles starting in
node y and away from nodes x and z respectively. Then v is the last common node
and p is the path of nodes preceding v.

Version: 19.10.99 Time: 11:01 -121-

122 Chapter 4. Algorithms on Graphs

C(e) < (C({x,y}) minus p) concatenated with (C({y, z}) minus p);
WC(e) < WC({=z,y}) + WC({y, 2}) — 2W (p) — w(v);
Wi(e) < WI({z,y}) + WI({y, z}) + W(p);

end of case-distinction,;

if WI(e) <2W/3 and WC(e) + Wi(e) > W/3
then stop and exhibit C(e) as the desired cycle fi
end.

Program 35

We still have to show that some call of cycle finds a cycle with the desired
properties and to analyze the running time. We show first that the running time is
linear. Note first that cycle is called at most once for each non-tree edge e. Also the
cost of a call of cycle is O(1) if Case 1, 2 or 3 is taken in the body and it is O(|p|)
in Case 4 where |p| is the number of nodes on path p. Also, 2|p| nodes are deleted
from cycles C({z,y}) and C({y,z}) when cycle C(e) is formed in the latter case.
Since at most two tree edges are added to cycles in a single execution of Cases 1
to 3 the total number of nodes deleted in Case 4 must be O(n). Thus the total cost
of either case is O(n) and hence the total running time is O(n).

Finally, we have to show that a cycle with the desired properties is found.
We will show first that there is a non-tree edge e with WC(e) + Wi(e) > W/3.
Since every face of Gisa triangle, so is the outer face. Let e, ez, e3 be the edges

bordering the outer face. At least one of them is a non-tree edge, say ey,...,e; are
non-tree edges for some 7, 1 < ¢ < 3. Then 23'21 WC(ej) + Wi(e;) > W since
each node of G lies inside or on at least one of the cycles C(e;), j =1,...,i. Thus

WC(ex) + Wi(ey) > W/3 for some k, 1 <k <.

We can now exhibit edge e such that C(e) has the desired properties. Let e be
a non-tree edge such that WC(e) + WiI(e) > W/3 and either Case 1 is taken for
eor WC(e')+ WI(e') < W/3 for all non-tree edges e’ such that cycle(e’) is called
by cycle(e). Edge e exists since there are edges with WC(e) + WiI(e) > W/3 and
since Case 1 is taken for at least one edge. It remains to show that edge e has the
property WI(e) < 2W/3. If Case 1 is taken then WI(e) = 0 and we are done. If
Case 2 is taken then WI(e) = WI(e') < W/3 and we are done. If Case 3 is taken
then WI(e) + WC(e) = WI(e') + WC(e') which is impossible. If Case 4 is taken,
let e; and es be the two non-tree edges for which cycle is called. We have

Wi(e)

WI(e1) + WI(e2) + W (p)

Wi(e1) + W(p) + Wi(ez2) + W(p)
Wi(e1) + WCl(e1) + Wi(ez) + WC(e2)
2W/3,

INIA A

and hence C(e) is the desired cycle. 1

Version: 19.10.99 Time: 11:01 -122—-

4.10. Planar Graphs 123

We have now proved Theorem 7 for connected graphs. If G is unconnected, let
G1,Ga, ... Gy be the connected components. If W(G;) < 2W/3 for alli, 1 <i <k,
then a partition with S = () is possible. If W(G;) > 2W/3 for some i then split G;
as described above and proceed as in the former case.]

An important corollary of Theorem 3 is obtained in the unit cost case.

Corollary 1. Let G = (V, E) be a planar graph. Then there is a partition A, S, B
of V such that

1) [A] <2n/3, |B| < 2n/3;

2) [S| <4v/n;

3) S separates A from B;

4) Partition A, S, B can be found in time O(n).

Proof: Obvious from Theorem 3 with w(v) =1 for allv € V. 1

We end this section with an application of the planar separator theorem. Let
N = (V,E,c) with ¢ : E — R be a directed planar network and let s € V be a
designated node. As in Section 4.7 we will study the problem of computing u(s,v),
the cost of a least cost path from s to v, for any node v € V. In Section 4.7.3 we saw
how to solve this problem in time O(n - €) = O(n?) for planar networks. A better
algorithm can be obtained by applying the separator property of planar graphs.

