Chapter 8. Computational Geometry

Computational geometry deals with the algorithmic aspects of geometrical prob-
lems. The typical objects of (plane) computational geometry are points, lines and
line segments, polygons, planar subdivisions (= straight-line embeddings of planar
graphs) and collections of these objects. Typical questions are e.g. intersection (line-
polygon, polygon-polygon, ... ), point location (point-point, point-polygon, point-
planar subdivision) and decomposition problems (decomposition of a polygon into
simpler polygons). The questions are motivated by widespread use of geometric
objects in computer graphics and computer aided design. In particular, the com-
putational problems arising in two- and three-dimensional computer graphics and
in VLSI design shaped the field and generated a common interest in it.

We organize this chapter into six sections: convex polygons, convex hull,
Voronoi Diagrams, the sweep paradigm, orthogonal objects, and geometric trans-
formations. In each section we describe the computational tools and paradigms and
give the algorithms for the basic problems. Most of the discussion is restricted to
two dimensional geometry. However, we sometimes also discuss three- or higher-
dimensional space or at least cite relevant references in the section containing bib-
liographic remarks.

Throughout the chapter we will use the following notation. Let p and g be
points in R?. The line segment defined by p and ¢ and denoted L(p, q) is the set
of points on the line passing through p and ¢ and lying between p and q. Sometimes
we will use L(p,q) to denote the line through p and ¢ or even the oriented line
(in the direction from p to ¢) through p and ¢. The ambiguity in the notation will
always be removed by the context.

Let L be an oriented line and let p be a point not on line L. Let d be the
vector defining the orientation of line L and let ¢ be an arbitrary point of line L.
Then point p lies to the right of oriented line L if vector p — ¢ can be turned
into vector d by a (counter-clockwise) rotation of less than 180 degrees, in other
words, if the third component of the vector product of p— ¢ and d is positive, i.e.,

-

P—q=(z,y), d=(d;,d,) and zd, — yd, > 0 (cf. Fig. 1).

Figure 1. p lies to the right of L

The right (left) halfspace defined by oriented line L is the set of all points on
or to the right (left) of line L. We always assume lines to be oriented. If no explicit
orientation is defined then the default value is “upwards” (to the “right” in case of
a horizontal line).
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If L and L' are lines or line segments we use ()(L, L') to denote the intersection
of L and L'.

A polygon is a sequence vg,vy,...,0, of points. The v;’s are the vertices
of the polygon. A polygon is simple if line segments L(v;,v;4+1) and L(v;,v;41),
0 < i < j < n (indices are taken mod(n + 1)), intersect only if j = i + 1 or
{i,7} = {0,1} and then intersect in their common endpoint.
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Figure 2. A non-simple polygon
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Figure 3. A simple polygon

Let P = vy, ..., v, be a simple polygon. The removal of the polygonal chain of
line segments L(vg,v1),- .., L(Vp—1,vn), L(vpn,v) from the plane divides the plane
into two regions. The bounded region is called the interior of the polygon, the
unbounded region is called the exterior of the polygon. We assume that the
vertices of a simple polygon are ordered in a way that the interior is to the right as
we traverse the sequence vg, v1,-..,Un, V.

A region R C R? is convex if for all points p,q € R the entire line segment
L(p,q) is contained in R. A simple polygon is convex if its interior is a convex
region. Equivalently, a simple polygon is convex if no interior angle exceeds w. A
vertex v of a simple polygon is a cusp if the interior angle at v exceeds 7. A region
is polygonal if its boundary is a simple polygon.

Let S C R? be a set. The convex hull CH(S) is the intersection of all
convex sets containing S, i.e, CH(S) = (\{R; S C R and R convex }. Since the
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intersection of a family of convex sets is convex, the convex hull CH(S) is a convex
set. It is the smallest (with respect to set inclusion) convex set containing S. If S
is a finite set then the convex hull of S is a convex polygonal region.

We end this introduction with an important application of binary search and
more generally binary search trees. Let L, R be two vertical lines, let p1,...,p, be
a sequence of points on L and let ¢y, ..., ¢, be a sequence of points on R.
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Figure 4. Binary search in a vertical strip

We assume that both sequences are ordered from top to bottom. Let L; =
L(p;, q;) be the line segment connecting points p; and ¢;. Then the line segments
L;;, 1 < ¢ < n, do not intersect (except maybe in points on line L or R) and
divide the vertical strip between lines L and R into n + 1 pairwise disjoint regions
Ry, Rq,...,R,. The regions are ordered from top to bottom in a natural way and
so are the line segments. We can use this ordering to find the region containing
a query point p (lying in the strip between L and R) in time O(logn) by binary
search. For Program 1 we assume that p lies below L; and above L,.

—

top < 1; bottom < n; middle < [(n+ 1)/2];
while bottom > top + 1
do if p lies above L,;441e
then bottom < middle
else top + middle
fi;
middle < |(top + bottom)/2]
od;
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Program 1
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On termination we know that p lies in the region between lines Lo, and Lyottom
and bottom = top + 1.

In line (3) we have to determine whether p lies above Ly;qq1e- If p; (¢i,p) has
cartesian coordinates (a,py;) ((b, qy;), (Pz, py)) then the test in line (3) is equivalent
to py > py; + (qyi — pyi) (P — a)/(b—a) and hence takes time O(1). Thus the entire
search takes time O(logn).

A similar situation is depicted in Figure 5. Let Lq,..., L,, L be lines and let
P; := N(L;, L), 1 < i < n. Assume that the points p;, 1 < ¢ < n, appear in the
order p1,...,p, on line L.

D
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L,
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Figure 5. Binary Search on a line

Let L' be an arbitrary line and let p := (|(L/, L). Then we can determine the
position of point p relative to the points p; by binary search in time O(logn), i.e.,
we can determine ¢ so that p lies between p; and p;+1 on line L. The only change
required in the program above is to replace line (3) by

(3" do if p lies above (\(L, Liniddie) on L

Note that line (3') takes time O(1) and that it is not necessary to precompute the
pi’s. Instead O(logn) p;’s are computed in line (3') during the execution of the
algorithm.

We will use both applications of binary search and tree search frequently in the
sequel. It is important to observe that all methods described in Sections 3.3 to 3.6
work for all ordered universes as long as a comparison takes time O(1). In both
examples above the line segments L1, Lo, ..., L, form an oriented universe for the
problem at hand.

Finally, if v € R? then we use z(v) and y(v) to denote the z- and y-coordinate
of point v respectively.
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8.1. Convex Polygons 5
8.1. Convex Polygons

Convex polygons are particularly easy to deal with computationally. They are also
a preferable kind of polygons in many applications, e.g., in graphics and numerical
analysis. Therefore we will study the problem of decomposing arbitrary polygons
into convex parts, in particular into triangles, in Section 8.4.2. In this section we de-
scribe algorithms for basic questions about convex polygons: how to decide whether
a point lies inside a polygon, to compute the intersection of a line and a polygon, to
decide whether two polygons intersect and to compute the intersection of two poly-
gons. We will see that convexity permits very efficient solutions, which is a general
fact in computational geometry. The triangulation algorithm of Section 8.4.2 will
be another example of the use of convexity for developing fast algorithms.

Throughout this section we assume that adjacent edges of a polygon are not
collinear. In general, we assume that polygons are given by the sequence of their
vertices in clockwise order. For convex polygons a (balanced) hierarchical represen-
tation is particularly useful.

Definition: A sequence Py, Pi,..., P, of polygons is a balanced hierarchical
representation of convex polygon P if

a) Pp has at most four vertices,
b) P, = P, and
c) P;_1 can be derived from P; by deleting some vertices.

More precisely, out of three consecutive vertices of P; at least one is deleted and no
four consecutive points are deleted. 1

6

Figure 6. Balanced hierarchical representation

Figure 6 shows a balanced hierarchical representation of a convex polygon with
9 vertices. Polygon P, consists of all 9 vertices, P; consists of vertices 1, 3, 5 and 7
and Py consists of vertices 1 and 5. A balanced hierarchical representation of a
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convex polygon is obtained naturally if we store the sequence of edges in the leaves
of a balanced tree, say a (2,4)-tree (cf. Fig. 7).

(1,2) [2,3)]  [B,4)] [(4,5)] (5, 6)] 16,1]  [(7,8)](8, 9], 1]

Figure 7. (2,4)-tree representing a convex polygon

Then every level of the tree corresponds to one of the polygons in the hierarchi-
cal representation, i.e., the root node is polygon P, the nodes of depth 1 represent
polygon P, .... In our example polygon P, consists of points 1 and 5 only. When
we pass to polygon P; we replace edge (1,5) of Py by the chain (1,3),(3,5), a fact
which is reflected in the first son of the root, and we replace edge (5,1) of Py by
chain (5,7),(7,1), a fact which is reflected in the second son of the root. Similarly,
edge (7,1) of polygon P; is replaced by chain (7,8),(8,9),(9,1), a fact which is
reflected in the right-most grandson of the root.

We can draw two simple, but important consequences from the fact that bal-
anced hierarchical representations of polygons are obtained by storing the edges in
a (2,4)-tree.

Lemma 1.

a) A balanced hierarchical representation of convex polygon P can be computed
in time O(n) where n is the number of vertices of P.

b) If Py,..., Py is a balanced hierarchical representation of P then k = O(logn).
Proof: obvious. ]

Our first use of the balanced hierarchical representation of convex polygons is a
simple algorithm for deciding whether a point lies inside a polygon.

Theorem 1. Given a balanced hierarchical representation of a convex polygon P,
a point p inside P and an arbitrary point x we can decide whether x lies in P in
time O(logn) where n is the number of vertices of P.

Proof: Consider a subdivision of the plane obtained by drawing mn semi-infinite
straight lines starting at point p and going through the vertices of P. This sub-
division splits the plane into n segments which can be ordered in a natural way,
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8.1. Convex Polygons 7

namely in clockwise (say) order around p. The idea is then to use binary search on
the n segments to determine the segment which contains x and then to decide in
an additional step whether z is inside or outside of P.

Figure 8. Rays from p through corners

This algorithm is easily implemented as a tree search. Let T be a (2,4)-tree
defining the balanced hierarchical representation of P. The vertices stored in the
root together with point p define a subdivision into at most 4 segments. The
segment containing x can be found in O(1) time. We proceed to the appropriate
son of the root thereby replacing the segment containing x by at most 4 smaller
segments. Again we can identify the segment containing z in O(1) time. Iterating
this process O(logn) times we finish the search. 1

We will next describe an algorithm for intersecting a straight line and a convex
polygon. The basic idea underlying this algorithm is very simple. We start with
Py and determine the vertex v of Py closest to line L. Then we grow P, towards
L, i.e., we replace the vincinity of vertex v by a part of P;, and so on. Lemma 2
below states that letting a polygon grow towards a line is an efficient process.

Lemma 2. Let Py, Py,..., P, be a balanced hierarchical representation of convex
polygon P and let d be a direction in the plane. Let d(P;), 0 < i < k, be the set of
vertices of P; which are maximal in the direction d. Then

a) |d(P;)| <2;

b) if p € d(P;+1) then there is ¢ € d(P;) such that either p = q or p and q are
separated by at most two nodes on the vertex list of P; ;.

Proof: a) There are at most two vertices maximal in any direction since adjacent
edges are not collinear.
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b) Let p € d(P;+1) — d(P;). Draw a tangent to P; which is perpendicular to di-
rection d. It touches P; in the vertices in d(P;) and it divides the plane into two
halfspaces of which one completely contains P; (cf. Fig. 9).

Figure 9. Tangent perpendicular to d

Consider edges of P; and their replacements when passing to P;q. If such
a replacement has a vertex in the other halfspace then the corresponding edge of
P; must be incident to a vertex of d(P;) by convexity. Finally observe that the
replacement of an edge can introduce at most three new vertices. ]

Lemma 2 leads immediately to a logarithmic time algorithm for intersecting straight
lines and convex polygons.

Theorem 2. Given a balanced hierarchical representation of a convex n-gon P and
a straight line L the intersection of P and L can be determined in time O(logn).

Proof: Assume that L does not intersect Py, the reverse case is simpler. Let d be
the direction perpendicular to line L. Since Py has at most four vertices we can
determine d(Fp) in time O(1). Next we run through Py, Ps,...,P;,..., P; in turn
and compute d(P;) until either ¢ = k or P; intersects L. Note that d(P;) can be
computed from d(P;_1) in constant time by Lemma 2. Also assuming that P;_;
does not intersect L we can decide in constant time whether P; intersects L. This
follows from the observation that an intersection can only occur in a constant size
neighborhood of d(P;_1). We conclude that in time O(logn) we have either found
that P, does not intersect L or we have found the smallest ¢ so that P; intersects L.
In the latter case we have also found the pair e;(3), ex(i) of edges of P; which are
intersected by L. We can now replace edges e;1(i), e2() of P; by the chain of (at
most 3) edges of P;y; which represent e, es respectively and so compute edges
e1(i + 1), ea(i + 1) of P;y; intersected by L in constant time. Proceeding in this
way we compute PN L in time O(logn). |
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8.1. Convex Polygons 9

Theorem 2 is readily extended to line segments and as a special case to points. It
thus provides us with an alternative proof of Theorem 1.

Theorem 3. Given a balanced hierarchical representation of convex n-gon P and
a) a line segment S we can compute PN S in time O(logn);

b) a point p we can decide whether p is inside P in time O(logn).

Proof: a) Let S be a segment of straight line L. By Theorem 3 we can compute
PN L in time O(logn). PN L is a line segment. From P N L we can compute
(PNL)NS =PNS in constant time.

b) Follows immediately from part a) and the observation that a point is a degener-
ated line segment. ]

Our most complex use of balanced hierarchical representations of convex polygons
lies in the decision whether convex polygons intersect. We will show that we can
decide in logarithmic time whether two convex polygons intersect (Theorem 5). The
actual computation of the intersection is much more difficult. Note that two convex
n-gons may have (n) points of intersection (cf. Fig. 10) and therefore no sublinear
algorithm for the computation of intersections can exist. Theorem 6 describes an
O(n) algorithm for computing the intersection of two convex n-gons.

Figure 10. Two intersecting convex polygons

Theorem 4. Given balanced hierarchical representations of convex n-gon P and
convex m-gon @ we can decide in time O(log(m + n)) whether P and @ intersect.

Proof: The proof is based on a sequence of lemmas. In the first lemma we replace
the problem by a simpler one, namely how to decide whether two monotone polyg-
onal chains intersect, and in a second step we show how to solve the simplified
problem in logarithmic time.

A monotone polygonal chain is a sequence of vertices vg, v1, . .., v with y(v;) >
y(vi+1). A monotone polygonal chain defines an (infinite) convex region if we add
two semi-infinite horizontal rays, one for y = y(vg) and one for y = y(vg). It
can easily be derived that given a balanced hierarchical representation of convex
n-gon P we can decompose P into two monotone polygonal chains Pr, and Pg in
time O(logn). In Figure 11, Pg (Pf) is closed to the right (left). The decompo-
sition can be achieved by computing the vertices of P with maximal and minimal
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10

y-coordinate which is easily done by the method outlined in Lemma 2 and Theo-
rem 2. We can also compute balanced hierarchical representations for Pr and Py,
in logarithmic time by performing a split operation of the (2,4)-tree representing
p.

Figure 11. Replacing P by Pgr and Py,

Lemma 3. Let P and Q be convex polygons. Then PN Q # 0 if PLNQgr # 0
and Pr N Qp # 0.

Proof: “—”: Since P = P;, N Pgr and Q = @ N Qr we immediately have that
0#PNQ=P,NPrNQrNQEg implies PL NQr # 0 and PrNQ # 0.
“7: If PN @ = 0 then there is a straight line L separating P and Q. If L is

horizontal then clearly P, NQr = PrN QL = 0. If L is not horizontal then assume
w.l.o.g. that P is to the left of L. Then Pr N Q = 0. 1

Lemma 3 allows us to concentrate on a simpler problem: how to decide whether
two monotone polygonal chains intersect. Let R (L) be a monotone polygonal
chain which is closed to the right (left) and let 7q,...,7, (I1,...,1,) be the edges
of R (L). Here 71, rm, l1, l,, are infinite rays with 71 (1) above ry, (I,) and all the
other edges are finite. We will use (a variant of) binary search to decide whether R
and L intersect. Let ¢ = |(m+1)/2] and j = [(n+1)/2)] and let R; (L;) be the lines
supporting line segments r; (I;). We assume that R; and L; intersect (otherwise,
L, will intersect R; since adjacent edges are assumed not to be collinear). Then
lines R; and L; divide the plane into four regions. R and L can each exist in two
of these regions. Furthermore, they can coexist in one of the regions. Label the
four regions LR, L, R and empty as shown in Figure 12, i.e., chain R can exist in
regions R and LR.

Define four new monotone chains from R and L as follows. R, consists of
edges r1,...,7; and a horizontal ray ending in the lower endpoint of r;. Rp.; consists
of edges 7;,7i+1,--.,"m and a horizontal ray ending in the upper endpoint of r;.
Liop and Ly, are defined similarly. The algorithm is based on

Lemma 4. If lines R; and L; intersect and segments r; and l; do not, and if
region LR is above region empty (i.e., seeks +oo in the y-direction) then

a) if the lower endpoint of r; does not lie in the LR region then RN L # 0 iff
Rtop N L # @
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8.1. Convex Polygons 11

R;

Figure 12. Subdivision induced by R; and L;

b) if the lower endpoint of l; does not lie in the LR region then RN L # 0 iff
RN Ltop 7é 0
c) if both endpoints of r; and l; lie in the LR region and the lower endpoint of

r; has no larger (no smaller) y-coordinate than the lower endpoint of l; then

Proof: a) If the lower endpoint of r; does not lie in the LR region then edges
Tit1,---,Tm Of R are completely contained in region R and hence cannot intersect
chain L. Also the new edge of Ry,, does not intersect L. Hence RN L # 0 iff
Rtop NnL 7& @

b) similar to part a).

c) Suppose that both endpoints of r; and /; lie in the LR region and that the lower
endpoint of 7; has no larger y-coordinate than the lower endpoint of /;.

empty

Figure 13. Case c) in Lemma 4

We claim that Riop N L # 0 iff RN L # 0. Assume first that R, N L = 0, but
RN L # (. Then one of the edges r;y1,...,7, must intersect L. Hence chain L
must have a point in the dashed region of Figure 13. Hence by convexity chain L
must intersect Ry,,, contradiction. Hence Ryop, N L = ) implies RN L = (). Assume
next that Ry, N L # 0, but RN L = (. Then only the lower horizontal ray of Ry,,,
call it 7, can intersect L. Ray r cannot intersect the top horizontal ray [; of chain L
by the relative position of ; and I;. Hence if we follow chain L starting at the lower
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12

horizontal ray [, we find & > 1, so that [; intersects . Continuing on chain L we
move into the convex region defined by chain R. Since chain R seeks —oo in the
z-direction and chain L seeks +oco in the z-direction there must be an intersection
of R and L. Thus Ry,, N L # 0 implies RN L # . 1

An analogous Lemma can be shown for the case when region LR is below region
empty. Lemma 4 allows us to reduce in a constant number of steps the number of
edges of one of the polygonal chains by half. More precisely, we consider the middle
edges r; and [; and supporting lines R; and L;. If R; and L; are collinear and R; is
to the left of L; then L and R do not intersect. If R; and L; are collinear and R; is
to the right of L; then R;;, (the line supporting edge r;+1) and L; will intersect.
We assume for the rest of the discussion that R; and L; intersect, the reverse case
is similar. If segments r; and /; intersect then we discovered a point of intersection.
If segments r; and [; do not intersect then we can discard half of one of the chains
by Lemma 4 and thus reduce the size of the problem by a constant fraction.

Thus in O(log(n + m)) steps we will reduce one of the chains to a chain of a
bounded number of edges, say at most 10. For each of these edges we can test for
intersection with the other chain in logarithmic time by Theorem3a). Thus further
O(log(n + m)) steps will finish the test for intersection. 1

Theorem 5. Let P and Q be convex n-gons. Then P N @ can be computed in
time O(n).

Proof: Let P =p1,pa,...,p, and let Q = q1,¢o, - .-, ¢m, m < n, be the vertex lists
for P and @. Let p be a point inside P; e.g., we might take p as the center of gravity
of vertices p1,p2,...,Pn-

Figure 14. Subdivision with center p

Point p can certainly be computed in linear time from the vertex list of P. We
proceed as in the proof of Theorem 1. Consider the subdivision of the plane defined
by the rays starting at point p and going through the vertices of P. For vertex g;
of @ let S(g;) be the segment containing g;.
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8.2. Conver Hulls 13

We show next that we can compute all intersections of edges of @ with edges
of P in linear time. Note first that we can certainly compute S(g;) in time O(n).
Next look at line segment L(gq,q2). We can determine all intersections of edge
L(q1, g2) with edges of P in time O(1 + s1), where s; is the number of rays crossed
by line segment L(q,q2). This follows from the fact that we only have to look
at the rays bounding S(g1) and at the one edge of P going through that segment
in order to decide whether L(qi,q>) intersects that edge (and if it does, where it
does intersect) and whether L(q;,q2) leaves the segment. If it does not leave the
segment we complete the operation in time O(1), if it does leave the segment we
can apply the same argument to the segment entered. Similarly, we can compute
all intersections of edge L(g2, g3) with the edges of P in time O(1 + s3) where s is
the number of rays intersecting L(qg2, ¢3). In this way, we compute all intersections
of edges of @ and edges of P in time O(m + ), s;). Finally, observe ) .s; < 2n
since every ray can cut at most 2 edges of Q.

The algorithm as it is described above correctly computes P N Q if there are
some edges of P and @ which intersect or if @) is completely contained in P. Assume
now that all vertices of ) are outside P and that there are no edge intersections;
note that both facts will be reported by our algorithm. Then P and @ intersect
iff P is contained in @ iff p is contained in ). The latter fact is easily tested in
time O(m). To sum up, we have computed the intersection of P and @ in time
O(n+ m). |

8.2. Convex Hulls

This section is devoted to convex hull problems. Let § C R? be finite. The convex
hull CH(S) is the smallest convex set containing S. The convex hull of S is always
a polygon whose vertices are points of S. This is intuitively obvious from the rubber
band model. Take a rubber band and stretch it so that it encloses all points of S.
If one lets it loose then the rubber band will form the convex hull of set S. It will
clearly form a convex polygon whose vertices are points of S. A proof of this fact
is left to the reader (Exercise 8).

We use BCH(S) to denote the boundary of the convex hull of S. The convex
hull problem is then defined as follows: Given S C R? compute the boundary
points BCH(S) in clockwise order, i.e., compute the standard representation of
convex polygon BCH (S).

We show that BCH(S) can be computed in time O(nlogn), n = |S|, even if
S is not given at once but is given point by point (Theorems 2 and 4). Moreover,
this is optimal (Theorem 3). A linear time algorithm exists if S is sorted or, more
generally, if a simple polygon with S as its vertex set is given (Theorem 1). Finally,
convex hulls can be maintained under insertions, deletions in time O((logn)?) per
operation (Theorem 5).
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14

Theorem 1. Let S C R? and let Q be a simple polygon whose vertices are the
points of S. Then BCH(S) can be computed in time O(|S]).

Proof: We will first show that it suffices to solve a somewhat simpler problem, the
“upper” convex hull problem. Let vyin (Umaz) be a point with minimal (maximal)
z-coordinate in S. Then the chord L(vmin, Vmae) divides CH(S) into two convex
regions which we call the upper and lower convex hull of S (with respect to chord
L(vmin, Ymaz)), cf. Figure 15. Apparently, it suffices to compute the upper and
lower convex hull of S. We show how to compute the upper convex hull of S in
linear time.

DPis
D14
P11 P1o
D12
9
Pe P13 P
bs e
b7
P4
P1 = Ymin . . . . . . . .
Umaz — P16
b2 b3

Figure 15. Splitting the convex hull problem into two subproblems

Let p1,...,pn With p1 = Upmin, Pn = Umae be the upper path from v,,;, to
Umae in polygon Q. For 1 < i < j < n, let Plv;,v;] denote the polygonial chain
Vi, Vig1,---,V5. Then P = PlUmin, Umaz] is the upper path from vy, t0 Vpmee. The
upper convex hull of P is a subsequence g1, ..., gm of p1,...,p, which certainly has
the following two properties:

(1) ¢1 = Ymin, 9m = Vmaz and (gi—1, ¢, gi+1) is a right turn for 2 < <m — 1.
(2) No vertex of P|g;,q;+1] lies left of L(g;,q;i+1) for 1 <i<m —1.

Figure 16 illustrates these properties. We call a subsequence P|g;, g;+1] of the upper
chain satisfying (2) a pocket and the finite closed region R(q;, ¢;+1) whose boundary
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8.2. Conver Hulls 15

is P[qi, gi+1] © @i+1q; the pocket region associated with it. Our first observation is
that properties (1) and (2) characterize the upper convex hull.

Umin = q1

Figure 16. The upper convex hull

Lemma 1. Let ¢,...,q, be a subsequence of pq,...,p, satisfying (1) and (2).
Then q1,-..,qm Is the upper convex hull.

Proof : Since the chain ¢y, ..., ¢, consists of right turns only by (1) it is convex and
the upper convex hull cannot run below chain g¢y,...,¢,,. Thus we only need to
show that no point p of P lies above the chain ¢y, ..., g,. We do so by induction on

depth(p) where depth(p) is the number of intersections between a vertical upward
ray starting in p and the chain P, not counting the intersection at p. Note first
that if p lies on P[g;, ¢i+1] for some i and z(p) < x(g;) or z(p) > x(gi+1) then p
lies below either P[q1,q;] or P[gi+1,qm] and hence depth(p) > 0. So, if p lies on
P[g;,qi+1] and depth(p) = 0 then z(g;) < z(p) < z(gi+1). In this case p does not
lie left of L(g;,q¢;+1) and hence not above the chain ¢,...,q, by the definition
of a pocket. This proves the claim for depth(p) = 0. If depth(p) > 0 then p lies
strictly below an edge of P and hence the claim follows directly from the induction

hypothesis. ]
Our strategy is to compute the sequence qi,...,q,, iteratively. Suppose that we
have inspected vertices p1,...,p, of P. Then we will have constructed a sequence

q1,---,q: such that

(1) q1,-.-,q; is a subsequence of pi,...,p, with ¢1 = p1, ¢¢ = pr, t > 2, and
q1,---,9t, Umae 18 a sequence of right turns.

(2") Plgi,qi+1] is a pocket for 1 <i < ¢.

Figure 17 illustrates the invariants (1) and (2').
Clearly, if no vertex p,41,...,p, lies above the chain C = q1, ..., ¢, Umas then

P[qt, Vmaz] is also a pocket and we are done. So suppose that there is a successor v
of g; which lies above C. Figure 18 illustrates the two possible situations.
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gt = Pr

qt—1

Umin = q1

Figure 17. The invariant of the algorithm

gt gt

qt—1 gi—1

Uma:z: Umaa:

Figure 18. A successor v of g; above the chain C

In the first situation, we can directly add v to the g-sequence. This will main-
tain the invariant. In the second situation, v lies in the pocket region R(g;—1,qy).
In this case P must finally cross the line segment g;_1¢; and then continue to v, 44
above g;. Thus we should proceed along P until we leave the pocket R(gi—1,q:)
and then update the g-sequence. In either situation we consider the closest suc-
cessor ps of ¢; such that p, lies above C and outside R(g;—1,q;). The following
characterization of p, is useful.

Lemma 2. Assume that p, exists. If p.41 lies left of L(q;—1,q:) then ps = ppi1.-
If p,.44 lies in the pocket region R(q;—1,q:) then p, is the closest successor of g; left
of L(q¢—1,4q¢)- If pr41 does not lie left of L(g;_1,q:) and not in R(gs—1,q:) then p,
is the closest successor of q; which lies left of L(qs, Vmaz )-

Proof: The claim is obvious if p,41 lies left of L(g;—1,q¢). If pry1 lies in R(gs—1,4:)
then p, is the closest successor of g; outside R(g:—1,¢;) since this successor must
also lie left of L(g;—1,q:) by the simplicity of P. Finally, if p,4; does not lie in
R(gt—1,¢9:) and not left of L(g;—1,q:) then p,41 lies either on L(gt—1,9:) — t—1G¢
and hence p; = py4+1 or p.41 lies right of L(g;—1,¢:). In the latter case, p, is the
closest successor of ¢; left of L(gs, Vimaz)- |

How should we update the g-sequence? Let i, 1 < i < ¢, be such that L(g;,ps) is
the upper tangent of p, on C, cf. Figure 19, i.e., no ¢;, 1 < j <, is left of L(g;,ps).
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8.2. Conver Hulls 17

Then 7 is clearly the maximal index < ¢ such that either (g;—1,g;, ps) is a right turn
or¢=1.

q1

Figure 19. L(p,,q;) is the upper tangent for p; on C

With this choice of ¢ the sequence g, ..., ¢;,Ps, Umae 1S a sequence of right
turns, i.e., satisfies (1’). We claim that it also satisfies (2).

Lemma 3. PJg;,ps] is a pocket.

Proof: Let v € P[g;,ps|. We show the stronger claim that v does not lie above the
chain C' which consists of the line segments g1¢z, ...,_1¢; and the infinite ray
starting in ¢; and passing through p;. In order to show this claim it is convenient
to also assume an additional invariant:

(3) For j > 2, no vertex of P[g;_1,q;] lies above C; where C; is the chain con-
sisting of g1q2,...,q;—2g;—1 and the infinite ray starting in g;_; and passing
through g;.

So let v be a vertex of Plg;,ps]. If v € Plgj_1,q;] for some i < j < t then v
does not lie above C; by (3) and hence does not lie above C’. Assume next that
v € Plgt,ps], v # ps, v # q¢. If ppy1 lies in the pocket region P[g;—1,¢:], then v
lies in that region and hence not above C;. Also, p; is the first vertex after g; to lie
above C; and hence v does not lie above C’. If p,,1 does not lie in the pocket region
P[gi—1, g¢] then either r +1 = s and we have nothing to show or p,4; lies on or
below L(gs, Umae ). In this case p; is the closest successor of ¢; left of L(gs, Umae) and
hence v is certainly not above C'. We have now shown that no vertex v € P[g;, ps]
lies above C’ and hence P[g;, p;] is a pocket. It remains to verify that the sequence
q1,---, i, Ds again satisfies (3). This is obvious for j < ¢ and was shown for P[g;, ps]
in the preceding discussion. ]
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At this point we have arrived at the algorithm formulated by Program 2.

Initialization, i.e., determine a g-sequence satisfying (1') and (2);
while not_done
do co (1’) and (2') hold at this point oc
let s > r be minimal such that p, lies above the
chain qi, ..., gt Umae and outside the pocket region R(q:—1,q:);
if p, exists
then let 7 be minimal such that either : =1 or
(gi-1,4:,ps) is a right turn;
remove ¢;+1,---,q; from the g-sequence and add py;
r<s
else not_done < false
od.

Program 2

The g-sequence is best realized as a stack where an additional element gy =
Umaz 18 added at the bottom. Since (Vimaz,Vmin,Ps) is always a right turn the
following program fragment suffices to update the g-sequence; here ¢ is always the
index of the top element of the stack:

while (g¢—1, ¢+, ps) is not a right turn
do pop the stack od;
push p,;

Initialization is also easy. We only have to search for the first vertex which lies
above L(Vmagz, Vmin)- This is achieved by the following program fragment.

s+ 2;
while (vyae, Vmin, Ps) 18 not a right turn do s <+ s + 1 od;
push Upmaz; PUsh vpin; push py;

We still have to discuss how vertex p, is found. We use the characterization given
by Lemma 2. In order to apply it, we need to test whether p,.,; lies in the pocket
region R(g:—1,q:), cf. Figure 20.

Figure 20. p,,1 lies in the pocket region
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8.2. Conver Hulls 19

Lemma 4. p,;1 lies in R(qi—1, q:) iff either p,1 lies on the line segment g;_1q; or
(Pr—1,4t, Pr+1) is a left turn and (gs—1, s, Pr+1) is a right turn.

Proof: If p.41 lies on the line L(g:;—1,q:) the lemma certainly holds. If p,41 does
not lie on the line and p,4; lies in R(g;—1,q:) then (p,—1,¢:,pr+1) is a left turn
and (g¢—1,9¢, Pr+1) is a right turn. Conversely, if (p,—1, ¢¢, Pr+1) is a left turn and

(@t—1,4t,Pr+1) is a right turn then p, 1 # ¢;—1 and p,4; lies in R(g¢—1, q1)- 1

Lemmas 1 and 4 imply that Program 3 correctly determines p,.

s r+1;
if (g4—1,4¢,ps) is not a left turn
then if p, lies on gz_1qz or (ps—2,qt, ps) is a left turn
then co p; in R(g:—1,¢:) oc
while (g;—1, g¢, ps) is not a left turn
do s+ s+1od
else while (g, Vymaz,Ps) is not a left turn and s < n
dos+s+1lod

fi
fi

Program 3

Altogether we obtain Program 4 where for simplicity we eliminated variables
r and not_done.

Program 4 clearly runs in linear time O(n) since at most one vertex is pushed
on the g-stack in each iteration. This completes the proof of Theorem 1. ]

Figure 21 illustrates the state of algorithm on the example of Figure 15 after vertices
p1,...,ps are processed. We have 0,44, Umin, P5, e, Pg in the stack and enter the
outer loop with s = 8 and ¢ = 4. We determine s = 9, pop ps and add pg. In the
next iteration pg is popped and p1g is pushed. Then pg and p;g are popped and p11
is pushed. When we now search for p, we find that p;, lies in the pocket P[ps, p11]
and hence s = 14. So pq1 is popped and p14 is pushed, ... .

Although the algorithm described above is fairly short the proof of correct-
ness was quite complicated. If the simple polygon is known to be monotone in
z-direction, i.e., z(p1) < z(p2) < --- < z(pn), then a much simpler algorithm can
be used to construct the convex hull (Exercise 9); in essence, we can shrink the
body of the major loop to the while-loop (lines (8) and (9)). A completely different
convex hull algorithm for monotone simple polygons, i.e., sets ordered according to
z-coordinate, can be derived from the divide and conquer paradigm (Exercise 12
and Lemma 5 below).

[Bemerkung an Kurt: stell das Kapitel um; beginne mit Satz 2 und 3;
dann kommt 1, 4 und 5; der obige Absatz fdllt dann weg]
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s+ 2;
while —Rightturn(vmaz, Vmin,Ps) do s < s + 1 od;
push Vpmaz; Push vpin; push pg;
while s <n
do s+ r+1;
if (gt—1,4¢,ps) is not a left turn
then if p, lies on §z_1q; or (ps—2,q:,ps) is a left turn
then co p; in R(¢;—1,¢:) oc
while (g;—1, g, ps) is not a left turn
do s+ s+1od
else while (g¢, Vmae,Ps) is not a left turn and s <n
dos+s+1od

fi
fi;
ifs<n
then while (g:—1, ¢:,ps) is not a right turn
do pop the stack od;
push pg;
fi;
od.
Program 4

P15

P14

. Umazx

Figure 21. Situation with s =8 and ¢t =4

Theorem 2. Let S C R? |S| = n. Then BCH(S) can be computed in time
O(nlogn).
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8.2. Conver Hulls 21

Proof: Sort S lexicographically, i.e., p < q if z(p) < z(q) or z(p) = z(g) and y(p) <
y(q). Let py,...,p, be the sorted version of S. Then pi1,...,Pn—1,Pn,Pn—1,---,P1
is a simple polygon through set S from which BCH(S) can be computed in linear
time. Thus the total cost of constructing the convex hull is O(nlogn). 1

Can we do better than time O(nlogn)? The following theorem shows that we
cannot hope to do better.

Theorem 3. In the rational decision tree model, it takes time Q(nlogn) to com-
pute BCH(S) for a set S of n elements.

Proof: We will reduce the sorting problem to the problem of constructing the convex
hull. Let zy,zs,...,2, be an arbitrary sequence of real numbers and let S =
{(zs,2?) | 1 < i < n}. Then all points of S lie on the parabola y = 2% and hence
all points of S are vertices of the convex hull. Moreover, the order of the vertices
of the convex hull is identical with the order of z-coordinates. Hence computing
BCH(S) is tantamount to sorting sequence z1, ..., z, and the theorem follows from
Theorem 10 of Section 2.1.6. ]

In the proof of Theorem 3 our definition of the convex hull problem—compute the
vertices of the boundary in clock-wise order —plays a crucial role. An apparently
simpler problem is to compute the set of vertices in some order. An Q(nlogn)
lower bound for the simpler problem was shown in Theorem 15 of Section 2.1.6.

Let us turn to the convex hull problem for dynamic sets next, i.e., sets which
grow and shrink by insertions and deletions. If we confine ourselves to insertions
only, then the methods of Section 1 provide us with an efficient solution.

Theorem 4. Let S C R?, |S| = n, and p € R*>. Given a balanced hierarchical
representation of BCH(S) a balanced hierarchical representation of BCH(S U {p})
can be computed in time O(logn).

Proof: Determine first whether p lies in the interior of BCH (S). This takes time
O(log n) according to Theorem 1. If so, then we are done. If not, then we compute

the tangents of p and BCH(S) by binary search as follows. Suppose that we look
for the “upper” tangent and let ¢ be a vertex of BCH(S), cf. Fig. 22.

Figure 22. Drawing a tangent from p
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Consider line L(p, ¢q) and how it intersects the polygon. If g is the only point
of intersection then we are done. If not, then L(p, q) either enters the polygon at ¢
or leaves the polygon at q. The three cases can be easily distinguished in time O(1)
by comparing line L(p,q) with the edges of BCH(S) incident to q. Moreover, the
case distinction determines whether to continue the search in clockwise or counter-
clockwise direction. Thus the tangents can be computed in time O(logn). Two
split and one concatenate operation on the balanced hierarchical representations
complete the construction. ]

Intermixed insertions and deletions are harder to deal with. We show an O((logn)?)
bound by applying the theory of order decomposable problems.

Theorem 5. There is a data structure for convex hulls so that insertions and
deletions take time O((logn)?) where n is the actual size of the set.

