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Overview

The problem: Isolating Roots of Real Polynomials

How I got interested in the problem: Computational geometry
for curves and surfaces.

The state of the art.

The Descartes method.

The new algorithm.

Summary.

M. Sagraloff and KM: Computing Real Roots of Real Polynomials – An Efficient Method Based on Descartes’ Rule
of Signs and Newton Iteration, J. Symbolic Computation, 2015

KM, M. Sagraloff and P. Wang: From Approximate Factorization to Root Isolation with Application to Cylindrical
Algebraic Decomposition, J. Symbolic Computation, 2015.

Warning: Some of my statements will be incorrect for the sake of
simplicity of the presentation.

Slides and papers are available on my homepage.
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The Real Root Isolation Problem
Given a polynomial with real coefficients (a real polynomial)
determine its real roots, i.e., compute isolating intervals for its real
roots. An interval is isolating if it contains exactly one root.

A polynomial with 5
real roots; isolating in-
tervals are shown in
red.

A polynomial of de-
gree n has n complex
roots. For a real po-
lynomial, the complex
roots come in pairs.
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Motivation: Nonlinear Computational Geometry

an arrangement of four
curves of degree 6

picture, courtesy of Mi-
chael Kerber
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Motivation: −z4 +z3 +y4 +y2−x3 +x2 = 0

Courtesy of Eric Berberich, Pawel Emiliyanenko, Michael Kerber,
and Michael Sagraloff: EXACUS
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A Glimpse at the Arrangement Computation

How to intersect the curves p(x ,y) = 0 and q(x ,y) = 0?

eliminate y and obtain a polynomial R(x) of degree
d = deg(p) ·deg(q) compute resultant

compute the real zeros ξ1, ξ2, . . . of R(x)

analyse the situation at x = ξi :

this amounts to computing the real zeros of p(ξi ,y) and q(ξi ,y)

p q

xi_i

Key task: compute the real roots of a
univariate polynomial with real coefficients
We want an algorithm that

works for polynomials with real coefficients,

is exact, and

handles “easy cases” fast.
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The State of the Art

All complex roots

Numerical methods: usually fast, no global convergence proof.

Splitting circle method: Schönhage (82), Pan (02), computes
approximate factorization; almost optimal; not implemented yet.

Root isolation with same complexity, M/Sagraloff/Wang (03/05),
Pan/Tsigaridas(03)

Real roots or real roots restricted to an interval

Subdivision methods: Descartes’ Method, Sturm Sequences,
Continued Fractions,

Simple, however, worst-case running time much worse than Pan.

Excellent implementations, e.g., F. Rouillier’s algorithm RS.

RS is the solver in MAPLE

Today: A variant of Descartes, simple and competitive with Pan in the
worst-case. First experiments are promising (Kobel, Rouillier, Sagraloff).
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A Hard Example: Mignotte Polynomials

Mignotte polynomial, p(x) = xn−2(ax−1)2, a≥ 2 integral
Three real roots.

Let τ = log |a|. Two of the roots have distance ≈ 2−Ω(τn).

polynomial is positive at x = 1/a.

p(x) is negative for x = 1/a±h, where h = (1/a)(n+2)/2.

p(1/a±h) = (1/a±h)n−2a2h2 < 1/an−a2h2 < 0.

a≈ 220, n = 20, distance 2−200.

Remarks

Mignotte polynomials have worst-case root separation among
polynomials with integer coefficients.

Let sep(p) be the smallest distance between two roots. Then
sep(p)≥ 2−nτ .
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The Descartes Method for Real Root Isolation

Descartes proved the underlying theorem: Descartes’ rule of
sign.

Algorithm is due to Collins/Akritas (76) and
Lane/Riesenfeld(81).
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Number of Sign Changes

p = ∑0≤i≤n pix i with pn 6= 0 6= p0. Let v(p) be the number of sign
changes in coefficient sequence, e.g., v(−3,0,−2,2,−1) = 2.

Theorem (Descartes’ Rule of Sign)
Number of real zeros of p in (0,∞) is at most v(p).

Both numbers have the same parity.

vI(p) for interval I = (a,b); consider (b−x)n ·p( x−a
b−x ).

Corollary
vI(p) = 0 ⇒ no root

vI(p) = 1 ⇒ exactly one
root

w(I)≤ sep(p)/4 =⇒ vI(p)≤ 1.