Theorem 8. The single source least cost path problem on planar networks can be
solved in time O(n'-®logn)

Proof: Let N = (V,E,c) with ¢ : E — R be a planar directed network and let
s € V be a designated node. We want to compute p(s,v) for all nodes v € V. The
algorithm is as follows.

(1) Compute a partition V7, S, V> as given by the planar separator theorem. Let
S < SU{s} and let N; be the subnetwork induced by V; U S for i =1,2.

(2) Compute pi(t,v) for all ¢t € S and v € V4 U S. Here pi(t,v) is the cost of a
least cost path from ¢ to v in subnetwork Nj. Similarly, compute u2(t,v) for
allt € S and v € Vo U S. The details of this step are spelled out below.

(3) Define network N = (S, S x S,¢) by &(r,t) = min{oo, uy(r,t), u2(r,t)}. Com-
pute fi(s,t) for all ¢ € S where i(s, t) is the cost of a least cost path from s to
t in network N.

(4) For v e V; US, i = 1,2, output u(s,v) = min{ji(s,t) + ui(t,v); t € S}.
The correctness of this algorithm can be seen fairly easily. It follows from

Version: 19.10.99 Time: 11:01 -123-

124 Chapter 4. Algorithms on Graphs

Claim 1.
a) i(s,t) = u(s,t) forallt € S.
b) p(s,v) = min{f(s,t) + pi(t,v); t € S} forve V;, i =1,2.

Proof: a) Edges of N correspond to least cost paths in subnetworks N;, i = 1,2.
Thus ji(s,t) > u(s,t) since every path in N gives rise to a path in N by replacing
edges of N by paths in N. Also ji(s,t) < u(s,t) since a least cost path from s to ¢
in N can be decomposed into subpaths running completely within N;, i = 1,2.

b) Follows immediately from part a). 1

It remains to describe the details of the implementation. For step (1) we use the
algorithm described above in Corollary 1; it yields partition V3, S, Vo with [V;]| <
2n/3, |Va| < 2n/3 and |S| < 5y/n. (We use 5 instead of 4 because node s is added
to S). For step (3) we use the algorithm described in Section 4.7.3; it runs in time
O(|S]-15]?) = O(n'3). Step (4) is also easily done in time O(n!-%). Step (2) remains
to be described in detail. We do so for subnetwork Nj.

(2.1) Compute p1(s,v) for all v € V3 U S using the algorithm recursively. This takes
time T'(|V; U S|) where T'(n) is the running time of the algorithm on a n node
graph.

(2.2) Use the solution of step (2.1) to make all edge costs non-negative as described
in Section 4.7.4. Compute u1(t,v) for allt € S, v € V1 U S in time O(|S| - ny -
logni) = O(n'*®logn) using the methods described in Sections 4.7.4 and 4.7.2.
Here ny = |V1 U S|

We conclude that the cost of step (2) is T(n1) + T(nz2) + O(n'-5logn) where n; =
|[V; US|, i =1,2. Altogether, we have the following recurrence for 7'(n):

c-nlSlogn for n < 1500;
T(n) < MaX 4 ny<nisym il (P1) +T(n2) +d- nl%logn} for n > 1500.
ni,m2<4n/5

Here c,d are appropriate constants, n; = |[V; US| < 2n/3 + 5¢/n < 4n/5 for
n > 1500, Ny = |[Vo U S| and n1 + ny < n+ |S| < n+ 5y/n. T(n) is clearly a
non-decreasing function. Let U(n) = T'(n)/n. Then

