5.1. General Path Problems 1

Chapter 5. Path Problems in Graphs and Matrix Multi-
plication

In this chapter we concentrate on path problems in graphs. The problems of com-
puting shortest or longest paths or computing the k least cost paths between all
pairs of points in a graph are typical examples. The best known algorithms for
these problems differ only slightly. In fact, they are all special cases of an algorithm
for solving general path problems on graphs. General path problems over closed
semi-rings and Kleene’s algorithm for solving them are dealt with in Section 5.1,
special cases are then treated in Section 5.2. The algebraic point of view allows
us to formulate the connection between general path problems and matrix multi-
plication in an elegant way: matrix multiplication in a semi-ring and solution of a
general path problem have the same order of complexity. In Section 5.4 we consider
fast algorithms for multiplication of matrices over a ring. This is then applied to
boolean matrices. Section 5.7 contains a lower bound on the complexity of the
boolean matrix product.

5.1. General Path Problems

Let us recall some notation. Let G = (V, F) with V = (vy,...,v,) be a digraph. A
path p from v; to v; is a sequence wq, wy, ..., wy of nodes with v; = wp,v; = wy
and (w;,w;41) € E for 0 <! <k — 1. The length of this path is k. Note that there
is always the path of length 0 from a node to itself. We use P;; to denote the set of
all paths from v; to v;:

P;; = {p; pis a path from v; to v;}.

In a sense Kleene’s algorithm computes set P;; for all z and j. We describe this algo-
rithm in a very general setting first and apply it to some special cases in Section 5.2.
The general framework is provided by closed semi-rings.

Definition: a) A set S with distinguished elements 0 and 1 and binary operations
@ and © is a semi-ring if

(1) (S,4,0) is a commutative monoid, i.e., for all a,b,c € S

(apb)dec=ad (bdc)
aPb=bDa
ad0=a.

(2) (S,®,1)is a monoid, i.e., for all a,b,c € S

(a@b)®ec=a®(bGec)
a®1l=10a=a.

Version: 6.6.97 Time: 11:59 -1-

2 Chapter 5. Path Problems in Graphs and Matriz Multiplication

(3) Multiplication distributes over addition and 0 is a null-element with respect to
multiplication, i.e., for all a,b,c€ S

(apb)ec=(a@c)d(bOc)
cOadb)=(coa)P(cOb)
0Ga=a®0=0.

b) A semi-ring S is a closed semi-ring if in addition infinite sums exist, i.e., with
every family {a;; ¢ € I} of elements of S with countable (finite or infinite) index set
I there is associated an element @, a;, its sum. Infinite sums satisfy the following
laws:

(4) For finite non-empty index set i = {41,172, ..., %k}
@ai =a;, Day, D---Day,
i€l
and for empty index set 1 = ()
@ a; = 0.
ich
(5) The result of a summation does not depend on the ordering of the factors, i.e.,
for every index set I and every partition {I;; j € J} of I with
UL=randLnhi=0fori#k
jed
we have
Poi-B(Pe):
i€l jeJ Nel;
(6) Multiplication distributes over infinite sums, i.e.,

@)-(@)-8(@)

Jj€J i€l “jed

In Exercise 3 we draw some conclusions from these axioms.

Examples: 1) The boolean semi-ring B = ({0,1},V, A,0,1). The basic operations
are boolean OR (= addition)

va‘:{l if there is ¢ € I with a; = 1;
. ‘ 0 otherwise

i€l
with neutral element 0 and boolean AND (= multiplication)

z Ay =min(z,y)

with neutral element 1. The boolean semi-ring is the simplest closed semi-ring. We
use it to determine the existence of paths between points.

Version: 6.6.97 Time: 11:59 -2-

5.1. General Path Problems 3

2) The (min, +)-semi-ring (R U {oco} U{—o0}, min, +, 00, 0) of reals with additional
elements oo and —oco. The operations are infimum, denoted min, with neutral

element co and addition with neutral element 0. We define (—o0) + co = 0.
Here min corresponds to addition and 4 corresponds to multiplication. We use the
(min, +)-semi-ring to compute least cost paths. 1

For further examples of closed semi-rings we refer to the exercises. Let G' = (V, F)
be a digraph with V' = {wy,...,v,}, let S be a closed semi-ring and let ¢ : E — S be
alabelling of the edges of G by elements of S. We extend c to paths and sets of paths.
If p = wo, w1, ..., wyis a path, then ¢(p) = c(wo, w1) O c(wr, w2) O - -Oc(wg—1, wk);
if k=0 then ¢(p) = 1. If P is a set of paths then ¢(P) = @ ,cp c(p)-

Definition: The general path problem is to compute a;; = @pepi]_ c(p) for all
7,1 <1, <n. i

We need one further operation in closed semi-rings. For @ € S we define the closure

a” of a by a* = 1dad el = @DOai. Here ¢® = 1 and ¢t! = ¢ ® a'. Note
that 0* = 1. B

Examples: In the boolean semi-ring we have a* = 1 for all @ in the (min, +)-semi-
ring of reals we have ¢* = 0 for ¢ > 0 and a* = —o0 for @ < 0. In both cases, the
closure is trivial to compute.]

Definition: Pi(jk) is the set of paths p = wq, wy, ..., w; with

(1) wo = v;, w; = vy, i.e., p goes from v; to v;;

(2) wp = vy, forsome g, < k and all 1 < h <, ie., all intermediate points on the
path are in {vy,...,v};

(3) if i=7 > k then [> 0, i.e., the trivial path of length 0 is included in Pi(ik) only
it i <k I

With p = v;,v1,v3,v; we have p € Pi(;’) and p ¢ Pi(jQ). Also path p =v; € Pi(;) and

pg PV
Kleene’s algorithm is an application of dynamic programming. It computes

iteratively, £ =0, 1,2, ..., n, matrices a” , 1 <1,7 <mn, where
k)
bij- = @ c(p)
peP®

Next we derive recursion formulae for computing a(VoA path in Pj) can have no
intermediate point (by part (2) of the definition of Pi(j)) and it must have length at

least 1 (this is obvious for 7 # j and follows from part (3) of the definition of Pi(jk)

Version: 6.6.97 Time: 11:59 -3-

4 Chapter 5. Path Problems in Graphs and Matriz Multiplication

for i = j). Thus all paths in R(JQ) must have length exactly one, i.e., consist of a
single edge. Hence

“E?) =if (v;,v;) € F then c(v;,v;) else 0 fi.
Next suppose k& > 0. A path p € Pi(f) either passes through node k or does not.

Also if 1 = j = k then the path of length 0 belongs to Pi(jk) and does not belong to
(k—1)
P!

i - Thus by property (5) of a closed semi-ring

@ c(p) 9 i (t=j=k) then 1 else 0 fi
pePP

& P e &P c(p)

pEPi(jk_l) pEPi(]#) _Pi(]#_l)
p has length at least 2
= if (i=j =k) then 1 else 0 fi

(k—1)
i D @ c(p)-
(k) (k—1)
pEP; P
p has length at least 2

D a

A pathp e Pi(jk) - Pi(f_l) of length at least 2 has the form v;...v;...v;. It can be
divided into three parts, into an initial segment p’ of length at least 1 which leads
from v; to vy without going through vy on the way, i.e., p’ € ﬁ(:_l), into a terminal
segment p'’ of length at least 1 which leads from v to v; without going through vy
on the way, i.e., p" € Plij_l) and into an intermediate segment p” of length at least

0 which leads from vy to vy going /-times for some number / > 0 through vy, i.e.,

p" e Plii). Conversely, if p’ € ﬁ(:_l), p" e P]g:) and p'" € Plif_l) then path p'p'p"
obtained by concatenating p’, p” and p' is in Pi(jk) - Pi(jk_l). Here it is important

to observe that Pi(:_l) and Plij_l) contain only paths of length at least 1. This is

obvious for i # k (k # j) and follows from part (3) of the definition of Pi(;) (Pi(jj) for
i==k (k=7j). Thus

D w2 P P P w)oh)or”

pePi(jk)_Pi(jk_l) plepi(:—l) puepk(:) pulepk(f—l)
p has length at least 2
(6) ’ 7 m
= c(p')) © c(p”) | © c(p")
plEPi(:_l) p“EP;f:) plueplff—l)
_ (k=1) " (k-1)
=ay o D) oa; .
pllepl:’;)

Version: 6.6.97 Time: 11:59 —4—

5.1. General Path Problems 5

A path p" € Pé:) either has length 0 or it is a proper path of length > 0 which goes
l-times through v, for some number [(I > 0). In the latter case it consists of [+ 1

subpaths in P,i:_l). Hence

@ c(p") © c(path of length 0) & @ @ c(p")

(k) >0 1 (k)
prEP, 2 p''ep
! intermediate points of p''

are equal to v
(i) 19 @ (@ C(p””))

+1
>0 pllllepk(:—l)

(k—1) ok
1@@(akk)

1>0

k—1)
- << >) .