Proof: By Theorem 10 of Section 7.1.3. it suffices to show that the convex hull
problem is order decomposable with C(n) = O(logn). Let < be the lexicographic
ordering on R2. Then we have

Lemma 5. Let py < ps < --- < pp, Di € [Rz, and 1 < m < n. Given balanced
hierarchical representations of BCH ({p1,-..,pm}) and BCH({pm+1,---,Pn}) We
can compute the balanced hierarchical representation of BCH ({p1,...,pn}) in time

O(logn).

Proof: Let L = BCH({p1,---,Pm}) and R = BCH({pm+1,---,Pn}). Note that L
and R are disjoint. OQur main problem is to compute the two tangents of L and R.
We show how to compute the upper tangent in time O(logn) by binary search on
the upper path from the leftmost point of L (R) to the rightmost point of L (R).

Figure 23. The upper and the lower tangent

Let 7r4,...,r; be that path in L and ¢q,...,q, be that path in R. Points
T1,7Tt, q1,q: are easily determined in time O(logn). We have to find h, 1 < h < ¢,
and k, 1 < k < s, so that line L(ry,qx) intersects neither L nor R. Assume
inductively, that we found Llow, Lhigh, Rlow, Rhigh such that Liow < h < Lhigh
and Rlow < k < Rhigh. Let i < |(Llow + Lhigh)/2] and j < | (Rlow + Rhigh)/2].
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8.2. Conver Hulls 23

Consider oriented line L(r;, g;). This line either touches polygon L in r; or enters
it or leaves it and does so similarly for polygon R (cf. Fig. 24).

ri

4

touches enters leaves

Figure 24. The 3 possibilities for L(r;, g;)
Thus we have to distinguish nine cases.

Case 1: L(r;,q;) touches in r; and g;
Then we are done and have h =i, k = j.

Case 2: L(r;,q;) touches in r; and enters in g; (cf. Fig. 25).

Figure 25. Case 2

Then rp, certainly does not follow r;, i.e., h < ¢, and ¢; does not precede g;.
Hence Lhigh < ¢ and Rlow < j reduces the size of the problem and discards a
fraction (shown dashed in Figure 25) of both polygonal chains.

Case 3: L(r;,q;) touches in r; and leaves in ¢; (cf. Fig. 26).

Figure 26. Case 3
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Then rp, certainly does not follow r; and g does not follow g;. Hence Lhigh < i
and Rhigh < j reduces the size of the problem.

Case 4: L(r;,q;) leaves in r; and touches in g;.
This case is symmetric to case 2.

Case 5: L(r;,q;) enters in r; and touches in g;.
This case is symmetric to case 3.

Case 6: L(r;,q;) leaves in r; and enters in g; (cf. Fig. 27).

Figure 27. Case 6

Then 7 does not follow r; and g; does not precede ¢;. Hence Lhigh < ¢ and
Rlow < j reduces the size of the problem.

Case 7: L(r;,q;) leaves in r; and leaves in g; (cf. Fig. 28).

Figure 28. Case 7

Then certainly r, does not follow r; and hence Lhigh < i reduces the size of
the problem.

Case 8: L(r;,q;) enters in r; and enters in g;.
This case is symmetric to case 7.

Case 9: L(r;,q;) enters in r; and leaves in g; (cf. Fig. 29).

Let m be a vertical line so that no point of L (R) is to the right (left) of m, and
let t;, (tgr) be a tangent to L (R) in point r; (g;). Let p be the intersection of ¢y,
and tp. Assume that p lies to the left or on m, the reverse case is symmetric. Since
all of R is to the right or on m and below or on ¢ and hence below t;, we conclude
that r, cannot precede r;. Hence Llow < i reduces the size of the problem.

In either case, we have shown how to eliminate in time O(1) at least half of one
of the paths. Hence after log s + log ¢ steps at least one of the paths is reduced to a
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m

Figure 29. Case 9

single point. After that only cases 1 to 5 can occur and hence further log s + log ¢
steps will finish the computation.

We have thus shown how to compute the tangents of L and R in time O(logn).
It is now easy to complete the construction. A few split and concatenate operations
are sufficient. ]

By Lemma 1 we can merge two (disjoint) convex hulls in time O(logn), thus the
convex hull problem is order decomposable with C'(n) = O(logn) and the theorem
follows. !

8.3. Voronoi Diagrams and Searching Planar Subdivisions.

In this section we study closest point problems and related searching problems in
the plane. A very versatile data structure for closest point problems are Voronoi
Diagrams. A Voronoi Diagram for a point set S partitions the plane into |S| poly-
gonal regions, one for each point v of S. The (open) Voronoi region of point z
consists of all points of R? which are closer to  than to any other point of 5. We
will show that the Voronoi Diagram can be constructed in time O(nlogn), where
n = |S|. Moreover, Voronoi Diagrams can be searched efficiently in logarithmic
time. More generally, we will show that any planar subdivision, i.e., a partition of
the plane into polygonal regions allows for logarithmic search time. In addition, the
data structure required for the search takes linear space and can be constructed in
time O(nlogn). We close the section with a discussion of several applications of
Voronoi Diagrams.

[Bemerkung fiir Kurt: nenne die Elemente von S sites; diskutiere auch
allgemeinere Metriken, d.h. abstrakte Diagramme; diskutiere auch De-

launey Triangulierung]

Version: 19.10.99 Time: 17:36 —25—



26
8.3.1. Voronoi Diagrams
Let S = {z1,...,2,} CR?% Fori, 1 < i <mn,let VR(z;) = {y | dist(z;,y) <

dist(z,y) for all j} be the Voronoi region of a point z;. Figure 30 shows a Voronoi
Diagram for a set of 5 points.

Figure 30. A point set and its Voronoi Diagram
For integers i,7, 1 <14,5 <mn, let
H(i,j) = {y € R? | dist(x;,y) < dist(zj,y)}.

H (3, j) is a half-space defined by the perpendicular bisector of line segment L(z;, z;).
Clearly, VR(z:) = U, H(, j).

Thus VR(z;) is a convex polygonal region. We can now define the Voronoi
Diagram VD(S) of S as the union of the set of edges and vertices of Voronoi regions
VR(z;), 1 < i < n. The regions of the Voronoi Diagram are the Voronoi regions.
Clearly, for every vertex x of the Voronoi Diagram there are at least three points
z;,zj,z of S such that dist(z,z;) = dist(z,z;) = dist(z,z)). Throughout this
section we use point for elements of S and vertezx for elements of Voronoi Diagram.
Also, the edges of the Voronoi Diagram are (parts of) perpendicular bisectors of
line segments L(z;,x;), i # j. A Voronoi region is either bounded or unbounded.
The unbounded regions are associated with boundary points of the convex hull.

Lemma 1. VR(z;) is unbounded iff z; belongs to BCH(S).

Proof: “=” (indirect). Assume that VR(z;) is unbounded but z; does not belong
to BCH(S). Since VR(z;) is a convex polygonal region there is a semi-infinite
ray, say L, starting in z; and running within VR(z;). Since z; does not belong to
BCH(S) ray L must intersect some edge, say L(z;,zy), of the convex hull. Finally
observe, that any point on ray L, which is far enough away from point x;, is closer
to ; (and x) than to x;, a contradiction.

“<”: Suppose that z; belongs to BCH(S). Let z; and zj be the neighbors of z;
on BCH(S), as shown in Figure 31.
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Tk
Z;

Figure 31. Shaded region is unbouded

Then every point in the shaded region, i.e., in the cone defined by the rays
starting in z; and being perpendicular to lines L(xz;,z) and L(z;, z;) respectively,
is closer to x; than to any other point of S. ]

A Voronoi Diagram for point set S partitions the plane into n, n = |S], convex
polygonal regions. Thus it is essentially a planar graph. In view of Lemma 2 of
Section 4.10, the following lemma is not surprising.

Lemma 2. A Voronoi Diagram for a set of n points has at most 2n — 4 vertices
and 3n — 6 edges.

Proof: We consider a graph D which is dual to the Voronoi Diagram. The vertices
of D are the regions of the Voronoi Diagram. Thus D has n vertices. Two vertices
of D are connected by an edge if the corresponding regions share an edge (in Figure
32 dual edges are dashed). Thus D is a planar graph and has therefore at most
3n — 6 edges (cf. Lemma 2 of Section 4.10). Since the edges of D are in one-to-one
correspondence to edges of the Voronoi Diagram we infer that the number of edges
of the Voronoi Diagram is at most 3n — 6. Finally, since every vertex of the diagram
has degree at least three, there are at most 2n — 4 vertices. ]

Figure 32. Voronoi Diagram and its dual
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We are now ready for the main theorem of this section.

Theorem 1. Let S C R? be given, n = |S|. Then the Voronoi Diagram of S can
be computed in time O(nlogn).

Proof: The algorithm is based on the divide-and-conquer paradigm. Since we aim
for an O(nlogn) algorithm we might as well assume that S is sorted lexicograph-
ically. Let Sp be the first half of sorted set S, |SL| = [n/2], and let Sk be the
second half of set S. Assume inductively, that we construct the Voronoi Diagrams
VD(Sp) and VD(SRg) of sets Sz, and Sg by applying out algorithm recursively. This
will take time T'(|n/2]) +T([n/2]). Also, T(1) = O(1), since the Voronoi Diagram
of a singleton set is trivial. The goal is now to construct VD(S) from VD(SL) and
VD(Sg) by “merging”.

(2,6)

Figure 33. VD(SL), VD(Sgr) and merge line P

In the example of Figure 33 VD(S) is shown solid, the parts of VD(SL) and
VD(Sgr) which do not belong to VD(S) are dashed, and line P which belongs to
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VD(S) but to neither VD(Sr) nor VD(Sg) is emphasized by a thick line. We have
S =1{1,2,3,4} and Sg = {5,6,7,8}.
Line P is crucial for the merging process. We define it by

P :={y € Ry; dist(y,SL) = dist(y, Sr)}

where dist(y,T) = min{dist(z,y); ¢ € T} for a point y and a set T. The following
lemma shows that P consists of edges of VD(S) and that P is monotone.

Lemma 3.
a) P = {y; y lies on an edge of VD(S) which is a perpendicular bisector of some
z; € S, and some z; € Sp}. In particular, P consists of two infinite rays and
some number of straight line segments.

b) P is monotone, i.e., P can be directed such that no line segment runs downward.

Proof: a) and b): Let P’ be the set defined in part a) of the lemma. Then clearly
P’ C P. Tt remains to show the contrary. Let y € P be arbitrary. Then there
are x; € Sp, x; € Sg such that dist(y,z;) = dist(y,z;) < dist(y,z) for all z € S.
Thus y lies on the edge which separates the Voronoi regions VR(z;) and VR(z;)
and hence y € P'. This proves P = P'.

We conclude, in particular that P consists of a set of line segments. Every line
segment is the perpendicular bisector of some z; € S and some z; € Sg. Direct
the line segment such that z; is to the left of the line segment. Then no line segment
is directed downward, because this would imply that the z-coordinate of z; is larger
than the z-coordinate of ;, a contradiction. Since S is lexicographically ordered,
we may even conclude that there is at most one horizontal line segment (which then
is directed right to left).

Finally, since the curve P is monotone, it cannot be a closed curve. Thus it
consists of two infinite rays and some number of (finite) line segments. 1

Lemma 3 characterizes line P. The significance of line P is given by

Lemma 4. Let P be as defined above. Direct P in order of increasing y-values
and let L(P) be the region of the plane to the left of P. Similarly, let R(P) be the
region of the plane to the right of P. Then

VD(S) = (VD(S1) N L(P)) UP U (VD(Sg) N R(P)).

Proof: Let VD be the set defined by the expressions on the right hand side. We
show VD(S) C VD and VD(S) D VD.
“C”: Let y be an element of VD(S), i.e., y lies on an edge of VD(S). Then there
are i, j such that dist(y,z;) = dist(y, ;) < dist(y,z) for all z € S. If z;,z; € S,
then y € VD(Sy) N L(P), if z; € S, x; € Sg or vice versa then y € P and if
z;,zj € Sg then y € VD(Sg) N R(P).
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“D”: Let y € VD. If y € P then y € VD(S) by Lemma 3. So let us assume that
y € VD(Sp) N L(P). Since y € L(P) we have dist(y,Sr) < dist(y, Sr) and since
y € VD(SL) there are x;,z; € Sr, such that dist(y, Sp) = dist(y, z;) = dist(y, z;).
Thus y € VD(S). |

We infer from Lemma, 4 that the construction of line P essentially solves the problem
of merging diagrams VD(Sy) and VD(Sg). Lemma 3 characterizes line P. However,
it does not give an efficient algorithm for constructing P. Our approach will be to
construct P in order of increasing y-values. Thus the first goal must be to construct
the (lower) infinite ray L of line P.

Consider the convex hull BCH(S) and BCH(Sg). We can obtain BCH(S)
from BCH(SL) and BCH(Sg) by drawing two tangents 77, and Ty. Let Tp be
the “lower” tangent. We have shown in Lemma 1 of Section 2 how to construct
BCH(S) and Tp, in time O(logn) from BCH(SL) and BCH(Sg). Moreover, we
have:

Lemma 5. Let the “lower” tangent Ty, of BCH(SL) and BCH(SRg) connect z; € S,
and x; € Sg. Then L is the part of perpendicular bisector of line segment L(z;,z;),
i.e., to tangent TT,.

Proof: By Lemma 3a), L is part of the perpendicular bisector of line segment
L(z;,z;) for some z; € Sg, v; € Sg. Moreover, L is an edge of VD(S). Thus
regions VR(z;) and VD(z;) are unbounded in VD(S) and hence z; and z; belong
to BCH(S) by Lemma 1. Since z; € S, x; € Sr we finally conclude that L(z;, ;)
is a tangent of BCH(SL) and BCH(SR). 1

Lemma 5 allows us to start the construction of curve P. The idea is now to extend P
line segment by line segment. More precisely, let P = [4,1s,...,l, where l; and
I, are infinite rays and Is,...,l,,_1 are line segments. Assume inductively, that
we constructed ly,...,ln_1 for some h > 1 and that we have determined points
x; € Sg, x; € Sg such that I, is part of the perpendicular bisector of z; and z;.
Lemma 5 is the base of the induction.

Line segment [, starts at the terminal point of l,_; (—oo for h = 1). It
is part of the perpendicular bisector, call it L, of z; and z; for some z; € Sg,
z; € Sg. Conceptually travel along ray L (in order of increasing y) starting in
the terminal point of [, ;. At the beginning of the journey we are within Voronoi
regions VR (z;) of x; with respect to S, and VRg(z;) of x; with respect to Sg.
Ray L will intersect either an edge of VD(Sy) before an edge of VD(Sg) or vice
versa, or it intersects neither an edge of VD(Sr) nor an edge of VD(Sg). In the
latter case, L = l,,, and we are done.

In the former case assume w.l.o.g. that L intersects an edge, say e, of VD(SL)
before (or simultaneously with) an edge of VD(Sg). Call the point of intersection z.
Point z lies on the boundary of the Voronoi region of x; with respect to S. Thus
there is z; € S such that dist(z;,z) = dist(z}, z) = dist(z;, z). In other words, z is
a vertex of the Voronoi Diagram of set S as shown in the diagram of Figure 34.
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Figure 34. A bend of P at z

In vertex z three edges of VD(S) meet, namely [, the perpendicular bisector
of z; and x;, e, the perpendicular bisector of =; and z}, and lp41. Thus 41 is the
perpendicular bisector of z} and ;. We summarize the discussion in the Program 5.

Before we can analyze Program 5 we need to be more specific about the rep-
resentation of the Voronoi Diagram. We postulate the following representation:

a) each face of the Voronoi Diagram, i.e., each Voronoi region is given by the
doubly-linked list of its boundary edges. Also the point of S to which the
region belongs and the representation of the region are linked and the two
occurrences of every edge are linked.

b) the boundary of the convex hull of S is given by its hierarchical representation.

Part b) of the representation is only needed for the algorithm above, part a) is
the genuine representation of the diagram. We have seen in Section 8.2 that the
lower tangent T, points z and y in line (1) and the hierarchical representation of
BCH(S) can be constructed in time O(logn) from the hierarchical representation
of BCH(SL) and BCH(SRg). Thus line (1) takes time O(logn).

Let us consider while-loop (2)-(10) next. From the considerations above it is
clear that at most n iterations of the loop can occur. The test in line (2) is carried
out as follows.

When line (2) is executed we “move” within the Voronoi regions VRp(z) of
point z € Sy, with respect to Sy and VRg(y) of point y € Sg with respect to Sg.
Region VRp(z) (and VRg(y)) is represented by a circular list. Find the lowest
(smallest y-coordinate) point on that list. This is done at most once for every point
and hence takes total time O(n) by Lemma 2. Next associate two pointers with the
list, one with the left part and one with the right part (cf. Figure 35).

We use these pointers to implement a scan line which scans VRp(z) and
VRR(y) simultaneously from bottom to top and finds the first (= lowest, since
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(1) h:=1;
Let Ty, be the “lower” tangent of BCH(Sy) and BCH(SRg),
Ty, connects x € S and y € Sg, say;
Let L be an infinite ray starting at —oo and being
the perpendicular bisector of z and y.
Furthermore, let line segment /; on L start in —oo.
(2) while L intersects either VD(SL) or VD(SR)
(3) do if L intersects an edge, say e of VD(SL) not after an edge of VD(Sg)
(4) then let z be the point of intersection;
(5) terminate [ in z;
(6) let e be the perpendicular bisector of z € Sy, and z’ € Sp;
(7) z:=a';h:=h+1,
(8) let L be the infinite ray, starting in z and being part of the

perpendicular bisector of ¢ and y, and extending towards +o0;
(9) let I, be a line segment on L starting in z
else

symmetric to then-case

Program 5

Figure 35. Searching upwards a region boundary in parallel

P is monotonic) intersection of L with any edge of VRp(z) and VRg(y). This
process is very similar to merging four sorted lists. The time required to find an
intersection is clearly proportional to the number of edges discarded. Since P is
monotone and hence no back-tracking is ever needed every edge is discarded only
once. Once we have determined the edge of intersection we only have to follow
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the pointer to the other copy of the edge in order to find point #’ in line (6). The
process is then continued with z’ instead of = in the next iteration of the loop. We
summarize in

Lemma 6. Voronoi Diagram VD(S) can be constructed from VD(Sr) and VD(SRr)
in time O(n).

Proof: We argued above that the cost of one execution of the loop body is pro-
portional to the number of edges discarded. Also every edge is discarded at most
once and the number of iterations of the loop is at most n. Thus line P can be
constructed in time O(n) from VD(Sp) and VD(Sg). Once line P is found it is
easy to construct VD(S) from VD(Sp) and VD(Sg) in linear time. In fact, the
construction is easily incorporated into Program 5. The only change required is to
update VR(z) and VR(y) in the loop body by throwing away some of their edges
and to add Il;, as a new edge. We leave the simple details to the reader. ]

It is now easy to complete the proof of Theorem 1. By Lemma 6 we have the
following recurrence for the time 7T'(n) required to construct the Voronoi Diagram
for a set of n points.

T(n) =T([n/2]) + T([n/2]) + O(n)
Thus T(n) = O(nlogn) as claimed. 1

How good is our algorithm for constructing Voronoi Diagrams? Is it even optimal?
The following argument shows that constructing Voronoi Diagrams is at least as
hard as sorting and hence that the algorithm above is optimal with respect to a wide
range of computational models. Consider S C R? where S consists of n + 1 points,
the origin and n points on the unit circle. Then the Voronoi Diagram for S is an n-
gon containing the origin and n rays emanating from the vertices of the n-gon. The
rays sort the n points on the unit circle in an obvious way. Thus sorting n points
on the unit circle by angle is no easier than constructing the Voronoi Diagram.

We close this section with a brief discussion on updating Voronoi Diagrams.
Suppose that we have computed the Voronoi Diagram VD(S) and we either want
to delete z € S or we want to add a point y to S. In the latter case we also assume
that z € S with y € VR(z) is given. We will discuss methods for finding y in the
next section.

A worst case bound for the complexity of insertions and deletions is given by the
theory of order decomposable problems. Let < be the lexicographical order on R?.
Then the problem of constructing the Voronoi Diagram is order-decomposable with
respect to ordering < with merging time C(n) = O(n). Thus insertions and dele-
tions take time O(n) in the worst case by the results of Section 7.1.3. Since the
Voronoi Diagram may be changed drastically by an insertion or deletion this bound
cannot be improved.
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However, on the average one can do much better. Exercises 14 and 15 discuss
algorithms for updating Voronoi Diagrams whose running time is bounded by O(s)
and O(slog s) respectively, where s is the size of the change of the diagram.

8.3.2. Searching Planar Subdivisions

A Voronoi Diagram is a partition of the plane into polygonal regions some of which
are unbounded. In this section we show how to search Voronoi Diagrams in loga-
rithmic time, i.e., we describe two data structures which given y € R? allow to find
xz € S with dist(y, z) minimal in logarithmic time. Moreover, the data structures
can be constructed in linear time and use linear space.

In searching Voronoi Diagrams, the Voronoi regions are the regions of “constant
answer”, i.e., dist(y,z) = min{dist(y,z); = € S} if and only if y € VR(z). In other
words, x is the nearest point to y among all points in S iff y € VR(z). Thus
in some sense the Voronoi Diagram is a method of tabulating the answers to all
nearest neighbor searches. Of course, we still have to describe how to search the
table efficiently. That is the purpose of this section. More generally, the methods
to be described can be used in the following situation. Suppose that f : R? — T
for some set T' assumes only finitely many different values and that for each t € T,
f~1(t) is a polygonal region R, C R?. Then {Ry; t € T} is a subdivision of R
Assume further that the total number of edges of all polygonal regions R;, t € T,
is m. Then the data structures to be described allow us to compute f in time
O(logm). Moreover, the data structures can be constructed in time O(mlogm)
and require space O(m). In the Voronoi Diagram searching problem we have T' = S
and f(y) = « where dist(z,y) = dist(y, S). Other examples are T'= S and f(y) =z
where dist(z,y) > dist(z,y) for all z € S (furthest neighbor) or T = § x S and
f(y) = (z,2') where dist(z,y) < dist(z',y) < dist(z,y) for all z € S, z # z, 2’ (two
nearest neighbors). In both examples, it is clear that the regions of constant answer
are convex polygonal regions since these regions can be written as intersection
of half-spaces. It is not clear however whether these regions can be computed
efficiently. We refer the reader to the exercises.

A planar subdivision is a straight line embedding G of a planar graph G. An
embedding is straight line if all edges of G are embedded as straight line segments
(cf. Figure 36).

In this section we describe three solutions to the planar subdivision search-
ing problem; several other solutions are discussed in the exercises. The first two
solutions have logarithmic search time but can deal only with static subdivisions,
the third solution has search time O((logn)?) but can deal with dynamic subdi-
visions. We present three solutions because each solution illustrates an important
algorithmic paradigm. In the first solution the planar subdivision is successively
simplified by the removal of a large independent set of vertices of small degree. The
existence of such a set is guaranteed in every planar graph (Lemma 8 below). The
method of removing large independent sets of vertices can also be successfully used
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Figure 36. A planar subdivision

for obtaining hierarchical representations of (convex) polyhedra, cf. Exercise 2 and
Section 8.4.3. The second solution is based on path decompositions of planar sub-
divisions. It is computationally superior to the first solution in the sense that the
constants involved in the O-expressions are much smaller. Path decomposition will
be used again in Section 8.5.1.4 on skeleton structures. Finally, the third solution
combines the ideas of path decomposition and weight-balanced trees in order to
obtain a dynamic solution.

We close this introduction with a short discussion of a more general and of a
more restricted searching problem. A planar subdivision is simple if all (including
the infinite) faces of G are triangles. A generalized planar subdivision is a planar
subdivision together with a set of pairwise non-intersecting rays which start at the
nodes on the boundary of the infinite face.

Figure 37 shows a generalized planar subdivision. If the dashed edges are added
then we obtain a generalized subdivision with a simple core. The following lemma
shows that it suffices to solve simple searching problems.

Lemma 7. If the searching problem for simple planar subdivisions with n edges
can be solved with search time O(logn), preprocessing time O(n) and space O(n)
then the searching problem for generalized subdivisions with n edges can be solved
with search time O(logn), preprocessing time O(nlogn) and space O(n). If all faces
of the generalized subdivision are convex then preprocessing time O(n) suffices.

Proof: Let G be a generalized planar subdivision with n edges and m < n vertices.
We enclose the finite part of G in two large component triangles Ty and T (cf.
Figure 37) such that 75 contains Tj. Triangles 75 and T together with the part
of G which lies in the interior of T} defines a planar subdivision. We turn this
subdivision into a simple subdivision G’ by triangulating all its faces. Note that
every infinite ray defines an edge of G’ which has one vertex on triangle T7. However,
no part of the infinite rays outside 77 belongs to G’'. Thus triangulation actually
produces a subdivision in which the outer face is also a triangle, i.e., G’ is simple.
The simple subdivision G’ has clearly O(n) edges and can be obtained in time
O(nlogn) using the methods of Section 8.4.2. If all faces of G are convex then G’
can be obtained in time O(n).
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Figure 37. A generalized planar subdivision

We can now search for point y in G as follows. In time O(1) we decide whether
y lies inside or outside 7. If y lies inside 77 then we use the efficient solution
for simple subdivision G’ which exists by assumption. If y lies outside T} then we
locate y in logarithmic time by binary search on the infinite rays as follows. We
divide the set of rays into two disjoint sets, the right-going and the left-going rays.
(A ray is right-going if it extends towards infinity in the direction of the positive
z-axis, cf. Fig. 38).

left-going <=~ - - - 3+ right-going

>~
> 7

Figure 38. left- and right-going edges

For the rays in each class, a simple comparison decides in time O(1) whether y
lies above or below the ray and hence binary search locates point y in time O(log n).
Thus in either case (y inside or outside T}) we can locate y in time O(logn).
Furthermore, the space requirement is clearly O(n+ space of solution for el ). Also
the preprocessing time is O(n log n+ preprocessing time for G’ )- ]
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8.3.2.1.. Removal of Large Independent Sets

Our first solution uses divide-and-conquer by the removal of large independent sets.
The same technique is applicable to a number of other problems in computational
geometry, most notably to problems concerning convex polyhedra, cf. Exercise 2
and Section 4.3. In these applications we uses the techniques of removing large
independent sets of nodes in order to obtain “simpler” versions ov convex polyhedra.

The idea is as follows. Let G be a simple planar subdivision with n vertices
and hence 3n — 6 edges. Since Gisa planar graph it has a large (at least size ¢c-n
for some constant ¢ > 0) subset I of vertices which are pairwise independent and
have small degree, say at most 9. Two vertices are independent if they are not
connected by an edge. Removal of the vertices in I from € yields a subdivision el
with at most (1 —c)n vertices. The faces of G’ are m-gons with m < 9 and different
vertices in I lie in different faces in G’. We turn G’ into a simple subdivision G by
triangulating all faces of . In the following example (see next page), nodes z, y,
and z form an independent set. Removal of {z,y,z} yields G'; triangulating the
three non-triangular faces yields G. The newly added edges are drawn dashed. The
faces of G which correspond to the same node in I = {z, v, z} are labelled by the
same character.

Let D be a search structure for G which we assume to exist inductively. We
can construct D by applying the techniquer recursively or by some other means.
In our example D has 10 leaves corresponding to the 10 faces of G. We obtain a
search structure D’ for G’ from D by simply combining all the leaves corresponding
to the subfaces of a face of G’ to a single leaf. In our example, we combine faces A;,
A, and As to face A. The search structure D’ is now easily turned into a search
structure D for G. Consider a face, say F, of G'. If there is no vertex in I which
lies in F, then F is also a face of G and there is nothing to do. In our example, this
case arises for the infinite face. If there is a vertex, say x, in I which lies in F, then
we observe first that this vertex is unique since I is an independent set of vertices.
Vertex x and the edges, say e1,..., e (k <9), incident to z subdivide F into faces
Fy,...,F; of G. Hence we obtain D from D’ by replacing the leaf corresponding
to F' by a program which locates a query point with respect to the “star” defined
by vertex x and the edges incident to z. Since z has degree at most 9 this decision
takes time O(1) and hence the cost of locating a point in G is only a constant more
than the cost of locating a point in G. Since G has at most (1 — ¢)n vertices we
should obtain logarithmic search time in this way. In our example, face A of D’ has
subfaces a, b, ¢, d of G.

Once we have determined that a query point y lies in A a simple comparison
of y with the edges incident to x also determines the face of G which contains Y.

It remains to fill in the details. We first show that there are always large
independent sets of nodes of small degree.

Lemma 8. Let G = (V,E) be a planar graph with n = |V| nodes, minimum
degree 3, and let V' C V. Then there is an independent set I CV — V' of nodes of
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removal of z,y, z

triangulation

D (see Figure 40)

Figure 39.

degree at most 9 which has size at least (4-n+ 12 —7-|V|)/70. I is independent
ifv,w € I implies (v,w) ¢ E. Moreover, I can be found in time O(n).

Proof: Let V" be the set of nodes of G which have degree at most 9, and let
z = |V"|. Since G is planar the number of edges of G is at most 3 -n — 6. Also
there are exactly n — x nodes of degree 10 or more and every other node has degree
at least three. Thus 3-2+10-(n—2)/4) <3-n—6orz > (4-n+ 12)/7.
Consider the subgraph induced by V" — V’. It has  — |V’| nodes and every
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node has degree at most 9. Thus it can be colored using at most 10 colors such
that adjacent nodes are colored differently. Moreover, such a coloring can be found
in time O(n) as follows. Assume that we use colors 1,...,10. Consider the nodes
in some order. When node v is considered, color it with the lowest numbered color
not yet used on a neighbor of v. This algorithm clearly runs in time O(n) and uses
at most 10 colors. Finally observe, that there must be one color class containing at
least (z —|V'[)/10 > (4-n+ 12— 7 |V'])/70 nodes. 1

We are now ready to prove

Theorem 2. Let G be a simple planar subdivision with n vertices. Then the
searching problem with respect to G can be solved with search time O(logn), space
requirement O(n), and preprocessing time O(n).

Proof: We use induction on the number n of vertices in G. For n < 100 the claims
are certainly true by appropriate choice of the constants in the bounds.

Assume now that n > 100. Let I be an independent set of nodes none of which
has degree 10 or more and none of which lies on the boundary of the infinite face.
By Lemma 8 (let V' be the vertices on the boundary of the infinite face which is
triangle and hence |V'| = 3) we can find such a set I with |I| > (4-n —9)/70 in
time O(n).

Removal of set I and the edges incident to vertices in I leaves us with a planar
subdivision G with at most 66-n/70+ 1 < n vertices. Note that the faces of G’ are
m-gons with 3 < m < 9. Every face of G’ can be triangulated in time O(1) using
m — 3 edges. Thus we can turn G’ into a simple planar subdivision G with at most
66 - n/70 + 1 vertices in time O(n).

Applying the method recursively to G, we obtain a search structure D for @
which we then turn into a search structure D for G as described above. We can
clearly obtain D from D in time O(n) using additional space O(n) and increasing
the depth by O(1). Thus we obtain the following recurrences for the depth d(n) of
the search structure, the construction time T'(n), and the space requirement S(n).

d(n) = O(1) for n < 100,
d(n) = O(1) + max{d(n'); n' <66 -n/70 + 1}for n > 100,
and

T(n) = 0(1) for n < 100,

T(n) = max{O(n) + T(n'); n’ <66 -n/70 + 1}for n > 100,

and similarly for S(n). Thus d(n) = O(logn), T(n) = O(n) and S(n) = O(n) as a
simple inductive argument shows. ]
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Bemerkung an Kurt: [Benutze 5-Fiarbung um Konstante zu verbessern;
mache Bemerkung, dafl die folgenden Algorithmen schneller sind; fiige
noch die persistency-Lésung hinzu]

8.3.2.2. Path Decomposition

We will now present a second solution to the planar subdivision searching problem.
It is based on path decomposition of planar subdivisions. We will use path decom-
position again in Section 5.1.4 where we will show how to greatly extend the power
of plane sweep algorithms. The present section is organized as follows. We first
introduce path decompositions and derive a suboptimal solution with O((logn)?)
search time and O(n?) storage space from it. We will then show how to reduce the
space requirement to O(n) by removing redundance. Finally, we reduce search time
to O(logn) by a clever combination of binary search in z- and y-direction.

Let G be a simple planar subdivision. We assume w.l.o. g. that no edge of G is
horizontal. Let s(t) be the vertex of G with maximal (minimal) y-coordinate. an s>t
path is a sequence of vy, ..., v, of vertices such that vy = s, v, = ¢, and (v;, vi41)
is an edge of G for 0 < i < m. A path vg,...,vn, is y-monotone if y(v;) > y(vi41)
for 0 < i < m, where y(v;) is the y-coordinate of vertex v;. Throughout this section
we will use path to mean y-monotone (s, t)-path.

The significance of y-monotone paths stems from the following simple obser-
vation. A y-monotone path divides the strip between the horizontal lines through
s and t into two parts. Given a point ¢ in the strip, one can clearly locate the
part containing ¢ in time O(logm) by binary search for y(p) in the ordered set
y(vg), ..., y(vy) followed by a comparison of p with a single edge of the path.

A sequence P4y, ..., Py of paths is a path decomposition of simple planar sub-
division G if

1) every P; is a y-monotone (s, t)-path
2) every edge of G belongs to at least one path

3) if i < j then every horizontal line L intersects P; to the left or at the same
point as P;.

For the sequel, we will always assume that k£ = 2¢7* —1 for some integer d. This can
always be achieved by duplicating path P, a few times. Figure 42 shows a simple
planar subdivision and a path decomposition of it.

A path decomposition Py, ..., Py of G gives rise to an O((log k) - (log n)) search
algorithm immediately; we show below that k£ < 4-n is always possible. We arrange
the paths in a complete binary tree, which we call super-tree (see Figure ), 41of
depth d with k = 29! — 1 nodes. We number the nodes inorder such that path P;
is associated with node i. In each node of the super-tree we use the binary search
algorithm described above to determine the position of the query point with respect
to the path associated with that node. More precisely, we determine also the edge
of the path which is intersected by the horizontal line (call it L) through ¢. In this
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Figure 41. Super-tree

Figure 42. planar subdivision and path decomposition

way, we determine in time O((logn)?) and index i and edges e of P, and e’ of P,
such that ¢ lies between edge e of P; and e’ of P, 1. This pair of edges determines
a unique face of G.

It is interesting to observe that the solution to subdivision searching based
on path decomposition is nothing but twofold application of binary search. Note
that a path decomposition decomposes the planar subdivision into regions (between
adjacent paths) which are ordered in z-direction in a natural way. We can therefore
use binary search in z-direction to locate a query point with respect to these regions.
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Each step in this binary search process requires us to determine the location of the
query point with respect to a path. Since paths are y-monotone we can use binary
search in y-direction for that purpose.

The basic algorithm described above has several shortcommings; it does not
achieve search time O(logn) and it uses space O(n?) since it requires to store O(n)
paths of length O(n) each. We show how to reduce the storage requirement first.

Let e be an edge of a simple planar subdivision G and let Pi,...P; be a
path decomposition. Then, if e belongs to P; and P;, ¢ < j, then e also belongs
to P, for all [, ¢ < [ < j. This follows immediately from property (3) of path
decompositions. We can therefore describe a path decomposition in linear space by
listing for each edge e of G a pair (L(e), R(e)) of integers such that e belongs to
P; iff L(e) < j < R(e). In our example, the values of L(e) and R(e) are given by
the table in Figure 43. The significance of entry Pos(e) is explained below. We call
this representation of a path decomposition its implicit representation.

Pos

€1
€2
€3
€4
€5
€6
€r
€s
€9
€10
€11
€12

WO IO O Wk ~J N |
RO oo UlwNn o Ny

B OO OOk WNA -

Figure 43.

Lemma 9. The implicit representation of a path decomposition can be constructed
in linear time.

Proof: We construct the paths from left to right. Suppose that we constructed
(the implicit representation of) path P and also all positions on P where we can
“move” the path to the right. We call these positions the candidates of path P.
Let P = vg,...,0p. An edge (v;,v;41) is a candidate of P and edges (v;,p),
(p,vi41) are its substitutes if v;, p,vi;1 is a face of G, p is to the right of P and
y(vi) > y(p) > y(vit1). A pair (v;,vi41), (Vit1,vi+2) of consecutive edges of P is a
candidate and edge (v;,v;42) is its substitute if v;, v;41,v;42 is a face of G which
lies to the right of P. Figure 44 illustrates both notations.
We are now ready for the algorithm.
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an edge and its substitute

a pair of edges and its substitute

Figure 44.

P + leftmost (s,t)-path; count « 1;
for all edges e of P do L(e) < 1 od;
while P has a non-empty set of candidates
do for all edges e in the set of candidates
do R(e) + count;
replace e by its substitute(s) ¢’ (and e");
L(e) + (L(e") +)count + 1
od;
count < count + 1;
od
for all edges e of P do R(e) < count od.

—~
[ T s Py

O W00 O O i W N =
e e e e e e

—~

Program 6

For the correctness of this algorithm it suffices to show that every path P
different from the rightmost path has a non-empty set of candidates. Assume
otherwise. Then every face to the right of P has at most one edge in common
with P. Let P = vg, ..., vy and let ¢ be minimal such that y(p) > y(v;11) where p
is the third vertex of the face which has edge (v;, v;41) on its boundary and is to the
right of P. The existence of index ¢ can be seen as follows. Let £ > 0 be minimal
such that vy lies on the rightmost path and vy_; does not. Then edge (vg—1,vk)
has the property stated above since the rightmost path is y-monotone. We claim
that y(v;) > y(p) and hence edge (v;,v;+1) is a candidate. Assume otherwise, i.e.,
y(v;) < y(p). Then ¢ > 0 since s = vy is the vertex with maximal y-coordinate.
Also, we must have y(v;) < y(p’) where p’ is the third vertex of the face (to the
right of P) determined by edge (v;_1, v;). This contradicts the choice of 7 and hence
establishes correctness.
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Vi—1

<—— p' must lie here

Vi+1

Figure 45.