Partial Converse (Landau,

Obreshkoff)

If dc
contains at most

one root, then vI(p)≤ 1.
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Descartes Method: isolate roots of p(x) in I = (c,d)

Compute vI(p);

If vI = 0 return;

If vI = 1, return and report (c,d) as an isolating interval

Let m = (c+d)/2. (more generally m = αc+(1−α)d)

If p(m) = 0 report [m,m] as an isolating interval.

Recurse on both sub-intervals.

To isolate all real roots
Start with (−M,+M), where M = maxi 2 · |pi |/|pn|.

Subadditivity of Sign Variations

v(c,m) +v(m,d) ≤ v(c,d).
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Analysis of Descartes Method

Asssume nonzero coeffs are in [1,2τ ] in absolute value.
Start with [−M,+M], where M = 2 ·2τ .
Alg stops at intervals of length ≈ sep(p), maybe earlier.
Depth of the recursion tree is ≤ τ + log1/sep(p).
Width of the recursion tree is ≤ n, because of subadditivity.
Number of nodes in the tree is n(τ + log1/sep(p)).
n arithmetic ops/node for computing vI and for evaluating p(m).
Assume integer coeffs:

log1/sep(p) = O(nτ). Thus depth = O(nτ) and
# nodes = O(n2τ).

Numbers grow by n bits in every node of the recursion tree and
hence grow to τ +n2τ bits.

Number of bit operations: O(n2τ ·n ·n2τ) = O(n5τ2).

We are now in the year 2005.
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Two Questions

Can we handle real coefficients, e.g.,
√

2, π , ln2?
We assume them to be given by oracles that can be asked for
arbitrary good approximations.

Coefficients are potentially infinite bitstreams.

How can we handle polynomials with bitstream coefficients?

Can we improve complexity so that it matches Pan’s?
For a polynomial with integer coefficients bounded by 2τ in
absolute values

Descartes method uses O(n5τ2) bit operations, but

Pan’s alg uses only Õ(n2τ) bit operations to isolate all roots.
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Analysis of Descartes Method Revisited

Depth of recursion tree is ≤ τ + log1/sep(p).
Width of recursion tree is ≤ n, because of subadditivity.
Number of nodes in tree is n2τ .
n arithmetic ops/node for computing vI and for evaluating p(m).
Assume integer coeffs:

log1/sep(p) = O(nτ), depth = nτ , # nodes = O(n2τ)
Numbers grow by n bits in every node of the recursion tree.
So numbers grow to τ +n2τ bits.
Number of bit operations: O(n2τ ·n ·n2τ) = O(n5τ2).

Potential for improvement:
Why precision n2τ if log1/sep(p) = O(nτ)?

Tree has only n nodes where both children
have non-zero sign variations. Can we traverse
long chains faster? (ideally, with a logarithmic
number of iterations)

# of bit operations would reduce to Õ(n ·n ·nτ).

I
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Algorithm ANewDsc
Approximate Newton Descartes

A New Descartes
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Bitstream Coefficients

Approximate Coefficients
We represent coefficients by intervals; these interval can be
refined as needed.

Arithmetic becomes interval arithmetic, i.e.
[a,b]+ [c,d ] = [a+c,b+d ] and
[a,b] · [c,d ] = [min(ac,ad ,bc,bd), . . .].

Polynomials become interval polynomials.

Descartes becomes Interval-Descartes (Johnson-Krandick), but
what is the sign of an interval and how does one compute sign
changes?
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Sign Variations in Sequences of Intervals

Set of potential sign variations in a sequence of intervals

v(([2,3], [−1,1])) = {0,1} ,
v(([2,3], [−1,1], [2,3])) = {0,2} ,
v(([2,3], [−1,1], [−2,−1])) = {1} .

We now have ṽI instead of vI .

Capabilities needed for the Descartes method
1. For all nodes in the recursion tree: Does the Descartes test

yield 0, 1, or at least 2 sign variations?

2. For internal nodes of the recursion tree: Does the polynomial
vanish at the split point?

With an interval polynomial, making either decision may be
impossible and hence the approach seems doomed.
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A First Idea: Eigenwillig/Kettner/Krandick/KM/Schmitt/Wolpert (05)

Careful Choice of Subdivision Point
Choose 2n equidistant points in middle part of [c,d ]; call them M

“Evaluate” p(x) on all of them and choose m ∈M such that
|p(m)| ≥maxx∈M |p(x)|/2.