The set of recursion equations derived above immediately leads to the algorithm of
Program 1.

for i,5 € {1,...,n}

do ag(;.) « if (v;,v;) € E then c(v;,v;) else 0 fi od;
for k from 1 to n

do for i,5 € {1,...,n}

AAAAAAAA
T W
o o

do aff) —ali™ & (a7 @ (i) @ ali);
6 if i=j==k) then a!! V@14
7 od
8) od.

Program 1

(n)

Since P\ = P;j we have a;; = a;;” and the general path problem is solved.

]

Theorem 1. Kleene’s algorithm solves the general path problem in ©(n*) semi-
ring operations ¢, ® and *.

Proof: Line (5) is executed once for each triple 7, j, k with 1 < 4,7,k < n.]

Kleene’s algorithm as described above uses ©(n?) storage locations. With a little
skill this can be reduced to ©(n*) as follows. Note that we left open the order of
execution in line (4). Therefore we can replace lines (4) to (7) by lines (4') to (10')
where we use the identity 1@ axr @ (axx © afy O agg) = 1D apr dar), © (S a};k)
in line (10). -

Version: 6.6.97 Time: 11:59 —5—

6 Chapter 5. Path Problems in Graphs and Matriz Multiplication

) for 7,je€{l,....,n} —{k}

5) do aij eaij@(aiké)a};k@akj) od;

6') for i€ {l,...,n}—{k}

) do aj; — ai P (aix © ¢y © agk) od;
8 for je{l,...,n}—{k}

9) do Qi ¢ ag; D (akk ® azk ® akj) od;
0) AL azk.

5.2. Two Special Cases: Least Cost Paths and Transitive Closure

We take a closer look at two applications of the results of the previous section.
Further applications can be found in the exercises.

Transitive Closure of Digraphs: Let G = (V, F) be a digraph. Graph H(G) =
(V, E') is called transitive closure of G if (v, w) € E' if and only if there is a path
from v to w in GG. We use the boolean semi-ring and define

1 if (v,w) € F;
C(U’w):{() iva,'wggéE.

Then ¢(p) =1 for all paths p and therefore for every set P of paths

1 if P#£0;
Bew={y 1070
hy=s 0 if P=0.
We can thus apply Kleene’s algorithm to compute the transitive closure of a graph.

Because of ¢* = 1 for all elements of the boolean semi-ring, line (5) of Kleene’s
algorithm simplifies to

(k—1)

(k—1)
—ag

al®) Vi(a;, A ag;_l))

1
where A is boolean AND V is boolean OR.

Theorem 1. The matrix representation of the transitive closure of a digraph can
be computed in time ©(n*) and space ©(n?). 1

Theorem 1 is not very impressive. After all, we already know an V(n-e,.q) algorithm
from Sections 4.3 and 4.6 (€,.q4 is the number of edges in a transitive reduction of 7).
However, we will see in Sections 4.4 and 5.5 that Theorem 1 can be improved to
yield an O(n?-3%) algorithm.

All Pairs Least Cost Paths: Let G = (V, F) be a digraph and let [: £ — R be
a labelling of the edges with real numbers. We use the (min, +)-semi-ring of reals.

Then
@ I(p) = Inf{l(v,v1) + I(v1,v2) + -+ (vg, w);
p path from p="0,01,...,V wis a path from v to w}

is the minimal cost of a path from v to w. We can thus use Kleene’s algorithm to
solve the all pairs least cost path problem.

Version: 6.6.97 Time: 11:59 —6—

5.3. General Path Problems and Matriz Multiplication 7

Theorem 2. The all pairs least cost path problem can be solved in time ©(n?)
and space ©(n?) by Kleene’s algorithm. 1

Theorem 2 has to be seen in contrast with Theorem 7 of Section 4.7.4 where we
described an O(n - e - (logn)/log(e/n)) = O(n?) algorithm for the all pairs least
cost path problem. Although the algorithm of 4.7.4 is asymptotically never worse
than Kleene’s algorithm, it is nevertheless inferior for small n or dense graphs.

5.3. General Path Problems and Matrix Multiplication

We resume the discussion on the general path problem. Let G = (V, F') be a digraph
with V' = {vy,...,v,}, let S be a closed semi-ring and let ¢ : F'— S be a labelling
of the edges of G' by elements of S. We have shown how to compute ®pEP”- c(p)

for every 7 and j. By property (5) of closed semi-rings we can rewrite this sum as

b Pp .

[>0 peP;; and
p has length [

The inner sum is now easily represented as a matrix product. Let matrix Ag =
(@ij)1<i,j<n be defined as follows:

;= {c(vi,vj) if (vi,v;) €
! 0 otherwise.
Then the sum above is equal to entry (i, j) of the [-th power AL of matrix Ag, or

more precisely:

Definition: Let M, be the set of all » X n matrices with elements of a closed
semi-ring S. Addition and multiplication of matrices are defined as usual, i.e.,
(ai]‘) G (b”) = (ai]‘ D b”) and (aij) ® (b]k) = (@?:1 ai; © b]k) We use 0 to denote
the all zero matrix and I = (§;;) to denote the identity matrix, i.e., §;; = 1if i = j

and(S”:Olfz;éJ 1

It is easy to see that (M,,®,®,0,1) is a closed semi-ring (Exercise 8). We define
the powers of matrix A € M,, as usual:

A’ =1
ARl = A AF
and the closure of A by

A*:J@A@M@---:@Al.
1>0

We are now able to formalize the connection between the powers of A5 and the
labels of paths of a certain length.

Version: 6.6.97 Time: 11:59 -7

8 Chapter 5. Path Problems in Graphs and Matriz Multiplication

Theorem 1. Let AL = (05?)152‘,]’9 be the [-th power of matrix Ag. Then

dl= @ .

pEP;;
length(p)=1!

Proof: (By induction on [) For [= 0 and [= 1 the claim is obvious from the
definition of I and Ag. Assume [> 1. A path p of length [from v; to v; consists
of an edge, say from v; to vy, and a path of length / — 1 from v, to v;. Hence

n

O W™D B o)

pEP;; k=1 p' € Py
length(p)=1 length(p')=1—1

n

Plewive @ b))

k=1 p' €Py;
length(p')=1-1

—_
o))
~

n

Dol oal
k=1
)

[

al
Ix

L~

Corollary 1. Let Af = (bi;)1<i,j<n. Then

bij = @ c(p)-

pEPF;;

Proof: Follows immediately from Theorem 1 and the definition of A7.]

General path problems are equivalent to computing the closure of matrix Ag.
Kleene’s algorithm allows us to compute the closure of a matrix with ©(n®) ad-
ditions, multiplications and closure operatios of semi-ring elements. The same
number of operations is required for multiplying two matrices according to the
classical method, the school method. According to the school method we multiply
two matrices A and B by computing the scalar product of every row of A with
every column of B. We show next, that there is a deeper meaning behind the fact,
that Kleene’s algorithm for computing the closure of a matrix and the highschool
method for multiplying matrices have the same complexity.