It remains to estimate running time. Path P is represented as a doubly linked
list. Also, the set of candidates of P is represented as a linked list. It is then easy to
execute lines (5)—(8) in time O(1) and also to check whether one of the substitutes
is a candidate for the new path. Note that every candidate of the new path must
contain an edge added in line (6). Thus one execution of lines (4)—(10) takes time
proportional to the number of edges for which R(e) is defined during that execution.
Since R(e) is defined only once for each edge the time bound follows.

We have now established that the implicit representation of some path decom-
position Py,..., Py, k = 29%1 — 1 < 4. n (recall that we replicate Py in order to
bring k into that special form) of a simple planar subdivision can be constructed
in linear time. We will next use this fact to reduce the storage requirement of the
search structure to O(n) by storing every edge of G only once. More precisely, we
store edge e of G only in the highest node of the super-tree whose associated path
contains e. Using functions L(e) and R(e) it is easy to define that node, call it
Pos(e). Node Pos(e) is the lowest common ancestor of nodes L(e) and R(e) of the
super-tree. Then path Pp,, () contains e (since L(e) < Pos(e) < R(e)) and no path
associated with an ancestor of Pos(e) contains e. Another way of characterizing
Pos(e) is as follows. If L(e) = R(e) then clearly Pos(e) = L(e). If L(e) < R(e)
then let ... asajaq (...B28100) be the binary representation of L(e) (R(e)) and let
J be maximal such that a; # 3;. Then o; =0, 3; =1 and ...aj120;4170...0 is
the binary representation of Pos(e) where y =0if o =aj_1 =--- = ap =0 and
v = 1 otherwise.

We are now ready for the definition of the reduced search structure. In
the reduced search structure node i contains a balanced search tree T; for the y-
coordinates of the endpoints of all edges e with Pos(e) = i. Also, the nodes of T;
corresponding to the lower endpoint of edge e contains a pointer to edge e. In our
example we have

Lemma 10.
a) The search time in the reduced search structure is O((logn)?)
b) The reduced search structure requires storage space O(n) and can be con-
structed in time O(n).
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Figure 46.
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Figure 47.

Proof: a) For the following algorithm we assume Py = Py, P11 = P, and k =
2941 _ 1 for some d. Furthermore, we assume that query point ¢ lies between Py,
and Pj11, a fact which is easily checked in time O(1). Recall that Py and Py are
the boundary of the infinite face which is a triangle. Finally, L is a horizontal line
through g¢.

The correctness of this algorithm is almost immediate. If either edge e; or edge
e, belongs to P, then the step in the binary search is trivial. If neither e; nor e,
belongs to P,, then let e be the edge of P which is intersected by L. We must have
Pos(e) = m since P, runs between P; and P,, e # €;, e # e,. Thus the correct
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) <07« k+1;

) e; (e,) « edge of P, (P,) intersected by L;

) while » > [ +1

) do co point g lies between P, and P, and line L
intersects edge e; (e,) of P, (P.); oc

) m < [(1+7)/2];

) if R(e;) >m

) then [/ < m

) else if L(e,) <m

) then r + m

) else find the edge of P,, intersected by L by binary search

and redefine [, 7, ¢; and e, appropriately

(11) fi

(12) fi

(13) od.

Program 7

decision is made in line (10). This proves part a).

b) The space bound is obvious because every edge of G is stored exactly once. It
remains to argue the O(n) bound on preprocessing time. We show an O(nlogn)
bound first (which is probably good enough for practical purposes) and then sketch
the linear time solution.

Observe first that Pos(e) can be computed in time O(logn) by the simple
algorithm of Program 8, for every edge e.

if L(e) = R(e)
then Pos(e) «+ L(e)
else count < —1;1 + L(e); r + R(e); flag + true;
while [ # r
do count < count + 1;
if [ is odd then flag « false fi;
L+ |1)2]; 7+ |r/2]
od;
if flag then Pos(e) < L(e) else Pos(e) < (I -2+ 1)U fi
fi

Program 8

We conclude that array Pos(e) e € E, can be computed in time O(nlogn).
Using bucket sort (Pos(e) is the bucket to which edge e is sent; cf. Section 2.2.1)
we can compute the set of edges associated with any node of the super-tree. How-
ever, we want this set sorted according to y-coordinate. The O(nlogn) cost of
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sorting can be overcome as follows. Turn G into directed graph by directing all
edges downwards, i.e., direct edge (v, w) from v to w iff y(v) > y(w). This takes
time O(n). Then sort G topologically (cf. Section 4.2) in time O(n); let Num(e)
be the number of edge e. Associate pair (Pos(e), Num(e)) with edge e and sort
these pairs lexicographically by bucket sort in time O(n). In this way, we obtain
the edges associated with any node of the super-tree in sorted order according to
the y-coordinates of their endpoints. Finally, we have to build a balanced search
tree for each node of the super-tree. This clearly takes linear time. In summary,
we have shown how to construct the reduced search structure in time O(n logn).

In order to prove an O(n) bound on the preprocessing time it suffices to com-
pute the array Pos(e), e € E, in time O(n). A more abstract view of the problem
is as follows. Given the complete binary tree T' with k& = 24! — 1 nodes and pairs
(zi,yi), 1 <i < 4-n, of nodes compute for each pair its lowest common ancestor
a; = Lea(z;,y;). We have x; = L(e), y; = R(e) and a; = Pos(e) for some edge e in
the problem of computing array Pos.

We solve the lowest common ancestor problem as follows. In a first step we
compute several auxiliary functions on tree 7' by an ordinary tree traversal (cf.
Section 1.5), namely

rightmost leaf, which is a

_ ) descendant of v
Rthread (v) = successor of v in the

inorder traversal of T'
Rmost(v) = if v is a leaf then v else Rthread(v)

if v is not a leaf;

if v is a leaf;

and

Lra(v) = Rthread(Rmost(v)).

Function Lra yields for every node v the lowest ancestor which follows v in the
inorder traversal. The symmetric functions Lthread, Lmost and Lla are defined
similarly. We leave it to the reader to show that all these functions can be computed
in time O(n). Using functions Rmost and Lmost one can decide in time O(1)
whether node z is an ancestor of node y; namely z is an ancestor of y iff Lmost(z) <
Lmost(y) < Rmost(y) < Rmost(x). Thus in time O(n) we can compute a; for all
pairs (z;,y;) where z; is an ancestor of y; or vice versa. If neither z; is an ancestor
of y; nor y; is an ancestor of z; then Lca(x;,y;) = Lea(Rmost(x;), Rmost(y;)). We
may therefore assume w.l.o.g. that the x;’s and y;’s are leaves of 7.

Let di = y; —x; + 1 and ld; = [log(y; — z; + 1)|]. We can compute Id;,
1<i<4-nin time O(n) by first tabulating function m — [logm], 1 < m <k,
and then using table-lookup. Let Cj be the nodes of height h — 1 of T' and let
Qn = {(zi,y:); ld; = h} for h > 1. We can compute sets @, ordered in increasing
order of the z;’s by creating triples ld;, z;,7) and sorting them into lexicographic
order by bucket sort. In a next step we compute app; (approximate lowest common
ancestor) where app, € Cld,,- and app; is an ancestor of z; for all ;. We can compute
app; for all (z;,y;) € Qp by “merging” Qp with Cj in time O(|Qp| + |Chl|). Since
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Ch, h > 0, is a partition of the node set of T" and since Qp, h > 0, is a partition
of the set {(z;,¥;),1 < i < 4-n} the total time needed to compute app, for all ¢
is O(n).

We claim that a; € {Lra(app;), Lra(Lra(app;))}. Let w = Lra(Lra(app;))-
Since z; is descendant of app, and hence of Lra(app;) and w, it suffices to show
that y; is not a descendant of app,, but y; is a descendant of w. Let h = ld;.

(1) y; is not a descendant of app,
Node app, is a node of height h — 1 and hence has 2" — 1 descendants. leaf z; is a
descendant of app; an d; > 2" — 1. hence y; is not a descendant of app,.

(2) y; is a descendant of w = Lra(Lra(app;))-

Let z be the right son of w. Then node z has height at least h. If y; is not a
descendant of w then all descendants of z lie between x; and y;. Hence y; — z; —>
2h+l 1 or Id; > h + 1, a contradiction.

We have thus shown that array Pos(e), e € E, can be computed in time O(n).
Hence the time to construct the reduced search structure is O(n). This proves
part b). |

For the remainder of this section we show how to improve the search time to O(log n).|j
The search time in the reduced structure is O((logn)?) because we spend time
O(logn) in each node on the search path in the super-tree. Time O(logn) per
super-node is required because we need to do a binary search (in y-direction) on
a path of length O(n). No attempt is made to use the information gained about
the y-coordinate of query point ¢ in order to speed up later searches in y-direction.
One possible usage were a locality principle, i.e., having determined the position of
query point with respect to path P; we can restrict attention to a small subsegment
of the paths stored in the sons of node i. Realization of a locality principle requires
that we “align” the paths stored in adjacent nodes of the super-tree so as to pro-
vide for a smooth transition between them. How can we align the path stored in
node v with the paths stored in the sons, say  and y, of node v? One possible way
of achieving alignment is to include a suitable subset of the vertices of the paths
associated with nodes x and y into the path stored in node v. The subset has to be
dense within the paths in nodes z and y in order to enforce locality and it should
be not too dense in order to keep storage space linear. A reasonable compromise is
to include every other node. The details are as follows.

Let P/ be the sequence (ordered according to y-coordinate) of vertices stored
in node 7 of the reduced search structure. We use @Q; to denote the sequence (ordered
according to y-coordinate) stored in node ¢ of the improved search structure. We
define

Q: = pPred s} if i is a leaf of the super-tree;
© =\ Pred U Half (Queon(s)) U Half (Qpeon(sy)  if i is not a leaf,

where operator Half extracts the odd elements of a sequence, i.e., Half (v1, v2, v3,v4,...) =]}
v1, U3, Us, - - .. In our example we obtain the table of Figure 48.
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Super-Node pred Q;
1 s,t s,t
2 1,t s, 1,4,
3 1,4 s,1,4
4 $,1,3,4,¢ | s,1,2,3,4,¢
5 0 s
6 1,2,3,t 5,1,2,3,t
7 s,2,t 8,2,t

Figure 48.

The sequences @); are stored as ordered linear lists except for @Q,.,; which is
organized as a balanced search tree. The balanced search tree is organized according
to the y-coordinates of the elements of Q,,,:- With every interval between adjacent
elements of (); we associate a pointer (the edge-pointer) to an edge of Q The
pointer is stored in the upper endpoint of the interval and points to edge e if e
is stored in P™? and if the interval is contained in the interval (of y-coordinates)
covered by edge e. If there is no such edge then the pointer is undefined. In out
example, sequences )4 and Q¢ have the structure shown in Figure 49.

S S
—>€2 —> undefined
] b1
—>» €4 —» €7
b2 »2
—>» € —> €3
»3 »3
—>» €10
¥l —> €11
—» €12
¢ ¢
Q4 Qs

Figure 49.

Note that in Q4 there are two intervals pointing to edge eg and that in Qg the
edge pointer of interval (s,1) is undefined.

Finally, we have to make the alignment between the sequences explicit. We
do so by associating two pointers (Ralign and Lalign)) with every element of Q;;
if v is an element of @; and 7 is not a leaf of the super-tree then Ralign(v) points
to node w on Qs0n(;) Where w is such that y(w) > y(v) > y(suc(w)) and suc(w)
is the successor of w in Qpeon(i)- If i is a leaf of the super-tree then Ralign(v)
points to v itself. Pointer Lalign(v) is defined symmetrically. In our example, we
obtain Figure 50. There the @;’s are drawn vertically, the alignment pointers are
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drawn horizontally, and the values of the edge-pointers are shown directly on the
sequences.

S

€1

Figure 50.

Lemma 11.
a) The search time in the improved search structure is O(logn).

b) The improved search structure requires storage space O(n) and can be con-
structed in time O(n) from the reduced search structure.

Proof: a) We will modify the search algorithm described in Lemma 10a) such that
O(logn) time is spent in the root node of the super-tree and O(1) time in every
other super-node on the search path. Clearly, we obtain O(logn) search time in
this way.

As in Lemma 10 we assume Py = P, Py41 = P, and k = 2%+! — 1 for
some d, that query point ¢ lies between Py and Py and that L is a horizontal line
through g. We assume furthermore that each element of a sequence @); is a record
with fields y (the y-coordinate of the element), suc (a pointer to the successor on
Q;), Edgepointer, Ralign and Lalign. Fields Edgepointer, Ralign and Lalign are as
defined above.

The running time of this algorithm is clearly O(logn) since we need time
O(logn) to find node v in line (3) by binary search on the balanced tree Qg oot
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(1) l—0;rk+1;,m« [(I+7)/2];
(2) e; (e,) < edge on P, (P,) intersected by L;
(3) let v be a pointer to the node on Q,, such that vt.y > y(q) > vi.suct.y
(4)  whiler>1+1
(5) do co v is a pointer to a node on Q,, m = [(I +r)/2], with
vty > y(q) > vh.suct.y. Also, point g lies between P, and P,
and line L intersects edge e; (e,.) of P, (P,) oc
(6) if L(e,) < m or L(e,) > m and q lies to the left of
edge vT. Edgepointer
) then m < r; v < vT.Lalign; redefine e,
) else [ < m; v < v1.Ralign; redefine ¢;
) fi;
) m  [(I +7)/2];
) if g(y) < vhsucty
) then v < vf.suc
) fi
) od.

o~~~

Program 9

and because each execution of the loop body takes time O(1). It remains to argue
correctness. Note first that the position of query point g with respect to path P, is
decided correctly in lines (6)—(9); point g lies to the left of P, iff either edge e, be-
longs to P, or e, does not belong to P, and q lies to the left of the edge associated
with interval vf.y to vT.suct.y.

Let u be the node of Q,, which is pointed to by v and let w be the node on the
new @, which is aligned with u, i.e., v points to w before execution of line (11).
By definition of pointers Ralign and Lalign we have y(w) > y(u). Also since every
other element of the new @Q,, is also an element of the old @,, and hence either
suc(w) or suc(suc(w)) (successor with respect to the new @,,) is an element of the
old Q,, we have y(suc(u)) > y(suc(suc(w))) where suc(u) is taken with respect to
the old @,,. Thus we correctly establish invariant v1.y > y(q) > vt.suct.y in
lines (11)—(13). This proves correctness.

b) In order to prove the linear bound on the storage requirement it suffices to prove
that the total length of the sequences Q; is O(n). We have

10;] = 1+ |Pred| if ¢ is a leaf;
e |‘Pz'red| + (|leon(i)| + |Qrson(z)|>/2 if ¢ is not a leaf
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and hence

k k
> Q] Z1+|P’"ed| (1+1/2+1/4+1/8+--)
=1 =1

:2,(n+zpfed>
= O(n) :

The first inequality follows from the observation that all nodes of P/¢ contribute to
Qi, one half of them contributes to Qf,sher (i), one fourth of them to Qather (father(i)), - - -

It remains to show that we can obtain the improved search structure in
time O(n) from the reduced search structure. We can clearly construct @; from
Pired’ leon(i) and Qrson(i) by merging in time O(|P)ired|+|leon(i)|+‘Qr‘son(i) |) Fur-
thermore, it is easy to set-up the pointers Edgepointer, Lalign and Ralign during
the construction without increasing the cost by more than a constant factor. Hence
the improved search structure can be constructed in time O(}, |@Q;|) = O(n). &

We summarize the discussion of this section in

Theorem 3. Based on path decomposition the searching problem for simple pla-
nar subdivision can be solved with search time O(logn), storage space O(n), and
preprocessing time O(n).

We have travelled quite a distance in this section. We started out with the basic
concept of path decomposition and obtained very quickly a data structure with
O((logn)?) search time and O(n?) storage requirement. We then refined the data
structure and first reduced storage space and preprocessing time to O(n) and then
search time to O(logn). We will see path decomposition again in Section 5.1.4.

8.3.2.3. Searching Dynamic Planar Subdivision

In the preceding section we described to optimal solutins to the searching problem
for planar subdivisions. Several other solutions are discussed in the exercises. All
these solutions have a common weakness. They only apply to static subdivisions
and do not seem to adopt easily to changes in the underlaying planar subdivision.

Consider the following szenario which captures a simple from of dynamic be-
havior; a solution to more genereal forms of dynamic behavior is not within sight
at the day of this writing. At any point of time we can either query the planar
subdivision with respect to a query point ¢ € R? or subdivide one of the finite faces
of the subdivision by a straight line thus adding one additional edge and up to two
additional vertices. The initial subdivision is a triangle. Note that all vertices con-
structed by adding new edges have degree at least three. Our goal for this section
is to prove the following
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Theorem 4. There is a solution to the dynamic planar subdivision searching prob-
lem with query and update time O((logn)?). The bound on query time is worst
case and the bound on update time is amortized.

Proof: Our approach is similar to the one used in Section 3.2.2; i.e., we will againn
use binary search on a path decomposition. However, there are somemajor dif-
ferences. First, we cannot assume that our planar subdivision is triangulated and
hence we cannot insist on a path decomposition into monotone paths. Rather, we
have to use arbitrary (s,t)-paths in the decomposition. Second, the super-tree is
not static anymore but needs to be adapted as the subdivision changes. In order
to keep the cost of updating the super-tree low we organize the super-tree as a
weight-balanced tree.

Let G be the (current) planar subdivision and let s (¢) be the vertex of G with
maximal (minimal) y-coordinate. Note that s and ¢ do not depend on time since
only finite faces can be refined. As before, an (s,t)-path is a sequence vy, v1, ..., Un
of vertices with vg = s, v, = ¢, (v5,v;41) an edge of G for 0 < 7 < m, and
(v, vi+1) # (vj,vj41) for ¢ # j. An (s, t)-path P divides G into two parts which we
call the left and right part of G with respect to P.

A sequence P4,..., Py of paths is a complete path decomposition of G if

1) every P;, <i < N, is an (s,t)-path and every edge of G belongs to at least one
P;

2) P is the leftmost (s, t)-path, Py is the rightmost (s, ¢)-path and P;1; is to the
right if P;; 1 <{ < N, i.e., no horizontal line intersects P; to the right of P;1;

3) for every ¢, 0 < i < N — 1, there is exactly one face of é, say F', such that all
edges belonging to either P; or P;1; but not to both border the samme face of
G. We will say that pair 8P;, P; ;1) moves across face F' in this case.
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S

Figure 51.

In our example, there are four vaces and hence a complete path decomposition
consists of five paths Py, P>, P;, Py and Ps. We might have P, = s,1,t, P, =
s,1,2,3,4,t, P3 =s,1,2,5,6,3,4,t, Py = s,5,6,3,4,t and P5 = s,5,6,7,4,t. Then
pair (P, P,) moves across face F, and pair (P, P3) moves across face Fj.

We can now describe the search structure for subdivision G in more detail. Let
Py, ..., Py be a complete path decomposition of G. Then the super-tree is a BBJ[a]-
tree, say a = 0.28, with N nodes; cf. Section 3.5.1 for a discussion of BB[a]-trees.
Node i corresponds to path P;. Node ¢ contains a data structure which allows us to
decide the position of query point ¢ with respect to path P; in time O(logn). Since
the super-tree has depth O(logn) a total query cost of O((logn)?) results.

As before, this basic solution suffers from its huge storage requirement which
now also implies huge update cost. We proceed as in the preceding section, and
store in node v of the super-tree only those edges of path P, which do not belong to a
path P, for w an ancestor of v. We denote this set of edges as P/*¢. In our example,
we might use the super-tree of Figure 52 in BB[1/4]. Then PJ*¢ = {(2,5),(5,6)}
and Pred = {(6,7),(7,4)}.

For edge e, let L[e] (R[e]) be the minimal (maximal) ¢ such that e belongs to
path P;. We will describe below how integers L(e) and R(e) are maintained such
that computation of L(e) and R(e) take time O(logn) each. For the description
of the query algorithm we assume the existence of algorithms for computing L(e)
and R(e). Also we assume that the data structure associated with node ¢ has the
following property (called property (x)):

Given point ¢ € R? and a horizontal line L through find edges e and €’ in pyred
(if they exist) such that L intersects e and €', g lies between e and e’ and no other
edge in P intersects L between the intersections with e and e'.
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Figure 52.

Lemma 12. Let m = |P/¥|. Then a search structure for P/*? with property (*)
and query time O(logm) can be constructed in time O(m - logm).

Proof: The set P/ is a set of pairwise non-intersecting edges (except at common
endpoints). Draw horizontal lines through all endpoints of edges in P/*¢ and extend
them to the closest edge in Pred.

In our example, we have PJ*? = {(2,5), (5,6)} and hence we obtain the follow-
ing planar subdivision by this proces.

Figure 53.

In general, we obtain a planar subdivision with O(m) vertices all of whose
faces are convex. Moreover, we can obtain this subdivision in time O(m logm) by
plane sweep. We can now use either one of the methods of the preceding sections to
obtain a search structure with property (*) of depth O(log m) in time O(mlogm). i

The bound on the query time is easily derived at this point.

Lemma 13. Given query point ¢ € R? one can determine the face of G containing q
in time O((logn)?) where n is the number of vertices of G.

Proof: We use a tree search on the super-tree. In each node of the super-tree we
spend time O(logn). Let L be a horizontal line through ¢g. Assume inductively that
the search has reached node i of the super-tree and that we determined paths P;
and P, and edges er and er on P, such that g lies between e; and eg, i.e., L
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intersects ez, and eg. Also, nodes j and k are ancestors of node i. Note that either j
or k or both may not exist. Figure 54 illustrates the situation. In this diagram
paths P; and Py are shown dashed and path P; is shown solid. Furthermore, edges
er, er, € and e’ are indicated.

\\/\V/v

Figure 54.

We can now use the data structure (with property (*)) for P/*¢ to determine
a pair of edges e and e’ of P® such that g lies between e and e’. Also, we can
determine whether edges e; and er belong to P; by looking up their L- and R-
values. Using this knowledge it is then easy to decide on which side of path P; the
query point ¢ lies. Thus time O(logn) suffices to determine the position of point ¢
with respect to P; and hence total search time is O((logn)?).

We turn to the insertion of new edges next. An additional edge splits a face,
say F, into F; and F,. If P;, P;,1) is the pair of paths which moves across F
then Py,...,P;, P,P;y1,..., PN is a complete path decomposition of the new planar
subdivision where path P runs betwen paths P; and P;,; and uses edge e. More
precisely, if e = (z,y), then P consists of the initial segment of P; (P;y1) from w
to x if  lies on the left (right) boundary of F, followed by edge e, followed by a
terminal segment of P; (P;y1) from Y to t if y lies on the left (right) boundary of F'.

In our example, we can split face Fy by adding an edge from vertex 6 to
vertex 4. Then P, P,, P;, Py, P, P5s is a complete path decomposition of the new
planar subdivision where P = s,5,6,4,t. We obtain a super-tree for the new path
decomposition by adding a node P between P, and Ps. The new super-tree does
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not belong to class BB[0.28] since the balance of node Ps is 1/4 ¢ [0.28,0.72].
Therefore, we need to rebalance the super tree at node Ps.

Figure 55.

In general, we add a node for P as either a right son of node ¢ (if ¢ is a
descendant of ¢ + 1) or as a left son of node i + 1 (if node 7 + 1 is a descendant of
node ).

Also, P™? consists exactly of the new edge e since all other edges of P also
belong to ancestors of the new node. It is therefore trivial to construct a data
structure (with property (*)) for P4,

Of course, the super-tree can go out of balance, i.e., leave class BB[a], by adding
the new node corresponding to path P and hence rebalancing is necessary. Before
we can describe the rebalancing algorithm we need to discuss in detail how arrays L
and R are maintained. We store them implicitely as follows. Note first that we can
partition the edges on the boundary of every face into two blocks in a natural way.
Let F be a face and let pair (P;, P1i 4+ 1) be the pair of paths which moves across F'.
Then the left boundary LB(F') of F consists of all edges of P; which do not belong
to P;j+1. The right boundary RB(F') is defined symmetrically. Next observe, that
if edge e belongs to LB(F) then R(e) = ¢ and if edge e’ belongs to RB(F') then
L(e) = i+ 1 where pair (P;, P;+1) moves across face F. Finally, observe that every
edge belongs to the boundary of exactly two faces. More precisely, it belongs to the
left boundary of some and to the right boundary of some other face.

These observations suggest the following method for storing arrays L and R
implicitely. For every face F' we store the edges in LB(F') (RB(F)) in a balanced
tree. The edges are ordered clockwise. In the root of the tree for LB(F) (RB(F))
we store a pointer to node i (¢ + 1) of the super-tree where i (i 4+ 1) is the common
value of R[e| (L[e]) for the edges in LB(F') (RB(F)). With every edge e we associate
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two pointers. Pointer LP(e) (RP(e)) points to the copy of edge e in a left (right)
boundary list LB(F') (RB(F)) for some face F. Using these data structures we
can compute R[e] as follows; the computation of L[e| is symmetric. We follow
pointer LB(e) to the (unique) copy of edge e on a left boundary list, say LB(F),
then we inspect the root of the tree representation of LB(F') and obtain a pointer to
node R|e] of the super-tree. Note that a knowledge of a pointer to node R(e) suffices
for the query algorithm; the numericalvalue R]e] is not required. The representation
described above clearly allows us to compute L[e] and Re] in time O(logn).

We now turn to the discussion of the insertion algorithm. Adding a new edge e
splits a face, say F, into two faces, say Fi and F5. Also a new path P is added
to the path decomposition. The tree representation of LB(Fy), LB(F3), RB(F1),
RB(F3) can be obtained from LB(F) and RB(F) in time O(logn) by a few split
and concatenate operations (cf. Section 3.5.3.1). This shows that we can add a new
edge in time O(logn) excluding the time required for rebalancing the super-tree.

Let ¢ be the highest node of the super-tree which is out of balance after adding
edge e. Let I = [l..r] be the set of descendants of ¢ (including i) and let E =
U jer Pj’"ed be the set of edges stored in the descendants of i. Finally, let m = |E|
and k = |I|. We rebalance the tree by replacing the subtree rooted at i by a perfectly
balanced tree with node set I. This takes time O(k). We then go through all edges
in E, compute their L- and R-values as described above and decide in what node
of the new subtree each eedge has to be stored. This takes time O(mlogn) since
each L- and R-value can be computed in time O(logn). In this way we compute
for each node j, I < j < r, the set P/*@ of edges which has to be stored in node j of
the new subtree. Let M; = |P/*%|. Thenn it takes time O(m; logm;) to construct
the data structure with property (%) for node j and hence time

Z O(mjlogm;) = Z O(m;jlogn)

jEI j€J
=O0(|I] + ij log n)
jEI

= O(k + mlogn)

to construct these data structures for all nodes in I. This finishes the description of
the rebalancing algorithm. Note that L- and R-values of all edges remain unchanged
since the path decomposition is not changed; only its arrangement in the super-tree
is changed. Thusno action is required for the L- and R-values. We summarize the
discussion in

Lemma 14. Rebalancing at anode i with k descendants takes time O(k - logn).

Proof: We have shown above that rebalancing takes time O(k +mlogm). It there-
fore suffices to prove that m = O(k). This can be seen as follows. Note first that
k+1 is the number of faces of G between paths P;_; and P,..; of the decomposition.

Next consider the following planar graph with k& 4+ 1 nodes. Its nodes are the faces
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between P;_; and P41 and its edges are the duals of the edges in FE, i.e., edges
connect adjacent faces. This planar graph has m edges and no parallel edges since
any two finitey faces of the planar subdivision can share at most one edge. This
fact can easily be seen by induction on the number of edges added to the planar
subdivision. Thus m = O(k) by Lemma 1 of Section 4.10. 1

We are now ready to derive a bound on the amortized insertion cost.
Lemma 15. The amortized insertion cost of an insertion is O((logn)?).

Proof: We infer from Lemma 14 that the cost of rebalancing at a node with &
descendants is O(k logn). Hence the total cost of all rebalancing operations required
to process n insertions is

logn

O(n - Z(l —a)”"-logn - (1 —a)') = O(n(logn)?)

=1

by (a variant of) Theorem 5 of Section 3.6.3. thus amortized rebalancing cost is
O((logn)?). Finally, observe that the cost of changing the path decomposition after
adding an edge is O(logn). This proves Lemma 15. ]

Lemmas 13 and 15 together imply Theorem 4. ]

Theorem 4 deals only with very limited versions of dynamic behaviour. In par-
ticular, deletions, replacement of edges by pairs of edges, and non-connected sub-
divisions cannot be handled. A treatment of the more general forms of dynamic
behaviour would be of great help in the usage of the plane sweep paradigm in
three-dimensional space as we will see in Section 4.3.

3.3. Applications

In this section we discuss several applications of Voronoi Diagrams: the all pair
nearest neighbor problem, the Euclidian Spanning tree problem and the Euclidian
traveling salesman problem. Let S C R%. In the all pair nearest neighbor problem
we want to find for each € S an element y € S such that dist(z,y) = dist(z, S —
{z}), i.e., the element closest to . For the two other problems we consider the
complete network N = (S, S x S,c¢) with vertex set S and edge costs as given by
Euclidian distance, i.e., ¢(z,y) = dist(x,y). Other applications can be found in the
exercises. For the three applications discussed here the following lemma, is crucial.
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Lemma 16. Let S CR?, let z,y € S, © # y. If VR(x) N VR(y) = 0 or VR(z) N
VR(y) is a singleton set then there is z € S such that dist(z,z) < dist(z,y) and
dist(y,z) < dist(z,y) and VR(z) and VR(z) have a non-trivial line segment in
common.

Proof: Let z,y € S,  # y and assume that VR(z) and VR(y) do not share a
non-trivial line segment. Consider the straight line segment L connecting x and y.
Let p be the point of intersection of L and the boundary of VR(z) and let z be such
that p lies on a common edge of VR(z) and VR(z). It is conceivable that p is an
endpoint of this edge. We show dist(z, z) < dist(z,y) and dist(y, z) < dist(z, y).

Figure 56.

dist(y, z) < dist(z,y): Note first that dist(y, z) < dist(z,y) since y and z lie on
the same side of the perpendicular bisectors of z and z. If dist(y, z) = dist(z, y) then
y lies on the perpendicular bisector of x and z and hence y = p. Thus y, a point of S,
lies on the boundary of VR(z), contradiction. We conclude dist(y, z) # dist(z,y)
and hence dist(y, z) < dist(z,y).

dist(z,z) < dist(z,y): We observe that dist(z,z) < 2 dist(z,p), dist(z,p) <
dist(p, y) since p € VR(z) and dist(z,y) < dist(z,p) + dist(p,y). Thus dist(z, z) <
2 - dist(z,y) < dist(z,p) + dist(p,y) = dist(z,y). |

We can now proceed to the applications.

Theorem 5. Let S CR?, |S| = n. Given Voronoi Diagram of S one can solve the
all pair nearest neighbor in time O(n).

Proof: Let x € S be arbitrary. We infer from Lemma 16 that x has a nearest
neighbor y such that VR(x) and VR(y) have a non-trivial line segment in common.
Thus we can find the nearest neighbor of x by inspecting all y such that VR(z)
and VR(y) have an edge in common; this takes time O(m(z)), where m(z) is the
number of edges on the boundary of VR(z). We conclude that the total running
time is O(3_,cg m(z)) = O(n) by Lemma 2. 1
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Theorem 6. Let S CR?, |S| = n. Then a minimum cost Euclidian spanning tree
of S can be computed in time O(nlogn).

Proof: We want to compute a minimum cost spanning tree of the network N =
(S,S x S, c) with ¢(z,y) = dist(z,y). Let E = {(z,y); z,y € S,z # y and VR(z)
and VR(y) share a non-trivial line segment}. We show that the edges of a minimum
spanning tree can be taken from set E.

Claim: There is a minimum cost tree T' of network N such that all edges of T
belong to E.

Proof: Let T be a minimum cost spanning tree of network N such that 7" has a
maximal number of edges in E. If all edges of T" belong to E then we are done. So
let us assume otherwise. Then there must be an edge (z,y) of T with (z,y) ¢ T.
Thus VR(z), and VR(y) do not have a non-trivial line segment in common and
hence by Lemma 16 there is z € S such that VR(z) and VR(z) share a non-
trivial line segment, dist(x,z) < dist(z,y) and dist(y,z) < dist(z,z). Also either
T = (T —{(z,y)}) U{(z,2)} or To = (T — {(z,y)}) U{(y,2)} is a spanning tree
of N. However, T7 has more edges in E than T and the same cost as T and T5
has smaller cost than 7". Thus in either case we obtain a contradiction to the fact
that T" uses edges outside £ and has minimum cost. ]

We conclude from the claim above that it suffices to determine a minimum span-
ning tree of the network (S, E,c). Set E can be determined in time O(nlogn) by
constructing the Voronoi Diagram of S. Also, |E| = O(n) by Lemma 2 and hence
a minimum cost spanning tree of (S, E, ¢) can be determined in time O(nlogn) by
Section 4.8, Theorem 2. Actually, in view of Section 4.8, Theorem 4, time O(n)
suffices for the final step since (S, E) is a planar graph. ]

From Theorem 56 we obtain a good approximation algorithm for Euclidian traveling
salesman tours.

Theorem 7. Let S C R?, |S| = n, and let L,,; be the length of an optimal
Euclidian traveling salesman tour of S. then a tour of length at most 2 - L,p,; can
be found in time O(nlogn).

Proof: By Theorem 6 we can find a minimum cost Euclidian spanning tree in time
O(nlogn). In Section 6.7.1 we have shown that the “once around the tree” tour
has length at most 2 L,p;. The result follows. 1
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8.4. The Sweep Paradigm

The sweeping approach is a very powerful paradigm for solving two-dimensional and
some higher dimensional geometric problems. It has mostly been used for intersec-
tion problems but has also proved useful for other problems, e.g., triangulation and
order problems. The underlaying idea is quit simple. Suppose that we have to solve
a problem concerning a set of geometric objects in the plane. A concrete example is
the intersection problem of line segments. Plane sweep approaches this problem by
sweeping a vertical line from left to right across the plane. It uses a data structure,
called the y-structure, to record the status of the sweep at the current position of
the sweep line. The status of the sweep is all information about the problem to
the left of the sweep line which is relevant to solving the problem to the right of
the sweep line. In all our applications this information encompasses at least the
intersections of the sweep line at its current position with the geometric objects
at hand. Moreover, we will always have these intersections sorted by y-coordinate.
Additional information depending on the particular problem to be solved is also
associated with he y-structure.

The sweep line gradually moves from left to right. Often, there are only a few
positions of the sweep line which can cause a change in the status of the sweep. In
our example of intersecting line segments this will be the endpoints of line segments
and the points of intersection of line segments. The positions at which the status
of the sweep changes are stored in the z-structure. Usually, some points of the z-
structure are already known initially (the endpoints of line segments in our example)
and some are computed during the sweep (the points of intersection in our example).
Thus the sweep advances from point to point in the z-structure. At each point,
the y-structure is updated, some output is computed and some additional points
are inserted into the z-structure. Of course, the points to be inserted into the
z-structure must lie to the right of the sweep line if plane sweep is to work.

The paradigm of plane sweep is captured in the algorithm of Program 10.

) initialize z-structure and y-structure;
) while z-structure # ()

) do p + min(z-structure);

) Transition(p)

) od.

Program 10

In line (3) the point with minimal z-coordinate is selected in the z-structure
and deleted from it. In line (4) the sweep line is advanced beyond that point. Of
course, the details of procedure Transition depend on the specific problem that is to
be solved. in this chapter we study three applications of the sweep paradigm: inter-
section problems in the plane, triangulation problems in the plane and intersection
problems in three-dimensional space.
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The success of the sweep paradigm in these cases results from the fact that it
reduces the dimension of the problem to be solved. More precisely, it solves a static
problem in the plane by solving a dynamic problem on the (sweep) line. The latter
problem is essentially one-dimensional and therefore simpler and better understood.

8.4.1. Intersecting Line Segments and Other Intersection Problems in
the Plane
In this section we will solve a number of intersection problems in the plane. We

start with intersecting line segments and then extend the basic algorithm to various
other cases: decomposing a nonsimple polygon into simpler parts, intersecting sets

of polygons, translating sets of line segments, ... . Some fo these applications are
treated in the exercises.
Let L1, Lo, . .., L, be a set of n line segments in the plane. We want to compute

all their pairwise intersections, say there are s of them. Our first approach consists
of checking all pairs L;, L; with 1 <4 < j < n for intersection. It runs in time
O(n?). Of course, this algorithm is optimal if s = Q(n?), since s is the size of the
output. However, if s < n? then a much better algorithm exists. We will show how
to compute all s intersections in time O((n + s) logn).

Theorem 1. Let Lq,...,L, be a set of n line segments in the plane. Then the set
of all s pairwise intersections can be computed in time O((n + s)logn) and space

O(n).

Proof: We use plane sweep, i.e., we sweep a vertical line from left to right across
the plane. At any point of the sweep we divide the set of line segments into three
pairwise disjoint groups: dead, active and dormant. A line segment is dead (active,
dormant) if exactly one (two, zero) of its endpoints are to the left of the sweep
line. Thus the active line segments are those which currently intersect the sweep
line and the dormant line segments those which have not yet been encountered by
the sweep. For the description of the algorithm we assume that no line segment is
vertical and that no two endpoints or intersection points have the same x-coordinate.
both assumptions are made to simplify the exposition. The reader should have
no difficulty in modifying the algorithm in order to make it work without these
assumptions.

The y-structure stores the active line segments ordered according to the y-
coordinate of their intersection with the sweep line. More precisely, the y-structure
is a balanced search tree for the set of active line segments. In our example, line
segments Ly, Ly, ..., Lg are active.