U(n) <c-n®5logn for n < 1500

and

U(n) < max {(n1/n)-U(n1) + (n2/n) - U(ng) +d - n®®logn}

ni+n2<n+5/n
ni,m2<4n/5

< max {((n1 +mna)/n)-U(4n/5) +d - n"®logn}

n1+n2<n+5n
< (1+5/y/n)-U(4n/5) + dy/nlogn

Version: 19.10.99 Time: 11:01 -124-

4.10. Planar Graphs 125

for n > 1500. Let k = k(n) = [log(n/1500)/log(5/4)] and f(n) = dv/nlogn. Then

k [i-1
ZL (1+5/\/A5Vm) | - £(4/5)'n)

for n > 1500.
Claim 2. H;;%)(l +5/4/(4/5)in) < a for all i < k and some constant a.
Proof: We have

k—1 . ,
[T (2 +5/v/@f5)n) = X mO+sVE7)
j=0
k—1 -
< 2im0 VA7) fsnce In(1 4 2) < 2)
< (Eamm) S /iy
<a

for some a since Z;‘;l(4/5)j converges and since 1500 > (4/5)F -n > (4/5)-1500.
Constant a can be chosen as 3.]

Substituting into the upper bound for U(n) we obtain
k .
Un) <Y a-f((4/5)'n)
i=0

k
< a-dy/(4/5)inlogn
i=0
= O(+/nlogn)
This proves that T(n) = n-U(n) = O(n'®logn). 1

Other applications of the planar separator theorem can be found in Exercises 34
to 41.

Version: 19.10.99 Time: 11:01 -125—-

126 Chapter 4. Algorithms on Graphs

4.11. Exercises

1) Let G = (V,E) be a digraph. Let G™®¥ = (V, E"®") be obtained from G by
reversing all edges, i.e., E™¥ = {(w,v); (v,w) € E}. Show: Given the adjacency
list representation of G one can compute the adjacency list representation of G"¢¥
in time O(n + e).

2) A multi-graph is given by a set V of nodes, a set K of edges and functions,
a,b: K — V. An edge k € K runs from a(k) to b(k). The underlying graph G =
(V,E) is defined by E = {(a(k),b(k)); k € K}, i.e., parallel edges are eliminated.
Show: Given the adjacency list representation of a multi-graph, i.e., given a linear
list for every 7 containing multi-set {b(k); k € K and a(k) = i}, one can compute
the adjacency list representation of G in time O(|V|+ |K|). [Hint: Use bucket sort
to sort multi-set {(a(k),b(k)); k € K} in lexicographic order.]

3) Let G = (V, E) be an acyclic digraph and let G = (V, E) be any acyclic digraph
with the same transitive closure as G, i.e., G* = G". Show:
a) Epeq C E where E,.q is defined in Section 4.3.

b) Conclude from part a) that G,eq is the minimal graph (with respect to set
inclusion) with a fixed transitive closure.

4) Let G = (V, E) be an acyclic digraph. Show that one can compute G,..4 in time
O(n - eped)-

5) Show that one can use procedure ezplorefrom of Section 4.4 to compute the
transitive closure of an arbitrary digraph in time O(n - e).

6) Let G be a context-free grammar. For sentential form « let First;(a) be the set
of terminal symbols a such that a = af for some £.
a) Show how to use procedure ezplorefrom to compute First;(a) if G contains no
e-rules.

b) Modify your solution to part a) such that e-rules can also be handled.

7) Is the algorithm for strongly connected components still correct if line (24) is
changed to

then lowpt[v] < min(lowpt[v], lowpt[w])?

8) Let G = (V,E) be an undirected graph. G' = (V,E’) is a minimal bicon-
nected extension of G if E C E', G’ is biconnected, and |E’| is as small as
possible. Develop an algorithm to compute minimal biconnected extensions. [Hint:
Solve the problem for trees first. Extend to general graphs as follows. Let V3,...,V}
be the b.c.c.’s of G. Define a graph with node set Vi,...,V; and edges (V;,V;) iff
ViNV; # 0. This graph is a tree.]

Version: 19.10.99 Time: 11:01 -126-

4.11. Exercises 127

9) Derive a bound g(n) on the maximal number of iterations of the basic least cost
path algorithm (cf. the beginning of Section 4.7) on a network of n nodes. Design
networks where the algorithm might actually need approximately g(n) iterations.