Version: 6.6.97 Time: 11:59 —-8—

5.3. General Path Problems and Matriz Multiplication 9

Theorem 2. If there is an algorithm which computes the closure of an n X n
matrix using A(n) additions, multiplications and closure operations of elements of
semi-ring S and if A(3n) < ¢- A(n) for some ¢ € R and all n € N then there is an
algorithm for multiplying two n X n matrices with M (n) = O(A(n)) additions and
multiplications.

Proof: Let A and B be the two n X n matrices. Let C' be the following 3n x 3n
matrix:

0 A 0
CzOOB

The closure C* of C' can be computed in A(3n) < c¢- A(n) operations. Since

0 0 AGB 000
C*=10 0 0 and C®=C*=...=[0 0 0
0 0 0 0 0 0
we have
I A AGB
cC*=10 1 B
0 0 I

and product A® B can be found in the right upper corner of C*. Thus the product
of two n X n matrices can be computed in M(n) = A(3n) < ¢- A(n) = O(A(n))
operations. 1

Let us briefly discuss the assumption Je : A(3n) < ¢ - A(n). First of all, this
assumption stipulates a polynomial bound on the growth of A(n),

A(n) < ¢~ A(n/3) < ¢ - A(nf9) < -+ < 87 A(1)

for n a power of 3. Thus A(n) = O(c!°8:"). Since we already know how to compute
the closure in O(n®) operations, a polynominal bound on A(n) is not a severe
restriction. Secondly, the assumption stipulates a certain “smoothness” of A(n).
Function A(n) is not allowed to grow in jumps. Many functions such as n® and
n® -log n where a > 0, satisfy the assumption made in Theorem 2. Surprisingly,
the reverse of Theorem 2 is also true.

Theorem 3. If the product of two n X n matrices can be computed with M (n)
additions and multiplications of semi-ring elements and if 4 - M (n/2) < M(n) and
M (2n) < c¢- M(n) for some ¢ and all n then the closure of an n X n matrix can be
computed with A(n) = O(M (n)) additions, multiplications and closure operations
of semi-ring elements.

Proof: We describe a recursive algorithm which uses only A(n) = O(M(n)) semi-
ring operations. Let X be any n X n matrix over a closed semi-ring. We assume at
first that n = 2% is a power of 2 and extend the result to arbitrary n later on.

Version: 6.6.97 Time: 11:59 -9-

10 Chapter 5. Path Problems in Graphs and Matriz Multiplication

For k = 0 and hence n = 1 the closure of matrix X = () is simply X* = (z*).
Thus A(1) = 1. Assume k£ > 0. We split X into four n/2 x n/2 matrices B,C, D

and F such that
B C
x=(b %)

and interpret the splitting of X in terms of graphs. Matrix X corresponds to a
graph G = (V, E) with V = {vy,...,v,}, F =V x V, and labelling ¢ : £ — S
with c(vi,v;) = ;. Let Vi = {vy,...,v,/0} and Vo = {vna41,..-,v,}. Then
B describes the labelling of edges which lead from nodes in V; to nodes in Vy, C
describes the labelling of edges which lead from nodes in V; to nodes in V3,
Figure 1shows the relations in form of a transition diaram.

Figure 1. Relations after splitting X described by a graph

What is the interpretation of matrix

. (F G\,
= (5 9)

Fis the sum of the labellings of all paths which lead from nodes in V; to nodes in
Vi, ... Let v,w € V. A path from v to w has the following form. It begins in v
and then goes through some nodes in V; using edges in B, then leaves V; and enters
V, via an edge in C, then goes through some nodes in V; using edges in F,
More precisely, we can say that a path from v to w consists of elementary pieces
which connect a node in V; with another node in V; without going through a node
in V; on the way. Thus an elementary piece is either an edge between two nodes in
Vi, i.e., an element of B, or it consists of a single edge in C' followed by a path in
V, consisting of edges in F only, i.e., an element of E*, followed by an edge from V;
to Vi, i.e., an element of D. Elementary pieces are thus given by B& (C'® E*® D).
Hence

F=(Ba&(CoE ©D))".
Similarly,

G=FoCeE",

H=F"oD®F

and

Version: 6.6.97 Time: 11:59 -10—

5.3. General Path Problems and Matriz Multiplication 11
K=E"a®FE ODOFoCOE.
We leave it to the reader to formally justify these identities. The formulae above

suggest the algorithm of Program 2 for computing F, G, H and K from B, C, D
and F.

T« E*;
T« C oy

F «— (Ba& (1o D))*
T3%T1®D,
HeTy0F;
I((—Tl@(T;g@G).

Program 2

The execution of this program supposes to compute the closure of two n/2xn/2
matrices, six products of n/2 X n/2 matrices and two sums of n/2 X n/2 matrices.
If we use the same algorithm recursively then the closure of an n/2 X n/2 matrix
can be computed in A(n/2) operations. Summing two n/2 X n/2 matrices takes
(n/2)? additions. Thus

A(n)=2-A(n/2)+6-M(n/2) + 2 (n/2)%.
Since M (n) > 4 - M(n/2) and hence M(n) > n*- M (1) > n® this is simplified to
A(n) <2-A(n/2)+ 8- M(n/2).
We show A(n) < 4-M(n). Since A(1) = M (1) =1 this is certainly true for n = 1.

If n=2%>1 then
A(n) <2-A(n/2)+8-M(n/2)

<16 - M(n/2)
<4-M(n)

by assumption. If n is not a power of two we fill up matrix X with zeroes until we
obtain a matrix X of dimension 2M1°8 "1

—~ (X 0
(3 9)
— (X" 0
X_(O 1)

e
and compute X . Since

Version: 6.6.97 Time: 11:59 -11-

12 Chapter 5. Path Problems in Graphs and Matriz Multiplication

we can read off X* in X . Thus

A(n) < A(2M108 1)
< 4. M (208)

<4-M(2n) (since M is non-decreasing)
<4-c-M(n) (by assumption)
In either case, we have A(n) = O(M (n)). 1

In Theorems 2 and 3 we established the claim that closure of a matrix and matrix
product have the same order of complexity. Since matrix product is the more
familiar operations we study its complexity in more detail in the subsequent sections.

5.4. Matrix Multiplication in a Ring

We all learned in school how to multiply two n X n matrices in O(n®) arithmetic
operations. Surprisingly enough, the naive way of multiplying matrices is not the
fastest. When we wrote this chapter, the asymptotically fastest algorithm was by
Coppersmith and Winograd based on work by Strassen; their algorithm uses only
O(n*3%) arithmetic operations. In this section we describe an O(n*®') algorithm
due to Strassen, the first algorithm which actually beat the O(n®) bound. Strassen’s
algorithm and all other fast multiplication algorithms for matrices do not work over
semi-rings but only in the richer structure of rings.

Definition: An algebraic structure (S,4+,-,0) is a ring if

1) (S,4+,0) is an abelian group, i.e.,

(a+b)+c= a+(b+c) (associativity)
a+b= b+a (commutativity)
a+0=a (neutral element)

Vadb: a+b=0 (inverses exist)

2) (S,) is a semi-group, i.e.,
(a-b)-c= a-(b-c) (associativity)
3) the distributive laws hold, i.e.,
a-(b+c)=a-b+a-c
(b+c)-a=b-at+c-a |

Version: 6.6.97 Time: 11:59 -12—

5.4. Matriz Multiplication in a Ring 13

Theorem 1. The product of two n X n matrices over a ring can be computed in
O(n!°87) ring operations.

Proof: We give a recursive algorithm. Let n = 2% be a power of 2 (the general case
is considered later) and let A and B be two n x n matrices. We split A and B into
four n/2 x n/2 matrices each.

All A12) (Bll B12)
A = B =
(A21 Az Bay1 By
Then C' = A - B can be written as
Cn 012)
O =
(021 Cao

C11 = A1 - By + Arg - Bag
Ci2 = A11 - Bia + A1g - By
Cy1 = Agy - Biy + Agg - By
Chy = A1 - Bia + Agz - Baa.

where

It is precisely the same set of formulae that defines the product of two 2 X 2 matrices.
Note however, that the elements of matrices A, B and (', when considered as 2 X 2
matrices are not ring elements but large n/2 x n/2 matrices. The following lemma
shows that this difference is inessential.