They are sorted in the y-structure in that order as described in the introduction
of this chapter, i.e., the y-structure is a dictionary for the set of active line segments.
Any kind of balanced tree can be used for the dictionary. It supports (at least) the
following operations in logarithmic time.
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Figure 57.

find(p) given point p on the sweep line, find the interval (on the sweep
line) containing p

Insert(L) insert line segment L into the y-structure

Delete(L) delete line segment L from the y-structure

Pred(L), Succ(L) find the immediate predecessor (successor) of line segment L in
the y-structure

Interchange(L, L") interchange adjacent line segments L and L' in the y-structure

It is worthwhile observing that the cost of operations Pred, Succ and Interchange
can be reduced to O(1) under the following assumptions. First, the procedures
are given a pointer to the leaves representing line segment L as an argument and
second, the tree structure is augmented by additional pointers. For the Pred and
Succ operations we need pointers to the adjacent leaves and for the interchange
operation we need a pointer to the least common ancestor of leaves L and L'. Note
that the least common ancestor of leaves I and L' contains the information which
discriminates between L and L' in the tree search. We leave it to the reader to
convince himself that the additional pointers do not increase the running time of
Inserts or Deletes.

We describe the z-structure next. It contains all endpoints of line segments
(dormant or active) which are to the right of the sweep line. Furthermore, it
contains some of the intersections of line segments to the right of the sweep line.
Note that it cannot contain all of them because the sweep has not even seen dormant
line segments yet. The points in the z-structure are sorted according to their z-
coordinate, i.e., the x-structure is a heap. For the correctness of the algorithm it
is important that the xz-structure always contains the point of intersection of active
line segments which is closest to the sweep line. We achieve this goal by maintaining
the following invariant.
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If L; and L; are active line segments, are adjacent in the y-structure, and
intersect to the right of the sweep line then their intersection is contained in the
z-structure.

In our example, point 1 must be in the z-structure and point 2 may be. In
the space-efficient version of the algorithm any point below point 2 is not in the
x-structure. We have the following consequence of the invariant above.

Lemma 1. Let p be the intersection of active line segments L; and L;. If there
is no endpoint of a line segment and no other point of intersection in the vertical
strip defined by the sweep line and p then p is stored in the z-structure.

Proof: If p is not stored in the z-structure then L; and L; are not adjacent in the
y-structure. Hence there must be an active line segment L which is between L;
and L; in the y-structure. Since L’s right endpoint is not to the left of p, either
N(L, L;) or (\(L, L;) is to the left of p, contradiction. 1

Figure 58.

Finally, we maintain the following invariant about the output. All intersections
of line segment which are to the left of the sweep line have been reported.

We are now in a position to give the details of the algorithm.

In the algorithm above the statements in square brackets are not essential for
correctness. inclusion of these statements does not increase asymptotic running
time, however it improves space complexity from O(n + s) to O(n) as we will see
below.

The following example illustrates the algorithm.

We still have to prove correctness and to analyze the running time. For cor-
rectness it suffices to show that the invariant holds. Call a point critical if it is
either the endpoint of a line segment or an intersection of two line segments. Then
the invariant about the z-structure and Lemma 1 ensures that the point p selected
in line (4) is the critical point which is closest to and ahead of the sweep line.
Thus each critical point is selected exactly once in line (4) and hence all intersec-
tions are output in line (21). Furthermore, lines (7), (13), and (17) ensure that
the y-structure always contains exactly the active line segments in sorted order and
lines (8), (14), and (19) guarantee the invariant about the z-structure. In lines (9)
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y-structure/ < 0;
z-structure/ < the 2n endpoints of the line segments sorted by z-coordinate;
while z-structure/ # ()
do let p be a point with minimal z-coordinate in the z-structure;
delete p from the z-structure;
if p is a left endpoint of some segment L;
then search for p in the y-structure and insert L; into the y-structure;
let L;, Ly be the two neighbors of L; in the y-structure;
insert (\(L;, L;) and ((L;, ;) into the z-structure, if they exist;
[delete ((L;, Lg) from the z-structure]

NN AN AN AN N N N
0 ~J O O i W N
N N N N e e N N

fi;

if p is a right endpoint of some segment L;

then let L; and Lj be the two neighbors of L; in the y-structure;
delete L; from the y-structure;
insert | J(L;, L) into the z-structure if the intersection is
to the right of the sweep line

Py
S W G T W T S
B W= O o
— N e e e

S~~~
—
S Ot
~— ~—r

fi;
then co L;, L; are necessarily adjacent in the y-structure oc

(17) interchange L;, L; in the y-structure;

(18) let Ly, Lj be the two neighbors of L;, L; in the y-structure;
insert h, L;) an i, L) 1nto the x-structure, if they are

(19) insert (1(Zn, L;) and (\(Li, L) into th ,if they

to the right of the sweep line;
) [delete (\(Lp, L;) and (L, Li) from the z-structure;)
) output p
) fi
) od

Program 11

and (20) we delete points from the z-structure whose presence is no longer required
by the invariant about the z-structure. This completes the proof of correctness.

The analysis of the running time is quite simple. Note first that the loop body is
executed exactly 2n+ s times, once for each endpoint and once for each intersection.
Also, a single execution deletes an elment from a heap (time O(log(n+s)) = O(logn)
since s < n?) and performs some simple operations on a balanced tree of size n (time
O(logn)). Thus the running time is O((n + s)logn).

The space requirement is clearly O(n) for the y-structure and O(n + s) for
the z-structure. If we include lines (9) and (20) then the space requirement of the
z-structure reduces to O(n), since by this modification only intersections of active
line segments which are adjacent in the y-structure are stored in the z-structure.
Thus space requirement is O(n). 1

The algorithm above works for segments which are more general than straight line
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z-structure: 2, 3, 7, 8, 9
y-structure: a
sweep line: between 1 and 2

z-structure: 3,4, 7,8, 9
y-structure: a, b
sweep line: between 2 and 3

z-structure: 4, 6, 7, 8, 9
y-structure: ¢, a, b
sweep line: between 3 and 4

z-structure: 5, [6], 7, 8, 9
y-structure: ¢, b, a
sweep line: between 4 and 5

Remark: In the space-efficient version
node 6 is deleted from the z-structure
and then reinserted by the transition
at point 5.

Figure 59.

segments, e.g., for circular segments (Exercise 24). If all line segments are vertical
or horizontal then the running time can be improved and reaches O(s + nlogn),

Exercise 23.

Our next goal is to extend the algorithm above to more complicated tasks.
More specifically, we show how to decompose a polygon into simple parts. Let
Zg,.--,Tn_1 be a sequence of points in the plane. Then line segments L;
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L(z;,xiy1), 0 < i < n—1, define a closed curve in the plane. The removal of this
curve from the plane divides the plane into r + 1 polygonal regions Ry, Ry,..., R,
one of which is unbounded; say Ry.

T

Ry

~r_—

b1

Zo
Z2

Figure 60.

Each R;, 1 < i < r, is a polygonal region. The boundary of R; is a simple
polygon whose vertices are either among the z; or among the points of intersection
of the line segments L;. Let p1,...,p, be the intersections of the line segments L;.
Then our goal is to compute the boundary vertices in cyclic order for each region R;.
In our example, the output is Ry : zg,p1, 22,1, R1 : ©1,%0,P1,ZL3, T4, P1, L2, and
R : x3,p1,T4.

We have chosen the problem of polygon decomposition for expository purposes.
It is a simple intersection problem. Nevertheless, the underlying ideas required to
solve it are applicable to a wide variety of problems, e.g., the intersection of a set of
polygons. We know already how to compute the points pi,...,ps by plane sweep.
We will show now how to extend the y-structure such that the more complicated
decomposition problem can be solved. Consider our example and suppose that the
sweep line is positioned between z; and x4.

At this point we have line segments L(py, x2), L(p1, z4), L(x3,24), L(z1,z2) in
the y-structure. Note that there is always an even number of line segments in the
y-structure since we sweep a closed curved. The four line segments split the sweep
line into five intervals, two of which are infinite. For each interval, we conceptually
record the tentative name of the regions to which the interval belongs (cf. Fig. 62),
i.e., these names are used to illustrate the algorithm but they are not actually stored
in the augmented y-structure. Two intervals have the same name if they belong to
the same region and this region is connected to the left of the sweep line. Thus the
two infinite intervals always have the same name. Also, in our example the intervals
between L(z1,z2) and L(z3,z4) and between L(p;,z4) and L(p1, xz2) have different
names.
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Figure 62.

Finally, for each region we record its boundary in doubly linked lists. In our
examples, the boundary of region R; consists of vertices x1,xg,p1, 23, the line
segments between them, and parts of the line segments L(z1,z3) and L(zs,x4).
More generally, the region boundaries are stored as follows. With each entry of
the former y-structure we associate two doubly linked lists, one for each of the
two regions which have the entry (which is a line segment) on their boundary.
Each doubly linked list connects two entries of the former y-structure and stores
a polygonal chain. This polygonal chain is part of the boundary of one of the
regions. More precisely, assume that there is a region R such that k intervals are
known to belong to region R. Then 2k endpoints y1,¥ys,--.,Yy2r are connected as
Y2 —Y3,Ya—Ys, - - - , Y2k — Y1, in order to reflect the fact that the boundary of region R
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consists of k polygonal chains, running from ys; to y2;4+1, 1 < ¢ < k, and from yox
to y1. Figure 63 illustrates the case k = 4; region R is hatched.

¢ Y1

> Y2 R
2 Y3
> Y4 R
- Ys
S R
Ye
: Y7 R
S Us
. . basic .
region boundaries regions

y-structure

Figure 63.

In our current example, we have the following y-structure for a position of the
sweep line between x3 and p;.

Thus the boundary of region Ry consists of the interval between L(zg,z1) and
L(z3,x4) followed by the part of line segment L(z3,z4) which extends from the
sweep line to vertex zs, followed by a part of line segment L(xz3,z2) which extends
from vertex x3 to the sweep line, followed by the interval between L(zs3,z2) and
L(zg,z4), followed ... .

This completes the description of the augmented y-structure. The transitions
in the plane sweep still remain to be described. Since we sweep a closed curve
there are exactly four types of transitions, as illustrated below. Either we scan the
common left endpoint of two line segments, the common right endpoint of two line
segments, the right endpoint of one line segment and the left endpoint of another or
a point of intersection. We refer to the four types as starting point, endpoint, bend,
and intersection. For each of the four types we will now describe the additional steps
required. We assume without saying that the steps taken in the basic algorithm are
carried out.

Case 1: Two starting line segments (start point).
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Let line segments L; and Lo share left endpoint p. We insert line segments I
and L, into the y-structure and associate a new region with the interval between
them. Let L and L’ be the two line segments adjacent to p in the y-structure.
Then the interval between them is split into two parts both associated with the
same region. Furthermore, we record the fact that the part of L, extending from
the sweep line to p followed by the part of Lo extending from p to the sweep line
belongs to the boundary of R and R,.,, as illustrated in Figure 66.

Case 2: Two terminating line segments (endpoint).

Let line segments L; and Ly share right endpoint p. Let BLTOP;, BLBOT;,i=1,2
be the boundary list associated with the interval above (below) L; at entry L; of
the y-structure. Also let Ry, R2, R3 be the regions associated with the intervals
between L and Lq, L1 and Ly, and Ls and L', respectively. Consider region R»
first. Lists BLBOT and BLTOP> describe part of the boundary of region R,. We
concatenate BLBOT., point p, BLTOP5 in order to record the fact that the two
partial boundaries meet in vertex p. If lists BLTOP; and BLTOP5 are not identical
(a fact which is easily tested in time O(1) by providing direct links between the two
endpoints of each boundary list) then no further action with respect to region R;
is required. If BLBOT, and BLTOP- are identical then p is the rightmost point of
region R; and the scan of region R is completed. We can thus output its boundary.
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Let us turn to regions R; and R3 next; R; = Rj3 is possible. Regions R; and
R3 merge in point p and we can join their boundaries by concatenating BLTOP1,
vertex p, BLBOT,.

Finally, we delete line segments L; an Ly from the y-structure.

Case 8: One ending, one starting line segment (bend).

Let line segment L; end in vertex p and let line segment Ly start in p. Let BLTOP
(BLBOT) be the boundary list associated with the region above (below) L; at
entry Ly of the y-structure. The only action required is to replace L; by Ly in the
y-structure and to add point p to lists BLTOP and BLBOT.

Case 4: Point of intersection. Let line segments L; and Lo intersect in vertex p.
Conceptually, divide Ly and L into parts L}, LY, and L5, Lj such that L}, L} end
in p and LY, LY start in p. This shows that case 4 reduces to case 1 followed by
case 2.

We have now arrived at a complete description of the algorithm. The analysis is
straightforward. At every transition point, we spend time O(1) in addition to the
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time spent in the basic algorithm in order to manipulate a few linked lists. Thus
running time is still O((n + s)logn) where s is the number of intersections of line
segments. We summarize in

Theorem 2. let xg,21,...,Zn_1 be a sequence of points in the plane. Then the
simple regions defined by the line segments L; = L(z;,x;41), 0 < i <n —1, can
be determined in time O((n + s)logn) and space O(n), where s is the number of
pairwise intersections of segments L;.

Theorem 2 can be refined and varied in many ways, cf. Exercise 25 to 28. For
example, we might start with many instead of one closed curve or we might want
to compute a function different from intersection, e.g., symmetric difference. The
latter variant of the problem arises frequently in the design of integrated circuit.

8.4.2. Triangulation and its Applications

In this section we study the problem of triangulating a simple polygon and, more
generally, of decomposing a simple polygon into convex parts. A decomposition
into convex parts or triangles is desirable within computational geometry because
convex polygons are much easier to handle than general polygons. It is also desirable
in other fields, e.g. numerical analysis, although additional restrictions are often
imposed, in particular on shape of the convex parts or triangles. For example, one
might want to avoid either small or large angles. Apart from the fact that it is
interesting in its own right, the triangulation problem also allows us to illustrate
techniques for speeding up plane sweep.

Let P be a simple polygon with vertex set zg,zy,...,Z,_1 in clockwise order.
A triangulation of vertex set {zg,...,Zp,—1} is a maximal set of non-intersecting
straight line segments between points in this set. Aa triangulation of polygon P
is a triangulation of its vertex set such that all edges of the polygon are edges
of the triangulation. An inner triangulation of P consists of all triangles of a
triangulation which are inside P.

In Figure 69 polygon edges are shown solid and triangulation edges are shown
dashed.

Throughout this section we use n to denote the number of vertices of polygon P
and ¢ to denote the number of cusps (concave angles), i.e., ¢ = |[{i; Z(zi—1, i, zi+1) >}
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Figure 69.

7}|.- In our example, we have ¢ = 9. We will present an O(nlogn) triangulation
algorithm which we later refine to an O(n + clog ¢) algorithm.

Theorem 3. Let P be a simple polygon. Then an (inner) triangulation of P can
be constructed in time O(nlogn).

Proof: We will first show how to construct an inner triangulation; a simple modi-
fication of the algorithm will then yield a triangulation. We use plane sweep.

The z-structure contains all vertices of the polygon sorted according to the
z-coordinate. As in the decomposition algorithm above we classify vertices in three
groups: starting vertices, end vertices and bends. The transition at point p depends
on the type of the vertex.

L2 Lz
Ly Ly
L]_ L].
start end bend

Figure 70.

As always, the y-structure contains the active line segments. Since we sweep
a closed curve, the number of active line segments is always even. The active line
segments dissect the sweep line into an odd number of intervals which we label
out and in alternately. The two infinite intervals are labelled out. The in-intervals
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(out-intervals) correspond to regions inside (outside) the polygon. Figure 71 shows
the y-structure after processing point xg.

With every in-interval we associate a polygonal chain, say vy, - .

out
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| in
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Figure 71.
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right most
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., v, of polygon

vertices. Then v; and vy are endpoints of active line segments, and L(v;,v;+1),
1 <i < k, is a triangulation edge, i.e., either an edge of the polygon P or an edge
constructed in the triangulation process. Furthermore, we maintain the invariant
x; oder v;? that Z(z;, xi41,2i42) > wfor 1 < i < k—2, i.e., the triangulation of chain vy, ..., vg
cannot be locally extended. Finally, for each in-interval, we provide a pointer to
the rightmost node on the chain associated with that interval. note that the z-
coordinates of the nodes on a chain decrease as we follow the chain starting at the
rightmost node and proceeding towards one of its ends. This follows immediately

from the fact that all nodes on a chain (except the two endpoints) are cusps.
We are now ready to give the details of procedure Transition. Let p be the

point selected from the z-structure.

Case 1: p is a starting point

Let L and L' be the active line segments immediately above and below point p.

Case 1.1: p lies in an out-interval
This case is particularly simple. We split the out-interval between L and L' into
three intervals of types out, in, out and associate a chain consisting of node p only
with the in-interval. Also, p is the rightmost node of that chain.
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Case 1.2: p lies in an in-interval

Let vq, ..., vg be the chain associated with the in-interval and let v; be its rightmost
node. We can certainly add edge L(v;,p) to the triangulation. Also, we follow the
chain starting at v; in both directions and add edges to the triangulation as long as
possible, i.e., until we reach points v; (preceding v; on the chain) (and v; (following
v;)) such that L(v;, p) can be added to the triangulation but L(v;_1,p) cannot, i.e.,
until either ¢ = 1 or /(v;—1,v;,p) > m. Then we split the in-interval into three
intervals of in, out, in and associate chain vq,...,,v;,p with the upper in-interval
and chain p,v;,...,v; with the lower in-interval. Also, p is the rightmost point
of both intervals. Figures 73 and 74 illustrate the transition and the effect on the
y-structure.

LI
sweep line sweep line

Figure 73.

The rightmost element on each chain is indicated by an arrow. The time
complexity of this transition is O(log n+ number of triangulation edges added).

Case 2: pis a bend

Version: 19.10.99 Time: 17:36 77—



78

L
v —
1
L Vi in
/ Z\p/
;Ul \Ll
Ve in — out
v, . /p \
kY Vi in
Vg ‘\Uk
\L’ \L’

Figure 74.

Let L; be the edge ending in p and let Ly be the edge starting in p. Then L; is
on the boundary of an in-interval. Let vq,..., v be the chain associated with that
in-interval, where v; is the other endpoint of line segment L;. We add triangu-
lation edges L(p,vs),...,L(p,v;) until Z(p,v;,v;+1) > 7 and transform the chain
associated with the in-interval into p, v;,v;+1,...,Vk. Also, p is the new rightmost
node of the chain. The cost of this transition is O(14 number of edges added to the
triangulation). Note that line segment L; can be accessed directly, given point p.

sweep line sweep line
Figure 75.
Case 8: p is an end node

Let L; and Ly be the two line segments ending in p and let L and L’ be the line
segment adjacent to L; and Ls.

Case 3.1: The interval between L; and L, is an in-interval
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Let vy,..., v be the chain associated with the in-interval. We add edges L(p,v;),
2 < i < k—1, to the triangulation and delete line segments L; and Ly from the
y-structure. The cost of this transition is clearly O(logn+ number of edges added
to triangulation).

Figure 76.

Finally we prove the correctness of this transition, i.e., we have to show
that the edges of the chain and the newly constructed edges are pairwise non-
intersecting. This follows from the fact that p,vq,..., v, p is a simple polygon and
that Z(vi_1,vi,vi41) > wfor2<i<k-—1.

Case 8.2: The interval between L; and L5 is an out-interval

Let vy, ..., vx be the chain associated with the in-interval between L and L1, and let
w1, ..., wp be the chain associated with the in-interval between Ls and L'. Vertex p
can be interpreted as a bend for both chains, i.e., we can add triangulation edges
L(p,vk-1),- .., L(p,v;) until Z(p,v;,v;—1) > 7 and edges L(p, w2), ..., L(p, w;) until
L(p,wj,wjy+1) > m. Then we merge both in-intervals by deleting edges Li, Lo
from the y-structure. Also, we associate chain vy, vs,...,v;,p, w;, wjt1,-..,w, With
rightmost node p with the new in-interval. The cost of this transition is clearly
O(log n+ number of edges added to the triangulation).
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Figure 77.

In summary, we infer that the cost of every transition is bounded by O(logn+
number of edges added to the triangulation). Since there are only n transitions and
since the number of edges in the triangulation is at most 3 - n (the triangulation
is a planar graph) we infer that total cost is O(nlogn). This includes the cost for
sorting the n entries of the z-structure. Thus an inner triangulation of a simple
polygon P can be constructed in time O(nlogn).

We will now extend the algorithm to the construction of a triangulation. In a
preprocessing step we determine the convex hull of polygon P. This takes time O(n)
by Section 2, Theorem 2. Next we modify the y-structure and associate chains with
in-intervals and out-intervals. The chains associated with the out-intervals describe
partial triangulations of the outside of P. Finally, we associate hull edges with
the two infinite out-intervals; namely the upper and the lower hull edge which are
intersected by the sweep line (cf. Figure-78).

It is now easy to modify the transitions described above such that a triangu-
lation is constructed. Basically, we only have to treat cases 1.1 and 1.2 and 3.1
and 3.2 symmetrically. We leave the details to the reader. ]

We will next describe an improvement of the triangulation algorithm. The O(nlogn)jj
running time of the algorithm stems from two sources; it takes time O(nlogn) to
sort the vertices of the polygon and it takes time O(nlogn) to sweep the plane. The
latter statement has to be taken with a grain of salt. One transition at end and
starting points do have cost O(logn+...), transitions at bends have cost O(1+...).
Thus the cost of the sweep is O(n + slog s), where s is the number of starting and
endpoints. The next lemma shows that s = O(c), where ¢ is the number of cusps.

Lemma 2. s<2+4+2-c.
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Proof: Let P be a simple polygon and let s; be the number of starting points.
Then s; < 1+ ¢, since any two starting points must be separated by a cusp. A
similar argument shows that the number of endpoints is bounded by 1 + ¢. Thus
s<242-c ]

We could reduce the total cost of the algorithm if we advanced the sweep line
through the set of starting and endpoints only. Then the cost of initializing the
z-structure would drop to O(slog s) and hopefully total running time would drop
to O(n + slogs).

Theorem 4. Let P be a simple polygon with n vertices, s start and endpoints
and c cusps. Then P can be triangulated in time O(n + slog s) = O(n + clogc).

Proof: The main idea is to store only starting and endpoints in the z-structure and
to give up the strict regimen of the y-structure. Rather, we allow the y-structure
to lag behind the sweep line. As before the y-structure stores an ordered set of line
segments which defines a set of intervals. For each interval, we have its own local
sweep line, some of which might lag behind the global sweep line. The global sweep
line refers to the sweep line of our basic algorithm. With each interval we associate
a chain and a pointer to the rightmost node on the chain as before. Also, the angles
at the vertices of the chain are concave as before.

Version: 19.10.99 Time: 17:36 -81-



82

We require two additional invariants. Consider two adjacent intervals in the
y-structure. Then the local sweep lines associated with the two intervals must touch
a common edge, namely the edge separating the two intervals in the y-structure.
The second invariant refers to the ordering of line segments in the y-structure.
Conceptually follow the polygon P starting from each of the line segments stored
in the y-structure until the global sweep line is reached. In this way we associate
a point on the sweep line with each line segment in the y-structure. We require
that the order of the line segments in the y-structure coincides with the order of
the associated points on the global sweep line.

Figure 79 illustrates these definitions. Line segments L, ..., Lg are stored in
the y-structure.

local
sweep
lines

Ly

global S\;veep line

Figure 79.

The z-structure stores the s starting and endpoints in increasing order of z-
coordinate. Thus it takes time O(slog s) to build up the z-structure. Suppose now
that we select vertex p from the z-structure and that we want to locate p in the
y-structure. Recall that the y-structure is basically a balanced search tree for an
ordered set of line segments. When we search for p in the y-structure we compare
p with line segments in order to locate p relatively to intervals. Since the line
segments stored in the y-structure do not necessarily intersect the sweep line such
a comparison is potentially meaningless. We proceed as follows.

Suppose that we have to compare p with line segments L which is stored in the
y-structure. Then L borders two intervals I; and I, with associated chains CH4
and CHjy. Our immediate goal is to close the gap between the local sweep lines
for intervals I3 and I and the global sweep line. We illustrate this process for
interval I;. We extend the chain on both ends all the way up to the sweep line.
Note that only bends are encountered in this process. We handle them exactly in
the same way as we did in the proof of Theorem 3. This strategy is correct because
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the transition at bends was completely local and since the order of intervals is the
same as in the corresponding state of the previous algorithm. Suppose now that
we extend chain CH; all the way to the global sweep line. Then we also might
have to extend the chain above CH; in order to ensure that the local sweep lines
of adjacent intervals touch the same edge, ... . It is important to observe that no
structural changes in the tree structure underlying the y-structure underlying the
y-structure are necessary. This follows from the invariant about the order of the
line segment in the y-structure. Thus the process of determining the position of p
relative to an interval takes time O(1+ number of edges constructed) and hence the
search for p in the y-structure takes time O(log s+ number of triangulation edges
constructed). Note that the number of intervals in the y-structure is at most 2 - s
since intervals only split at start points.

When we have finally determined the position of point p in the y-structure
we have also closed the gap between a number of local sweep lines and the global
sweep line. In particular, the interval containing p and the two adjacent intervals
are processed all the way up to the global sweep line. We can therefore process
(start or endpoint) p exactly as we did above.

In summary, there are s transitions. Each transition has cost O(log s+ num-
ber of triangulation edges drawn). Since only O(n) triangulation edges are drawn
altogether, total running time is O(n + slogs) = O(n + clog ¢)by Lemma 2. |

We will now turn to applications of triangulation. Our first application is an ex-
tension of our linear time algorithm for intersecting convex polygons (Section 1,
Theorem 5).

Theorem 5. Let P be a simple n-gon and let ) be a convex m-gon. Assume that
a triangulation of P is available. Then P N Q can be computed in time O(m + n).

Proof: Let T be a triangulation of P. We first extend T to a planar subdivision 7"
by adding a set of non-intersecting rays starting at the vertices of the convex hull
of P, i.e., we also divide the infinite face into triangles. 7" can clearly be obtained
from 7" in time O(n). Also, 7" has only O(n) edges. Since every edge of T" intersects
@ at most twice the number of intersections of edges of 7" and edges of @ is O(n).

Figure 80.
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Let vy,...,vn be the vertices of . We can certainly find the triangle con-
taining v, in time O(n). Also, knowing the triangle containing v;, we can find
all intersections between 7" and line segment L(v;,v;4+1) in time O(1 + s;), where
s; is the number of such intersections. We refer the reader to Section 1, Theo-
rem 5 for details. Hence the total time needed to find all points of intersections is
O(m — >’ s;) = O(m + n) by the argument above. 1

Another application is the decomposition of a simple polygon into a nearly minimum
number of convex parts. Let P be a simple polygon and let D be a subset of the
set of line segments defined by the vertices of P. D is a decomposition into convex
parts if the line segments in D are pairwise non-intersecting, if they are all in the
interior of P, and if all the regions defined by P U D are convex. Figure 81 shows a
decomposition into a minimal number of convex parts; the edges of D are dashed. A
decomposition into a minimal number of convex parts can be computed by dynamic
programming (Exercise 31) in time O(n? - ¢?). Here c is the number of cusps.

Figure 81.

Theorem 6. Let P be a simple n-gon, let T' be an interior triangulation of P. Let
OPT be the minimal number of parts in any convex decomposition of P. Then a
decomposition with at most 4- OPT — 3 parts can be constructed in time O(n).
Proof : Observe first that OPT > 1+ [¢/2], since at least one partitioning edge is
necessary for each cusp. We will partition P into at most 2-c+1<4- OPT — 3
parts as follows.

Go through the edges in T' in an arbitrary order. Delete an edge of T if this deletion
does not create a concave angle in any part of the decomposition. We claim that
the decomposition obtained in this way has at most 2 - ¢+ 1 parts.

This can be seen as follows. Consider any of the remaining edges. Assign any
such edge to one of its endpoints. Edge e may be assigned to endpoint p if the
removal of e creates a concave angle at p. Of course, p is a cusp of the original
polygon. Assume for contradiction that three edges are assigned to any cusp p.
Let e, e2,...,e5 be the polygon edges and the three assigned edges in cyclic order.
Then /(e1,e3) > m and /(es,es) > 7 and hence Z(ei,es) > 27, contradiction.
hence at most two edges are assigned to any cusp and thus we have constructed a
decomposition with requiring at most 2 - ¢ + 1 parts. ]

Another application of triangulation are visibility problems. Let P be a simple
polygon and let m be a point in the interior of P. Let Vis be the set of points
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visible from m, i.e., Vis = {v; L(m,v) does not intersect P}. Then Vis is clearly
a simple polygon.

Figure 82.

The goal is to compute the vertices of Vis in clockwise order. This task is easily
solved in linear time, given the following triangulation of P. Consider the following
graph G. Its vertices are the triangles of the triangulation; two triangles (= nodes)
are connected by an edge if they share a non-trivial edge in the triangulation. We
claim that G is a tree. This can be seen as follows. Let t1,t> be triangles. Since
the vertices of ¢; are vertices of P, removal of ¢; splits P into exactly three disjoint
parts. Exactly one of these parts contains to. Hence the first edge on a simple path
from ¢; to t3 in G is uniquely defined and hence (by induction) there is a unique
simple path in G from ¢; to ¢3. Thus G s a tree.

Let ¢ be the triangle containing m. Make ¢ the root of G and compute visibility
top-down. More precisely, let e be an edge of some triangle t’. If e is an edge of ¢ then
all of e is visible. If e is not an edge of ¢ then let e’ be the immediate predecessor of e
on the path to the root. Knowing the visible part of €’ it is trivial to compute the
visible part of e in time O(1). Thus all visible parts can be computed in time O(n).
We summarize in

Theorem 7. Let P be a simple n-gon and let m be a point in the interior of P.
Given an inner triangulation of P one can compute the visibility polygon with
respect to m in linear time O(n).

8.4.3. Space Sweep

In this section we want to illustrate that the sweep paradigm can also be used to
solve three-dimensional problems. More precisely, we will show how to compute the
intersection of two convex polyhedra Py and P; in time O((ng + n1) - log(ne + n1)),
where ng (n1) is the number of vertices of Py (P;). An alternative algorithm having
the same time bound is discussed in Exercise 2. The success of plane sweep in
two dimensions stems from the fact that it turns a two-dimensional problem into
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a one-dimensional problem. In other words, the y-structure is linearly ordered in
a natural way and hence balanced search trees can be used successfully in order to
maintain it. In three-dimensional space the situation is more complicated in gen-
eral. The intersection of the sweep plane with the geometric objects is an arbitrary
planar subdivision which changes dynamically as the sweep plane advances. Unfor-
tunately, the techniques developed in Section 3.2 for maintaining dynamic planar
subdivisions are not strong enough to handle the sweep of general three-dimensional
objects. However, there is one special case which we can handle: the sweep of con-
vex polyhedra. The intersection of the sweep plane with a convex polyhedra is
essentially a convex polygon, and convex polygons behave appropriately as we saw
in Section 1.
W.l.o.g. let no two vertices of one of the two polyhedra have equal z-coordinates.li

We assume throughout this section that all faces of polyhedra P;, ¢ = 1,2, are tri-
angles. To achieve this, all polygonal faces are partitioned into co-planar triangles
by drawing improper edges from their respective point of maximal z-coordinate.
Also, we assume the following representation of polyhedra. For each vertex, we
have the list of incident edges in clockwise order, for each edge we have pointers to
endpoints and to the adjacent faces and for each face we have the list of edges in
clockwise order.

Theorem 8. Let Py and P; be convex polyhedra with ny and ny vertices respec-
tively, let n = ny; + ny. Then convex polyhedron Py N P; can be computed in time
O(nlogn).

Proof: Py N Py is a convex polyhedron. We divide the set E of edges of Py U Py
into two disjoint classes F; and E3. FE; consists of all edges of Py N P; which lie
on the surface of Py and P; and E, is the remaining set of edges of Py N P;. Each
edge in E; is (part of) an edge of Py or P;. Each edge in E; is the intersection of
a face of Py and a face of P;. Note however, that edges in F; can also be part of
edges of Py or P;.

In the example of Figure 83 the edges in E; (E>) are shown as wiggled (heavy)
lines. The edges in E; are naturally grouped into connected components (if two
edges share an endpoint then they belong to the same component). Our example
deals with only one component. We compute Py N P, in a two step process. At the
first step we will compute at least one point (on an edge) of each component by
space sweep and at the second step we will use these points as starting points for
a systematic exploration of Py N P;. We denote the problem of computing at least
one point of each component by ICP’'. We assume that each point in the solution
set to ICP' is given as the intersection of an edge of P; with a face of P;_y, i =0
ori=1.

Lemma 3. Given a solution to ICP' one can compute Py N P; in time O(n).

Proof: The basic idea is to explore Py N P; starting from the solution set to ICP’
by any of the systematic methods for exploring graphs. More precisely, we proceed
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Figure 83.

as follows. Let S be the solution set to JCP'. We run through the points in S
in turn. for every = € S, we construct the set of edges in F; U E5 incident to z
and arrange them in queues ()7 and @2, respectively. Edges in F; are given as the
intersection of a face of Py and a face of P;. These faces are not co-planar. Edges
in Ey are part of an edge of Py or P;. We represent them by a pointer to an edge
of Py or P; and the set of their endpoints which are already constructed. Note
that an edge in E, shares either two or one or zero endpoints with edges in F;.
The other endpoints are vertices of Py or P;. Having processed the points in S
we construct £, by considering the edges in @)1 in turn. For each edge removed
from @)1, we construct all edges in F; U Es incident to their endpoints and add them
to Q1 or @2, respectively (if they have not been added before). In this way all edges
in F; are found. Furthermore, ()2 contains all edges in F» which share at least one
endpoint with an edge in E;. We now construct all edges in es by regarding the
edges in )2 in turn. For each edges removed from ()2, we have processed either
one or two of its endpoints. If only one endpoint has been processed then we add
all edges incident to the other endpoints (which is a vertex of Py or P;) to Q2 (if
they were not added before). Note that all endpoints of edges in E, which are not
vertices of Py or P; were constructed when processing S or computing Fj.

Net we have to describe how to construct all edges in E; U Es incident to a
node x. Special care has to be taken when x lies on co-planar faces Dy of Py and D4
of P;. We therefore treat this case first. Let Fy (F1) be the convex polygon formed
by the union of all faces of Py (P;) which are co-planar to Dy (D;). We intersect Fy
and Fy in time O(degy(Fp) + deg,(F1)) using the methods of Section 1 and process
all vertices of the intersection as described in one of the cases below. Also, all the
edges of the intersection are added to E;; they do not have to be added to Q.
In the sequel, all points of S which belong to either Fyy or F; can be ignored. We
achieve this by marking all faces comprising Fy and F; as done before. The special
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treatment of co-planar faces is required for the following reason. If co-planar faces
were treated like other faces it is conceivable that a large number of intersections
would be discovered which are in the interior of a face of Py N P; as illustrated in
Figure 84. The diagram shows co-planar faces of Py (—) and P; (---) and their
inessential intersections.

unessential intersections

Figure 84.

This finishes the description of the treatment of co-planar faces. We return now
to the discussion on the construction of all edges in E; U E5 incident to a point z.
Let z be given as the intersection of an edge e bordering faces F' and F" of P; and
face F' of P;,_;. We have to distinguish several cases.

Assume first that  is a vertex of either P, or P, say a vertex of P;. Then x lies
either in the interior of a face of P;_; or on an edge of P,_; or is a vertex of P_;.
If z lies in the interior of a face, say D, we first check whether D is co-planar with
one of the faces of P;. If so, and if the faces concerned are not “done”, we use
the method described above. In addition (otherwise, respectively) we can certainly
compute all edges in E; U E, incident to z in time O(deg;(z)) by intersecting D

deg;(z)? with all the faces of P; incident to . We use deg;(v) to denote the degree of x
in polyhedron P;. In general, there will be two edges in E; incident to = and a
number of edges in F; as indicated in Figure 85.

Figure 85.
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If = lies on an edge of Pi_; but is not a vertex of Pi_; then z lies on the
boundary of exactly two faces of P;_;. Basically, we only have to intersect both of
¢ them with the faces of P; incident to 2. Again, time O(deg;(v)) suffices. So let us
finally assume that x is a vertex of both polyhedra. Let r be a ray extending from z
into the interior of Py, and let D be a plane perpendicular to r and intersecting r in
a point different from x. Let ey, ..., e, be the edges of P incident to z in clockwise
order, extended to rays. Convexity implies that all these rays intersect D; the points
of intersection define a convex polygon Cy. Also extend the edges of P; incident to x
to rays; two adjacent rays bound an infinite “triangular” face. Intersecting these
faces with plane D either yields a convex polygon C; or an open convex polygonal
segment C as shown in Figure 86 or the empty set.

Z

Figure 86.

Applying the methods of Section 1, we can compute the intersection of Cj
and Cy in time O(degy(x) + deg;(z)). Having determined the intersection of Cy
and C it si simple to determine all edges of E; (E) incident to z.

Again, it is possible to detect co-planar faces in this process. They are treated
as before. Additional time O(sum of degrees of newly intersected co-planar poly-
gons) is sufficient.

In all three cases we mark vertex z in the appropriate polyhedron/polyhedra.
This completes the discussion of = being a vertex of Py or P;.

Assume next that « lies on the boundary of F, i.e., z lies on an edge d of P;_;.
Let F'"" be the other face of P;_; which has d on its boundary. If none of F or F"’
is co-planar to F’ or F" then the structure of Py N P; in the vicinity of z is readily
computed in time O(1) by intersecting the four faces F', F’, F"" and F""’. Otherwise
we proceed as described above.

Let us finally assume that z lies in the interior of face F'. Then z has to be a
proper intersection, and F' cannot be co-planar with either F’ or F”. F N F' and
F N F" belong to E1, and the part of e which is directed to the inside of F' belongs
to Ez.

This completes the description of the construction of all edges in E; and Ej
which are incident to a node in the solution set to ICP'. The construction of all
such edges clearly takes time O(n). Handling co-planar faces can also be done in
total time O(n) since each such face is explored only once.

Version: 19.10.99 Time: 17:36 —89—



90

We use these edges as the basis for the exploration of Py N P;. First we com-
pletely explore FE;.