Then p(m) 6= 0 for all subdivision points.

Details:

Precision required for the computation is determined by |p(m)|.
Double precision until p(m) can be computed up to factor two.

Evaluation of 2n equidistant points does not cost more than
evaluation on a single point (Kobel/Sagraloff).

We can estimate p(m) from below because a polynomial can
be small only close to one of its roots (Smith bound).
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Interval Descartes Method: Isolate roots of p(x) in I = (c,d)

Compute ṽI(p);

If ṽI = {0} return;

If ṽI = {1}, return and report (c,d) as an isolating interval

Choose a good midpoint, namely, m ∈M with

|p(m)| ≥max
x∈M
|p(x)|/2,

where M is a nice set of 2n points in the middle part of I.

Recurse on both sub-intervals.

Amazing fact (Eigenwillig et al)
Recursion depth is essentially the same as for exact Descartes,
more precisely, +O(1). Proof hinges crucially on the fact that we
choose midpoints where the polynomial is large.
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Second Idea: Sagraloff (2014)

I

The shape of the recursion tree
Tree may have depth O(nτ), but only O(n) nodes
where both children are subdivided further.

There must be long chains, say length L, where we
split off an interval with no sign change, i.e., we
have a tiny interval of length 2−L|I| containing all
roots in I. I

Bisection versus Newton
Bisection converges linearly, i.e., one additional
correct bit per iteration.

Newton converges quadratically, i.e., number of
correct bits doubles per iteration.

Can we use Newton-iteration to traverse chains of
length L in logL steps?
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Clusters of roots (a bit of wishful thinking)

I
The red interval contains k roots. If red interval is small enough,
we may treat the k roots as a k -fold root.

Newton iteration for a k -fold root: xn+1 = xn−k
p(xn)

p′(xn)
.

Problem: We do not know k .

In interval (c,d), we tentatively use xn = c and xn = d , equate the
two values for xn+1 and solve for k , i.e.,

c− k̂
p(c)
p′(c)

!
= d− k̂

p(d)
p′(d)

.

Let ξ = c− k̂p(c)/p′(c) and consider an interval [c′,d ′] around ξ .

If [c,c′] and [d ′,d ] have zero sign-changes, continue with [c′,d ′]

else use bisection, i.e., continue with [c,m] and [m,d ].

21/23



Clusters of roots: The situation

I

xi

I’

Let ξ = c− k̂p(c)/p′(c) and consider an interval [c′,d ′] around ξ .

If [c,c′] and [d ′,d ] have zero sign-changes, continue with
I′ = [c′,d ′]

else use bisection, i.e., continue with [c,m] and [m,d ]
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Clusters of roots: The situation

I

xi

I’

Let ξ = c− k̂p(c)/p′(c) and consider an interval [c′,d ′] around ξ .

If [c,c′] and [d ′,d ] have zero sign-changes, continue with
I′ = [c′,d ′] and level of agressiveness N2

I (Success).

else use bisection, i.e., continue with [c,m] and [m,d ] and level of
agressiveness max(4,

√
NI).

Quadratic Interval Refinement (Abott)
Each interval I has a level of agressiveness NI .

We choose [c′,d ′] such that d ′−c′ = w(I)/NI .
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Clusters of roots: The situation

I

xi

I’
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√
NI).

Success Lemma
If red interval is tiny with respect to black interval, circumcircle of I′

contains k roots, enlarged circumcircle of I contains no other roots,
and agressiveness is not too high, we have success.

Consequence for chain traversal.
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Summary

Algorithm ANewDsc for Real Root Isolation
has a worst-case complexity similar to Pan’s alg and a much
better observed complexity,

can be asked to isolate roots in an interval,

is simple enough to be implemented (Kobel/Sagraloff/Rouillier)

for integer polynomials: for simple cases, same speed as
Rouillier’s RS, for difficult cases, much faster.
for polynomials with bitstream coefficients: to be done.

Curve Topology Computation (MSW)
Determine topology of zero-set of a
polynomial of degree n in two variables.

Dependency on n reduces from n10 to n6.
y4−y3 +2x2y2 +

3x2y +x4 = 0.
23/23