Lemma 1. Let m € N and let S be a ring. Then the set of m X m matrices over
S forms a ring.

Proof: Exercise 11.]

We still have to describe a fast method for multiplying two 2 x 2 matrices. What
does fast mean? Note that we want to apply the algorithm recursively, i.e., the
elements of the two 2 X 2 matrices to be multiplied are themselves large matrices.
Therefore, multiplication of ring elements is much more costly than addition in the
recursive application of the algorithm. It is therefore important to multiply two
2 X 2 matrices with a small number of multiplications of ring elements, in particular
to use less than the 8 multiplications used in the school method. Strassen shows
how to multiply two 2 X 2 matrices

air ar2 bir bio _ [C1r C12
a1 Qa2 ba1 bay €21 C22
with 7 multiplications and 18 additions and subtractions.

Version: 6.6.97 Time: 11:59 -13-

14 Chapter 5. Path Problems in Graphs and Matriz Multiplication

Compute
my (a12 — agz) - (ba1 + baa);
my (a11 + ag2) - (b11 + baa);
mg (a11 — ag1) - (b11 + b12);
my (a11 + a12) - baa;
ms < aqy - (b12 — baa);
meg < @22 - (521 - 511);
my 4 (a1 + az) - biy;

and then

Cc11 < my + mg — my + Mmg;
C12 < My + Ms;
€21 < Mg + Mr;
Co9 — Mo — M3 + my — my.

The reader can easily make sure that this algorithm actually computes the prod-
uct of two 2 X 2 matrices. If we apply this algorithm recursively to compute
Ch1, Ci2, Ca1 and Cya then the following recursion holds for M (n), the number of
ring operations required to multiply two n X n matrices by Strassen’s algorithm

M(1)=1 and
M(n) = TM(n/2) + 18(n/2)*

for n a power of 2. For n = 2* this recurrence has solution

k-1
M(n)=Y 718 20k7i712 47k
=0
=71 _6n? = Tn'o87 — gn’.

If n is not a power of 2 we fill up matrices A and B with zeroes until we reach a
power of 2 and compute the product of the padded matrices. This increases n by
at most a factor of two. Thus for all n

M(’IZ) S 7(2n)10g7 —49. nlogT — O(n]0g7). I

Strassen’s method for multiplying matrices is asymptotically faster than the school
method. Where is the cross-over point, i.e., from what n on is Strassen’s algorithm
superior to the school method? We confine ourselves to the case that n = 2* is a
power of 2.

The school method requires n® multiplications and n® — n? additions for mul-
tiplying two n X n matrices. We want to find the smallest ko such that for all
k> ko

7k+1 —6- (Qk)2 < 9. (Qk)?) _ (2k)2

Version: 6.6.97 Time: 11:59 -14—

5.4. Matriz Multiplication in a Ring 15

A simple calculation shows that kg = 10, i.e., n = 1024. This is rather disappointing
but it also shows how we can improve the recursive algorithm; the school method
is faster than Strassen’s algorithm for n < 1024. For example, Strassen’s algorithm
requires 25 operations for multiplying two 2 X 2 matrices and the school method
requires only 12 operations. It is therefore senseless to use recursion all the way
down to n = 2 in Strassen’s algorithm. Where should we stop?

We pose the following question. From what point on is it cheaper to multiply
directly by the school method than to use one further step of recursion? Let n be
even and let A and B be n X n matrices. We split A and B each into 4 matrices
of size n/2 x n/2 and multiply A and B with 7 multiplications and 18 additions of
n/2 X n/2 matrices. The school method is used to multiply the smaller matrices.
The total number of arithmetic operations used in this method is

7-(2(n/2)° = (n)2)?) + 18(n/2)? = ; 4 % n?,

If the school method is used directly to multiply A and B then
203 — n?

arithmetic operations are required. Then

7 11
Z-n3+z-n2<2n3—n2
15 1
lﬁ Z‘TL2<Z‘TL3

iff 15 < n.

We conclude that for even n we should use one more recursive step if n > 16.
Suppose now that n is odd. We split off one column each from matrices A and B,

i.e.,
All Alg) (Bll Bl?)
A = B =
(A21 A22 B21 B22
where A1y, Bip are n — 1 X n — 1 matrices, Ay2, Bis are column vectors of length
n — 1, Ay, By are row vectors of length n — 1 and Ass, Bjs are ring elements. If
we compute A - B according to the school method then we also multiply Ay - By

according to the school method. Recursion applied to product Ay - Byy saves
operations whenever n — 1 > 16. These considerations lead to Program 3.

Theorem 2. Procedure matmult for multiplying two n X n matrices has the fol-
lowing properties:

1) For n < 16 the algorithm uses the same number of arithmetic operations as
the classical algorithm.

2) Formn > 16 matmult uses strictly less arithmetical operations than the classical
algorithm.

Version: 6.6.97 Time: 11:59 -15—

16 Chapter 5. Path Problems in Graphs and Matriz Multiplication

procedure matmult(A, B, n);
co A and B are n X n matrices oc
if n < 16
then compute A - B according to the classical algorithm
else if n even
then split A and B into four n/2 x n/2 matrices each
and apply the formulae given in the proof of Theorem 1;
use matmult recursively to multiply n/2 X n/2 matrices
else split off one row and one column of matrices A and B
and apply matmult recursively to the n — 1 X n — 1 matrices
obtained in this way;
the remaining products are computed classically
fi
fi

end.

Program 3

3) matmult never uses more than 4.8 - n'°87 arithmetical operations.

Proof: 1) and 2) are obvious from the preceding discussion. 3) remains to be proved.
Let M (n) be the number of arithmetical operations used by matmult on two n x n
matrices. Then

M(n) = 2n® — n? if n < 16;
M(n) =TM(n/2)+ 1 - n? if n > 16 and n even;
M(n)=TM((n—1)/2)+ % - n> = 17Tn+ 1 if n > 16 and n odd.
Define M for 2 € Rt by
M(z) = 22° — o if z < 32;
M(z) = TM(z/2) + % - 2? if z > 32.

Then M(n) > M(n) for all n € N. This is easily shown by direct calculation for
n < 32 and by induction for n > 32. Furthermore

k—1
M(z) = 37 2 (/2) 4 75 [2(2/24)° — 2(2/2)]

i=0

for z > 32 where k = min{/; /2" < 32}. This is easily verified by induction. With
k= |logz| — 4 =logz —t for some ¢ € [4,5) we obtain

M(z) <787 [13- (4/7) +2- (8/7)1]
< 4.8.7l°87

for all > 32. For z < 32 it is easy to show directly that M(z) < 4.8 . 7187,]

Version: 6.6.97 Time: 11:59 -16—

5.4. Matriz Multiplication in a Ring 17

So far, we have only counted the number of arithmetic operations. We neither
considered the additional administrative overhead required by Strassen’s algorithm
nor the difference in complexity of adding and multiplying ring elements. We will
now sketch an analysis which takes all these facts into account. Let a be the time
required to add two ring elements and let m be the time required to multiply two
ring elements. Again we want to know from what » on a recursion step pays off.
We neglect terms of linear order in the sequel. It takes time n’-a+n?-c toadd
two n X n matrices on a RAM; here ¢; is the time required for storage access, index
calculations and test for loop exit. Similarly, it takes n3 -m—l—(n3 —n2)-a—|—n3 co+n?-cs
time units to multiply two n X n matrices according to the classical algorithm. Here
¢y and c3 are the times required for storage access, index calculations and the test
for loop exit in the innermost and next to innermost loop. A recursion step pays

off, if

7-[(n/2)? - m 4 ((n/2)° = (n/2)%) -a + (n/2)* - c2 + (n/2)* - 3]
P18 [(0/2) -t (12 a1
< n’ -m—l—(n3 —n2) ca+nd e+ nt ey,

i.e.,

30a + 36¢; + 6¢3
m—+a+ ¢)
It is beyond the scope of this book to determine constants ¢y, ¢z, c3, @ and m
exactly. Realistic values are a < ¢y, ¢, c3, m < 6a. Then n > ng ~ 40, which agrees
with experiments reported in the literature. We refer the reader to the literature
(cf. Section 5.9) for a more detailed analysis.