(1) for i € {0,1}
(2) do Q; < subset of edges of E; determined by processing the solution set
to ICP' as described above

(3)  od;
(4) while Q; # 0
(5) do remove an arbitrary edge e from Q1; e is given as the

intersection of a face Fy of Py and a face F; of P;;
(6) let z,y be the two endpoints of e;
(7) for z € {z,y}
(8) do if z was not visited before
(9) then find all edges in F; and E> incident to z as described above
and add them to @1 and @5 respectively
(10) fi
(11) od
(12) od

Program 12

We claim that Program 12 explores all remaining edges in E; in time O(n).
Note first that (), is initialized with at least one edge of every component of Ej.
Hence all remaining edges in F; are explored and each edge is explored at most
twice, once from either side. We turn to the time bound next. We infer from the
preceding discussion that the total time spent in line (9) is O(n). Furthermore each
execution of lines (5) and (6) takes time O(1) since faces are triangles. Line (8)
remains to be considered. Point z is either a vertex of Py or P; or lies on an edge
of Py or P;. Also, at most two vertices of Py N Py can lie on any edge of Py or P;.
Hence, if we mark visited vertices of Py or P; and associate other vertices of Py N P;
with the edge of Py or P; on which the vertex lies, then the test in line (8) takes
time O(1). Since the number of edges in PycapP; is O(n) the time bound follows.

We finally have to explore the edges in E5. Recall that every edge in Ej is part
of an edge of either Py or P;. Also note that all endpoints of edges in E5 which are
not vertices of Py or P; have been determined at this point. Furthermore, all edges
in Fs which have such an endpoint belong to @2 at this moment. It is now easy to
find the remaining edges in E> in time O(n). We leave the details to the reader. 1

We will now show how to solve ICP' by space sweep. As before, we have two
structures. The x structure contains all vertices of Py and P; in order of increasing
z-coordinate. the yz-structure, which replaces the y-structure, stores the status of
the sweep. It stores, for each of the two polyhedra, a crown which represents the
intersection of the polyhedron and the sweep plane.

Version: 19.10.99 Time: 17:36 -90-



8.4.8. Space Sweep 91

Let P;, i = 1,2, be one of the polyhedra. Let e;, 0 < j < m;, be the edges
of P; which are intersected by the sweep plane in cyclic order. Here, two edges are
adjacent, if they bound the same face. A prong is the portion of a face bounded by
two consecutive edges e; and €j41( (mod n);) and, to the left, by the sweep plane.
The set of all prongs is called the crown. We also call edges e;, 0 < j < n;, the
forward edges of the crown, the edges connecting the intersections of the e;’s with
the sweep plane the base edges and the remaining edges the prong edges. Prong
edges connect tips of prongs.

Figure 87.

Figure 87 illustrates these definitions. The different types of edges are indicated
by characters b, f and p. We store a crown in a blanced tree as follows. For
polyhedron P;, we select an axis line L;; for instance the line connecting the vertices
of P; with minimal and maximal z-coordinate, respectively. Let p € R®. The
cylindrical coordinates (x, alfa, radius) of p with respect to L; are defined as follows.
First,, z is the z-coordinate of point p. Second, pair (alfa, radius) forms the polar
coordinates in the plane, say E, which goes through p and is parallel to the yz-
plane. The origin of the polar system is the intersection of £ and L; and the angle
is measured against a fixed direction in that plane; the y-direction. A forward edge
of the crown C; of P; is represented by the cylindrical coordinates of its endpoints
with respect to L;, i = 0,1, i.e., by a six-tuple (xy, alfa,, 7o, 1, alfa;,r1). Iff pisa
point of this forward edge with z-coordinate z, z¢o < z < z1, then the pair (alfa, )
corresponding to p can be computed in time O(1). Next observe, that although
alfas and radii change with z, the cyclic order of forward crown edges remains
invariant between transitions. Hence we can store forward edges in a balanced
tree, organized with respect to the alfas. For correctness, we assume a (2,4)-tree.
Figure 88 illustrates the radial representations of the crown.

We are now ready for the space sweep algorithm. The global structure of the
algorithm is as given in the introduction of Section 4. A transition at vertex p of
polyhedron P; is performed as described in Program 13.

Before we analyze the running time of the algorithm we show its correctness.

Lemma 4. The algorithm of Program 13 correctly solves ICP'.

Proof: Tt is clear that a set of intersections is computed. Thus we only need to
show that at least one point of each component will be reported.
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Figure 88.
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procedure Transition(p,i):
update crown C; of P;;
for every face F' of P; having a starting edge at P

and report all intersections;

(5) if no intersection is found

(6) then choose one forward edge of C;_; and intersect with all faces
of P; which are co-planar with F, report intersections if any

(7) fi

(8) od

(9) end.

Program 13

Let S be any component, and let v be a vertex of S with minimal z-coordinate.
Clearly y is the intersection of an edge e of polyhedron P; with a face of polyhe-
dron P;_;. If v is not reported then e must start before F (in the sweep order).
Consider the state of the sweep just after the starting vertex p of F' was encountered.
At this point edge e is a forward edge of the crown C; of P;.

Trace (conceptually) component S in the polygon F), containing face F' and
crown Cj starting at pont v. Two cases may arise:

Case 1: We are not able to trace S completely i polygon F, and crown C;.

Then we either hit a bounding edge of F), before a base or prong edge of C; or vice
versa. In the former case there is a bounding edge, say €', of F},, which intersects
a prong, say PR, of C;. The intersection of ¢/ and PR was either detected when
processing p (if p is the starting edge of €’) or will be detected when processing the
starting point of ¢’. Note that PR is still a prong of C; at this point. In the latter
case, we must hit a prong edge, say e, of C;. This follows from the fact that v is
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in front of the sweep plane and has minimal z-coordinate among all points in S.
When the sweep advances to the starting point of e” polygon F), is still part of the
crown of P;_;. Hence we will pick up the intersection of ¢’ and F' at that point.

Case 2: We are able to trace S completely in F,, and crown Cj.

Since F), is part of a plane, and since the prongs of C; are parts of planes S must be
a closed curve and therefore runs through all forward edges of C;. Hence all forward
edges of C; intersect F,, and a point of S is found in line (6) of Transition. 1

Let us now examine the time required for different actions of Transition.
Lemma 5. The updating of crowns P and ) can be done in total time O(n + m).

Proof: Consider updating C; at a transition vertex v. Let c¢; edges end in vertex v
and let ¢y edges start at vertex v. It is easy to provide direct access to these edges.
Also, since we assumed that edges incident to a node are given in cyclic order we
know in which order the ¢y edges starting at v have to appear in the crown. Hence
we only have to delete ¢; edges (at known positions) from the tree and to insert co
edges (at known positions) into the tree. Thus the amortized cost of the insertions
and deletions at point v is O(cy + c2) by Section 3.5.3.2. Hence the total time
required to update the crown is O(n + m). ]

Lemma 6. Let C be a crown with ¢ forward edges and let L be a line which does
not intersect the base of C. Then C N L can be computed in time O(logc).

Proof : The algorithm is a variant of the one used to prove Theorem 2 in Section 1.
We view the balanced tree representation of the crown as a hierarchical represen-
tation of the crown. let vy,...,v, be the intersections of the forward edges with
the base plane of the crown in cyclic order and let wq,...,w, be the forward end-
points of the forward edges in cyclic order. Note that v; = vj41(= vj42 = ---) or
w;j = wj41(= wjy2 = ---) is possible. Let ¢ be the forward endpoint of the axis,
i.e., t is the vertex with maximal z-coordinate of the polygon to which crown C be-
longs. Consider the convex hull of the point set {v1, ..., v, w1,...,w.,t}. The faces
of the convex hull are the prongs, and the triangles w;, w;4+1,t (with we4q := w1);
1 < j <ec. A balanced tree defines a hierarchical representation of this polyhedron
as follows. Let D? be the forward edges which are stored in the i-th level of the tree,
1<i <k = 0(logc). Then the convex hull of the endpoints of the edges in D¢ and
point ¢ is the approximation C* of the crown C. We have C* = C. Also note, that if
e = (vj,w;) and €' = (vh,wp) are adjacent edges in D? then they determine one or
two faces of the approximation C¢, namely either the triangle Vj,Wj = Wh, Uy Or the
triangle w;, wp,t and the quadrilateral v;, w;, wp, v, which collapses to a triangle
if v; = v,. We can now use essentially the algorithm of Section 1, Theorem 2 to
compute C' N L.

We use the following notation. If z is a point of a C* then a face F of C**!
is in the vicinity of z if F and the face of C? containing z have an edge in D?
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Figure 89.

in common. A point y of C**! is in the vicinity of z if a face of C**! to which y
belongs is in the vicinity of z. Finally, if 2 does not intersect C* then we use p; to
denote the point of C* which has smallest distance from line L. Note that p; is not
necessarily a vertex of C*. However, we may assume w.l.o.g. that p; lies on an edge
of C*. The following lemma captures the heart of the algorithm.

Lemma 7.

a) If L intersects P'*! but does not intersect P' then the faces of P**! which are
intersected by L are in the vicinity of p;.

b) If L does not intersect P**! then p;, is in the vicinity of p;.

c) If L intersects P then the intersections of L and P**! are in the vicinity of
the intersections of L and P'.

d) If L is a line and e is a line segment then the point y € e closest to L can be
computed in time O(1).

Proof: a) and b): Let E be a plane parallel to L and supporting C* in point p;.
Then plane E divides the space into two half-spaces one of which contains L and
one of which contains C?. Call the former half-space H. IF L intersects P! then
H N P! must be non-empty. By convexity of Ci*! only faces in the vicinity of
can possibly intersect H. This proves parts a) and b).

c¢) Obvious.

d) Let L' be a line containing line segment e. Let L (L') be given by point a (a’)
and direction b (8'). If L and L’ are parallel then the solution is trivial. Otherwise,
consider plane F determined by a and directions band . It contains line L and is
parallel to L'. Let ¢ be the normal direction of the plane, let a’’ be the intersection
of F and the line of direction ¢ through a’, and let L"” be the line through o' parallel
to L'. Let x be the intersection of L and L"” and let y be the projection of z onto
L' in the direction ¢. Then points z,y realize the minimum distance between L
and L'. If y is a point of e then we are done. If y does not belong to e then the
endpoint of e closest to y realizes the minimum distance. ]
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Figure 90.

We infer from the lemma above that L N C' can be found by following at most
two paths in a balanced tree. In each node of the tree O(1) work is required. 1

Combining Lemmata 3 to 7 we obtain:
Lemma 8. ICP' can be solved in time O(nglogn; + ny logng).

Proof: The total cost of updating the crowns is O(ng +n1) by Lemma 6. Also, the
total cost of line (4) of procedure Transition is O(ng logni +mn4logng) by Lemma 7.
The remaining lines of Transition have cost O(ng + nq). (] ]

The goal of this section was to illustrate the use of the sweep paradigm in three-
dimensional space and also to provide an algorithm for a basic problem in algorith-
mic geometry. The alternative algorithm discussed in Exercise 2 is conceptually
simpler; in fact the proof of Lemma 7 was inspired by a solution to that exercise.
On the other hand, the algorithm given above only needs to store a cross section
of the polyhedron and hence uses less space. Also, it is more efficient since the
hierarchical representations obtained in a solution to Exercise 2 have depth clogn
for a fairly large constant c. We refer the reader to the related problem discussed
in Section 3.2, Lemma, 8.
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8.5. The Realm of Orthogonal Objects

In this section we explore the geometry of orthogonal or iso-oriented objects, i.e.,
objects all of whose edges are parallel to a coordinate axis. Thus in two-dimensional
space, we have to deal with points, horizontal and vertical line segments, and rect-
angles whose sides are axis-parallel. More generally, an iso-oriented object in R
is the cartesian product of d real intervals one for each coordinate, i.e., it has the
form szl[l,-, r;] where [; < r; for all i.

As above, we will primarily concentrate on two-dimensional problems. The
two major algorithmic paradigms which have been used in this field are plane-
sweep and divide-and-conquer. There are many problems which can be solved
using either paradigm; the elegance of the solution may however differ drastically
as we will see. We devote Section 5.1 to plane-sweep and Section 5.2 to divide-and-
conquer algorithms. In the section on plane-sweep we will introduce three new data
structures (interval, priority search, and segment trees) which can handle special
types of planar range queries more efficiently than range trees (cf. Section 7.2.2);
we will also see that some of the algorithms generalize to non-orthogonal objects
(Section 5.1.4) and higher dimensions (Section 5.3).

8.5.1. Plane Sweep for Iso-Oriented Objects

Plane sweep is a very powerful technique for solving two-dimensional problems on
iso-oriented objects. Recall that iso-oriented objects are points, horizontal and
vertical line segments, and axis-parallel rectangles. Typically, the transition points
are the points, the endpoints of the line segments and the vertices of the rectangles.

sweep line

y-structure

transition points direction of sweep

Figure 91.
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Also, the y-structure typically contains information about the horizontal line
segments and the rectangles which are intersected by the sweep line in its current
position. Horizontal line segments correspond to points and rectangles correspond
to intervals.

Throughout this section we use the following notation for intervals on the
real line. Let z,y € R, z < y. Then [z,y| denotes the closed, (z,y) the open
interval, and [z, y) and (z, y] denote the half-open intervals with endpoints = and y,
ie.,

[z,y] ={z v <z <y}

(z,y) ={2z z <z <y}
[x,y) ={2z; z <2z <y}

(z,y] ={z = <z <y}
Note that a closed interval [z, z] with identical endpoints corresponds to a point.

In the course of a plane sweep algorithm for iso-oriented objects one has to
maintain dynamic sets of intervals. Whenever the sweep reaches a left (right) side
of a rectangle or horizontal line segment one has to insert (delete) an interval into
(from) the y-structure. Also, one typically has to query the y-structure at transition
points.

Intervals are often conveniently represented as points in two-dimensional space.
Then queries about intervals can often be phrased as (special types of) range queries.
We illustrate this observation by a few examples. Let S = {[z;,y;]; 1 < i < n} be
a set of closed intervals and let I = [z9,yo] be a query interval. We can regard S
as a set A(S) of points p; = (z;,¥;), 1 < i < n, in R%

Fact 1. Intervals [zo,yo] and [z,y] intersect iff z < yo and y > yo

Hence we can find all intervals in S intersecting the query interval I = [zg,yo] by
finding all points (z,y) in the associated set A(S) with z < yo and y > zo. This
corresponds to a range query (cf. Chapter 7) in R? with right boundary = = yo and
bottom boundary y = z (cf. Fig. 92).

=19

Figure 92.

Of course, we could use range trees (cf. 7.1.2) to store set A(S) but more
elegant data structures exist. For the query above we will discuss interval trees in
section 5.1.1.
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iff Fact 2. Interval [z,y] is contained in query interval [zo,yo] if xg < x <y < yo.

Hence we can find all intervals contained in the query interval I = [zg,yo] by
finding all points (z,y) in the associated set A(S) with left boundary z = zo and
right boundary y = yo (cf. Fig. 93). Priority search trees (Section 5.1.2) serve as a
good data structure for this type (and more general types) of range query.

Y=1"Yo

Figure 93.

Remark: Note that all points (z,y) € A(S) satisfy y > x. Hence the containment
query really searches a bounded region and the intersection query searches an un-
bounded region. This shows that the two types of queries are different and cannot
be transformed into one another by reflection.

A third data structure are segment trees (Section 5.1.3). They are particularly
useful if we want to store additional information about intervals. We will use them
to solve the measure problem (compute the area covered by the union of a set of
rectangles) and a three-dimensional hidden line elimination problem. As to the
latter problem we will associate with each rectangle (interval in y-structure) its
height (= z-coordinate) in order to decide visibility.

All these tree structures are easily explained in the static case. They can all be
made dynamic; but at least in the case of interval and segment trees the details of
the dynamic version are tedious and the programs become very long. Fortunately, a
semi-dynamic version suffices for all plane sweep algorithms. In the semi-dynamic
version we consider trees over a fixed universe (usually the y-coordinates of the
vertices) and handle only intervals whose endpoints are drawn from the universe.
We can handle insertions and deletions; however, the cost of the operations is
dictated by the size of the universe and not by the size of the set which is actually
stored.

For all three tree structures we use the following common terminology. Let
U C R be a finite set, called the universe. More generally, U might be any finite
ordered set. All trees which we will consider are based on leaf-oriented binary
search trees for U, i.e., on binary trees with |U| leaves. The leaves correspond to
the elements of ordered set U from left to right (cf. Section 8.5.2). An interior node
has at least three fields: pointers to the left and right son and a split field, which is
a real number. Thus
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type node = record ...
case stat: statusof
leaf: (...)
nonleaf: (split: real;
lson, rson:ode;

.2

end

where type status = (leaf,nonleaf) and the dots indicate additional fields. As
usual the split fields direct the search, i.e., the split field of node v is at least as
large as all leaves in the left subtree and smaller than all leaves in the right subtree.

For every node v of the tree, we define its xrange zrange(v) as follows. The
xrange of the root is the half-open real line, i.e., zrange(root) = (—oo, +o0], and if v
is the left (right) son of w then zrange(v) = zrange(w)N(—oo0, split(w)] (zrange(v) =
zrange(w) N (split(w), +o0]). Note that a search for z € R goes through node v iff
z € zrange(v).

Remark: In the section on segment trees we will slightly deviate from these def-
initions. There, the split field will be a pair consisting of a real number denoted
split(v) and an indicator Ind(v) € {<,<}. If Ind(w) =< then zrange(v), v a
son of w, is defined as above. If Ind(w) =< then a search for x proceeds to the
left son of w only if < split(w) and zrange(v) = zrange(w) N (—oo, split(w))
(zrange(v) = zrange(w) N [split(w), +o0]) for v being the left (right) son of w.

For the description and analysis of the query algorithms in interval, priority search,
and segment trees we need some additional notation. Let I = [z, yo] be a query
interval. We define node sets P, C and C,,,, with respect to query interval I.

P = {u; srange(v) N [zo,y0] # 0 and arange(v) Z [0, yo]]
C = {v; zrange(v) C [zo,yo]}
Crmaz = {v; v € C and father(v) ¢ C}
Lemma 1. Let T be a search tree of height h and let [z, yo] be a query interval.
Then
a) [P|<2-h
b) ‘Cmaw| S 2. h
c) |C| <2 (number of leaves v with zrange(v) C [z, yo))-

Proof: a) Note first that v € P implies father(v) € P since zrange(v) C zrange(father(v)).J]
Thus P consists of a set of paths in tree T'; this explains the use of letter P. Note

next that v € P and hence zrange(v) N[zg, yo] # 0 and zrange(v) Z [z, yo] implies

xo € zrange(v) or yo € zrange(v); here we also took into account that zrange(v) is

an interval. Thus v € P implies that v either lies on the path from the root to the

leaf vy with xg € zrange(vy) or on the path to the leaf wy with yo € zrange(wp).

Also, P consists of an initial segment of these paths. This proves |P| <2 h.
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b) The bound on the size of C),,, is derived as follows. First, if v € Cppq, then
v’s brother does not belong to Cine,. Also, if v € Cree and hence v € C and
father(v) ¢ C then zrange(father(v)) Z [zo,yo] and zrange(v) C [z, yo] and hence
zrange(father(v)) N [zo, yo] # 0. This shows that v € C,4, implies father(v) € P
and hence |Cppqq| < |P| <2 h.

c) Since v € C implies that both sons of v also belong to C' we conclude that the
nodes in C form a forest of subtrees of 7. Since in a binary tree the number of
nodes is at most twice the number of leaves the bound follows. ]

\ / P
zo € zrange(vy) Yo € zrange(wp)

0
Cmaw

Figure 94.

The pictorial definition (cf. Figure 94) of sets P, C' and C,,,, may help the
reader’s intuition. Set P consists of the paths to leaves vy and wy with zq €
zrange(vg) and yo € zrange(wp). Set C is the set of nodes between the two paths
and set C,,4,; consists of the maximal nodes in C.

8.5.1.1. The Interval Tree and its Applications

This section is devoted to the interval tree. It will allow us to store a set of n intervals
in linear space such that intersection queries can be answered in logarithmic time.

Let U CR be a finite set and let S = {[z;,y;];2z; €R,1 <i < n} be aset of n
closed intervals on the real line. An interval tree T for S (with respect to universe U)
is a leaf-oriented search tree for set U, where each node of the tree is augmented by
additional information. There are three pieces of information associated with each
node v.
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a) The node list NL(v) of node v is the set of intervals in S containing the split
value of v but of no ancestor of v, i.e.,

NL(v) ={[z,y] € S; split(v) € [z,y] C range(v)}.

We store the node list of node v as two sorted sequences: the ordered list of left
endpoints and the ordered list of right endpoints. Both sequences are stored in
balanced trees; furthermore, we provide for pointers to the maximal (minimal)
element of the sequence of right (left) endpoints.

b) A mark bit stating whether the node list of v or any descendant of v is
nonempty.

c¢) For every node v with nonempty node list, a pointer to the next larger (smaller)
node in inorder with nonempty node list.

Figure 95 shows an interval tree for set S = {[1, 8],[2, 5],[3, 7], [4, 5], [6, 8], [1, 3],[2, 3], [1, 2]}
with respect to universe U = {1,2,3,4,5,6,7}. The split fields are shown inside the

nodes and leaves, and the node lists are shown next to the nodes. The mark bits

are shown as stars on the top of the nodes. Finally, the doubly linked list of nodes

with nonempty lists is indicated by dashed lines.

Figure 95.

The main power of interval trees stems from the node lists. The mark bits and
doubly linked lists of nodes with nonempty node lists are needed to cope with large
universes. If U contains only endpoints of intervals in S then the mark bits and the
doubly linked lists are not needed.
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The following lemma shows that interval trees use linear space, can be con-
structed efficiently, and efficiently support insertions and deletions of intervals (with
left endpoint in U).

Lemma 2. Let U C R be an ordered finite set, N = |U|, and let s be a set of n
intervals with left endpoints in U.

a) An interval tree for S uses space O(n + N).

b) An interval tree for S of depth O(log N) can be constructed in time O(N +
nlog Nn).

c¢) Intervals (with left endpoint in U) can be inserted into an interval tree of depth
O(log N) in time O(logn + log N). The same holds for deletion.

Proof: a) The search tree for U clearly uses space O(N). Furthermore, the total
space required for the node lists is O(n), since every interval in S is stored in exactly
one list. This follows immediately from the definition of the node list.

b) Let T be a complete binary search tree for set U. Tree T can clearly be built in
time O(N) and has depth O(log N). The node list remains to be constructed. We
show how to construct the left part of all node lists in time O(nlogn+nlog N), the
symmetric algorithm can be used to construct the right parts. Sort the intervals in S
in increasing order of their left endpoint and propagate the sorted list of intervals
down the tree. More precisely, if list L of intervals arrives at node v then then split
L into Ly, Ly and L3, where L; (L3) is moved to the left (right) son of v and Lo
is the node list at v. This can clearly be done in time O(|L|) by comparing each
interval in L with split(v). Also, if L is sorted according to its left endpoint, then
so are Ly, Ly, Ls. If we assign the cost of precessing list L to its members, then
cost O(log N) is assigned to each interval. Hence the total cost of constructing all
node lists is O(nlog n+nlog N), where the O(nlogn) accounts for the sorting step.
Finally, it is easy to set the mark bits and to construct the doubly linked list of
nodes with nonempty node list in time O(N).

c) Let [z,y] be an interval which is to be inserted into S. Our first task is to find
the node v into whose node list interval [z,y| has to be inserted. Node v can be
found by a simple tree search. If split(root) € [z, y] then v is the root of the tree. If
split(root) ¢ [x,y] then either x > split(root) and the search proceeds to the right
subtree or y < split(root) and the search proceeds to the left subtree. Thus v can
be determined in time O(log N). Next we insert z and y into the node list of v.
This takes time O(logn). If the node list of v was nonempty before the insertion
then we are done. Otherwise, we find the largest node w with nonempty node list
preceding v in inorder using the mark bits. This takes time O(log N). Finally we
insert v into the doubly linked list of nodes with nonempty node list. In summary,
insertions take time O(log N +logn). We leave the corresponding claim for deletion
to the reader. 1

We can now turn to the main property of interval trees: the efficient support of
intersection queries.
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Lemma 3. Let S be a set of intervals and let I = [z, yo| be a query interval. Let
A= {[z,y] € S; [z,y] N [zo,y0] # 0} be the set of intervals in S intersecting I.
Then, given an interval tree of height h for S, one can compute A in time O(h+|A|).

Proof: Let P and C be defined as in the introduction of Section 5.1, i.e., P = {v; v
is a node of T' and zrange(v) NI # 0, zrange(v) € I} and C = {v; v is a node of T
and zrange(v) C I}. Then

4= NE) U | {lz,8] € NE(); [2,9]0 7T #0),

veC vEP

since [z,y] € NL(v) and [z,y] N I # 0 implies zrange(v) NI # 0. Also, v € C
clearly implies NL(v) C A. Consider v € P next. Recall that we organized NL(v)
as two ordered lists, the list of left endpoints and the list of right endpoints. Let
1 < 22 < --- < xp be the former list and let y; < --- < yi be the latter list.
We have to discuss three cases, two of which are symmetric. Suppose first that
split(v) € I. Then NL(v) C A since split(v) € [z,y] for all [z,y] € NL(v). Suppose
next, that split(v) ¢ I, say split(v) < z, the reverse case being symmetric. Then
interval [z;,y;] € NL(v) intersects I iff z < y;. We can thus find all such intervals
by inspecting yg,yx—1, . -- in turn as long as they are at least as large as . Hence
we can determine NL(v) N A in time proportional to |NL(v) N A|.

The node sets P and C' are easily determined. P consists of the nodes on the
search paths to x and y and C is the set of nodes between those paths. Thus the
time required to compute A is O(|P| + |C| + |A|). We will now complete the proof
by two different arguments, one for the case of a “small” universe U and one for
the general case.

Assume first that U contains only endpoints of intervals in S. Then |C| =
O(|A]), since all leaves in C are endpoints of intervals in A. Also |P| < 2-h and
the time bound follows. Note that we have not used the mark bits and the doubly
linked list in this case.

We will now turn to the general case. Clearly, we only need to visit the nodes
in C with nonempty node list. Note that there are at most |A| such nodes. We
can find one of them using the mark bits in time O(h) and then find all the others
by following the doubly linked lists since the nodes in P U C occur as a contiguous
segment in the doubly linked list. Thus we also have the time bound in the general
case. 1

This finishes the discussion of static or radix interval trees. Dynamic interval trees
are based on D-trees; cf. Section 3.6.2. The change required with respect to the
preceding discussion is insignificant. We now require that the underlying binary
tree is a D-tree for the set of left endpoints of intervals in S, where the weight of a
point z is the number of intervals with left endpoint . Then the total weight (the
thickness of the root of the D-tree) is n = |S| and hence the depth of the D-tree is
O(logn). Thus intersection queries can be answered in time O(logn + s), where s
is the size of the answer by Lemma 3.

Version: 19.10.99 Time: 17:36 -103—-



104

Next we discuss insertions and deletions. Let I = [z,y] be an interval and
suppose that we want to insert I into (delete I from) S. Clearly, we can add (delete)
I from the appropriate node list and change the weight of the left endpoint = of I
by one in time O(logn). Next, we have to rebalance the interval tree by rotations
and double rotations. Since a double rotation can be realized by two rotations, it
suffices to discuss rotation. The underlying D-tree is reorganized as described in
Section 3.6.2. Finally we discuss the maintenance of the node lists in rotations.

Figure 96.

Note first that the node lists of nodes in subtrees A, B, and C are unchanged.
This can be seen as follows. Since split(u) and split(v) are not changed by the
rotation, the xranges of nodes in subtrees A, B and C remain unchanged. Hence
quantities split(z) and zrange(z) do not change for a node z in these subtrees and
thus NL(z) remains the same. The xranges of nodes v and v change. We have
zrange'(v) = zrange(u) and zrange'(u) = zrange(u) N (—oo, split(v)], where the
prime is used to denote the situation after the rotation. Let NL = NL(u)UNL(v) be
the union of the node lists of nodes u and v. Then NL'(v) = {[z,y] € NL; split(v) €
[,y]} and NL'(u) = NL — NL(v). It is easy to see that the sorted representations
of node lists NL'(v) and NL'(u) can be computed from the sorted representations
of NL(u) and NL(v) in time O(|NL|). Thus a rotation at node v has cost O(|NL|),
where NL = NL(u) U NL(v).

Lemma 4. Let v be a node of a dynamic interval tree. Then |NL(v)| = O(th(v)),
where th(v) is the number of leaves in the subtree with root v in the BB[a]-tree
(underlying the D-tree underlying the interval tree); cf. Section 3.6.2.

Proof: If [z,y] € NL(v) then [z,y] C range(v). Hence a search for z, the left
endpoint of interval [z,y] goes through node v and hence the active z-node is a

descendant of v. Thus a fraction of at least /2 of all leaves labelled z in the
underlaying BB[a]-tree are descendants of v. Thus |[NL(v)| < 2/« - th(v). 1
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Lemma 4 together with Theorem 5 of Section 3.6.2 allows us to bound the amortized
rebalancing cost of dynamic interval trees.

Lemma 5. The total cost of n insertions and deletions into an initially empty
interval tree is O(nlogn).

Proof: The cost of inserting (deleting) the n intervals into (from) the appropriate
node lists and the weight changes for the left endpoints is clearly O(nlogn). We
still have to discuss the total cost of the rotations and double rotations.

By Lemma 4 and the preceding discussion the cost of rotating at a node v
of th(v) is O(th(v)). Thus the total cost of rotations and double rotations is
O(nlogn) by 3.6.2., Theorem 5 with f(N) = O(N). |

We summarize our discussion of interval trees in

Theorem 1. Let S be a set of n intervals.

a) Let U be a universe containing left endpoints of intervals in S. A static interval
tree of depth O(log N), N = |U|, can be constructed for S with respect to U
in time O(nlognN). It uses space O(N + n) and allows us to compute the
set A of intervals in S intersecting a query interval I in time O(log N + |A]).
In addition, insertions and deletions take time O(logn + log N).

b) In dynamic interval trees we have N < n. However, the time bounds for
insertions and deletions are amortized.

Proof: Obvious from Lemmas 2 to 5. ]

We will now turn to an application of interval trees: reporting insertions of rectan-
gles.

Theorem 2. Let R be a set of n iso-oriented rectangles in the plane. Then the set
A of pairs of intersecting rectangles in R can be computed in time O(nlogn + |A]).

Proof: We use the following notation. For r € R, we denote the projections of r
into the z-axis (y-axis) by I,(r) (Iy(r)). Our algorithm for computing A is based
on plane sweep.

The z-structure contains exactly the left and right endpoints of projections I, (r),}j
r € R. The y-structure is an interval tree for the set of intervals I, (r) of rectangles r
which are intersected by the sweep line. The transition at point x of the z-structure
is as follows.

(1) Let In be the set of rectangles r € R which have = as the left endpoint of
projection I (r);

2) Insert I, (r) into the y-structure for all r € In;
y
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(3) For every r € In, enumerate all rectangles ' which are stored in the y-structure
and which intersect the y-structure and which intersect the y-projection of r,
ie, I,(r) N I, (r") # 0;

(4) Delete all rectangles r from the y-structure which have z as the right endpoint
of projection I (r).

The algorithm above clearly enumerates only intersecting pairs of rectangles. Fi-
nally we prove that it enumerates all intersecting pairs. Let r,r7’ € R with rNr’ # (.
Let I,(r) = [z1,22] and I, (r") = [z}, z5]. We assume w.lo.g. that 2] < z;. Con-
sider the transition at £ = x1. When line (3) is reached rectangle r’ belongs to the
y-structure. Also, I,(r) N Iy(r') # 0 and hence ' is enumerated in line (3) when
this line is executed for rectangle r. This proves correctness.

The time bound is also easily established. We may either use dynamic in-
terval trees or static interval trees with U being the set of (bottom) endpoints
of intervals I,(r). Then |U| < n. Hence we spend time O(logn) per rectangle
r € R in lines (2) and (4). Also, the cost of line (3) is O(logn + |A(r)|), where
A(r) ={r € R; r N7’ # 0}. Thus total running time is O(nlogn + |A|). 1

8.5.1.2. The Priority Search Tree and its Application.

Priority search trees are a mixture of search trees and priority queues (heaps).
They support 11/2-dimensional range queries with logarithmic running time and
linear space. Recall that range trees, cf. Section 7.2, require space O(nlogn) and
time O((logn)?). A 11/2-dimensional range query is given by a rectangle whose
bottom side is missing, i.e., it searches for all points (z,y) in a semi-infinite strip
o < x < x1, y < y1. Priority search trees can be used instead of interval trees
in reporting intersections of rectangles. Other applications are e.g. containment
queries or maintaining buddy systems.

Throughout this section we assume S = {(z;,y;); 1 < i < n} to be a set of
points inn the plane. We assume for simplicity that x; # z; for ¢ # j, although the
theory of priority search trees can also be developed without that assumption. We
will indicate the required changes in the discussion below. In many applications this
assumption can be obtained by replacing point (z,y) by ((z,y),y), by ordering the
first component lexicographically, and by taking some care in formulating queries
and interpreting their answers. We leave the details to the reader.

Let U be a set containing at least the z-coordinates of all points in S. A
priority search tree for S with respect to universe U consists of a leaf-oriented
search tree for set U. As always, we use a field split(v) in each node v to direct
the searches. In addition, each node v has a priority field prio(v) which holds an
elment of S (or nothing). Each elment of S is stored in the priority field of exactly
one node and this node must lie on the search path to the z-coordinate of the
element, i.e., if prio(v) = (z,y) then = € zrange(v). The priority fields implement
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a priority queue on the y-coordinates of the elements of S, i.e., if prio( ) = (z,y)
then prio(father(v)) is defined and y > y’, where prio(father( )) («',y").
Figure 97 shows a priority search tree for set S = {(1,4), (2,1), (3, ) ( 2),(5,1),(6,3)}1
with respect to universe U = {1,2,3,4,5,6}. In nodes the spl t (prlorlty) field is
given above (below) the horizontal hne

Figure 97.

If set S contains points with identical z-coordinate then the following change is
required. With each leaf of the tree we associate a sorted sequence which contains
some of the elements having the (value associated with the) leaf as z-coordinate.
Thus if (3,10) also belonged to S then the sorted sequence associated with leaf 3
would contain elements (3,7) and (3,10) in that order. We implement the sorted
sequence as an ordinary priority queue. All algorithms below become slightly more
involved because of that change. We leave the details to the reader.

The algorithms for priority search trees are subtle. We therefore give (almost)
complete programs based on the following declarations.

type pair = record z,y: realend;
type status = (leaf, nonleaf);
type node = record prio: pair;
split: real;
case stat: status of
leaf: ;
nonleaf: (lson, rson:hode)
end

Nodes and leaves are of type node. If the priority field of a node v is undefined then
we store (split(v), infinity) in it.

Lemma 6. If S is sorted according to the x-coordinate then a priority search tree
for S of depth O(log N') can be built in time O(n + N).
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Proof: We can clearly build a search tree (based on the complete binary tree with N
leaves) for U in time O(NN). We still have to fill the priority fields. We do so by
playing a knockout tournament on the elements of S. We initialize the tournament
by writing element (z,y) of S into the leaf corresponding to x. If no element of S
corresponds to a leaf v then the priority field is initialized to (split(v),00). Next
consider a node v such that the priority fields of v’s sons are already defined. We
move the priority field of the left son of v to v if it has the smaller y-coordinate
and we move the priority of the right son otherwise. This empties the priority field
of one of the sons of v which we then fill in exactly the same way. Continuing in
this way we finally empty the priority field of a leaf w which we then refill with
(split(w), 00). Thus we can compute prio(v) in time proportional to the height of v.
Since the number of nodes of height h is N/2" we need time

o(lin(Nm)h : h) = O(N)

h=1

to fill all priority fields. ]
We can use priority search trees for the following queries:

MinXinRectangle(xo, z1,y1) = min{z; Jy:2zo <z <z and y < y; and (z,y) € S}

MazXinRectangle(zg, z1,y1) = max{z; Jy: 29 <z <z and y < y; and (z,y) € S}
MinYinXRange(zg, z1

EnumerateRectangle(zo, x1,y1

min{z; 3z :z9 < z < z; and (z,y) € S}

~— e’ N S

={(z,y) €S; xop<z<ziandy <y}

Query EnumerateRectangle(xo,x1,y1) enumerates all points of S which lie in the
semi-infinite strip g < ¢ < 7 and y < y;. MinXinRectangle (MazXinRectangle)
compute the minimal (maximal) z-coordinate of any point in that strip. Finally,
MinYinXRange computes the minimal y-coordinate of any point in the vertical
strip determined by z¢ and z;.

For the lemmas below we recall the definitions of sets P, C and C,,,, of nodes
of a search tree T' with respect to query interval (e, Zright]-

P = {v; zrange(v) N [Tieft, Tright] # O and zrange(v) € [Tieft, Tright|}
C = {v; zrange(v) C [Tiept, Tright]}
Caz = {v; v € C and father(v) ¢ C}

Lemma 7. Let T be a priority search tree (for set S with respect to universe U)
of height h. Then operation MinYinXRange takes time O(h).