10) Extend all least cost path algorithms so that they not only compute the least
cost of a path but also the path itself. Running time should not change. [Hint:
Have array Pred[l..n]; whenever cost[v] is changed when considering edge (u,v)
set Pred[v] to u. Then array Pred stores a tree of least cost paths after termination.]

11) Let Ip(s,v) = max{c(p); p is a path from s to v}. Derive algorithms for com-
puting Ip(s,v) for all v € V on various assumptions about the underlying network.

12) (Extension of 4.7.2, Theorem 4.) Let g1, g2 be estimators and let g1 (v) > g2(v)
for all v € V. Let R; be the set of nodes removed from U when estimator g; is used.
Then R; — Ry C {v; p(s,v) + g1(v) = pu(s,t)} provided that g; is consistent.

13) Construct an instance of a least cost path problem and an estimator g such
that some nodes are removed from U more than once.

14) Consider the following well-known “15-puzzle”. The board consists of a 3 by 3
square with eight 1 by 1 tokens numbered 1 to 8 arranged on the board. One square
of the board is empty. The goal is to arrange the tokens in ascending order.

6|5

a) Formulate this puzzle as a path finding problem. What are the nodes and what
are the edges of the graph?

b) Use the path-finding algorithm of Section 4.7.2 to find a solution. Use the
following three estimators: constant zero, number of tokens out of place, total
distance of tokens from their final position.

15) Show that the algorithm of Section 4.7.3 has running time O(ky,qz - €) Where
Emae is the length (number of edges) of the longest least cost path from s to any
veV.

16) For v € V let cost;[v] = min{c(p); p is a path from s to v of length at most i},
i > 0. Show how to compute array cost;[1..n] from array cost;_1[1..n] in time
O(e). Conclude that the single source least cost path problem can be solved in
time O(n - e). Relate this algorithm to the algorithm described in Section 4.7.3.
Relate the algorithm of this exercise to dynamic programming in general.

Version: 19.10.99 Time: 11:01 -127-

128 Chapter 4. Algorithms on Graphs

17) Is it a good idea to realize set U as a stack instead of a queue in the algorithm
of Section 4.7.37 Is it a good idea to replace the array count[l..n] of counters by
a single counter count which counts iterations of the loop?

18) Let N =(V,E,c), c: E — R, be a network. Let E, = {(v,w) € E; c(v,w) >
0} and let E,, = {(v,w) € E; c¢(v,w) < 0}. If N does not have any negative cycles
then (V| E,) is acyclic. Show that one can solve a single source least cost path
problem by repeatedly (at most n times) solving the problem for N, = (V, E,,¢)
and N,, = (V,E,,c). Here function cost as computed by one algorithm is used
as input for the other algorithm. Show that this idea leads to an O(min(n - e +
n?+t1/k (n? 4 n . e)logn)) algorithm for arbitrary integer k.

19) Consider the following algorithm for solving the single source least cost path
problem. Let E = {ej,...,en}. Use the basic algorithm of the beginning of
Section 4.7. Go through the elements of F in cyclic order and check for the triangle
inequality. Prove that this algorithm runs in time O(n - e).

20) Design and analyze algorithms for maximum cost spanning trees.

21) Let N = (V, E,c) be a network and let s, € V. Let f be a legal flow function.

Show that
val(f)= Y fle)— Y. f(e.

e€in(t) e€out(t)

22) Let f be a legal (s,t)-flow in network N. Define the augmenting network
AN with respect to f by AN = (V, Ey U E,,¢) where Eq, E5 are defined as in the
definition of the layered network. Note that AN captures all augmenting paths
while LN captures only the minimum length augmenting path.

a) Construct AN for the example at the beginning of Section 4.9.1.
b) Show that an analog of Lemma 2 is true with AN instead of LN.

c) Define the concept of blocking flow and depth for augmenting networks. Does
Lemma 3 still hold true? [Hint: check part b) of the claim in Lemma 3 care-
fully.]