The analysis of Strassen’s algorithm given above may still be criticized. Sup-
pose that we want to multiply two n X n matrices over the integers and that all
entries are in the range [0.. M —1], i.e., all entries are numbers of at most log M bits.
Let us assume further that it takes a(k) resp. m(k) time units to add resp. multiply
k-bit numbers. The assumption here is that it takes one time unit to manipulate
a single bit (cf. 5.7. for an exact definition). Then a(k) = O(k) and m(k) = O(k?)
by the classical methods. There are faster methods for multiplying numbers, an
O(k'83) algorithm is discussed in the exercises and an O(k - logk - loglogk) al-
gorithm can be found in Schoénhage/Strassen (71). We use m(k) = O(k?) in the
sequel. Then the following question arises. How large do the numbers become in
Strassen’s algorithm compared with the classical algorithm?

Using the classical algorithm we have to perform n® multiplications of log M
bit numbers for a cost of n® - m(log M). We then have to add numbers in the range
[0..n-(M—1)?%]. Thus the cost of the additions is bounded by n*-a(log n+2log M).
A more careful analysis allows us to drop the logn term in the bound on the cost
of additions (Exercise 14). Thus the total cost of the classical method is bounded
by O(n® - (log M)?).

What we can say about Strassen’s method? The following simple observation
is crucial. If ¢;; = Zj ai; - bj and a;;,b;5 € [0..M — 1] then ¢, = Ej a; -

Version: 6.6.97 Time: 11:59 -17-

18 Chapter 5. Path Problems in Graphs and Matriz Multiplication

b;r mod nM?. The integers modnM? form a ring Z, 2. We can therefore carry
out Strassen’s algorithm in the ring Z,5s2 of integers modnM?. The cost of an
addition or multiplication in that ring is certainly bounded by m(logn + 2log M)
and hence the total cost of Strassen’s method is O(n'°87 - (logn + log M)?). Thus
Strassen’s method is asymptotically faster than the classical method not only with
regard to the number of arithmetical operations but also with regard to the number
of bit operations.

5.5. Boolean Matrix Multiplication and Transitive Closure

In this section we apply the results of the previous section to the boolean matrix
product. Unfortunately, this is not possible directly. The boolean semi-ring B =
({0,1},V,A,0,1) is not a ring. We have 0V 1 =1V 1 =1, i.e., there is no additive
inverse for element 1.

Let A and B be two boolean n X n matrices. We want to compute the boolean
matrix product C of A and B using A as the multiplicative and V as the additive
operation.

Since the boolean semi-ring is not a ring we cannot apply the results of the
previous section directly. A way out is to consider 0 and 1 as natural numbers and
to compute the ordinary product C of A and B. Then

n

n
Cij = V a;r N\ bkj and éi]‘ = E aik - bk]‘

and hence ¢;; = 0iff ¢;; = 0. We can thus directly translate matrix ¢ into matrix C.
Natural number 0 corresponds to the boolean constant 0 and natural numbers # 0
correspond to the boolean constant 1. We have

Theorem 1. Let A and B be two boolean n X n matrices. Then the boolean
matrix product of A and B can be computed in O(n'°87 - (log n)?) = O(n?-8%) bit
operations.

Proof: At the end of the previous section we have shown that the product of (0, 1)-
matrices can be computed in O(n!°87 - (log n)?) = O(n*®?) bit operations. Recall

that log 7 < 2.81 and logn = O(n€) for all € > 0. The discussion above shows that
this is also true for the boolean matrix product.]

Theorem 2. The closure of an nxn boolean matrix can be computed with O(n!°87-
(logn)?) bit operations.

Proof: Follows immediately from Theorem 1 and Theorem 3 of Section 5.3.]

Version: 6.6.97 Time: 11:59 -18-

5.6. (min,+)-Product of Matrices and Least Cost Paths 19

Theorem 3. The transitive closure of a digraph G = (V, E) with n = |V| can be
computed in O(n'°87 . (logn)?) bit operations.

Proof: Obvious from Theorem 2 and Corollary 1 of Section 5.3.]

5.6. (min,+)-Product of Matrices and Least Cost Paths

We used the (min, +)-semi-ring of reals to deal with least cost path problems. Let
A and B be two n X n matrices with the entries in [0..M — 1]U {oco}. We want to
compute the (min, +)-semi-ring C of A and B, i.e.,

c;r = min (a;; + b;p).
= min (a1 + by

The classical method for computing C' takes O(n?® log M) bit operations. Again, the
results of Section 5.4. cannot be applied directly because the (min,+)-semi-ring of
reals is not a ring.

An asymptotically faster algorithm is based on the following observation. If
a,b € Ny and a # b then lim,_o(z® + 2°)/2™™*%) = 1 and hence min(a,b) ~
log(z? + x°)/ log = for small .

Lemma 1. Let by,...,b, € No, let f(z) = > _, 2% and let @ = min(by,...,b,).
Then

a=[-(1/m)log f(27™)]

for any m > logn.

Proof: Let a = b),. Then

f(2—m) — ZQ—Tnbk — 2—m-a . (1 _I_ Z 2—m~(bk—a))
=

=c-27™°
for some ¢ with 1 < ¢ <14 (n—1)=mn. Then
[=(1/m)log f(27™)] = [a — (log ¢)/m] = a
since a € Ng and 0 < (loge)/m < 1. 1

Version: 6.6.97 Time: 11:59 -19-

20 Chapter 5. Path Problems in Graphs and Matriz Multiplication

Based on Lemma 1 we can use the following algorithm to compute C'.

(1) Let m =1+ [logn]. Compute matrices A and B with

b = d2m it agg oo
4 0 if a;; = 00

and
b L2 by oo
E 0 if bi]' = Q.

(2) Compute C' = A - B by Strassen’s algorithm.
(3) Compute ¢ from C' by

S _) > if éi]' = 0;
“IT 1 [-(1/m)logéi;] if & # 0.
Theorem 1. The (min,+)-product of two matrices A and B with entries in

[0..M — 1] U {oo} can be computed in O(n'°87) arithmetical operations on real
numbers or O(n'°87 . (M logn)?) bit operations.

Proof: m is easily computed from the binary representation of n. Then matrices
A and B can be computed in O(n?) arithmetical and O(n?M logn) bit operations.
Note that numbers i;;, b;; have O(M -m) = O(M logn) bits each. Step (2) clearly
takes O(n'°87) arithmetical operations. It takes O(n!°87 - (logn + M logn)?) =
O(n'°¢7 . (M logn)?) bit operations according to the discussion at the end of Sec-
tion 5.4. Finally step (3) requires to take logarithms n? times. This can be done as
follows.

Lemma 2. Let z € R, 0 < z < 1, and let z be the number of leading zeroes in the
binary representation of z. Then [—(1/m)logz] =14 |z/m].

Proof: Note first that

—logx=2z+1-94§ for some §, 0 < § < 1.

Hence
—(1/m)logz = |z/m| + (z/m — |z/m]) + (1 - §)/m
Also
0 < (s/m— |z/m) + (1 8)/m < (m—1)/m+1/m <1
and hence

[—(1/m)logz] = |z/m] + 1.]

We conclude from Lemma 2 that step (3) takes O(n?) arithmetical operations and
O(n? - (log M + loglog n)?) bit operations. Note that z < Mlogn. Altogether
we have shown that O(n!'°¢7) arithmetical operations over the reals and O(n'°87 .
(M logn)?) bit operations suffices. 1

Version: 6.6.97 Time: 11:59 —20—-

V.7. A Lower Bound on the Monotone Complexity of Matriz Multiplication 21

Let us compare the classical algorithm with the new algorithm. The classical algo-
rithm is clearly inferior with respect to arithmetical operations. The situation is not
so clear with respect to the number of bit operations. The classical algorithm uses
O(n?®log M) bit operations. The new algorithm uses O(n!°¢7 . (M logn)?) bit op-
erations. Thus the classical algorithm is superior or at least competitive whenever
M is of size n>71°87 x n019 or larger.