Proof: Consider operation MinYinXRange(zeft, Tright). If the output of MinYinXRangel}
is undefined then C = () and hence the searches for ;e Or Zign: end in the
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same or in adjacent leaves. If the output is defined, say (z*,y*) € S with
y* MinYinXRange(Z e, Tright), then let w be the leaf whose associated value of U
is *. Leaf w belongs to P U C. If w € P, then there is clearly a node v € P such
that prio(v) = (z*,y*). If w ¢ P, i.e., w € C, then consider z € C,,,, such that z is
an ancestor of w. Since y* is the minimal y-value of any point in the query interval
and since the priority fields implement a priority queue on the y-values we conclude
that there is an ancestor v of z with prio(v) = (z*,y*). In particular, v € PUC 4.
Thus in either case there must be a node v € PUC,,, such that prio(v) = (z*,y*)
and hence MinYinXRange can be answered by inspecting all nodes in P U C\,4z.
Finally, since |[PUC| < 4 - h since v € C\,, implies father(v) € P, and since every
v € P lies on the search path for either zi.f or x,ign: the nodes in P U Cl,qp can
clearly be inspected in time O(h). The details are given in Program 14. In this
program we use the additional type

type
condpair
= record p: pair; valid: boolean end
(1) function MinYinXRange(t tnode, Zieft, Tright : real) : condpair;
(2) var candl, cand2: condpair;
(3) begin candl .valid < cand2.valid < false;
(4) if iep < thprio.x < Tpight
(5) theand1.p + t.prio;
(6) candl .valid < true
(7) eldd t1.stat = nonleaf
(8) then if x5 < tf.split
(9) then candl < MinYinXRange(t!.lson, Tief, Tright)
(10) fi;
(11) if t1.split < Tyigns
(12) then cand2 < MinYinXRange(tl.rson, Ticft, Tright)
(13) fi;
(14) if (—cand!.valid) or (cand2.valid and
(15) cand2.p.y < candl.p.y)
(16) then candl < cand?
(17) fi
(18) fi
(19) f;
(20) MinYinXRange < candl
(21) end

Program 14

Several remarks should be made about that program. Note first that only
nodes in P U C are visited. Also, if ¢ points to a node v € C,,,, then the test in
line (4) returns true and hence no further recursive calls are initiated. Thus only
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nodes in PUC,,,, are visited and the time bound follows. However, not all nodes in
P U C,,,, are necessarily visited and hence correctness requires some explanation.
Let v € P U Cypop be such that prio(v) = (z*,y*) and let z be any proper ancestor
of v. Then prio(z) = (z,y) is defined and y < y*. if y < y* then & & [Tiep, Tright)
by definition of y* and hence the test in line (4) returns false. Thus appropriate
recursive calls are initiated in lines (9) and/or (11). 1

Lemma 8. Let T be a priority search tree (for set S with respect to universe U)
of height h. Then operation EnumerateRectangle takes time O(h + s), where s is
the size of the answer.

Proof: Consider operation EnumerateRectangle(zcft, Tright, Ytop)- Let R = {(z,y); zierr <|j
z < Zright, Y < Ytop} be the query rectangle. Clearly, all pairs (z,y) € RN S are
stored in the priority fields of nods in PUC. The crucial observation is now that the
v € C — Cprax and prio(v) € R implies prio(father(v)) € R. This can be seen as
follows. Let prio(v) = (z,y) and let prio(father(v)) = (z',y’). Then v’ <y < yiop
and e < &' < Tpignt since father(v) € C. Thus (¢/,y') € R.

The observation above suggests the following algorithm. Visit all nodes in
PUCyax and inspect their priority fields. For every v € C\,42, explore the subtree
rooted at v top-down. if descendant w of v is visited and prio(w) € R then also
visit both sons of w. If prio(w) ¢ R then visit no son of w. The correctness of this
algorithm follows immediately from the observation above.

The bound on the running time follows from the fact that if a node v is visited
then either prio(v) € R or father(v) € P U Cpae or prio(father(v)) € R. Thus at
most 3 - s + 2 - h nodes are visited and hence running time is O(h + s). 1

Lemma 9. Let T be a priority search tree for set S of height h. Then operations
MinXinRectangle and MazXinRectangle take time O(h).

Proof: Operations MinXinRectangle and MazXinRectangle are symmetric. We
therefore only have to consider operation MinXinRectangle(Zief, Xright, Ytop). Let
R = {(z,9); Tieft <« < Zyight, ¥ < Ytop} be the query rectangle and let (Z,7) €
RN S be such that prio(v) = (Z,7) for some v € P U C\yq, and T < x whenever
(z,y) = prio(w) € R for some node w € PUC,,4;- Thus (Z,7) is the “best” answer
to the query which is stored in the priority field of a node in P U C\,4;-

It follows from the proof of Lemma 6 (operation MinYinXRange) that (Z,9)
is defined iff RN S # 0. Thus we can test in time O(h) whether operation
MinXinRectangle is defined. Assume next that MinXinRectangle is defined. Let
(z*,y*) € S be such that «* = MinXinRectangle(Tiept, Tright, Ytop). If ©*° = T
then we can find (z*,y*) by visiting the nodes in P U Cj,q,. So let us assume
that #* < Z. Then pair (z*,y*) is stored in the priority field of a node w in
C — Cpae and hence there is a node v € C,,,, which is an ancestor of w. Let
prio(v) = (2',y’). Then y’ < y* < y,,, since the priority fields implement a priority
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queue and Zief < &' < Tpigne since v € C. Thus (2,y’) € R and hence Z < z’ by
definition of (Z, 7). In particular, we have z* < & < z’ and hence Z € zrange(v).
We conclude that either (Z,7) = (z*,y*) or (z*,y*) = prio(w), where w is a de-
scendant of the unique v € C),,, with Z € zrange(v). We finally describe how to
find w in the latter case. Note first that if z is a node on the path from v to w then
prio(z) € R. Also, z is the right son of its father if and only if y” > y;,p, where
(z",y") is the priority field of the left brother of z. Thus we can find w by a simple
tree search starting in w. If the search reaches node z and y" < y;,,, where (z”,y")
is the priority field of the left son of z, then we proceed to the left son, otherwise
we proceed to the right son. In this way we can be sure that node w will be found.

In summary, query MinXinRectangle can be answered by visiting the nodes
in P U Cpee and by following a single path down the tree starting in a uniquely
defined node of C,,,;. Thus time O(h) suffices. An elegant realization is given by
Program 15.

function MinXinRectangle(t tnode; e, Tright, Ytop : Teal) : condpair;
var c: condpair;
begin c.valid < false;
if Yiop > thpy
théhtt. stat = nonleaf
then if z;.n < vt.split
then c < MinXinRectangle(tt.lson, Ticft, Tright , Ytop)
fi;
if —c.valid and t1.split < Tpign:
then c < MinXinRectangle(t?.rson, Zies, Tright s Ytop)
fi
fi;
if Lleft < tT-p.:L‘ < L right and tT-P-y < Ytop
and (—c.valid or tI.p.z < c.p.x)
then c + tt.p; c.valid < true
fi
fi;
MinXinRectangle < c

== = e e e e e e NN S S S S S S
© 0 ~JDAOUT I WNRFEO©O©OWOS O W -
N N N N N N N N N N e e S e e e S N N
[¢]
=
o}

N~ o~~~

Program 15

Several remarks should be made about that program. Note first that only
nodes in C U P are visited. Next consider a node v € C. If prio(v) ¢ R and hence
the test in line (4) returns false then no son of v is visited. If prio(v) € R then the
left son of v is always visited. If prio(lson(v)) € R then the recursive call made
in line (7) returns a valid pair and hence no recursive call is made in line (10).
If prio(lson(v)) ¢ R then the recursive call made in line (7) aborts immediately
because the test in line (4) is negative and hence has cost O(1). Thus at most one
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recursive call with nonconstant cost is made by node v € C and hence only O(h)
nodes are visited below each node v € Cmaz. It remains to show that at most
one node v € C,,,, initiates recursive calls at all. Let v € C,,,, be the first node
in Cq, which initiates recursive calls and let w € C,,4, be to the right of v. Also,
let z be the least common ancestor of v and w. Since v (w) is in the left (right)
subtree of z the recursive call initiated in line (7) of the procedure when applied to
node z returns a valid pair and hence the call in line (10) is not executed. Thus w
is never visited, and hence only O(h) nodes are visited altogether.

We finally prove correctness. Let v € C'U P be such that prio(v) = (z*,y*)
and let wop, w1, . . ., wy be the path from the root of 7' to v = wy. Then prio(w;).y <
y* < yiop for all . Hence if w; is visited and w;4 is the left son of w; then w;44
is also visited. Assume next that w;y; is the right son of w;. Let z be the left
son of w;. Then clearly prio(z).z < split(w;) < z* and hence prio(z).y > Yiop by
definition of (z*,y*). Thus,if w; is visited then the visit of node z fails in line (4)
and hence no valid pair is returned in line (7). We therefore visit node w;4+1 in
line (10). This shows that node v is visited by the search and hence z* is correctly
computed. ]

Lemmata 7 to 9 show that priority search trees support a number of query opera-
tions in logarithmic time. We will now turn to insertions and deletions. As in the
case of interval trees we treat the radix priority search trees first.

Lemma 10. Let T be a priority search tree for set S with respect to universe U
and let h be the height of T.

a) Let (z,y) ¢ S such that ¢ € U and such that there is no (z',y’) € S with
z = z'. Then we can add (z,y) to S in time O(h).

b) Let (z,y) € S. Then we can delete (z,y) from S in time O(h).

Proof: a) The insertion algorithm is quite simple. It uses variables ¢ 1 node and
p : pair.

(1) t «Froot; p + (x,y);

(2) while t].stat = nonleaf

(3) do if p.y < th.prio.y

(4) then exchange p and tf.prio

(5) fi;

(6) if p.xz < t.split then t < tf.lson else t < tf.rson fi
(7) od

(8) tf.prio < p.

Program 16
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The insertion algorithm follows a path down the tree. The path is determined
by the z-value of p. Whenever p’s y-value is smaller than the y-value of the priority
field of the current node we store p in that node, pick up the priority field of the
node and continue inserting it. This shows correctness as well as the bound on the
running time.

b) Deletion of (z,y) form S is also quite simple. An ordinary tree search allows us
to find node v with prio(v) = (z,y). We delete point (z,y) from the priority field of
node v and then refill it by the smaller (with respect of y-value) priority field of the

sons of v, which we then in turn refill ... . Thus the deletion algorithm is identical
to the algorithm used to fill priority fields when building a tree from scratch and
hence it runs in time O(h). 1

We summarize our discussion of radix priority search trees in

Theorem 3. Let U CR, N = |U| and let S C U xR, n = |S|. Then a pri-

ority search tree for S with respect to U can be built in time O(N + nlogn).

It supports insertions of points in U X R, deletions, and queries MinXinRectangle,
MazXinRectangle, MinYinXRange in time O(log N). Furthermore, operation EnumerateRectan
takes time O(log N + s), where s is the size of the answer.

We next turn to dynamic priority search trees. For S C R xR let U(S) be the
projection of S onto the first coordinate, i.e., the set of z-coordinates of points in S.
In a dynamic priority search tree we use a balanced search tree of set U(S) as the
underlying search tree structure. Such a tree has depth O(logn), n = |S|. We
assume for the following discussion that the underlying search trees are rebalanced
by rotations and double rotations, i.e., we may use BB[a]-trees (cf. Chapter 3.5.1),
(2,4)-trees realized as red-black trees (cf. Chapter 3, Exercise 27), AVL-trees (cf.
Chapter 3, Exercise 25) or half-balanced trees (cf. Chapter 3, Exercise 26). Consider
an insertion or deletion. We proceed as described in Lemma 10 except for the
following change. An insertion adds an additional leaf to the tree and a deletion
deletes some leaf from the tree. In this way we obtain a legal priority search tree
except for the possible defect that the underlying search is unbalanced. We use
rotations and double rotations to rebalance the tree. Since double rotations can be
realized by two rotations we only need to discuss rotations.

Suppose that we perform a rotation at node v with left son w and let prio(v) =
(z,7) and prio(w) = (z,y). Then point (x,y) has the smallest y-value of all priority
fields in the subtree rooted at v and hence prio’(w) = (Z,y). We use primes to
denote the situation after the rotation. Also, the split fields of nodes v and w are
easy to maintain. However, priority fields prio(w) and prio’(v) cause difficulties.
We proceed as follows. We first insert point (z,y) into either tree A (if z < z1)
or B (if ¢ > z1). It is important to observe that this insertion does not require
a structural change of the underlying search tree. It rather updates the priority
fields along a path down the tree as described in Lemma 10a), and hence takes
time O(h(v)), where h(v) is the height of node v. Priority field prio’(v) is filled as
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T2

Figure 98.

described in Lemma 10b), i.e., we move the priority field of either the root of B
or C to node v and then continue in this way along a simple path down the tree.
Thus filling the priority field of node v after insertion takes time O(h(v)). We can
summarize the discussion in

Lemma 11. A rotation or double rotation at a node v of height h(v) takes
time O(h(v).

Proof: By the discussion above. ]
Lemma 11 leads directly to

Theorem 4. Let S C R xR, n = |S|. Dynamic priority search trees based on
XYZ-search trees (XYZ € {AVL,BB|a], red-black, half-balanced}) support queries
MinXinRectangle, MazXinRectangle, MinYinXRange in time O(logn) and query
EnumerateRectangle in time O(logn + s), where s is the size of the answer. More-
over, insertions and deletions take time

O((logn)?) in the worst case if XYZ = AVL

O((logn)?) in the worst case and if XYZ = BB|q]

O(logn) in the amortized case  or XYZ = red-black

O(logn) in the worst case if XYZ = half-balanced

Proof: The time bounds for the queries follow immediately from Lemmas 7-9. The
worst case time bounds for AVL-trees, BB[a]-trees and red-black trees follows from
the observation that at most O(logn) rotations and double rotations of cost O(logn)
each are required to rebalance such a tree. Since O(1) such operations suffice for
half-balanced trees e also have the O(logn) worst case time bound for these trees.
We next prove the bound on the amortized cost for BB[a| and red-black trees. For
both classes of trees we have shown that the total number of rotations and double
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rotations caused by nodes of height A in a sequence of n insertions and deletions is
O(n/c") for some ¢ > 1. This is shown in Section 3.5.1, Theorem 4 for BB[a]-trees
and in Section 3.5.3.2, Theorem 10 for red-black trees implementing (2,4)-trees.
Since the cost of a rotation at a node of height h is O(h) the total cost of all rotations
is 3,5, 0(n/ct - h) = O(n) and hence O(1) per insertion or deletion. Since the
cost of an insertion or deletion outside the rebalancing operations is O(logn) the
bound on the amortized cost follows. ]

There are numerous applications of priority search trees. We first show how to
maintain a dynamic set of intervals on the real line.

Theorem 5. Let S be a set of intervals on the real line, n = |S|. Using priority
search trees we can insert intervals into S and delete intervals from S in time
O(logn). Also, given a query interval [z, yo] we can enumerate

a) all s intervals [z,y] € S with [z,y] N [zo,yo] # 0 in time O(s + logn).
b) all s intervals [z,y] € S containing the query interval in time O(s + logn)

c) all s intervals [z,y] € S contained in the query interval in time O(s + logn).

Proof : For parts a) and b) we represent interval [z, y] by point (z,y) € R? and store
the associated set of points in a priority search tree. Then all intervals intersecting
the query interval [zg, yo| are listed by EnumerateRectangle(zy, infinity, yo), i.e., we
list all rectangles [z,y] € S with 2y < y < infinity and z < yp. Similarly, all
intervals [z, y] € S containing the query interval [z, yo), i-e., z < z¢ < yo < y, can
be listed by EnumerateRectangle(yq, infinity, o).

For part c) we associate point (z,y) with interval [z,y] and store the set of
associated points in a priority search tree. Then all intervals [z,y] € S con-
tained in the query interval [zg,yo], i€., o < z < y < yp, can be listed by
EnumerateRectangle(z,, Yo, Yo)- 1

Theorem 5a) provides us with an alternative proof of Theorem 2. We may replace
interval trees by priority search trees for computing the set of s pairs of intersecting
rectangles in a set of n iso-oriented rectangles in time O(nlogn + s).

Another class of applications concerns visibility and containment problems. let
S be a set of points in R?; each (z,y) € S defines a vertical semi-infinite ray with
lower endpoint (z,y). We can think of the line segments as being either translucent
or opaque. Given a query point (xg,yo) € S we want to find all line segments visible
along a horizontal line of increasing z. We store the points (z, y) in a priority search
tree.

If the line segments are translucent then the segments visible from (zg,yo)
are given by (z9 < z, y < yo, i.e., by EnumerateRectangle(xo, infinity,yo). In the
opaque case, the solution is given by MinXinRectangle(xq, infinity,yo). Note also,
that in either case we can restrict the horizontal line segment starting in (zg, o) to
some finite length without changing complexity.
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Figure 99.

The problem becomes more complicated if we allow the vertical line segments
to be finite. In this case we can obtain an O((logn)?) method by a combination of
interval trees and priority search trees. We represent the set of vertical line segments
as an interval tree T'. More precisely, let S be the set of projections of the vertical
line segments onto the y-axis. Then T is an interval tree for set S. Let v be a node
of T and let [Ypottom, Ytop| be an interval in its node list. Then Ysottom (Ytop) is stored
in the left (right) part of v’s node list. Next note, that we can view the left (right)
part as a set of “semiinfinite” rays extending from (z, Ypottom ) to (z, split(v)), where
z is the z-coordinate of interval [Ypottom s Ytop]- Thus we can organize both node lists
as priority search trees and hence find the visible line segments in v’s node list in
time O(logn + s) in the translucent case and O(logn) in the opaque case. Since
the depth of the interval tree is O(logn) we obtain a total cost of O((logn)? + s)
in the translucent case and O((logn)?) in the opaque case.

The translucent visibility problem discussed above is an intersection problem.
We discuss more general intersection problems in Section 5.1.4. Further applications
of priority search trees are discussed in the exercise.

8.5.1.3. Segment Trees

Segment trees are yet another method of storing sets of intervals. They are particu-
larly useful in situations where additional information has to be stored together with
intervals. We describe several applications of segment trees in the text and in the
exercises, most notably the hidden line elimination problem for three-dimensional
scenes (in Section 5.1.4) and the measure problem for a set of polygons.

Let U CR, U = {z1 < --- < zn}, and let S be a set of intervals which have
both endpoints in U. A segment tree for S with respect to universe U consists of
a search tree with 2. N + 1 leaves and some additional information. The leaves
correspond to the atomic segments (—oo, 1), [z1, 1], (z1,22), [T2, z2], (z2,z3),
[z3, 23], ..., (zN_1,ZN), [tN,ZN], (N, +00) defined by U in increasing order from
left to right. Here, (z;,z;+1) denotes the open interval from z; to z;41 and [z;, z;]
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denotes the closed interval from x; to x;, i.e., point x;. The split fields of the internal
nodes are defined such that a search for x € R is directed to the atomic segment
containing z, i.e., if (x;, 2;41) ([Zi+1,Zi+1]) is the rightmost leaf in the left subtree
of node v then we follow the pointer to the left subtree if z < z;11 (z < zi41).
Thus we need to store an additional bit that distinguishes between the two cases in
addition to storing the split field split(v) = z;41.

The xrange of a node of a segment tree is defined as in the introduction of
Section 5.1. Note that the zrange(v) of node v is the union of the atomic segments
associated with the leaf descendants of v. We also associate (and store) with each
node v its node list NL(v). The node list of v contains pointers to all intervals of S
which cover v’s xrange but do not cover the xrange of v’s father, i.e.,

NL(v) = {I € S; zrange(v) C I and zrange(father(v)) € I}.

I

I3 I4
I

1 2 3 4 5
Figure 100.

Figure 100 illustrates these definitions. We have U = {1,2,3,4,5} and S =
{ll1,5],12,3],1, 2], [3,4],[3,5]}. The split fields and the condition for following the
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pointer to the left son are indicated inside internal nodes. The node lists associated
with the various nodes are indicated on top of the nodes.

In a segment tree an interval may be stored in several node lists. Lemma 12
shows that it is stored in at most 2 - h node lists, where h is the height of the tree.

Lemma 12. Let T be a segment tree of height h for S and let I € S. Then I
belongs to at most 2 - h node lists. Furthermore, I is the disjoint union of the sets
zrange(v), where the union is over all nodes v such that I € NL(v).

Proof: Let C = {v; zrange(v) C I'} and let Cpyop = {v; v € C and father(v) ¢ C}.
Then I belongs to NL(v) if and only if v € C,4,. In Lemma 2 it was shown that
|Cimaz| < 2+ h. Also, if v,w € Cie, then zrange(v) N zrange(w) = 0. Finally,
if € I then there is clearly a node v € C),,; such that z € zrange(v). Thus
I = |J{zrange(v); I € NL(v)} and the union is over disjoint sets. 1

We can draw several consequences from the lemma above. The first observation is
that an interval I is stored in a segment tree as a set of disjoint pieces, the piece
zrange(v) is stored in NL(v). Also, a node v represents the identical piece, namely
zrange(v), of all intervals I with I € NL(v). Thus we are free to organize the node
lists according to secondary criteria. This explains the flexibility of segment trees.
The second consequence is that balanced segment trees require space O(nlog N)
and can be constructed in time O(nlog N). Finally, given interval I, one can find
all nodes v with I € NL(v) in time O(log N). Hence the insertions and deletions
are efficient operations in segment trees. The exact time bounds depend on the
structure chosen for the node lists.

Theorem 6. Let U CR, |[U| = N, and let S be a set of n intervals with both
endpoints in U.

a) A segment tree for S of depth O(log N) can be constructed in time O(nlog N).
It requires space O(nlog N).

b) If time g(m) is required for inserting an interval into or deleting an interval
from a node list of size m and g is nondecreasing then an interval can be inserted
into or deleted from a segment tree in time O(g(n)log N).

Proof: a) Let T be a complete binary tree with 2 - N + 1 leaves. It is easy to
organize the split fields in time O(N) such that T is the skeleton of a segment
tree for S. Next observe that for every I € S we can find the set of nodes v with
zrange(v) C I and zrange(father(v)) € I in time O(log N'). This follows from the
fact that the nodes in C,,,, are sons of the nodes in P which in turn are the nodes
on the search paths to the two endpoints of interval I. The space bound follows
from the observation that every interval is stored in at most 2 - h = O(log N) node
lists.

b) Let I be an interval and suppose that we want to delete I from S. The case
of the insertions is symmetric and left to the reader. By part a) we can find set
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A =A{v; I € NL(v)} in time O(log N). We have to delete I from NL(v) for every
v € A. Since the node list of any node can certainly contain at most n intervals,
since ¢ is nondecreasing and since |A| = O(log N), the total cost of deleting I is
certainly O(g(n)log N). 1

In many applications of segment trees we have g(n) = O((logn)*) for some small k.
Then insertions and deletions take time O((logn)*log N). We are now ready for
the first application of segment trees, the measure problem of iso-oriented
rectangles. Let Ry, ..., R, be a set of iso-oriented rectangles. We want to compute
the measure (area) of Ry U Ry U--- U R,,,. We solve this problem by plane sweep.
Let U be the set of y-coordinates of the corners of the rectangles R;, 1 < i < m.
Then |U| < 2-m. For each position of the sweep line let S be the set of rectangles
intersected by the sweep line. We store the (projections onto the y-axis of the)
rectangles in S in a segment tree with respect to universe U. In Figure 101 the
sweep line intersects rectangles Ry, Rs and Ry.

g
R S D £ 2

R3 ____________________________ R3

R, 1 r .
Rg
Ry
Ry
sweep line

Figure 101.

Their projections (shown in the right half of the diagram) are stored in the
segment tree. The node lists are organized in an extremely simple way. We only
store the cardinality of each node list instead of the complete node list. Thus the
space requirement of each node list is O(1). We also store in each node v a quantity
TL(v) which is defined as follows. For an interval I let length(I) be the length of I.
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Then
length(zrange(v)), if NL(v) # 0;
TL(v) = ¢ 0; if NL(v) = 0 and v is a leaf;
TL(Ison(v)) + TL(rson(v)), if NL(v) =0 and v is not a leaf.

Then TL(v) is the total length of all atomic segments (in the subtree with root v)
which are covered by intervals which belong to a node list of v or a descendant of v.
In particular, TL(root) is the length of the union of the intervals stored in S. The z-
structure contains the z-coordinates of the corners of the rectangles R;, 1 < i < m,
in sorted order. The structure of the plane sweep algorithm is as follows. Suppose
that we advance the sweep line to transition point x. Let z,4 be the previous
transition point. Then TL(root) - (x — x,4) is the area covered by rectangles in
the vertical strip given by the scan line positions z,;; and x. We add this quantity
to variable A which sums the total covered area to the left of the scan line. Next,
we delete all rectangles R; from the tree whose right side is at  and insert all
rectangles R; into the tree whose left side is at z. We claim that insertions and
deletions take time O(logm) per rectangle. This can be seen as follows.

We treat the case of a deletion. By Theorem 6 we can find the set A = {v; I €
NL(v)} in time O(logm). For all nodes v € A we have to decrease the counter
holding the cardinality of the node list by one. If the counter stays positive then no
further action is required for that node. If the counter becomes zero then we need
to recompute TL(v) as given by the formula above. Also, we need to propagate
the change to the ancestors of v. Since the ancestors of the nodes in A form two
paths in the tree the T'L-fields of all ancestors of nodes in A can be updated in time
O(log m).

For the sake of completeness we include a detailed program. We assume for this
program that an interval with endpoints « and y is stored as half-open interval (z, y].
We also assume that atomic segments (z;,z;4+1) and [;4+1,%;+1] are combined to
(4, ;41] for all z; € U. Note that by this convention every interval is still a union
of atomic segments. Also, the split field of node v directs a search for = to the left
iff z < split(v). In the program we maintain the invariant that zrange(v) = (a, ],
I = (z,y], zrange(v) NI # 0 and zrange(father(v)) € I.

The O(logm) time bound for procedure Delete is readily established from the
program text. Only nodes v with zrange(v) NI # 0 and zrange(v) € I generate
recursive calls. By Lemma 2 there are at most 2 log m such nodes. This establishes
the time bound.

Procedure Insert is a minor variant of procedure Delete. We only have to
replace lines (3) to (8) by

themunt — vt.count + 1;
v TL+ b—a

We have now shown that insertions and deletions take time O(logm) per rectangle.
Since a total of m rectangles has to be handled, the cost of the sweep is O(m logm).
The cost of sorting the corners of the rectangles according to x- and y-coordinate
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(1) procedure Delete(z,y,v,a,b);
(2) begin ifr<aand b<y co zrange(v) CI oc
(3) then vt.count < vt.count — 1 fj;
(4) if vf.count =0
(5) then if vf.stat = leaf
(6) then v1.TL <+ 0
(7) else v1. TL < vt.lsont. TL + vt.rsont. TL
(8) fi
(9) else if © < vt.split
(10) then Delete(x,y, vi.lson, a, vl.split)
(11) f;
(12) if y > vt.split
(13) then Delete(z,y, vl.rson, vt.split,b)
(14) fi;
(15) vt. TL < vt.lsont. TL + vt.rsont. TL
(16) fi
(17) end

Program 17

is also O(mlogm). The former sort is required for setting up the z-structure and
the latter for computing U. we summarize our discussion in

Theorem 7. The measure problem for a set of m isooriented rectangles can be
solved in time O(mlogm) and space O(m).

Proof: The time bound is obvious from the discussion above. The space bound
follows from the fact that only O(1) words are needed per node of the segment
tree. 1

Further applications of segment trees can be found in Sections 5.1.4 and 5.3 and
in the exercises. In particular, we will show how to solve the measure problem
for arbitrary polygons and how to do hidden line elimination in Section 5.1.4. In
Section 5.3 we will use segment trees for solving intersection problems of iso-oriented
objects in three- and higher-dimensional space.

We close this section with a discussion of dynamic segment trees. Let S be a set
of intervals on the real line and let U be the set of left and right endpoints of the in-
tervalsin S. Let n = |S| and = |U| < 2-n. A dynamic segment tree for S is based on
a D-tree (cf. Section 8.6.2) with 2- N 41 leaves, one for each atomic segment. As be-
fore, we have atomic segments (— 00, 21), [21, 1], (£1,22), .-, (251, 2x)s [£8, &), (2, +00)
where U = {z1 < 2 < --- < zn}. The weights of the atomic segments are defined
as follows. Segment (z;,z;+1) has weight 1, 0 < ¢ < N, and the weight of segment
[x;, z;] is equal to the number of intervals in S which have z; as an endpoint. As
in the case of interval trees we have
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Lemma 13. Let v be a node of a dynamic segment tree based on a D-tree. Then
|NL(v)| = O(th(v)), where th(v) is the number of leaves below v in the BB|a]-tree
underlying the D-tree (underlying the dynamic segment tree).

Proof: Let v be a node of a dynamic segment tree. If I € NL(v) then zrange(v) C
I and zrange(father(v)) € I. Hence at least one endpoint of I is contained in
zrange(father(v)). We can therefore write NL(v) = N1 U N2, where N; = {I € NL;
exactly ¢ endpoints of I are contained in zrange(father(v))}, i = 1,2. A bound on
| V| is easily derived. We have

|V | < Z{wez’ght([xj,x]—]); the active [z, z;]-node is a descendant of v}
< ((1 — a)/a - th(father(v)) < ((1 — a)/a?) - th(v)

since the fraction a/(1—a) of all [z, z;]-leaves are descendants of the active [z}, z;]-
node. Let us turn to Ny next. If I € Ny then I C zrange(father(v)) and hence
zrange(v) C I implies that zrange(father(v)) and I have a common endpoint. Hence

IN2| <2 ((1—a)/a) - th(father(v)) < 2-((1 — a)/a®) - th(v)
by an argument similar to the one above. ]

We are now in a position to discuss insertions and deletions into dynamic segment
trees. We separate two issues. The first issue is to insert or delete an interval
without changing the underlying tree structure and the second issue is to rebalance
the underlying D-tree by rotations and double rotations.

The total weight of all atomic segments is at most 3-n+ 1 and hence the depth
of a dynamic segment tree is O(logn). Thus time O(logn) suffices to locate the
set of nodes whose node lists are affected by the insertion. Let us assume that the
cost of inserting an interval into or deleting an interval from a node list of size m
is g(m), where g is non-decreasing. Then the total cost of updating the node list is

D 9(INL()[ <Y gle- th(v)),

vEA vEA

where A is the set of affected nodes and ¢ is a (small) constant. The set of affected
nodes forms (essentially) two paths in the tree and hence for every integer ¢ there
are at most d nodes in 4 with (1 —a)™% < th(v) < (1 — a)~*"! for some (small)
constant d. Thus the cost of updating the node lists is

elogn

Ci = Z d-g((1—a)™),

where e = —1/log(1l — ). In particular, we have C; = O((logn)**1) if g(m) =
O((logm)¥) for some k > 0 and C; = O(n?®) if g(m) = m® for some a > 0.

Version: 19.10.99 Time: 17:36 -122-



8.5.1.83. Segment Trees 123

The cost of rebalancing the underlying D-tree by rotations and double rotations
remains to be discussed. Since a double rotation comprises two rotations it suffices
to discuss single rotations.

Figure 102.

We have (primes denote the situation after the rotation):
NL'(w) « NL(v)
NL'(v) < NL(root(A)) N NL(root(B)),
NL'(root(A)) < NL(root(A)) — NL'(v),
NL'(root(B)) + (NL(root(B)) — NL'(v)) U NL(w),
NL'(root(C)) < NL(root(C)) U NL(w).
The correctness of these formulae is easily established. For example, we have I €
NL'(v) iff T covers A and B but does not cover Ci.e., NL'(v) = NL(root(A)) N
NL(root(B)). The node lists of all other nodes remain unchanged. This follows
from the fact that the node list NL(z) of a node z is determined by zrange(z) and
zrange(father(z)) and that only the xranges of nodes v and w change.
The total size of the node lists NL(v), NL(w), NL(root(A)), NL(root(B)) and
NL(root(C)) is O(th(v)) by Lemma 13. We will therefore assume that the cost of a

single rotation at node v is O(f(th(v)) for some non-decreasing function f. Hence
the total cost of all rebalancing operations is

elogn ., .,
0 i=0(n- > f(@-a - (- a)),

where e = —1/log(1l — a) by Theorem 5 of Section 3.6.2. In particular, if f(v) =
O(m(logm)¥) for some k > 0 then Co = O(n(logn)**1), i.e., the amortized cost
per insertion and deletion is O((logn)**!). We summarize in:

Theorem 8. Let S be a set of n intervals. Then the amortized insertion and
deletion cost in a dynamic segment tree for S is

elogn

0(iogn+ 3 (01— 7((1 - ) - (1),
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where g and f are defined as above. In particular, g(m) is the cost of inserting
(deleting) an interval into (from) a node list of size m and f(m) is the cost of a
rotation at a node of thickness m. In particular, if g(m) = (logm)* and f(m) =
m(log m)* for some k > 0 then the amortized cost is O((logm)**1).

Proof: Obvious from the discussion above. ]

8.5.1.4. Path Decomposition and Plane Sweep for Non-Iso-Oriented
Objects

In the preceding Sections 5.1.1 to 5.1.3 we developed special data structures for
plane sweep algorithms on iso-oriented objects, namely interval, segment, and pri-
ority search trees. In this section we want to show that many plane sweep algorithms
can be extended to more general objects, in particular to collections of polygons.
The main idea is to transform the collection of polygons into a planar subdivision by
adding additional vertices at edge intersections and then to decompose the triangu-
lated subdivisions into paths as described in Section 3.1.2. The path decomposition
splits the plane into an ordered set of strips (of varying width) which we can use as
atomic segments in a segment tree.

In this section we treat two problems: the measure problem for a union of
simple polygons and the hidden line elimination problem. We discuss the first
problem at length showing that path decompositions permit to transfer an algorithm
from the iso-oriented to the general case. When we turn to the second problem, we
take this transfer for granted and treat the general problem directly.

Let @1, ..., Qm be a set of simple polygons with a total of n vertices. Our goal
is to compute the area covered by the union @; U --- U @, of the polygons.

Our approach consists of extending the algorithm of Section 5.1.3 to this more
general situation. We can proceed in at least two ways. Making a first attempt, we
use dynamic segment trees instead of static segment trees. More precisely, consider
an arbitrary position of the sweep line. It intersects some of the edges of polygons
Q1,-..,Qm. Take the ordered set of intersected line segments as the universe of
the segment tree. In this way, each leaf of the segment tree corresponds to a (half-
open) interval between adjacent active line segments. We invite the reader to carry
out the fairly complicated details of this approach. It will allow him/her to really
appreciate the elegance of the second solution.

For the second approach we first turn the set of polygons into a planar subdi-
vision by adding new vertices at intersections of edges, then triangulate the subdi-
vision and decompose the planar subdivision into an ordered set of strips such that
every interval arising in the plane sweep is a union of strips, and finally base the
plane sweep on a static segment tree for the set of strips. The details are as follows.

Let Q1,...,Qm be a set of polygons with a total of n edges. Assume w.lo.g.
that no edge of any polygon is vertical and that there is a total of k intersections
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of edges. We can find the k points of intersection in time O((n + k)logn) by
Theorem 1 of Section 4.1. We add the k points of intersection as additional vertices
and call the resulting set of vertices V. Then |V| = n + k and edges intersect only
at common endpoints, i.e., we have a planar subdivision with vertex set V. Next,
we add the edges of the convex hull of set V' and then triangulate all finite faces
of the planar subdivision. Call the resulting subdivision G. We can construct G in
time O((n+ k) log(n+k)) by Theorem 2 of Section 2 and Theorem 3 of Section 4.2.

Let s,t be the vertices of minimal and maximal z-coordinate and let P, ..., P,
be a path decomposition of planar subdivision G in the sense of Section 3.2.2, i.e.,

1) each P; is an z-monotonous (in Section 3.2.2 we required that the path should
be y-monotonous) path from s to ¢,

2) each edge of P; belongs to at least one path,
3) if vertical line L intersects P; and P; and ¢ < j then LN P; is not below LN P;.

We have seen in Section 3.2.2 that the implicit representation of a complete path
decomposition can be computed in time O(n+ k), i.e., we compute integer arrays L
and R such that edge e belongs to P; iff L(e) < ¢ < R(e). Moreover, p < n + k.

A path decomposition of G divides in a natural way the vertical strip defined
by vertices s and ¢ into an ordered set of “horizontal” strips. The i-th strip is the
region between paths P; and P;,;. We use these strips as atomic segments of the
segment tree. More precisely, we use a static segment tree with universe [1..n],
where integer ¢ corresponds to path P;. We can now proceed in almost complete
analogy to Section 5.1.3, where we treated the measure problem for iso-oriented
objects.

We maintain the following data structures. Consider a fixed position of the
sweep line. For each polygon ); we maintain the set of edges of the polygon
intersected by the sweep line in a balanced tree sorted according to the y-coordinate
of the intersections. Actually, it suffices to keep the the indices of the paths of the
composition containing the edges in a balanced tree. The sweep line intersects
polygon @Q; in some intervals. For each interval, which then extends between two
paths of the decomposition, say P, and P,, we store the interval (a..b] in the
segment tree. As before, actual node lists are not maintained, only their cardinality
has to be stored. In addition to CNL(v), the cardinality of v’s node list, we store
two other fields in every node of the segment tree: LE(v), the length of v’s xrange
as a function of the position of the sweep line, and TL(v), the total length of the
atomic segments below v which are covered. Field T'L(v) is also a function of the
position of the sweep line. Field LE(v) is defined as follows. If zrange(v) = (.. j]
then LE(v) is the linear function a + bz, where a + bz is the vertical distance of
paths P; and P; at z-coordinate x. Note that LE(v) = LE(lson(v)) + LE(rson(v))
if v is not a leaf. Field LE(v) was a constant in the iso-oriented case; we achieve the
generalization of plane sweep algorithm from the iso-oriented case by maintaining
the fields LE(v) of the nodes of the segment tree. Finally, fields TL(v) are defined
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exactly as in the iso-oriented case, i.e.,

LE(v), if NL(v) # 0;
TL(v) =< 0, if NL(v) = 0 and v is a leaf;
TL(Ilson(v)) + TL(rson(v)), if NL(v) = () and v is not a leaf.

Note that TL(v) is a linear function for every node v of the segment tree and that
TL(root) is the linear function which yields the total length of the union of the
intervals stored in the tree.

The z-structure of the plane sweep contains the vertex set V of planar sub-
division G in increasing order of z-coordinate. Suppose now that we advance the
sweep line from transition point z,;4 with xz-coordinate x,;q to transition point z
with z-coordinate . The following three actions are required:

1) compute the area covered by the union of the rectangles in the vertical strip
between z,;5 and z;

2) update the LE-fields of some of the nodes of the segment tree;

3) update the intervals stored in the segment tree for every polygon @; having v
as vertex.