23) Let N = (V,E,c) be a network with integral capacities, i.e., ¢ : V — IN.
Let vmaz be the maximal value of any legal (s,t)-flow in N. Show that vmaz
augmentations suffice to construct a maximal flow, where an augmentation can be
carried out along any augmenting path.

24) Show that O(log vmaz) augmentations suffice under the assumptions of Ex-
ercise 23 if the augmentation is always carried out along an augmenting path of
maximal capacity.

Version: 19.10.99 Time: 11:01 -128-

4.11. Ezxercises 129

25) Design efficient algorithms for each of the following versions of the max-flow
problem by reducing it to the standard version:

a) The nodes, as well as the arcs, have capacities.
b)
c) The network is undirected.
d)

There are many sources and sinks.

There are both upper and lower bounds on the value of the flow through each
arc.

26) In the O(n?) algorithm for computing a blocking flow in a layered network we
first determined a node v with PO(v) = PO* and then “forwarded” and “back-
warded” the flow starting at v.

a) Show that the algorithm stays correct if we only forward the flow, but start at
node s.

b) Can you still prove the O(n?) time bound?
27) Describe an algorithm for procedure simplify in detail.

28) Adapt the O(n?) blocking flow algorithm to (0,1)-networks. Avoid the recom-
putation of POJv] for all v € V in line (5). Instead, compute PO[v] once and update
it as edges incident to v are removed in procedures forward, suck and simplify. Also,
have an array L[1..e] of linear lists. In list L[1] store all nodes v with PO[v] = 1.
Keep a pointer in this list pointing to the leftmost non-empty list. Move this pointer
to the right in order to find min{PO[v]; v € V'} in line (5), move it to the left when
potentials are updated. Show that the total number of moves of the pointer is O(e).
Conclude that a blocking flow in a (0,1)-network can be computed in time O(e).

29) A network N = (V,E,c¢), s,t € V, is (s,t)-planar if (V| E) is a planar graph
and if s and ¢ border the same face of the planar graph. Consider an embedding
of (V, E) where s and t border the outer face. In this situation there is a natural
order on the set of paths from s to t. (Path p; is above path p, if p; = p’e1p” and
p2 = p'eap’’ and e; is “above” ey; cf. Figure 121.) Let p1,p2,ps,---,Pm be the set
of paths from s to ¢ ordered according to the property of being above another path.

Figure 121. Ordering of paths from s to ¢

Version: 19.10.99 Time: 11:01 -129-

130 Chapter 4. Algorithms on Graphs

a) Construct a blocking flow by first saturating an edge of p1, then an edge of pa,
etc. Show that the constructed flow is maximal. [Hint: Let ¢; be the capacity
of py; show that there is a maximal flow which sends ¢; units across every
edge of p;. Assume otherwise. Let p; consist of edges ej,es,...,ex. Let f
be a maximal flow function such that f(e1),..., f(e;) > c1, f(ei+1) < ¢1 and
no maximal flow f’ satisfies f'(e1),..., f'(e;) > c1, f'(ei+1) > f(ei+1)- Then
¢1 — f(e;+1) units must be transported from v to ¢ along some path p’ (see
Figure 122). Let j > 7 4+ 1 be minimal such that f(e;) > ¢;. (If j does not
exist the argument becomes simpler.) Then f(e;) — f(ej—1) > 0 units of flow
are transported from s to w along some path p”. Since the network is assumed
to be planar p’ and p” must converge in some node, say z. It is now easy to
divert some flow from the path vz —>w to path p; thus contradicting the
existence of f. This proves that there is a maximal flow which sends ¢; units
along each edge of p;. The correctness proof is now completed by induction.]

Figure 122. Exercise 29a)

b) Show how to implement the algorithm outlined in part a) in time O(e - log n).
[Hint: Use the blocking flow algorithm described in the text without change.
Explain how edges around nodes have to be ordered. Show that lines (5)
and (6) are executed at most e times. This follows from the observation that p
always points into pf from below in lines (4)—(6) and hence pf’ can be discarded
because it will never be the case that p points into pf’. This will discard at
least one edge except when pf’ is trivial, i.e., last(p) = first(pf). However, this
can happen only if line (3) is executed immediately before.]