In the boolean case we were able to obtain efficient algorithms for the transitive
closure by applying Theorem 3 of Section 5.3. Is this also true here? The answer
is “No”! Let us take a closer look at the proof of Theorem 3 of Section 5.3. In the
recursive algorithm described there we have to multiply smaller matrices. In the
case of (min,+)-product all entries in these smaller matrices correspond to least
cost paths in subgraphs of the given graph. Therefore the entries in these matrices
are in the range [0..nM]. As above we assume that we start with a matrix with
entries in [0..M — 1]. Thus the multiplications on the way are extremely costly;
their cost may be as large as O(n!°87 - (nM logn)?) bit operations by Theorem 1.

This section has been inserted to give the reader a warning. It shows us that
saving arithmetical operations may not always correspond to real savings in execu-
tion time, if the reduction in arithmetical operations implies a drastic increase in
the size of the numbers which have to be handled by the algorithm. The additional
time spent on realizing the basic arithmetic operations addition and multiplication
then more than compensates the savings in the number of such operations. We
conclude that it is not enough to analyze the number of arithmetic steps; it always
has to be accompanied by an analysis of the cost of arithmetic steps.

V.7. A Lower Bound on the Monotone Complexity of Matrix Multi-

plication

In this section we will prove a lower bound on the complexity of matrix multi-
plication in a restricted model of computation: straight-line programs which use
only monotone operations. A straight-line program is a program without loops
and conditional statements. All programs which we have seen in this chapter are
straight-line programs if we confine ourselves to fixed input size because for fixed
input size we can eliminate all loops and procedure calls by explicit duplication of
code. Monotone operations preserve the natural ordering on their domain. f is
called monotone if z; < y; for 1 < i < n implies f(z1,...,2,) < f(y1,...,yn). In
the arithmetical case (reals or integers) the operations addition and multiplication
are monotone but subtraction is not. In the boolean case the operations AND and
OR are monotone but NEGATION is not. (The natural ordering is 0 < 1 in the
boolean case.) We treat the boolean case first and then obtain the lower bound for
other cases as a corollary.

Definition: A straight-line program [over set X = {z1,...,z,} of input vari-
ables, set 7 = {z1,..., 2, } of intermediate variables, and operations AND and OR

Version: 6.6.97 Time: 11:59 -21-

22 Chapter 5. Path Problems in Graphs and Matriz Multiplication

is a sequence Ay, ..., A,, of assignment statements. The j-th assignment statement
A;, 1< j <m, has the form

Zj & Uj1 Opj V;2

where op; € {AND,OR}, and v;; € X or vj; = 2 for some [< j and k = 1,2. If
the operation symbol in assignment A; is AND res. OR then we refer to A; as an
AND-gate resp. OR-gate. Integer m is the length of the program 3.]

The semantics of straight-line programs is straightforward. We associate with every
variable v € X U Z of a straight-line program an n-ary boolean function resg , :

B" — B where B ={0,1}. Let b= (b1,...,b,) € B" be arbitrary.
If v e X, say v =z, then resg , is the i-th projection function, i.e.,

—

resg . (b) = b;.

If v e Z, say v=zj;, and A; has the form z; < vj; op; v;2 then

— — —,

resp,z; (b) = resp,v;, (b) op; resp v, ()

where we took the liberty of using the same symbol op; for the operation symbol
and the operation itself.

Let F be a set of n-ary boolean functions. Then straight-line program 5 com-
putes F'if ' C {resg,; v is a variable of #}. The complexity of I is the minimal
length of any program (which computes it.

Example: Let 3 be the following program with input variables a1, a21, b1y, b12:

214 a1 V byo;
29— 21 V bll;
234 29 N\ dqq.

We used A to denote AND and V to denote OR. (Frequently, we suppress the
A-symbol.) Then

TE€SB 2, = G21 \% bll vV b12 and TESB »; = (11021 vV allbll \% (Lllblg. |

Straight-line programs can be interpreted as circuits, the circuit corresponding to
the program above is shown Ficure 2. The input variables correspond to the input
ports of the circuit and the intermediate variables correspond to output gates.

A boolean function f is monotone if it can be computed by a straight-line
program over operation set AND and OR. Equivalently, fis monotone if it preserves
the natural ordering on B: B is ordered by 0 < 1 and B" is ordered componentwise.

We are interested in boolean matrix multiplication.

Version: 6.6.97 Time: 11:59 -22—

V.7. A Lower Bound on the Monotone Complexity of Matriz Multiplication 23

Figure 2. Circuit for example program

Definition: Let r,p,q¢ € N and let A = (a;;), B= (), 1 <i<r, 1<j<p, 1<
k < g, be sets of boolean variables. The (7, p,q) boolean matrix product is the
following set F’ of r - ¢ monotone boolean functions:

P
F={\/(aijAbjx); 1<i<r, 1<k<q}. i
i=1

The definition of the matrix product suggests the school method for computing it.
We will show that the school method is optimal.

Theorem 1.

a) Every program (= monotone circuit) for the (r,p,q) boolean matrix product
contains at least r - p- ¢ AND-gates and at least r - q - (p — 1) OR-gates.

b) The school method for boolean matrix product is the only (up to commutativity
and associativity of AND and OR) monotone straight-line program which uses
that number of AND- and OR-gates, i.e., the school method is the unique
optimal monotone circuit for boolean matrix product.

Proof: The proof of Theorem 1 is lengthy. We will first review some basic facts
and concepts about boolean functions, then prove two theorems about the structure
of optimal monotone circuits and then finally prove the lower bound on matrix
multiplication.

Let f,g: B™ — B be boolean functions. We write f < g if f(g) < g(g) for all
b € B". A monomial is a product of input variables. Let m be a monomial. Then
m is an implicant of f if m < f and it is a prime implicant of f if m < f and
m < m' < fimplies m = m' for all monomials m'. We use Prim(f) to denote the
set of prime implicants of f.

Version: 6.6.97 Time: 11:59 -23-

24 Chapter 5. Path Problems in Graphs and Matriz Multiplication

We will now state and prove two theorems on the structure of monotone cir-
cuits. We illustrate both theorems on the basis of the example given above. We
assume that the three assignments given there are part of a program for the (r, p, q)
boolean matrix product with » > 2, p > 1 and ¢ > 2. We also assume that z
and z3 but not z; are used in later statements of the program. We indicated this
assumption in Figure 2 by the two wires leaving the bottom of the diagram.

Theorem 2. Let § be a monotone circuit which computes F, let v be a variable
in 3, and let Prim(resg,) = {to,...,tx}. If there is no monomial t and no function
f € F withtoAt € Prim(f) then the following circuit 3’ also computes I': Circuit 3’
is obtained from 3 by replacing every access to variable v by an access to a new
variable v' with resg , =11 V ...V t}.

Remark: Circuit 3’ is not necessarily cheaper than circuit 8 because we might
delete only one gate, namely v, but might have to add more than one gate to
compute t1 V...V tx. In our example, aii1az; is prime implicant of z3; it is not
part of any prime implicant a;;b;; of any output function. Hence we can replace
all accesses to z3 by accesses to z§ with resgr o = ay11b11 V ay1b1o. We can therefore
delete gates z3 and z3 and replace them by gates which compute ay1b11 V a11b1s.
We obtain the curcuits of Figure 3.