Action 1) is very simple. If TL(root) = a + bz is the linear function stored in the
T L-field of the root, then a(z — z44) + b(z? — 22,;)/2 is the area covered by the
union of the polygons in the vertical strip between x,;; and x.

Action 2) requires some care; there is no equivalent in the algorithm for iso-
oriented objects. Assume that edges ei,...,e; end in vertex z and that edges
€',...,e. start in vertex z. Assume also that ending and starting edges are ordered

from top to bottom.

/
\ €1
€2 /
7;’/
/ \612
e
l e;
Figure 103.

We know that paths P,,..., P,, where a = L[e;] and b = R|e;] run through ver-
tex z. Also, paths Pr[e,),. .., Prle,) use edge e;, 1 < ¢ <[, and paths PL[e;], e, PR[C;]I
use edge e;., 1 < j < r. It is useful to model the transition through vertex z in
two steps. We first move from the left into node z and then leave node z to the
right. The first step shrinks the paths between paths Py, and Py, ,] (note that
Rle;] +1 = Lle;+1]), 1 < i < I, to empty sets and the second step expands the strip
between paths PR[e;] and PL[e;+1], 1 < j < r, to non-trivial intervals. Therefore,
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the following code suffices to make required changes of the LE-field and the induced
changes of the T'L-fields.

for i from 1tol -1
o LE(leaf corresponding to atomic segment (R[e;], R[e;] + 1]) < 0;
propagate change in LE-field and induced change in TL-fields towards the rc

a

’

or j from 1 tot r — 1
o LE(leaf corresponding to atomic segment (R[e}], R[e}] + 1]) < a; + b;z;
propagate change in LE-field and induced change in TL-fields towards the rc

o P~ e)

(leaf corresponding to atomic segment (L[e)] — 1, L[e}]]) < ao + boz;
LE(leaf corresponding to atomic segment (R[el.], R[el.] + 1]) < a, + b;
propagate both changes and the induced changes towards the root.

(

(1)
(2)d
(3)
(4)
(5)
(6)
(7)
(8) od
(9) L
10)
(11)

Program 18

A short remark is necessary for lines (2), (6), (9) and (10). In line (2) we
store the function which is constantly zero in the LE-field. In line (6) (similarly in
lines (9) and (10)) we store the linear function which yields the distance between
edge e} and e}, as a function of the z-coordinate in the LE-field. In lines (9)
and (10) we update LE-fields corresponding to the strip between P,_; and P,,
a = Lle1], and Py and P11, b = R[ey].

The cost of action two is O((l + ) log(n + k)) since each execution of lines (3),
(7) and (11) takes time O(log(n + k)). Since each edge is handled twice in action
two during the entire sweep the total cost of action two is O((n + k) log(n + k)).

Action three is very similar to what we already know from the iso-oriented
case. Suppose that z is a vertex of polygon @;. In general, z is a vertex of several
polygons. Then z is either a starting, bend or ending vertex of Q;.

z
e e
e 7
z ¢ z
e e
start bend end

Figure 104.

Let e and €’ be the two edges of @; which are incident to z. Using the tree
representation of the set of active edges of polygon @; we can easily find the im-
mediate predecessor er of e and e’ and the immediate successor eg of e and €’ in
the top to bottom order of active edges and also insert or delete e and e’ depending
on what is appropriate. Note that er and ep do not necessarily exist. We can also
determine whether or not the region below e belongs to @); by inspecting the order
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in which edges e and €' appear on the boundary of ;. The whole operation takes
time O(logn).

We can now finish the transition by making a few insertions into and deletions
from the segment tree. For example, if z is a starting vertex and the region between
e and €' does not belong to Q; then we first delete interval (L[er], Rleg]] from the
segment tree and then insert intervals (L[er|, R[e]] and (L[e'], R[eg]]. All other cases
are similar. The precise code for the insertions and deletions is identical to The code
given in Section 5.1.3. Thus processing a vertex z takes time O(m(z)logn), where
m(z) is the number of polygons having z as a vertex. Since ) .\, m(z) = O(n+k)
we conclude that the total cost of action three is O((n + k) logn). We summarize
in

Theorem 9. Let Q1,...,Q,, be a set of simple polygons with n edges and k
intersections of edges. Then the area of the union of polygons can be computed in
time O((n + k) log n).

Proof: We infer a bound of O((n + k) log(n + k)) from the preceding discussion.
Since k < n2 the bound follows. ]

Our second application of path decomposition to plane sweep algorithms is a hidden
line elimination algorithm. Let Q1,...,Qm be a set of simple plane polygons in R?
with a total of n edges. (A polygon @ in R? is plane if there is a plane containing all
vertices of ). We assume that polygons @; and @, 1 <i < j < m, do not intersect
except at points having a common boundary. We want to compute the visible parts
under orthogonal projection into the zy-plane (from +o0o in the z-direction). A
similar algorithm works for perspective projections.

Let Q; be the projection of Q; into the zy-plane, 1 < i < m, and let k be the
number of intersections of edges of the projected polygons Q}. As before we obtain
a planar subdivision G with vertex set V, |V| = n + k, by adding the intersections
as additional vertices, by adding the edges of the convex hull, and by triangulating
all finite faces. Also, as before, we construct a path decomposition P, ..., P, of the
subdivision G.

We will now show how to solve the hidden line elimination problem by space
sweep. More precisely, we sweep a plane, which is parallel to the yz-plane, from —oo
to +o0 in z-direction. Consider a fixed position of the sweep plane PL. It intersects
some of the polygons @;. Each intersection is a set of straight line segments (note
that the @;’s are not necessarily convex). Let Lq,...,Lyx be the set of straight
line segments which can be obtained as an intersection of the sweep plane PL and
the polygons @;, 1 < i < m. Note that line segments Lq,..., Ly do not intersect
except at common endpoints. Furthermore, let L} be the projection of L; into
the zy-plane. The idea of the algorithm consists of maintaining the projections L
in a segment tree as follows. We use a static segment tree with universe [1..p].
Element j of the universe corresponds to path P; of the path decomposition, 1 <
j < p. Consider an arbitrary L}. It extends between paths P, and P, say, of the
decomposition. We therefore store interval (a,b] in the segment tree. Finally, we
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have to discuss the organization of the node lists. Let v be a node of the segment
tree with zrange(v) = (¢,d]. Then node v represents the strip between paths P,
and P; of the decomposition. Then node list NL(v) of node v is a set of projected
intervals; node v represents the sub-interval between paths P, and P;. Since the
line segments Lj,...,Ly do not intersect except at common endpoints we can
order the node list NL(v) according to the z-coordinate. We therefore postulate
that NL(v) is maintained as a balanced tree with its elements ordered according to
the z-coordinate.

a view of the sweep plane

a view of the projected
line segments

the segment tree

[(—oo, ]| | (1,20 || (23] || (3,4 | [(4,+0q]]

Figure 105.

In the example of Figure 105, we have four line segments Li, Ly, L3, Ly and
use a segment tree with universe [1..4]. The ordered node lists are shown in the
vicinity of the nodes; e.g., the node list of node 3 is L;, L4 in that order.

We can now give the details of the sweep. The transition points are the ver-
tices V in increasing order of the z-coordinate. Suppose that the sweep reaches
vertex z. In general, z is a vertex of several polygons @);. Two actions are required:

1) Update the state of the sweep;
2) Check for visibility.
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The first action is very similar to the third action of the previous algorithm. If z is
a vertex of polygon @); then it is either a starting bend or ending vertex. In all three
cases a few insertions or deletions update the segment. For example, if z is an ending
vertex, i.e., two edges, say e and €', of @); terminate in z and the region between e
and €' does not belong to @Q;, then let e and eg be the immediate successor and
predecessor edges in the tree representation (cf. the previous algorithm) of active
edges of polygon @;. We have to delete intervals (L[er], R[e]] and (L[e'], Rleg]]
from the segment tree and we have to insert interval (L[er], R[ep]] into the segment
tree. When intervals are inserted into the tree we have to insert the interval into
O(logn) node lists. In each node list we have to insert the interval according to is
height at the appropriate position for a cost of O(logn), each. Thus inserting or
deleting an interval has cost O((logn)?) and hence the total cost of actions one is
O((n + k) - (logn)?).

Action two is a check for visibility. It is performed at every transition point
after all insertions and deletions required by action one are performed. Let A be
the set of edges starting in vertex z. For each edge e € A, we can check its visibility
in time O((logn)?) as follows. Let a = L[e] and b = RJe], i.e., paths P,,..., P, use
edge e. Let v be any node of the segment tree which lies on the path from either
atomic segment (b — 1,b] or atomic segment (a,a + 1] to the root. We can clearly
check in time O(logn) whether v’s node list contains an interval which covers e by
comparing the highest interval in v’s node list with edge e and hence we can check
in time O((logn)?) whether any of these nodes contain an interval which covers e.
We claim that if none of these nodes contain an interval which covers e then e is
visible. Assume otherwise. Then there is a polygon which covers e. Let I be the
intersection of that polygon with the sweep plane and let I’ be the projection of I.
Then I extends between active edges e’ and e, where Lle'] < L[e] and R[e"] > R]e].
Since I is stored as interval (L[e'], R[e"]] in the segment tree the claim follows.

Visibility of a single edge can thus be checked in time O((logn)?) and hence
the total time needed for all visibility checks is O((n + k) - (log n)?). We summarize
in

Theorem 10. Let Qq,..., Q. be a set of simple plane polygons in R® with a total
of n edges. Assume further, that polygons Q; and Q;, 1 < i < j < m, do not
intersect at common boundary points and that there are k intersections of edges in
the orthogonal projection of the polygons into the xy-plane. Then the hidden line
elimination problem can be solved in time O((n + k) - (logn)?) and space O(n + k).

Proof: By the discussion above. ]

Two alternative algorithms for hidden line elimination are discussed in the exercises
both of which improve the algorithm described above. The first alternative has
the same basic structure but uses zig-zag decompositions instead of complete path
decompositions. This reduces the space requirement to O(n). Since k might be
as large as ((n?) this is a significant improvement. Unfortunately, it does not
seem to be always possible to use zig-zag decompositions instead of complete path
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decompositions; e.g., it is not clear how to use them for the measure problem. The
second alternative keeps the space requirement at O(n+k) but reduces running time
to O((n+ k) -logn). It constructs a planar subdivision by introducing new vertices
at edge intersections, then computes local visibility in the vicinity of vertices and
finally determines global visibility by a sweep in z-direction.

8.5.2. Divide and Conquer on Iso-Oriented Objects

In this section we will show how the divide-and-conquer paradigm can be applied
to solving problems on sets of iso-oriented objects. In particular it can be used to
report intersections of line segments, to report containment of points in rectangles,
to report rectangle intersections and to compute the measure and contour of a set
of rectangles. In all these cases the divide-and-conquer paradigm yields algorithms
which match the performance of the best plane sweep algorithms. In some cases,
e.g., the contour problem, the algorithm based on the divide-and-conquer paradigm
is conceptually simpler and computationally superior. The section is organized as
follows. In 5.2.1 we illustrate the paradigm using the line segment intersection
problem and in 5.2.2 we apply it to the measure and contour problem.

8.5.2.1. The Line Segment Intersection Problem

Let S be a set of n horizontal and vertical line segments Lq,...,L,. The line
segment intersection problem requires the computation of all pairs of intersecting
line segments. In Section 4.1 we have seen (cf. Exercise 23) that the set of s pairs
of intersection can be computed in time O(nlogn + s). We will now describe an
alternative solution based on the divide-and-conquer paradigm.

Theorem 11. Let S be a set of n horizontal and vertical line segments. Then the
s pairs of intersection can be computed in time O(nlogn + s).

Proof: Let Sy (Sv) be the set of horizontal (vertical) line segments in S. A hori-
zontal line segment L is given as a triple (z1(L), z2(L),y(L)), a vertical line segment
is given as (‘T(L)ayl(L)vyZ(L))

In order to simplify the exposition and to describe the basic idea more clearly
we assume first that all z- and y-coordinates are distinct. We will come back to the
general problem at the end of the proof.

We apply the divide-and-conquer paradigm as follows. The divide step divides
the plane (and more generally a vertical strip defined by two vertical lines) into
two parts by means of a vertical dividing line. In the conquer step we deal with
both subproblems and in the merge step we combine the answers. The speed of the
method is due to the clever treatment of horizontal line segments. They are only
handled in subproblems which “contain” exactly one endpoint of the line segment,
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and hence are handled at most O(log n) times if we divide the problem about equally
at each step. Similarly, vertical line segments are only handled in those subproblems
which contain them.

A frame F = (fy, f2) is the region between vertical lines x = f; and z = f5
with f; < fs. Frames define subproblems of our intersection problem. The recursive
algorithm Intersect (to be described) applied to a frame F' does two things.

1) It reports all intersections between vertical line segments contained in the frame
and horizontal line segments having at least one endpoint in the frame. Note
however that if both endpoints are in the frame then the intersection is actually
reported by a recursive call.

2) It computes the sets VERT (F), LEFT(F) and RIGHT (F) to be used at higher
levels of the calling hierarchy.

The set VERT(F) is a set of intervals. It contains the projections of all vertical
line segments contained in F onto the y-axis. The sets LEFT(F) and RIGHT (F)
are sets of points. The set LEFT(F) is the set of intersections of horizontal line
segments having one endpoint in frame F' with the left boundary of the frame. The
set RIGHT(F) is defined symmetrically.

We are now in a position to give a (very high level) description of procedure
Intersect. In this description we use the word object to refer to either vertical
line segments or a left or right endpoint of a horizontal line segment. Procedure
Intersect is called in the main program with a frame containing all objects.

The correctness of this procedure is readily established. Note first that sets
LEFT, RIGHT and VERT are correctly computed in all cases. This is clear for
lines (3)—(10) and is easy to establish for lines (12)—(17). In line (14) we determine
the set of horizontal line segments having one endpoint, each in the two subframes
of frame F. In lines (15) and (16) the sets LEFT and RIGHT are computed.
Note that a horizontal line segment has one endpoint in F' and intersects the left
boundary of F if either it has one endpoint in F} and intersects the left boundary
of F; or has one endpoint in F5, intersects the left boundary of F3 and does not have
the other endpoint in F}. Finally, the set VERT is certainly correctly computed in
line (17).

We finally prove that all intersections are reported correctly in line (18). We
need to explain line (18) in more detail first. The set RIGHT — LR is the set of
y-coordinates of left endpoints of horizontal line segments which have one endpoint
in frame F} and intersect the right boundary of frame F'. Thus these line segments
extend completely through frame F3 and therefore we can report an intersection
with every vertical line segment in frame F» whose associated interval in VERT,
contains the y-coordinate of the horizontal line segment. The intersections induced
by RIGHT1—LR and VERT; are hence all pairs (H, V') of horizontal line segment H
and vertical line segment V' such that the y-coordinate y(H) of H is contained in
RIGHT, — LR, the projection I(V') of V onto the y-axis is contained in VERTS5,
and y(H) € I(V). The intersections induced by LEFTy — LR and VERT, are
defined similarly.

It is now clear that only actual intersections are reported in line (18). We will
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(1) procedure Intersect(F, VERT,LEFT,RIGHT);
co F is input parameter and VERT, LEFT, RIGHT are
output parameters oc
2) if exactly one object is contained in frame F'
3) then if the object is a vertical line segment L = (z, y1, y2)
1) then VERT « {[y1,y2]}; LEFT + RIGHT + {
5) else VERT « 0;
6) if the object is a left endpoint of a
horizontal line segment L = (z1, z2,y)

NN AN SN N

(7) then LEFT « (; RIGHT <+ {y}
(8) else RIGHT <+ 0; LEFT + {y}
(9) fi
(10) fi
(11) else choose a vertical line z = f such that about half of the

objects contained in frame F = (f1, f2) lie to the left of
the line, let Fy = (f1, ) and F, = (£, fa);

(12) Intersect((f1, f), VERT1,LEFT,, RIGHT);

(13) Intersect((f, f2), VERT 3, LEFT, RIGHT>);

(14) LR « RIGHT, N LEFT5;

(15) LEFT « LEFT, U (LEFT, — LR);

(16) RIGHT ¢+ (RIGHT; — LR) U RIGHT>;

(17) VERT « VERT, U VERT;

(18) report all intersections induced by RIGHT 1 — LR and VERT,
and by LEFTy — LR and VERT,

Program 19

next show that all intersections are reported exactly once. Let H(V') be a horizontal
(vertical) line segment and assume that H and V intersect. Consider a lowest node,
say v, in the tree of recursive calls such that the frame, say F', associated with that
recursive call contains V and exactly one endpoint of H. Then LN H is not reported
in any proper ancestor of v because the frames associated with the ancestors of v
contain both endpoints of H. Also L N H is not reported in any proper descendant
of v because the frames associated with descendants either do not contain v or
contain no endpoint of H. Thus L N H is reported at most once. Finally, LN H
is reported in node v because one of the subframes of F' contains V, H extends
completely through that subframe, and the other subframe contains an endpoint
of H. This completes the proof of correctness.

Let us turn to the analysis next. In order to support the divide step we sort
the objects by the z-coordinate and store the sorted sequence in an array. Then
line (11) and the tests in lines (2), (3) and (6) take time O(1). The sets LEFT
and RIGHT are realized as ordered (according to the y-coordinate) linked lists and
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set VERT is also realized as a linked list. It contains the intervals in sorted order
according to the bottom endpoint. It is now easy to see that lines (14)—(17) take
time O(7n), where 7 is the number of objects to be handled. Also line (18) takes
time O(7 + §), where 3 is the number of intersections reported. In all four lines
a simple list traversal algorithm (cf. Section 2.1.4) suffices. We conclude that the
cost of a call of Intersect is O(i + 5), where 7 is the number of objects in the frame
and § is the number of intersections reported in line (18). Since every intersection
is reported exactly once the sum of the O(3)-terms is O(s). For the O(7)-terms we
obtain the recursion
T(n)=2-T(n/2) + O(n)

which has solution T'(n) = O(nlogn). This proves the theorem for the case that
all z- and y-coordinates are unique.

Multiple z-coordinates are treated as follows. Again we sort the objects ac-
cording to the z-coordinate. Also, for each z-coordinate we precompute the sets
VERT, LEFT and RIGHT for the frame consisting of the degenerated rectangle
defined by the z-coordinate. it is easy to see that the overall computation takes
time O(nlogn) by sorting.

The test in line (2) changes to
(2" if all objects contained in the frame have the same z-coordinate.

Then lines (3) to (10) can be replaced by a look-up in the set of precomputed
solutions. Line (11) changes to

(11")Choose vertical line z = f, where f is the median of the multi-set of
z-coordinates of the objects contained in frame F'.

We then split the objects into three parts: the objects to the left of (on, to the right
of) the dividing line. We apply the algorithm recursively to the objects to the left
(right) of the dividing line, the objects on the dividing line are handled by a look-up
in the set of precomputed solutions. It is now easy to adapt lines (14)—(18) to the
new situation such that they still operate in time O(7 + §). Thus we still have the
same recursion for the running time and hence the running time is O(nlogn + s).

The extension to multiple y-coordinates is now very simple. We only have
to treat sets LEFT, RIGHT, and VERT as multisets. More precisely, with each
element of set LEFT (the other two sets are treated similarly) we associate an
ordered list of all objects having that y-coordinate. The order is arbitrary, but
must be uniform (e.g., we might order horizontal line segments according to some
arbitrary but fixed linear order of Sg). Then the intersection process in line (14)
is still a simple merging process and takes time O(7). This shows that multiple y-
coordinates can also be handled within the O(n log n+s) bound and hence completes
the proof. ]

A simple variant of the algorithm above can also be used to solve the inclusion
problem of points in rectangles and of the intersection problem for sets of rectangles
(cf. Exercise 41 and 42).
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8.5.2.2. The Measure and Contour Problem

Let Ry,...,R, be a list of n iso-oriented rectangles in R?. The measure problem
includes the task of computing the area of the union R; U---U R,, of the rectangles.
We developed an O(n logn) plane sweep algorithm for this problem in Section 5.1.3.
The contour problem is also a property of the union of rectangles. It requires the
computation of the contour, i.e., the boundary between covered and uncovered area,
of Ry U---UR,. Figure 106 shows a set of rectangles and its contour.

Figure 106.

The main goal of this section is to develop an O(nlogn + p) algorithm for
the contour problem based on the divide-and-conquer paradigm. Here p is the
number of straight line segments in the contour. It is also possible to achieve this
optimal running time by a plane sweep algorithm which however is conceptually
more difficult and computationally inferior.

The basic structure of the divide-and-conquer algorithm is again a hierarchical
decomposition of the plane into frames. If F = (fq, f2) is a frame, let rect(F') be
the set of rectangles having at least one vertical edge within frame F'. We use V to
denote the set of vertical edges of the rectangles. We want to compute two types
of information about rect(F'): the first type, sets P(F) and stripes(F'), describes
the contour of the rectangles in rect(F') within frame F', the second type, sets L(F)
and R(F), supports the merge step. Let us describe the four sets in more detail:
P(F) is the ordered set of y-coordinates of the vertices of the rectangles in rect(F).
Let P(F) = {y1 <yz <+ < Ym}, m < 2:n. The horizontal linesy = y;, 1 < i < m,
divide frame F into a sequence of horizontal stripes. The i-th stripe S;(F') is defined
by horizontal lines y = y; and y = y;+1, 1 < i < m. For each such stripe we store
an ordered list list; = list(S;(F)) of intervals [z%,z%], ..., [zb,_,, ;] such that

1) flzxgﬁxziSxéf"'fﬂékfﬂékﬂzh
2) the area (within the i-th stripe S;(F)) between vertical lines z = z%; ; and

T = mgj is covered, 1 < j < k, and the area between vertical lines z = xgj and

x= m§j+1 is uncovered, 0 < j < k, by the rectangles in rect(F).
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In other words

k
(U{R’ R e TeCt(F)}) N ([flaf2] yzayz+1 U x2g 1,.%‘23 [yi,yi+1])-

stripes(F') is now the sequence (listy, lists, . .., list,,—1). Thesets L(F') and R(F)}
are sets of intervals. L(F) is the set of intervals obtained by intersecting the rect-
angles in rect(F') with the left boundary of frame F'; R(F') is defined symmetrically.
In other words, L(F') is the set of projections onto the y-axis of the right boundaries
of those rectangles in rect(F') which have their left boundary outside F. Figure 107
illustrates these definitions.

Ys - - -

Ya-- -

L(F) P(F) 23 23 R(F)
f1 f2

Figure 107.

We will show below that the measure and the contour problem are easily solved,
once a suitable representation of stripes(F') has been computed for a frame F' con-
taining all rectangles. Before doing so we give a recursive procedure MC (for
measure and contour) which, given a frame F, computes sets P(F), stripes(F),
L(F) and R(F'). We assume for simplicity that vertices of different rectangles have
different z-and y-coordinates. The modifications required for the general case are
described in the preceding section and are left to the reader.

Lines (15) to (18) need some explanation. Note that in line (11) we com-
bine partitions P; and P, to form the combined partition P = {y1,...,ym}, cf.
Figure 108.

In this diagram we have P = {y1,...,9s}, P1 = {v2,¥5,¥6,y7} and P» =
{y1,Y2,Y3,Ya1,Y5,Ys}. Inlines (15) and (17) we refine stripes,; and stripes, according
to the new partition. In our example, the stripe of F5 between y5 and ysg is refined
into three substripes: ys to yg, yg to y7, and y7 to ys. We obtain the lists list for
these substripes by copying the list for the stripes between ys and yg. In the actual
implementation, the copy operation will be a pointer operation.
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(1) procedure MC(F, P, stripes, L, R)
(2) if F = (f1, f2) contains exactly one vertical edge, say
l = (z,y1,Y2,s), where s € {left, right}

(3) then P < {y1,2};

(4) if s = left

(5) then R < {[y1,y2]}; L < 0; list; « (z, f2)

(6) else L+ {[yl,y2]}; R+ @; list; + (fl,.’E)

(7) fi

(8) else choose a vertical line z = f which divides the objects in

frame F in about equal parts and let Fy = (f1, f) and F> = (f, f2);
MC (F, Py, stripesy, L1, Ry);

(9)
(10) MC(F, Py, stripesy, La, Ra);
(11) P+ P1 U Pz;
(12) LR+ RN Lz;
(13) L+ L1 U (L2 — LR),
(14) R+ Ry U (Ry — LR);
(15) refine stripes, according to P;
(16) simplify stripes,; according to Ly, — LR;
(17) refine stripes, according to P;
(18) simplify stripes, according to Ry — LR;
(19) unite stripes; and stripes, to form stripes;
(20) fi
(21) end
Program 20
f1 f f2
--------------- -~ Us
Yre-fom T mmmmmmmm e oo
o I I
A e R ERCECEErE - -ys
T S I Y,
b e ——— - - -ys
Yg--fommmmmmm D S BEEEEEE - Y2
______________ - — _yl /

Figure 108.

In lines (16) and (18) we simplify sets stripes; and stripes,. Consider an
interval, say [y;,y;] in Ly — LR. It represents a rectangle which extends all over
frame F;. We can therefore replace list(Sp(F1)) of stripes;, 1 < h < j, describing
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the stripe between y, and ypy1, by the trivial list (f1, f) which indicates that
the entire stripe is covered. Set stripes, is simplified in an analogous way based
on the intervals in Ry — LR. In our example, we have Ly = {[y2,¥s], [ys, ys]} and
LR = {[y2,ys5]}. We simplify stripes; by changing the lists of stripes S4(F1), S5(F1),
Se(F1), S7(F1) to (f1, f).

Finally, in line (19) we form stripes from stripes, and stripes, by concatenating
list(S;(F1)) and list(S;(F»)) to form list(S;(F)), 1 < ¢ < m, and combining the
right interval of list(S;(F1)) and the left interval of list(S;(F3)) if both extend to
the dividing line z = f.

With regard to the definitions of line (15) to (19) it is easy to prove the cor-
rectness of procedure MC. We leave the details to the reader.

The running time still remains to be analyzed. We represent sets P(F'), L(F),
and R(F') by ordered linked lists. P(F) is ordered according to the y-coordinate
and the sets L(F') and R(F') are ordered according to the bottom endpoint of the
intervals. Then lines (11) to (14) take time O(7n), where 7 is the number of objects
in frame F'. For the representation of stripes we distinguish the measure and the
contour problem. We treat the measure problem first because it is simpler.

For the measure problem a very simple data structure suffices. stripes is an
ordered linear list of reals. If P = {y; < y2 < -+ < Ym}, then the i-th element
of the list, 1 < ¢ < m, is the total length of the intervals in list(S;(F')). No other
information about list(S;(F)) is maintained. It is now easy to see that lines (15)
to (19) take time O(7), where 7 is the number of objects in frame F.

Theorem 12. The measure problem for a set of n iso-oriented rectangles can be
solved in time O(nlogn) and space O(n).

Proof: The discussion above implies that the running time 7'(n) of procedure MC
satisfies the recurrence

T(1) =0(1)

T(n)=2-T(n/2) + O(n).

Thus T'(n) = O(nlogn). Let F be a frame containing all rectangles and apply
procedure MC to frame F. The application yields P(F') and stripes(F') from which
one can clearly compute the area of the union of the rectangles in time O(n). This
proves the time bound.

The space bound can be seen as follows. Note first that the size of the repre-
sentations of P(F'), L(F'), R(F), and stripes(F') is O(7n), where i is the number of
objects in frame F. Note next that at any point of time there are at most logn
incarnations of procedure MC, and that the number of objects in the associated
frames form a geometric progression. Combining both observations we obtain the
space bound ]

For solving the contour problem we have to make a greater effort. In this case we
represent stripes(F) as a linked list of pointers. If P(F) = {y1 < y2 < -+ < Ym }

then the i-th pointer points to the root of a search tree for the endpoints of the
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intervals in list(S;(F')), 1 < i < m. Again, we can perform lines (15) to (19) in
time O(7n), where n is the number of objects in frame F. In lines (15) and (17)
we extend the list of pointers and perform the copy-operations by setting pointers
appropriately. Thus trees may share subtrees. In lines (16) to (18) we redirect
some pointers to trivial trees having only two leaves. The set of pointers to be
redirected is easily found in time O(7) by going through ordered lists P(F') and
Ly — LR (Ry — LR) in parallel. Finally, in line (19) we concatenate appropriate lists
by creating new root nodes and appropriately defining the two son-pointers.

Theorem 13. The contour problem for a set of n iso-oriented rectangles can be
solved in time and space O(nlogn).

Proof: The discussion above implies that the running time of procedure MC is
O(nlogn) since the recurrence T'(n) = 2-T(n/2) + O(n) can be used again.

We apply procedure MC as follows. We first sort all rectangle vertices by z- and
y-coordinate and then replace the coordinates by integers 1,...,2n in a consistent
way. This replacement does not change the topology of the contour but allows us
to use bucket sort (cf. Section 2.2.1) in latter stages of the algorithm. Let F be
a frame which encloses all rectangles, F = (0,2n + 1) will do. Then MC applied
ot F' yields P(F) and stripes(F) in time O(nlogn). It remains to describe how to
obtain the contour from P(F) and stripes(F’).

The contour of a union of iso-oriented rectangles is a collection of contour-
cycles. FEach contour-cycle is a sequence of alternating horizontal and vertical
contour-pieces. Each contour-piece is a fragment of an edge of one of the rect-
angles.

We show how to find the horizontal contour pieces from P(F') and stripes(F')
in time O(nlogn + p), where p is their number. The vertical contour-pieces can
then be found by sorting the endpoints of horizontal contour-pieces and the vertical
rectangle edges by the z-coordinate. Note that time O(n+ p) suffices for the sorting
step since bucket sort can be used. Recall that the x-coordinates are the integers
1,...,2n. Finally, the contour-cycles can be constructed from the contour-pieces by
another application of bucket sort to their endpoints. Again, time O(n + p) suffices.

Figure 109.

The horizontal contour-pieces can be found as follows. Let L = (z1, z2y) be any
horizontal rectangle edge; z1, x> are integers. We show how to find the k£ contour-
pieces which are fragments of L in time O(nlogn + k). Assume that L is a bottom
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side of a rectangle; the reverse case being symmetric. Consider stripe Sy,_1(F') and
let list = list(Sy_1(F)). Recall that list is an ordered list of intervals and that list
is realized as a search tree for the endpoints of the intervals. Also, note that the
tree has depth O(logn) since the height of the tree grows by one in each level of the
recursion. We can therefore find the first endpoint in list with z-coordinate > x; in
time O(logn); a simple linear search will then identify the k contour-pieces which
are fragments of L in time O(k). This finishes the proof of the time bound. The
space bound follows immediately from the time bound. ]

8.5.3. Intersection Problems in Higher-Dimensional Space

In this section we will study intersection problems in higher-dimensional space. Let
S ={Ry,...,R,)} be a set of iso-oriented objects in R?, i.e., each R; is the cartesian
product of d intervals, one for each coordinate,

d
R,‘ = H [lija ’r‘ij].

i=1

We allow intervals to degenerate to a single point. We study the following two
problems.

1) Report all pairs R;, R; with R; N R; # 0. In Sections 5.1.1 and 5.1.2 this prob-
lem was solved in two dimensions in time O(n log n+k). Here k is the number of
intersecting pairs. We refer to this problem as the all pair intersection problem.

2) Given iso-oriented query object Q@ = szl[lj,rj] report all R; € S with Q@ N
R; # 0. This problem arises in two versions: In the static version, set S is
fixed and in the dynamic version, we also allow for insertions and deletions.
We refer to this problem as the (static or dynamic) searching problem.

This section is organized as follows. We will first show how to solve the static
searching problem by means of static range and segment trees, then extend the
solution to the dynamic case by using the dynamic version of the trees. The all pair
intersecting problems is finally solved by giving a solution to the searching problem
in a sweep algorithm. A solution to the searching problem can be based of the
following simple observations. For

d
R, = H[lz’j,ﬁj]

i=1

we use
d—1
R, = [, 73]
j=1
to denote the projection onto the first d — 1 dimensions.
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Lemma 14.
a) R,NQ # 0 iff [Lig, ria] N [la, ra] # 0 and riNQ # 0.
b) [l,'d, Tid] M [ld,’l‘d] 75 (0 iff either lig € [ld,Td] orlg € [lidﬂ'id]-

Proof: a) The direction from left to right is obvious. For the other direction,
we only have to observe that x4 € [lig,7ia] N [lg,74] and 2’ € R, N Q' implies
z=(2',z4) € R;NQ.

b) obvious. 1

Lemma 14 suggests a recursive solution for the searching problem. For each fixed
dimension we need to provide data structures which allow us to find all points
contained in a query interval (range trees) and to find all intervals containing a
query point (segment trees). The details are as follows.

Suppose first that d = 1. We have two trees. The first tree is a priority search
tree (cf. Section 5.1.2) and stores the n pairs (= points in R?) (l;4,74), 1 <4 < n.
It allows us to find all intervals containing a query point lg, ie., l;g < lg < 74,
in time O(logn + k), where k is the number of points reported. Furthermore, the
tree uses space O(n) and can be constructed in time O(nlogn). The second tree
is a balanced search tree for the left endpoints l;4, 1 < i < n, of the intervals. It
uses space O(n), can be constructed in time O(nlogn) and allows us to find the
k endpoints contained in query interval [l4,74] in time O(logn + k). We conclude
that for d = 1 the static and dynamic searching problem has a solution with query
time O(logn + k), preprocessing time O(n logn) and space requirement O(n).

For d > 1 we have to work slightly harder. Again, we have two trees. The
first tree is a segment tree for the intervals [r;4,l;q], 1 < ¢ < n. For each node v of
the segment tree we organize its node list NL(v) as a data structure, which solves
(d — 1)-dimensional searching problem. Given query object

d
Q =[]l
j=1

this augmented segment tree allows us to find all R; with @' "R’ # 0 and I €
[l;q,7iq] as follows. We search for I; in the segment tree. Then the node lists of the
nodes of the path of search contain all objects R; with lg € [l;4,7:4]. We use the
secondary structures associated with those nodes, i.e., the data structures for the
(d — 1)-dimensional searching problem, to find all R} with Q' N R} # 0.

Assume inductively that the search time in the (d — 1)-dimensional structure
is T(n,d — 1) = O((logn)?~1 + k), where k is the size of the answer. This is
true for d = 2. Then the search time in the d-dimensional structure is T'(n,d) =
O(logn-(logn)?—! +k&) = O((logn)?+ k) since the (d — 1)-dimensional solution has
to be applied at logn different nodes. Similarly, if the preprocessing time for the
(d—1)-dimensional solution is P(n,d—1) = O(n(logn)?~1), then the preprocessing
time for the d-dimensional solution is O(n(logn)?). This can be seen as follows.
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Let n(v), where v is a node of the segment tree, be the cardinality of NL(v). Then
> {n(v); v is a node} = O(nlogn) since every interval is split into at most O(logn)
pieces and time O(n(v) - (logn)9~1) is spent for constructing the secondary struc-
ture for node v. Thus time O(n(logn)?) is spent for constructing all secondary
structures. Finally, an identical argument shows that the space requirement of the
d-dimensional solution is O(n(logn)?~1).

The second tree is an augmented tree for the left endpoints /;4, 1 < ¢ < n, of
the intervals in the d-th dimension Recall (cf. Section 7.2.2) that in a range tree
each point is stored in the node lists of all nodes along a path through the tree, i.e.,
each point is stored in O(logn) node lists. Let v be a node of the range tree. We
organize the node list of node v as a (d — 1)-dimensional search structure for those
objects which have their endpoint /;4 stored in the node list. An argument similar to
the one above shows that the resulting data structure has query time O((logn)? +
k), preprocessing time O(n(logn)?) and space requirement O(n(logn)?~1). We
summarize in:

Theorem 14. The static searching problem for iso-oriented objects in d-dimensionall}
space can be solved in query time O((logn)? + k), preprocessing time O(n(logn)?),
and space O(n(logn)4~1). Here k is the number of objects intersecting the query
object.

Proof: By the discussion above ]

The extension to the dynamic version is not very difficult. We only have to replace
static range and segment trees by their dynamic counterpart. We have:

Theorem 15. The dynamic searching problem in d-dimensional space can be
solved in query time O((logn)? + k), insertion and deletion time O((logn)?) and
space O(n(logn)4~1). The time bounds for insertions and deletions are amortized.

Proof: The bound on query time and space is derived as in Theorem 14. The bounds
on insertion and deletion time are derived in exactly the same way as the respective
bounds for range trees (with slack parameter 1) in Lemma 4 of Section 7.2.2. ]

Now we turn to the all pair intersection problem. We use the sweep paradigm, i.e.,
we sweep a (d—1)-dimensional hyperplane through R?. The sweep direction is the d-
th coordinate axis, i.e., the sweep hyperplane is perpendicular to the d-th coordinate
axis. We store (d — 1)-dimensional projections R} of all objects R; which intersect
the sweep hyperplane in a data structure which solves the (d — 1)-dimensional
searching problem. Object R; is added to the data structure at transition point /;4
and deleted at transition point ;4. Thus 2n insertions and deletions with a total
cost of O(n(logn)?~!) are required. Also, whenever an object R; is added to the
data structure we query the data structure and report all intersected objects. The
total cost of all queries is O(n(logn)?~!). We summarize in
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Theorem 16. The all pair intersection problem for n iso-oriented objects in R?,
d > 2, can be solved in time O(n(logn)?~! + k) and space O(n(logn)4=2).

Proof: Obvious from Theorem 15 and the discussion above. ]

8.6. Geometric Transforms

Transformations (reductions) play an important role in computational geometry
and in algorithm design in general. They allow us to classify problems according to
their level of complexity thus giving us a more structured view of the field and also
reducing the number of distinct problems by grouping them into classes. In more
concrete terms, a transformation of problem A into problem B allows us to use an
algorithm for B to solve A and allows us to transfer a lower bound on the complexity
of A to a lower bound on the complexity of B. In this book we have extensively
used transformations for both purposes. Let us mention just a few situations. The
major part of Chapter 6 on NP-completeness is centered around the notion of a
reduction, in Chapter 5 we related the complexity of general path problems and
matrix multiplication over semi-rings and at various places (e.g., in Section 2 of
convex hulls) we derived Q(nlogn) lower bounds by reducing the sorting problem
to a problem at hand.