Figure 123. Exercise 29b)

30) A network flow problem with upper and lower bounds is given by a directed
graph G = (V, E), source s, sink ¢ and two capacity functions low : E — R and

Version: 19.10.99 Time: 11:01 -130-

4.11. Exercises 131

high : E — R. A legal (s,t)-flow f must satisfy the conservation laws and the
capacity constraints: low(e) < f(e) < high(e) for all e € E.

a) Show that the problem whether a legal flow exists can be reduced to an ordinary
network flow problem. [Hint: Let V =V U{5,%}, let E = EU({3} x V)U(V x
{t}) U{(s,t),(t,s)} and let ¢ : E — R™ be defined by &(e) = high(e) — low(e)
for e € E, &(5,v) = X .cin(w) low(e), &(v,1) = 3 cout() low(e), and &(s,t) =
¢(t,s) = oo. Show that there is a legal flow iff the maximum flow in the
auxiliary network N saturates all edges emanating from 3.]

b) Show how to compute a maximal flow in a network with upper and lower
bounds [Hint: Start with a legal flow as constructed in a) and use augmenta-
tion.]

31) Let G = (Vi UV,,E), E C Vi x V5, be a bipartite graph with [V3] < |Va].
Show: G has a complete matching M, i.e., |[M| = |V4|, if for all § C V; holds:
{w € V; (v,w) € E for some v € S}| > |S].

32) Let N = (V, E, cap, cost) be a weighted network and let f be a legal (s,t)-flow.
Show how to compute a legal (s,t)-flow g from f with val(g) = val(f) and minimal
cost. Running time?

33) Let T be an undirected tree where every node has degree at most d. Show
that there is a node v of T' such that the removal of v splits T' into subtrees of at
most (d — 1) - n/d nodes each.

34) Let G = (V, E) be a planar graph. Show that there is a partition A, S, B of V'
such that |A| < n/2, |B| <n/2, S = 0(y/n), and S separates A from B. Moreover
A, S, B can be found in linear time.

35) Let A be a symmetric, positive definite matrix. Show: If A is the adjacency
matrix of a planar graph G = (V, E), i.e, (i,j) € E iff a;; # 0, then the linear
system A -z = b can be solved in time O(n3/2?). [Hint: Let V3, S,V be a partition
of V as given by the planar separator theorem; let P be a permutation matrix such
that P- A - P~! has the form

W { Ay As

Ve { A, Ay

S{\ 45 | 4 | 4
~ |~ | =~
i Vs S

Apply a similar reordering to submatrices A;, As. Use Gaussian elimination on the
reordered matrix. Study carefully, which entries of the matrix become non-zero
during Gaussian elimination.]

Version: 19.10.99 Time: 11:01 -131-

132 Chapter 4. Algorithms on Graphs

36) Let G = (V,E) be a directed planar graph. Show that one can construct a
transitive reduction of G, i.e., a smallest graph with the same transitive closure, in
time O(n®/2). [Hint: Use the planar separator theorem.]

37) Let G = (V,E) be a planar graph, let w : V — R{ be a weight function,
and let W = 3, w(v). Show that there is a partition A,S,B of V such that
separates A from B. [Hint: Apply Theorem 3 to G, then apply Corollary 1 to the
heavier part.]

38) Let G = (V,E) be a planar graph, let w : V — R¢ be a weight function and
let 0 < € < 1/2. Show that there is a subset S C V such that |S| = O(y/n/e) and
such that no connected component of G — S has weight exceeding e¢- W. [Hint: Use
Exercise 37 repeatedly.]

39) Let G = (V, E) be a planar graph. A subset V' C V is independent if (V' x
V')NE = 0. The problem of deciding whether there is an independent set of size m
is NP-complete (cf. Chapter VI). Show how to find a nearly maximal independent
set efficiently in planar graphs. [Hint: Use Exercise 38 with w(v) = 1 for all
v € V and ¢ = (loglogn)/n. Find maximal independent sets of all components
of G — S by exhaustive search and output the union of these sets. Show that
(II| = [I*])/|I| = O(1/+/loglogn) where I is the independent set computed by the
algorithm and where I* is a maximum independent set. Observe that |I*| = Q(n)
since a planar graph has a large number of nodes of small degree.]