Figure 3. Application of Theorem 2 to example circuit

Proof (of Theorem 2): For the sake of contradiction let us assume that 8’ does not
compute F, say f € F is not computed. Then there must be a variable w with
resg ., = f. We conclude from the hypothesis of the theorem that v # w. Hence w
exists also in circuit 3’ and realizes f' = resg ,,. By monotonicity we have f' < f
and since f is not computed by 3’ we even have f' < f. Thus there must be be B”

— —

such that f'(b) =0# 1= f(b). Since 8 and 3’ only differ in variables v and v’ we

Version: 6.6.97 Time: 11:59 —24—

V.7. A Lower Bound on the Monotone Complexity of Matriz Multiplication 25
conclude further that (t; V...V t;)(b) = 0 and to(b) = 1. Hence, if we change the
value of any variable which occurs in ¢y from 1 to 0 we also change the value of f
from 1 to 0 and therefore there is a monomial ¢ with g At € Prim(f), contradiction.
|

Consider variable z} in our example above. It has prim implicants a11b11 and a11b12.
Both products have to be computed in any circuit for a matrix product but they
have to be sent to different outputs. However, separating information is impossible
in monotone computations as Theorem 3 shows.

Theorem 3. Let v be a variable in a monotone circuit 3 which computes F.
Assume further that t Aty, t Aty € Prim(resg,) for some monomials t, t;, t, and
that for all f € F we have: for all monomials s the inequalities s At Aty < f and
sAtAty < fimply sAt < f. Then the following circuit 3’ also computes F'. Delete
v from 3 and replace all accesses to v by accesses to v' with resg , =1V resg .

Proof: For the sake of contradiction let us assume that 3’ does not compute F, say
f € F, is not computed. Let f = resg,, for some variable w and let f' = resg ,,
if w# v. If w = v then let f' = resg ,». By monotonicity we have f < f’ and

since f is not computed by 3’ we even have f < f'. Let b € B™ be such that
f(6) =0# 1= f'(b). Then we must have resg ,(b) = 0 and ¢(b) = 1.

As before, we conclude that if we change the value of any variable which occurs
in ¢ from 1 to 0 then f’ changes its value from 1 to 0 and therefore we conclude
that a monomial s with s At € Prim(f') exists.

From the structure of circuits 3 and 3’ we conclude that sAtAty and sAtALy are

implicants of f. Hence s At is an implicant of f and hence f(b) = 1, contradiction!
|

In our example we can apply Theorem 3 to z; and z}. Consider z; first. Let
fik = \/j(aij A bj;) be an arbitrary output of boolean matrix product and let s be
a monomial with s A as; < fix and s A ba < fi. From s A asy < fix we conclude
that either s < f; or s = byys’ and ¢ = 2. From s A b1z < fj; we conclude that
either s < f;; or s = a;18" and k = 2. Thus either s < f;; or s = as1b12s" and
t = k = 2. In either case we have s < f;;,. We can therefore apply Theorem 3
with £ = 1, t; = a91 and t3 = byy. This allows us to replace all accesses to z;
by accesses to z; with resg ,» = 1. Similarly, we can apply Theorem 3 to z§ with
t = ay1, t1 = byy and ty = by2. We obtain Figure 4.

al 1
2 z

Figure 4. Application of Theorem 3 to example circuit

Version: 6.6.97 Time: 11:59 —25—

26 Chapter 5. Path Problems in Graphs and Matriz Multiplication

We can now start to really prove Theorem 1. Let § be an optimal circuit for
boolean matrix product, i.e., a circuit of minimal length. We want to show that
g is the school method. In the school method we have for every triple (i, j, k) an
AND-gate which computes a;;b;; and we have p — 1 OR-gates for every pair (¢, k)
which sum the p products a;;b;,, 1 < 7 < p. We try to locate these gates in
circuit #. In order to do so we consider predicates P on boolean functions which
have the property that they hold true for at least one output wire of any circuit for
boolean matrix product and that they do not hold true for any input wire. Thus
there must be a gate g in § such that P holds true for (the functions realized at)
the output wire of g but does not hold true for any input wire of g. We denote this
set of gates by I(P). The gates in I(P) are the gates to be located. Unfortunately,
we will not be able to locate all r - p- g AND-gates in one step. Instead we will
locate only the r - ¢ AND-gates which realize the products a;1b1), then eliminate
these gates by setting a;; = 1 and by = 0, and finally use induction on p.

The following notation helps to simplify the discussion. If ¢ is a gate then we
use h (hy1,h2) to denote the function realized by the output (left and right input)
wire of g¢.

We will first locate the AND-gates. For 1 < ¢ <r, 1 <k <gq, let P be the
following predicate on boolean functions

sz(h) & a1y < h and a;; z h and by g h,

i.e., a;1b1% is prime implicant of h.
Clearly, input variables of 5 do not satisfy P;; and output f;; satisfies Pj;.
Hence I(P) is not empty.

Lemma 1.
a) If g € I(P;x) then g is an AND-gate and a;; < hy and by < hy (or vice versa).
b) If (il, kl) 7§ (ig, kg) then I(lekl) N I(Pzgkg) = 0.

Proof: a) Let g € I(P;;). First assume that g is an OR-gate. Then h = hy V hy
and Pii(h), = Pi(h1) and = Pig(h2). From a;1b1x < h we conclude that either
ai1b1x < hy or a;1bix < hy. We may assume a;1b1; < hy w.lo.g.. From =P (hy)
we conclude further that either a;; < Ay or b1 < hy and hence a;; < h or by < h.
Thus =P, (h), contradiction. This shows that all gates g € I(F;;) are AND-gates.

Let g € I(P;;) be an AND-gate. Then h = hy Ahy and =P (hy) and = Pig(h2).
From a;161x < h we conclude a;161x < hy and a;161; < hy and hence a;; < hy or
b1x < hy and similarly for hy. If a;1 < hy and a;1 < hg then a;; < h, which is
contradictory. Similarly, if b1 < Ay and by < hy then by < h. Thus a;; < hq and
b1 < hy or vice versa.

b) Let (i1,k1) # (i2,k2) and I(Pi k) N I(Piyk,) # 0, say g € (P k) N I(Piyk,)-

Then one of the two cases applies (up to symmetrie).

Version: 6.6.97 Time: 11:59 —26—

V.7. A Lower Bound on the Monotone Complexity of Matriz Multiplication 27

Case 1: a;i 1< hyy a0 < hy
b1k, < ha, big, < ho
Case 2: ai;1< by big, < hy

a1 < hay big, < hy

In either case we can apply Theorem 3. If case 1 applies and iy # iy (the case
that k1 # k2 is symmetric) then we can use Theorem 3 with ¢t = 1, t; = a;,1 and
ty = a;,1. We can therefore replace all accesses to hy by accesses to o; V1 = 1. Thus
one input of gate g becomes a constant and we can therefore eliminate gate g, which
contradicts the optimality of 5. If case 2 applies then we can set both inputs of ¢
to 1 by Theorem 3 (cf. the example following Theorem 3) and therefore eliminate
gate g. Thus we derived a contradiction to the minimality of 8 in either case. This
proves part b). |

We turn to counting OR-gates next. Let (J;; be the following predicate on boolean

functions.
Qix & anbiy <h < A; Vb and b £ byy,

where A; = \/].7,fl a;;. We have

Lemma 2.

a) I(Qix) # 0 if p > 2.
b) If g € I(Qix) then g is an OR-gate and either hy < byy or hy < byy.
c) The sets I(Q;x) are pairwise disjoint.

Proof: Similar to the proof of Lemma 1.]

What have we achieved at this point? For every pair (7, k) we have located an AND-
gate in which has a;; as prime implicant of one of its input wires; for different pairs
we identified different gates. Therefore, if we fix a;; to the constant 1,1 < ¢ < r,
then we can eliminate r - ¢ AND-gates from 3. Similarly, if p > 1, then we have
located an OR-gate ¢ for each pair (¢,k) such that either hy < byp or hy < byg.
Also, different gates were located for different pairs. Therefore, if we fix b1 to the
constant 0, 1 < k < ¢, then we can eliminate r - ¢ OR-gates from . Finally, fixing
a;; = 1and by, =0for 1 <i¢<rand 1<k <gq we transform (into a circuit for

the functions ,

fie =\ aijbjn,

i=2

i.e., into a circuit for the (r, (p—1), ¢) boolean matrix product. If p =1 then we can
still eliminate r - ¢ AND-gates. Part a) of Theorem 1 follows by a simple induction
argument.