Among the many geometric transforms we discuss only two: duality and inver-
sion. The duality transform in R? maps points into hyperplanes and hyperplanes
into points. It can thus be used to transform problems about points into prob-
lems about hyperplanes and conversely to transform problems about hyperplanes
into problems about points. We will have the opportunity to use both directions
successfully in the sequel.

The duality transform in R?® (R?) transforms spheres (circles) into planes (lines)
and vice versa. It can be successfully used to transform problems about circles and
spheres into problems about lines and planes. One possible application of this
transformation is the construction of Voronoi diagrams; note that vertices of the
diagrams are centers of circles passing through at least three points of the underlying
set. Thus the problem of constructing Voronoi diagrams can be viewed as a problem
about circles.

8.6.1. Duality

The duality transform in R? relates hyperplanes and points and more generally
k-dimensional subspaces with (d — k)-dimensional subspaces.
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Let h be a non-vertical hyperplane in R?, i.e., h intersects the d-th coordinate
axis in a unique and finite point. Let the points on h with cartesian coordinates
(z1,...,2q) satisfy the equation

Tq = p1x1 +p2x2 +-- -+ Pg—1&4-1 + P4-

Then the dual D(h) of hyperplane h is the point p = (p1,ps,- . .,pq4) in R%. Con-
versely, p = (p1,...,pq) is a point in R? then h = D(p) is the hyperplane defined
by the equation
Tq = —P1T1 — ' — Pd—1Td—1 + Pd-
An important property of the duality transform is the preservation of incidence
and more generally of vertical distances, i.e., distances in the direction of the d-th
coordinate axis. Let h be a hyperplane given by the equation x4 = q1z1 + -+ +

gd-1T4—1+qq and let p = (p1,...,pq) be a point. Then the vertical distance vd(h, p)
is defined by

vd(h,p) = pa — (q1p1 + -+ - + ga—1Pd—1 + qa)-
We will also say that p lies above (on, below) h if vd(h,p) > (=, <) 0. We have

Lemma 1. Let h be a hyperplane and p be a point. Then vd(h,p) = —vd(D(p), D(h))}}
In particular, p lies on h iff D(h) lies on D(p).

Proof: Let p = (p1,-..,pq) and let h be given by the equation
Tg = q1T1+ -+ qd—1T4d—1 + Ga-

Then hyperplane D(p) is defined by the equation

T4 = —pP1%1 — " — Pd—1Td—1 + Pd-
Hence
vd(D(p), D(h)) = g4 — (=p1q1 — *** — Pa—19a—1 + Pa)
= —(pa— (p1g1 + - + Pa—19a—1 + a))
= —wvd(h,p).
In particular, vd(h,p) = 0 iff vd(D(p), D(h)) = 0. 1

We want to mention one more fact concerning the duality transform. For simplicity
we restrict the discussion to d = 3. For pq, p, distinct points in R? let L(py, p2) be
the line through p; and ps. We have

Lemma 2. Let py,p; be points and let hy, hy be planes in R® with L(py,ps) =
hl n hg. Then D(pl) N D(p2) = L(D(hl),D(hg))

Proof: Since p; # ps and hy; # ha we have D(p1) # D(p2) and D(hy) # D(hs).
Thus D(p;)ND(p2) and L(D(hy), D(h2)) are both lines. Furthermore, from p; € h;
we conclude D(h;) € D(p;), 1 < i,j < 2, by Lemma 1, and hence the two lines
agree. |
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We are now ready for our first application of duality: the intersection of halfspaces.
We will use duality to transform the halfspaces or rather the defining hyperplanes
into points. the intersection problem is then transformed into two convex hull
problems.

Let h;, 1 < i < n, be a hyperplane. We use h;” (h; ) to denote the set of points
which are on or above (on or below) h;. The sets b} and h; are halfspaces. Let m
be an integer with 1 < m < n. Our goal is to compute

S:ﬁhjm (n] h;.
i=1

i=m+1

We previously discussed this problem for R? in Exercise 6. In that exercise an
O(nlogn) divide-and-conquer algorithm is derived which uses the linear time in-
tersection algorithm (cf. Section 1) for convex polygons in the merge step. The
analogous algorithm in R® based on the O(nlogn) algorithm for intersecting con-
vex polyhedra (cf. Section 4.3) has running time O(n(logn)?). Duality will give us
an O(nlogn) algorithm in R>. From now on we restrict the discussion to R>.

Let St = N, hf and S~ = Ni,,41 h; - In view of the O(nlogn) algo-
rithm for computing S = ST N S~ it suffices to show how to compute ST in time
O(mlogm). Our algorithm is based on the following observation. The set S* is a
convex polyhedron whose faces lie on some of the planes h;, 1 < i < m. We call
plane h; redundant (non-redundant) if there is no face (is a face) of St which is con-
tained in h;. We will use duality to compute the non-redundant planes. Knowledge
of the non-redundant planes will then allow us to compute S* fairly easily.

So let us assume that plane h, is redundant. Then S* N h, is either empty,
a vertex of S*, or an edge of S*. In either case, let v be a vertex of ST which
is closest to h,. Then there are planes hj, hy, h; such that v = h; N hy N h; and
h;‘ N h;: N h?‘ = h;‘ N h;: N h?‘ Nk}, ie., planes hj, hy, h; witness the redundancy
of h,. Consider the duals p; = D(h;), 1 < i < m, of the planes. Then v lies on
or above h, and hence D(h,) lies on or below D(v). Next observe that D(v) is a
plane which contains points D(h;), D(hg), D(h;) and hence is determined by them.
This observation suggests the following lemma.

Lemma 3. h, is redundant iff D(h,) is not a vertex of the upper convex hull of
point set {D(h;); 1 < i < m}. The upper convex hull of a point set consists of
those faces (and incident edges and vertices) of the hull which have all points in the
set on or below the supporting plane.

Proof: “=7”: We have argued above that if h, is redundant then there are planes
hj, hy,h; such that D(h,) lies on or below the plane P determined by points
D(hj), D(hy), D(h;). It remains to be shown that the projection of p, into the
zy-plane lies inside the triangle determined by the projections of points p;, py and
pi- Let hy be a plane which touches ST in vertex v and is parallel to plane h,.
Then py = D(hg) lies exactly above point p,. It therefore suffices to show that pg
lies inside the triangle determined by points p;, px and p;.
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The normal vector go = (¢?,...,¢9_,,—1) of plane ho lies in the cone defined
by the normal vectors §; = (q{, . ,qf;l_l, —1), Gk, q of planes h;, hy, h; and hence
q=aqg;+ Bgr +7¢ witha>0,5>0,v>0and a+ 3 +v = 1. Also, plane g;,
i € {0,4,k,1}, is given by equation x4 = giz1 +- - ¢4_,74_1 +c for some constant c.
Hence p; = (¢!, ...,q"_;,c) and therefore py = ap; + Bp; +ypi. This shows that py
lies inside the triangle defined by points p;,p; and p;.

“<”: Suppose that D(h,) is not a vertex of the upper convex hull. Then there are
vertices p;,p;,pr of the upper convex hull such that p, = D(h,) lies on or below
the triangle with vertices p;,p;, px. By an argument similar to the one used in the
only if part one can show that planes h;, h; and hj witness the redundancy of h,. 1

Lemma 3leads to the following algorithm for computing S™.

1) Compute p; = D(h;), 1 <i < m, and determine the upper convex hull of point
set {p;; 1 <i<m}.
2) Use duality to obtain ST from the upper convex hull.
The computation of point set {p;; 1 < i < m} takes time O(n). The (upper) convex
hull of the point set can be determined in time O(mlogm) by Exercise 13.

We have to describe step 2) in more detail. Let f be a face of the upper convex
hull and let h be a plane supporting f. Then D~!(h) is a vertex of ST by the proof
of Lemma, 3. Also, if e is an edge of the upper convex hull separating faces f; and f
(supported by planes hy, hy) then L(D~!(h;), D~!(h3)) is a line which supports the
edge of connecting vertices D~!(h;) and D~!(hz) of S*. (This is a consequence
of Lemma 2). We conclude that the structure of the upper convex hull gives us
complete knowledge about St and hence ST can be computed in time O(m) from
the upper convex hull.

Theorem 1. The intersection of a set of n halfspaces in R* can be computed in
time O(nlogn).

Proof : By the preceding discussion. ]

Our second example concerns problems about point sets in R2. We will use duality
to transform them into problems about sets of lines which we will then be able to
solve. Let S = {p;; 1 <i < n} be a set of points in R®. We consider the following
two problems:

a) Decide whether any three of the points are collinear.
b) Compute the smallest area triangle which has vertices in S.

Note that the first problem is a special case of the second; it is tantamount to decid-
ing whether the minimum area triangle has area 0. We derive an O(n?) algorithm
for the first problem based on duality and then extend the algorithm to solve the
second problem as well.

Let h; = D(p;) be the dual of point p;, 1 < ¢ < n. Since duality preserves
incidences we conclude that there are three collinear points in S iff there are three
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lines in set H = {h;; 1 < i < n} which have a common point. We decide the latter
question by explicitly constructing the planar subdivision which is induced by the
lines in H.

We construct the planar subdivision interactively. Let SD; be the planar sub-
division which is induced by lines H; := {hy,...,h;}. Then SD; has only two faces,
one edge and no vertex and hence can be clearly constructed in time O(1). We
show how to obtain SD; from SD;_; in time O(7).

Let us recall the representation of planar subdivisions. For each vertex we have
the set of incident edges in clockwise order and for each face we have its boundary
edges in clockwise order and for each edge we have pointers to its endpoints and
the two adjacent faces. In addition to that we assume that for each line h; we have
the list of vertices and edges of the planar subdivision which lie on 4;. Finally, we
assume that the lines are sorted by slope.

hi ha

ho

vy /\ Vs = v4

Figure 110.

Suppose now that SD;_; is available and we want to construct SD;. In Fig-
ure 110 h; is shown as a horizontal line. If all lines in H;_; are parallel to h; then
we can clearly construct SD; in time O(i) from SD;_;. So let us assume that h;,
J <, and h; are not parallel. We compute v; := h; N h; and locate v; in the planar
subdivision by a linear search through the fragments of line h;. This takes clearly
time O(%).

We locate the other points vy := h; Nhg, 1 < k < i, as follows. Line H; enters
two faces of SD;_1, say f and f', from v;. We find the points, where h; leaves these
faces by a linear search along the boundary of these faces. We make sure that we
always follow the part of the boundary which is above h;. In this way we locate two
more points of the intersection. From these points we continue the construction
in an analogous way. Note that faces above h; which only touch a single point
are traversed completely. In Figure 110 we have indicated the edges visited in this
search by a double line. Let m; be the number of edges visited in this search. Then
SD; can clearly be constructed in time O(m;) from SD;_;. We have
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Lemma 4. m; < 51.

Proof: Let F be the set of faces of SD; (not SD;_4!) which lie above line h; and
have a fragment of h; on their boundary. Then m; is the total number of edges
bounding the faces in F. Let E be the multi-set of edges which bound a face
in F. We partition E into three disjoint sets. In order to simplify the notation and
language we assume w.l.o.g. that h; is horizontal and that all lines h;, j < i, are
oriented in the upward direction. It then makes sense to talk about the interior
angle between lines h; and h;. It is always between 0 and 7.

Let E; be the multi-set of those edges in E which have at least one endpoint on
line h; and let E5 be the remaining set of edges. Since every face in F' contributes
at most three edges to E; (one having both endpoints on h; and two having one
endpoint on h;) and since |F| = ¢ we conclude |E;| < 3i. The edges in E» remain
to be counted. For this purpose, we partition the edges in Es into two groups E;
and FE,. Let f € F be a face, let e € E5 be an edge on the boundary of f and let g
be that edge on the boundary of f which is supported by h;, j <i. We put e into
group Ej if h; intersects h; to the left of g and we put e into group E, otherwise.
In Figure 111, the edges E; (E;, E,) are indicated as solid (dotted, dashed) double
lines.

hs - ha

h1

Figure 111.

We show |E,| < i. Then symmetry implies |E;| < i and hence m; = |Ey| +
\By| + |, | < 5

Lemma 5. |E,| <i.

Proof: We use induction on i. For ¢ < 2 we have |E,| = 0 and hence the claim is
obviously true. So let us assume that ¢ > 3. Choose j, j < ¢, such that Z(h;, h;)
is minimal. Remove line h; from the planar subdivision and let E] be defined with
respect to the resulting subdivision as E, is defined with respect to SD;. Then
|El| <i—1 by the induction hypothesis. It therefore suffices to show |E,| < |E/|+1.
This can be seen as follows.

Note first that no edge which is supported by h; can belong to E,. This follows
immediately from the fact that Z(h;, h;) is| minimal.

Next observe that the removal of h; merges some faces of SD;. More precisely,
there are two faces, say fi1,f2 in F' which are merged to a single face and every
other face, say f, of F is either left unchanged or merged with a face which is
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not in F. In the latter case f (or the result of merging f with a face not in F)
contributes at least as many edges to E; as it contributed to E,.. In the former
case, the face obtained by merging f; and f, contributes at most one edge less to E;.
than f; and fo contributed together to E,, since the removal of h; might combine
two edges in F, or combine an edge in F, with an edge in E;. Thus |E,| < |E.|+1
and the proofs of Lemmata 4 and 5 are completed. it

We infer from Lemma 4 and the discussion preceding it that SD; can be computed
from $D; ; in time O(i). Hence SD,, can be computed in time O(n?). Having
computed SD,, it is trivial to check in time O(n?) whether any three lines in H run
through a common point. We summarize in

Theorem 2.
a) The planar subdivision induced by a set of n lines in R? can be computed in
time O(n?).
b) Given n points in R* one can decide in time O(n?) whether any three of them
are collinear.

Proof : By the discussion above. ]

In the remainder of this section we extend Theorem 2 to a solution of the minimum
area triangle problem. The extension is based on the following simple observation.
Let py,...,pn be n points in the plane. For 1 < i < j < n let near(i,j) = k if
point pj has minimal distance from line L(p;, p;). Since the area of triangle p;, p;, pr
is dist(p;,p;) - dist(px, L(pi, p;))/2 we conclude that triangle p;,pj, Prear (p;,p;) has
minimum area among all triangles with vertices p; and p;. This shows that it suffices
to compute function near in order to solve the minimum area triangle problem.

Figure 112.

Let us consider the dual problem. Let h; = D(p;) be the line dual to point p;,
1 <4 < n, and let 7 and j be arbitrary. Then point h; N h; is the dual of line
L(p;,pj) by Lemma 2; cf. Figure 112. Consider the line L which passes through py,
k = near(i,j), and is parallel to L(p;,p;). The dual D(L) of line L is a point having
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the same z-coordinate as the dual D(L(p;,p;)) of line L(p;,p;). This follows from
the fact that the z-coordinate of the dual is given by the slope of the line. Since
duality preserves incidence we conclude that line D(p) passes through D(L). We
also conclude that no other line h;, I # k, can intersect the vertical line segment con-
necting D(L) and D(L(p;,p;)). Hence D(L) lies on the same face as D(L(p;,p;))-
This observation immediately suggests the following algorithm:

Let h; = D(p;), 1 < i < n. Compute the planar subdivision induced by the h;’s
and check whether any three lines have a common point. If not, draw a vertical line
through every vertex v of the planar subdivision and find the closest intersection of
this vertical line with an edge of the subdivision. This edge (supported by line hy,
say) defines near(s, j), where v = h; N h;.

Figure 113.

We finally describe how the vertical lines are handled. We compute the inter-
section face by face. Since faces are convex polygons we can handle all vertical lines
running inside the polygon in time proportional to the number of vertices of the
face by a “merge” of the lower and upper part of the face. This shows that function
near can be computed in time O(n?) from the planar subdivision and hence proves

Theorem 3. The minimum area triangle problem in R* can be solved in quadratic
time.

8.6.2. Inversion

We will now briefly discuss a second transformation which establishes a correspon-
dence between lines (planes) and circles (spheres) in R* (R?). It frequently allows
us to transform problems about circles into seemingly simpler problems about lines.

Inversion in R? (R?) is most easily described with respect to a polar (spherical)
coordinate system. Let ¢ be the origin of the coordinate system. Then inversion
with center ¢ maps a point p with polar coordinates (R, ®) (spherical coordinates
(R, ®, Psi)) into point (1/R,®) ((1/R,®,7T)), i.e., it inverts the distance from the
origin. An important property of inversion is expressed in
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Lemma 6.

a) For all p: I(I(p)) =p

b) Let C be a circle (sphere) which passes through the center ¢ of the inversion.
Then I(C) is a line (plane) which does not pass through c.

b) Let P be a line (plane) which does not pass through c. Then I(P) is a circle
(sphere) which passes through c.

Proof: a) is obvious.

b)and c): We only give the proof for R? and leave the three-dimensional case to the
reader. We first express inversion in cartesian coordinates.

Lemma 7. Let (x,y) be the cartesian coordinates of point p with respect to ori-
gin c. Then I(p) has cartesian coordinates (z/(z% + vy?),y/(z? + y?)).

Proof: Let (R, ®) be the polar coordinates of point p. Then R%? = 2% + y? and
tan® = y/z. Let 7 = z/(z? + y?) and § = y/(z? + y?). Then tan® = y/Z and
z? + y? = 1/R?. Hence I(p) has cartesian coordinates (Z, 7). 1

We are now in a position to prove part c). Part b) is proven similarly and is left to
the reader. Because of symmetry it suffices to prove part c) for a horizontal line.
Let h be a horizontal line given by the equation y = a. Let p with cartesian
coordinates (x,a) be an arbitrary point on line h. Then I(p) has cartesian coor-
dinates (z/d,a/d), where d = z? + y%. It is now easy to check that I(p) lies on
the circle with center (0,1/2a) and radius 1/2|a|. Also, all points on this circle are
images of points on line . ]

Our first application of the inversion transform directly uses Lemma 6. Let Cj,
1 <i<n,beacircle in R? and let s; € {+,—}, 1 < i < n. We use C;* to denote
the interior (exterior) of circle C; provided that s; = + (s; = —).

Lemma 8. If C4,...,C, are circles in R?> which all pass through point ¢ and
s; €{+,—}, 1 <i<n, then

n

fer

i=1

can be computed in time O(nlogn).

Proof: Let I be the inversion with center c¢. Let h; = I(C;), 1 < i < n. Then h; is
a line which does not pass through ¢ and C;* corresponds to one of the halfspaces
defined by h;. We denote that halfsapce by h;*. Let P = [, h;* be the convex
polygon defined by the intersection of the halfspaces hj*, 1 < i < n. We can
compute P in time O(nlogn) by Theorem 1. Also, I(P) = (), C;*. Furthermore,it
is easy to compute I(P) since vertices of P are transformed into points and edges
are transformed into “circular edges”. Thus I(P) can be computed in time O(n)
and Lemma 8 is proven. |
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Lemma 8 hinges on the artificial assumption that all circles have a common point c.
This assumption can be replaced if we invest one more idea: embedding into higher
dimension.

Theorem 4. Let C; be circles in R* and let s; € {+,-}, 1 <i <n. Then ), C}*
can be computed in time O(nlogn).

Proof: Identify R? with the zy-plane of R®. Let ¢ be a point outside the zy-plane,
say ¢ = (0,0,1) and let S; be a sphere which passes through ¢ and intersects the
zy-plane in circle C;, 1 < i < n. Let h; = I(S;), 1 < i < n, be the plane obtained
by inversion of S; with respect to center ¢. Then S;* corresponds to one of the
half-spaces defined by plane h;. We use h;* to denote that half-space. Then convex
polyhedron P = (), h;* can be computed in time O(nlogn) by Theorem 1. Also,
I(P) = (), S;* and hence the intersection of I(P) with xy-plane is the desired
solution. We can compute I(P) N (zy-plane) in time O(n) by transforming face by
face of I(P). The details are left to the reader. 1

Theorem 4 deals with circles in a very direct way. In Voronoi diagrams circles come
up in a more subtle way. Let S = {p1,...,p,} be a set of n points in the plane
and let VD be the Voronoi diagram of S; cf. Section 3.1. Let v be any vertex of
the Voronoi diagram. Then v is the center of a circle C(v) which passes through at
least three points of S and has no point of S in its interior. Conversely, the center
of any such circle is a vertex of the diagram. As in Theorem 4, we identify R? with
the zy-plane of R?, choose a point ¢ outside the zy-plane and use S (v) to denote a
sphere which passes through ¢ and intersects the zy-plane in circle C(v). Consider
the inversion I with center c¢. Let h(v) = I(S(v)). Then h(v) is a plane such that
at least three points in I(S) lie on h(v) and all other points in I(S) belong to the
same half-space with respect to h(v). In other words, plane h(v) supports a face of
the convex hull of point set S.

Construct I(S) and compute the convex hull of I(.S). This takes time O(nlogn)
by Exercise 13. Let f be an arbitrary face of I(S), let E be the supporting plane,
and let Sp = I(E) be he sphere obtained by inversion of E. Then all points o S lie
either inside or on Sp or all of them lie outside or on Sp. The two cases are easily
distinguished by testing one point of S (whose image under I does not lie on face f)
with respect to Sp. In the latter case the center of the circle obtained by intersecting
Sp with the zy-plane is a vertex of the Voronoi diagram (in the former case it is a
vertex of the farthest point Voronoi diagram). In this way we compute all vertices
fo the Voronoi diagram in time O(n), each vertex of the diagram corresponding to
a face of the convex hull of I(S). Now the edges are quickly computed. We connect
vertices v and w by a (straight-line) edge if the corresponding faces of the convex
hull share an edge. This proves

Theorem 5. The Voronoi diagram of a point set S C R?, |S| = n, can be computed
in time O(nlogn).
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8.7. Exercises

1) A sequence Py, Py, ..., P of polygons is a balanced outer representation of
convex polygon P if Py has at most 4 vertices, P, = P and P;_; can be obtained
from P; by dropping all other boundary edges and extending the remaining ones.
In the example, P; = P is shown solid and P is shown in dashed lines. Prove the
results of Section 1 using balanced outer representations.

——————————————

Figure 114.

2) Let P be a convex polyhedron in R3. An inner polyhedral representation
of P is an ascending chain Py, P,..., P, such that Py has at most O(1), say 100,
faces, P = Py, and P; can be obtained from P;,; as follows. Let V be a set of
independent vertices of degree at most 10 of P; ;. Then P; is the convex hull of
V(P;4+1) — V. Let n be the number of vertices of P.

a) Show that every convex polyhedron P with n vertices has an inner polyhedral
representation Py, ..., P, with £ = O(logn). [Hint: Lemma 8 of Section 3.2.1
implies that V' can be chosen such that |V| > a - |V(P;41)| for some constant
a > 0.] Show that the representation can be computed in time O(n).

b) Given a balanced inner polyhedral representation of convex polyhedron P and
line L show that one can compute P N L in time O(logn).

c) Given a balanced inner polyhedral representation of convex polyhedron P and
plane E show that one can decide whether P and E intersect in time O(logn).

d) Given balanced representations of convex polyhedra P and @ show that one
can decide in time O(n) whether P N Q = 0.

e) Show how to compute PN Q for convex polyhedra P and @ in time O(nlogn).

3) Given the balanced representation of convex n-gons P and @ show that one can
compute dist(P, Q) = min{dist(z,y); = € P,y € @} in time O(logn).

4) Given convex n-gons P and @ show that one can compute mazdist(P,Q) =
max{dist(z,y); ¢ € P,y € Q} in time O(n).

5) Given the balanced representation of convex n-gon P and point p show that one
can compute the balanced representation of CH (P U p) in time O(logn).
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6) Show that one can compute the intersection of n half-spaces in time O(nlogn).
[Hint: Use divide and conquer and Theorem 5 of Section 1.]

7) Let P be a simple polygonal region. Let ker(P) = {z € P; L(x,y) C P} be the
set of points which can “see” the entire polygon. Show that ker(P) can be computed
in time O(nlogn). [Hint: Show that ker(P) is an intersection of half-spaces, one
for each edge of P.] There is also an O(n) solution.

8) Let S C R? be finite. Show that CH(S) is a convex polygon whose vertices are
points of S. [Hint: Let A = {(v,w); v,w € S and one of the half-spaces defined by
line L(v,w) contains all points of S}. Then CH (SS) is an intersection of half-spaces,
one for each pair in A.]

9) Let vg,v1,-..,v, be a simple polygon with z(vg) < z(vy) < --- < z(vy,). Sim-
plify the algorithm given in the proof of Theorem 1 of Section 2 for simple polygons
of this form.

10) let A,B C R? |A| = n, |B| = m. Show that one can decide in time O((n +
m) log(n + m)) whether there is a line which separates A from B.

11) Let S CR? |S| = n and let € > 0. Show how to compute a convex polygon
P C CH(S) in time O(n + 1/€) such that for all z € S: dist(z, P) < € - diam(S),
where dist(x, P) is the minimal distance of « from any point of P and diam(S) is the
diameter of S. P may be called an approximate convex hull. [Hint: divide the plane
into k = 1/e vertical strips of width e zwidth(S) where zwidth(S) = max{z(v); v €
S} — min{z(v); v € S}. Determine the points with maximal y-coordinate in each
strip and let P be the convex hull of these points.]

12) Design an O(nlogn) divide and conquer algorithm for the convex hull problem
in R?. [Hint: Use the algorithm which is implicit in the proof of Lemma 1 of
Section 2.]

13) Design an O(n log n) divide and conquer algorithm for the convex hull problem
in R3. [Hint: the crucial subroutine takes two non-intersecting convex polyhedra
P; and P, and computes the convex hull of P; U P, in linear time.]

14) Let VD be the Voronoi diagram of some point set S, let y ¢ S and let z € S
be such that y € VR(z). Show how to obtain the diagram for S U {z} in time
proportional to the “size of the change” in the diagram. [Hint: Construct the
perpendicular bisector of x and y first, say L. Find the intersections of L with
the boundary of VR(z). Assume that on of the intersections lies on the boundary
of VR(z) and VR(z). Continue moving along the perpendicular bisector of y and z,

]
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15) Let VD be the Voronoi diagram of some point set S and let x € S. Show
how to obtain the diagram for S — {z} in time O(slogs), where s is the number
of edges on the boundary of VR(z). [Hint: Let ey,...,e, be the spokes of the
Voronoi region of z in circular order as indicated in Figure 115. Let the spokes
grow simultaneously into region VR(z) and find a “first” intersection (use a heap
for that task); say it is the intersection of e; and e;+1. Replace e;,e;11 by the
perpendicular bisector of suitable points and continue.]

€1

er €2

€g /
€3

€5 €4

Figure 115.

16) Let S and T be finite subsets of R>. Develop an algorithm for computing
VD(SUT) from VD(S) and VD(T) in time (|S| + |T'|). [Hint: Use plane sweep.]

The following exercises (17-19) treat alternative methods for the searching planar
subdivisions problem. For all these exercises we assume that G is a straight line
embedding of a planar graph with n vertices.

17) (Slab method). Let xy,...,z, be the z-coordinates of the vertices of G in
increasing order. Divide G into n — 1 slabs by drawing vertical lines through all
vertices of G. In order to locate a point (z,y) € R? in G’, first determine the slap
containing point (z,y) by binary search for z in sequence z1,...,z,. Then locate
the position of (z,y) within the slab by binary search of the at most O(n) edges
of G intersecting the slab. Note that no edges of G intersect within a slab and hence
the edges can be sorted in a natural way within a slab from top to bottom. Show
that this method yields a search structure of depth O(logn) and size O(n?). Find
an example of a planar subdivision where the space requirement is ©(n?).

18) (Planar separator method). Since G is a planar graph the proof of the planar
separator theorem (Section 4.10, Theorem 3) guarantees the existence of a cycle
C = zq,...,2py of length m < 4y/n in G such that the removal of C cuts G into
two subgraphs both containing at most 2n/3 nodes, each. Use the slab method to
decide whether a point lies inside or outside C'. Then use the method recursively
for both subgraphs. Show that this approach yields a search structure of depth
O((logn)?) and size O(nlogn).

Version: 19.10.99 Time: 17:36 -155—



156

19) (Trapezoid method). For the purpose of this exercise define a trapezoid as
consisting of two horizontal edges and two non-horizontal edges. Moreover, the
two non-horizontal edges are subsegments of edges of G and there is no edge of G
which intersects the interior of both horizontal edges. Refine a trapezoid into some
number of trapezoids by

1) drawing a horizontal line through the vertex of G which has the median Y-
coordinate of all vertices in the trapezoid

2) refining the top and bottom half into trapezoids by using those edges of G
which completely run trough the top or bottom half.

Figure 116.

In our example, the top and bottom half are both cut into two trapezoids as
indicated by the heavy lines. Thus in each search step we first locate the point with
respect to the horizontal dividing line and then with respect to the non-horizontal
dividing lines. Note that the latter number of dividing lines is not bounded by a
constant and that the number of vertices in the various sub-trapezoids varies widely.
Thus it is efficient to use a weighted binary search (cf. Section 3.4) for the search
with respect to the non-horizontal dividing lines; the weight of a sub-trapezoid
being the number of vertices of G it contains. Show that this method yields a
search structure of depth O(logn) and size O(nlogn). In fact, the depth can be
shown to be bounded by 3logn + O(1) if the method of Section 3.4, Theorem 7 is
used for the weighted binary search.

20) Let S C R2. Use the Voronoi diagram of S in order to find the largest circle C
such that C’s center is contained in the convex hull of S and the interior of C
contains no point of S. [Hint: the center of C is either a vertex of the Voronoi
diagram or a point of intersection of the convex hull of S and an edge of the Voronoi
diagram.]

21) Let S CR2 For z € S let FVR(x) = {z; dist(z,z) > dist(y, z) for all y € S}

be the set of points z which have z as their farthest neighbor. Show how to compute
the farthest point Voronoi diagram in time O(nlogn).

22) Use the farthest point Voronoi diagram (cf. Exercise 21) to find the smallest
circle which contains all points of S C R2.
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23) Given a set of n vertical or horizontal line segments show that one can com-
pute all s intersections in time O(nlogn + s). [Hint: use plane sweep; modify the
algorithm given in Section 4.1.]

24) A circular segment is a segment of a circle. Given n circular segments show
that one can compute all s intersections in time O((n + s)logn).

25) Given a set of closed polygonal curves show how to compute the regions defined
by the union of these curves.

26) Let PP, and PP, be sets of simple polygons. Show how to compute all maxi-
mal regions which are covered by a polygon in PP; and a polygon in PP5. Assume
first that the polygons in PP;, i = 1,2 are pairwise disjoint. Then drop this assump-
tion. [Hint: Modify the algorithm for decomposing polygons given in Section 4.1.]

27) Let PP be a set of polygons. Compute the boundary of the union of the
polygons in PP.

28) Let PP, and PP be sets of simple polygons. Show how to compute all max-
imal regions which are covered by a polygon in PP; and no polygon in PP,. Sim-
ilarly, compute all maximal regions which are covered by at least three polygons
in PP and not more than two polygons of PP,. For what other logical connectives
will your algorithm work? Can you extend your algorithm to more than two sets
of simple polygons?

29) Let Ly,...,L, be a set of non-intersecting line segments. Line L; domi-
nates L; if L; intersects the infinite “strip” defined by L; and the vertical rays
(extending to +oo) through the two endpoints of L;. Compute an injective or-
dering ord : {Li,...,L,} — {1,...,n} such that ord(L;) < ord(L;) if L; domi-
nates L;. [Hint: Use plane sweep. Augment the y-structure such that it records the
restrictions of ord to the active and dead line segments.]

30) Give the details of the O(nlogn) algorithm for triangulation which is described
in Section 4.2.

31) Let P be a simple polygon. Compute a decomposition into a minimal number
of convex parts. Use dynamic programming. [Hint: Let P be zg,z1,...,Zn_1,To.
Call pair (4, j) valid if either x; or z; is a cusp and L(z;, z;) is inside P. For every
valid pair (7,j), 1 < j, and [, i < [ < j, compute cost(i, j,1), where cost(z, j, 1) is
the minimal number of convex parts in any decomposition of polygon z;,...,z;,z;
which uses edge L(z;, z;).]

32) Let Py,..., P be a set of non-intersecting simple polygons. Triangulate P; U
P, U - .- U Py using the edges of the polygons.
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33) Let P be a simple polygon and let  and y be two points in the interior of P.
Show how to compute a shortest path in the Euclidian metric from z to y which
runs completely inside P. [Hint: Given a triangulation of P one can find the path
in linear time.]

34) Let S CR?, |S| = n. Prove an Q(nlogn) lower bound on the time required to
compute a triangulation of S.

35) Let P and @ be planar subdivisions all of which regions are convex. Let n be
the number of vertices of PUQ. Show how to compute PNQ in time O(nlogn+ s),
where s is the number of intersections.

36) Consider the following memory allocation problem. A memory is an array of
N cells. We want to dynamically maintain the free cells such that the following
requests can be answered efficiently. given integer r (the size of the request) find
a block of s > r consecutive free cells. In the best-fit strategy we want s to be
minimal, in the first-fit strategy we want the free block to start at the smallest free
address. Show that priority search trees can be used to implement either strategy.
[Hint: Represent a block of free cells by a pair (block-size, first address in free
block).]

37) Let ACA? be a planar subdivision with no vertical edge. A zig-zag decomposi-
tion of G is a sequence P4, ..., P; of z-monotonous paths such that

1) every edge of G belongs to exactly one path and only edges of G are used in
the paths;

2) if i < j and vertical line L intersects P; and P; then LN P; is not below LN Pj;
3) s is minimal among all path systems which satisfy 1) and 2).

a) For a vertex v of G let indeg(v) (outdeg(v)) be the number of edges entering v
from the left (leaving v to the right). Call v a starting vertex of G if indeg(v) <
outdeg(v). Show that every zig-zag decomposition satisfies

s = Z{outdeg(v) — indeg(v); v is a start vertex of G}.

Show how to compute a zig-zag decomposition in time O(nlogn) and space O(n),|}
where n is the number of vertices of G. Make sure that your algorithm does not
only compute a set {P,...,Ps} of paths but a sequence Py,..., P, of paths
which forms a zig-zag decomposition.

b) Let Q1,...,Qm be a set of simple plane polygons in R® with a total of n
vertices. Let k be the number of edge intersections in the projection onto the
xy-plane. Show how to use zig-zag decomposition to solve the hidden line
elimination problem in time O((n + k)(logn)?) and space O(n + k).
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c) For a zig-zag decomposition Pi,..., P, let First be the set of first edges of
paths Py, ..., P,. Design a plane sweep algorithm which runs in time O(nlogn)
and space O(s) and computes set First and injective mapping num : First —
[1..s] such that there is a path decomposition P, ..., P; with e € First being
the first edge of path Ppym(e) for all e in First. Moreover, design a plane
sweep algorithm which given set First and mapping num maintains a mapping
mum during the sweep such that mum is defined on the active line segments
and mum(e) is the path which contains edge e. The algorithm should run in
time O(nlogn) and space O(s).

d) Use the solution to part c¢) to refine the space complexity of the hidden line
elimination algorithm of part b) to O(n).

e) Can you use zig-zag decomposition for the measure problem of a union of
polygons?

38) Design an algorithm for hidden line elimination under perspective projections.

39) This exercise discusses a hidden line elimination algorithm of time complexity
O((n + k) logn) and space complexity O(n + k). Let Q1,...,Qmn be a set of simple
plane polygons in R3 with a total of n vertices. Let @ be the projection of Q;
into the zy-plane and let k& be the number of intersections of edges of the Q}’s.
Obtain planar subdivision G with n+k vertices by adding the edge intersections as
additional vertices. View every edge of G as a pair of two half-edges by conceptually
introducing midpoints. For each vertex v of G assign locally visible labels and
hidden from the half-edges incident to v. A half-edge is locally visible iff none of
the polygons having v as a vertex covers it. Otherwise it is hidden.

a) Assume that G is connected. Let vy be the vertex of G with maximal z-
coordinate and let S be the maximal connected subgraph of G containing g
and consisting only of edges both of which half-edges are visible. Show that S
is the solution to the hidden line elimination problem.

b) Derive a hidden line elimination algorithm from part a) with running time
O((n+k) logn) and space requirement O(n+k) for the case that G is connected.

c) Extend the solution of part b) to the case that G is not connected. [Hint:
Apply part b) to every component of G. Use exercise 40 to decide containment
of components and use this information to delete covered components.]

40) Let Qq,...,Q,, be a set of simple polygons with a total of n edges. Report
all pairs of intersecting polygons. [Hint: Use path or zig-zag decompositions and
extend the algorithm given in Section 5.1.1, Theorem 2.]

41) Given a set S, n = |S|, of points and iso-oriented rectangles in R? report
all pairs (p, R) of point and rectangle with p € R. Design a divide and conquer
algorithm to solve this problem in time O(nlogn + s), where s is the number of
pairs reported. [Hint: An algorithm similar to procedure Intersect of Section 5.2.1
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can be used. Let VERT be the set of projections of the points in the frame onto the
y-axis and let LEFT (RIGHT) be the set of projections of rectangles which have
their right (left) boundary in the frame but their left (right) boundary outside the
frame.]

42) Use a solution to the preceding exercise and Theorem 11 of Section 5.2.1 to
design an O(nlogn + s) algorithm for the rectangle intersection problem: Given n
iso-oriented rectangles compute all pairs of intersecting rectangles.

43) Design a plane sweep algorithm for the contour problem of iso-oriented rectan-
gles. Use segment trees. You should be able to achieve running time O((n+p) logn)
fairly easily; an improvement that realizes O(nlogn + p) is possible but quite in-
volved. Here n is the number of rectangles and p is the number of contour-pieces.

44) Let S, n = |S|, be a set of horizontal and vertical line segments. Let pair
(L1, Ls) of elements belong to relation R if L1 N Ly # (). Compute the equivalence
classes of relation R in time O(nlogn). The equivalence classes are also called
connected components.
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