40) Show that a maximum independent set of a planar graph can be found in time
20(vn) [Hint: Split V' into V3, S, V5 as given by the planar separator theorem. For
every S’ C S find a maximal independent set I of the subgraph induced by V; U S
(Vo U S) such that I NS =S’ by recursive application of the algorithm.]

41) Show how to find the chromatic number of a planar graph in time 20(Vn),
[Hint: Proceed as in the preceding exercise.]

Version: 19.10.99 Time: 11:01 -132-

4.12. Bibliographic Notes 133
4.12. Bibliographic Notes

The algorithm for topological sorting is due to Kahn (62) and Knuth (68). A de-
tailed analysis of the representation problem can be found in Rivest/Vuillemin (75).
The O(n - e,¢q) algorithm for the computation of the transitive closure of digraphs
is by Goralcikova/Koubek (79). The analysis for random acyclic digraphs and the
improved closure algorithm have not appeared before; they were done jointly with
K. Simon (Simon (83)). A linear expected time algorithm for random digraphs is
described in Schnorr (78). Algorithms for the systematic exploration of a graph
(maze) are very old and date back to the 19th century at least. Depth-first-search
was made popular by Tarjan (72) and Sections 4.5 and 4.6 are adopted from his
paper.

The presentation of the basic algorithm for least cost paths follows John-
son (77); Theorem 2c) is also due to him. Theorem 2a) is taken over from Di-
jkstra (59). The discussion on the use of estimators for solving one pair least cost
path problems is based on Hart/Nilsson/Raphael. An algorithm which solves the
all pairs problem on nonnegative networks in expected time O(n? - logn - log* n) is
discussed in Bloniarz (80). The treatment of the general case follows Bellmann (58),
Floyd (62) for Theorem 5 and Exercise 16, Edmonds/Karp (72) for Lemma 4, and
Johnson (77) for Theorem 7 and Exercise 18.

The section on minimum spanning trees combines the work of Kruskal (56)
(Theorem 1), Prim (57) and Dijkstra (59) (Theorem 2), Yao (75) (Theorems 3 and 4)
and Cheriton/Tarjan (76) (Theorems 3 and 4). The paper by Cheriton/Tarjan
contains even better algorithms than the ones described in the text.

Many fundamental results on network flow, in particular Theorem 3, are due
to Ford/Fulkerson (62). The O(n®) algorithm is from Malhotra et al. (78) who
refine an algorithm due to Karzanov (74). The O(n? -) algorithm underlying
Theorem 4 was invented by Dinic (70) and then refined to an O(n - e - (logn)?) al-
gorithm by Galil/Naamad (79). An O(e - nlogn) algorithm was recently described
by Sleator/Tarjan (Sleator (79)). Theorem 7 is also due to Galil/Naamad (79).
Section 4.9.2 on (0,1)-Networks combines work of Even/Tarjan (75) (Theorems 7,
8 and 10a)), Hopcroft/Karp (75) (Theorem 9) and Becker et al. (82) (Theo-
rem 10b)). Weighted network flow was treated by Jewel (58), Busacker/Gowen (61)
(Lemma 13) and Edmonds/Karp (72) (Lemma 14). Exercise 29 is from Itai/Shi-
loach (79) and Galil/Naamad (79). The linear time planarity testing algorithm is
due to Hopcroft/Tarjan (72). The planar separator theorem and many of its ap-
plications (Exercises 35, 37-41) are from Lipton/Tarjan (77,77). The application
to least cost path computations is taken over from Mehlhorn/Schmidt (83). An
O(n3/ 2) algorithm for least cost path computations in planar graphs was described
by Tarjan (81). Exercise 36 was proposed by Th. Lengauer.

Version: 19.10.99 Time: 11:01 -133-