Part b) remains to be proved. Let 3 contain exactly r - p- ¢ AND-gates and
r-(p—1)-q OR-gates. If we apply the elimination process described above to 3
then we eliminate in each step ezactly the gates in I(P;x) and 1(Qix), i.e., if aj is

Version: 6.6.97 Time: 11:59 —27-

28 Chapter 5. Path Problems in Graphs and Matriz Multiplication

a prime implicant of a gate g then g belongs to either I(F;;) or I(Q;x) for some
7 and k. In the latter case a;; would also be prime implicant of the output of g,
contradiction to g € I(Q;x). We conclude that a; is a prime implicant of input
wires of AND-gates only, 1 </ < r. Because of the symmetry of the boolean matrix
product and because we can start the elimination process with any column of A
and can also interchange the roles of A and B we conclude that variables are prime
implicants of AND-gates only and that the prime implicants of inputs and outputs
of OR-gates are monomials of at least two variables. We conclude further, that
the inputs to a gate in I(F;;) are ezactly the variables a;; and by;. Because of
symmetry this is true for every triple (¢, j, k), i.e., the r - p- ¢ AND-gates of 3 have
the input pairs (a;5,b1), 1 <1 <r, 1<j<p 1<k<yq.

Since the r-¢ output functions are disjunctions of p products a;;b;; (1 < j < p)
each, the r - (p — 1) - ¢ OR-gates are needed in order to sum up the outputs of the
AND-gates. This proves part b) of Theorem 1.]

We want to draw one consequence from Theorem 1. Let (5,4, ®,0,1) be an arbi-
trary semi-ring. We say that S has characteristic 0if 1® 16 ---@ 1 # 0 for any
number of ones to be added. We have

Theorem 4. Let (S,6,®,0,1) be a semi-ring of characteristic 0. Then any
straight-line program which computes the (r, p, q) matrix product of matrices over S
using operations @& and ® only contains at least r-p-q multiplications and r-(p—1)-q
additions. Moreover, the school method is the unique optimal program.

Proof: Let (3 be any straight-line program which computes the (r, p, ¢) matrix prod-
uct of matrices over S using operations ¢ and & only. In order to prove the theorem
it suffices to show that is transformed into a monotone program (3’ for boolean
matrix product by replacing & by V and ©® by A.

This can be seen as follows. Forn e Nlet w =1&---&1 € S. Then m # 0

N ——’
n-times

for all n € N since S has characteristic zero, @ + m = n + m by associativity and
n - m = m-m by distributivity. Let S, = {0} U{®m; n € N}. Then (S4,4,®,0,1)
is a semi-ring and the mapping h : Sy — B with ~(0) =0 and h(7) =1 forn > 1
is a homomorphism into the boolean semi-ring (B, V,A,0,1). This shows that 5’
computes the (r,p, ¢) boolean matrix product. |

Theorem 4 applies to a large number of semi-rings, e.g., the reals under addition
and multiplication (R,+,-,0,1), the extended reals under minimum and addition
(R U {co}, min, 4,00, 0), the extended reals under maximum and minimum (R U
{—o0}, max, min, —o0o, c0),

Theorem 4 does not apply to the ring of integers mod p for some integer p. This
ring does not have characteristic zero and in fact we can use Strassen’s algorithm
in this ring. (Note that a +---+ a = —a mod p and hence subtraction is reduced

N———

(p—1)-times
to addition.)

Version: 6.6.97 Time: 11:59 —28-

5.8. Frercises 29

5.8. Exercises

1) Show that the following algebraic structures are closed semi-rings:
a) (R* U {oo}, max, min, 0, 00);
b) (R* U {00, —c0}, max, +, —c0, 0), where (—o0) 4 00 = —o0.

2) Compute the closure of the elements of the semi-rings of Exercise 1.

3) Show:
a) The null-element 0 of a semi-ring is uniquely defined.

b) @;cpa: =0 in a semi-ring.

4) Let G = (V,E) be a directed graph and let ¢ : F — RT be a cost function.
Define the capacity of a path as the minimum cost of any edge on the path. Show
how to compute the path of maximal capacity from v to w for every pair (v, w) of
points. [Hint: Use one of the semi-rings of Exercise 1.]

5) Let G = (V,F) be a directed graph and let ¢ : £ — RT be a cost function.
Show how to solve the all pairs maximum cost path problem.

6) Modify the all pairs least cost path algorithm so that it not only computes the
cost of the least cost path but also the paths themselves.

7) Let G = (V, E) be a directed graph and let ¢ : £ — RJ be a cost function.
Compute for each pair (v, w) of vertices the cost of the k least cost paths from v

to w. Find an adequate closed semi-ring.

8) Show that the algebraic structure (M, +,,0,I) of n X n matrices over a closed
semi-ring is a closed semi-ring.

9) Verify formally all identities which were used in the proof of Theorem 3 of
Section 5.3.

10) Show that M (n), the cost of multiplying two n X n matrices, is nondecreasing.
11) Show that the set of n X n matrices over a ring forms a ring.

12) Let G = (V, F) be an acyclic directed graph and let ¢ : £ — S be a labelling
of the edges of G with elements of a semi-ring S. Show how to solve the all pair
path problem using O(n - €) semi-ring operations.

Version: 6.6.97 Time: 11:59 —29-

30 Chapter 5. Path Problems in Graphs and Matriz Multiplication

13) Let @ and b be two n-bit integers. Let k = [n/2] and write ¢ = a; - 2% + ay
and b= by - 2% 4 by where aq, as, by and by are k-bit integers. Then

a-b= a1b122k + (a1b2 + a2b1)2k + (Lgbg.

Let
mq (—(al — ag) . (bl — bg),
my <—ayby;
ms3 %agbg.
Then ayby + asby = —my + mq 4+ mg, i.e., we can compute « - b using three multi-

plications of k-bit integers where k = [n/2]. Show that this observation yields an
algorithm which multiplies n-bit integers using O(n!°83) bit operations.

14) Let zy,...,z, be integers in the range [0..M — 1]. Show how to compute
1+ -+ z, using O(nlog M) bit operations. [Hint: Add the z;’s in the form of
a binary tree and observe that the binary representation of a sum of 2% z;’s has

length & + log M .]

15) State and prove theorems similar to Theorems 1 and 4 of Section 5.7 for tran-
sitive closure instead of matrix multiplication.

16) Let T be a binary tree with n leaves. For each node v let w(v) be the number
of leaves in the subtree with root v and let bin(w(v)) be the binary representation
of w(v). Show that the labelling {bin(w(v)); v a node of T'} can be computed in
O(n) bit operations. Note that the total length of all labels might be O(nlogn)
and therefore only an implicit representation of the labelling can be computed. The
representation should be such that given v its label bin(w(v)) can be read off in

time O(|bin(w(v))]).

Version: 6.6.97 Time: 11:59 -30—

V.9. Bibliographic Notes 31

V.9. Bibliographic Notes

The algorithm for solving general path problems goes back to Kleene (56) who
found it in connection with finite automata and regular expressions. The al-
gebraic viewpoint was introduced by Aho/Hopcroft/Ullman (74) and later re-
fined by Fletcher (80). The algorithms for the special cases of Section 5.2 are
due to Roy (59), Warshall (62) and Floyd (62). The connection between ma-
trix multiplication and transitive closure was established by Munro (71), Fur-
man (70) and Fischer/Meyer (71). The fast matrix multiplication algorithm of
Section 5.4 is due to Strassen (69); an O(n?3?) algorithm was recently found by
Coppersmith/Winograd (86) extending work of Strassen (86). The papers by Co-
hen/Roth (76) and Spief (74) discuss the problem of implementing the fast ma-
trix multiplication algorithm. Section 5.5 follows Fischer/Meyer (71), Section 5.6
follows Romani (80), and Section 5.7 discusses the papers of Paterson (75) and
Mehlhorn/Galil (76). The O(n'°83) algorithm for integer multiplication (Exer-
cise 13) is due to Karazuba/Offman (62); an O(nlogn - loglogn) algorithm can
be found in Schénhage/Strassen (71).

Version: 6.6.97 Time: 11:59 -31-

