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Abstract. Breadth-first search (BFS) is a basic graph exploratiomiegcie. We
give the first external memory algorithm for sparse und@edraphs with sub-
linear 1/0. The best previous algorithm requi®@$n + %52 - logar/ s nim)
I/Os on a graph witth nodes andn edges and a machine with main-memory of

sizeM, D parallel disks, and block sizB. We present a new approach which re-

quires onlyO(y/ wntm) | ntm -log /g 5™ ) I/Os. Hence, form = O(n)
and all realistic values dbg,, 5 ”Tm, it improves upon the I/O-performance
of the best previous algorithm by a fact®{\/D - B). Our approach is fairly
simple and we conjecture it to be practical. We also give owed algorithms for
undirected single-source shortest-paths with small eteglge weights and for
semi-external BFS on directed Eulerian graphs.

1 Introduction

Breadth-First SearctBFS) is a basic graph-traversal method. It decomposes the input
graphG of n nodes andn edges into at most levels where level comprises all
nodes that can be reached from a designated souvie a path ofi edges. BFS is
used as a subroutine in many graph algorithms; the paradfgmeadth-first search
also underlies shortest-paths computations. In this papdobcus on BFS for general
undirected graphs and sparse directed Eulerian graphsri&uraphs contain a cycle
that traverses every edge of the graph precisely once.

External-memoryEM) computation is concerned with problems that are too large
to fit into main memory (internal memorlM). The central issue dEM computation
is that accessing the secondary memory takes several afderagnitude longer than
performing an internal operation. We use the standard nafd&M computation [16].
There is a main memory of siZd and an external memory consistinglofdisks. Data
is moved in blocks of sizé3 consecutive words. An 1/O-operation can move ughio
blocks, one from each disk. For graphs witmodes andn edges the semi-external
memory SEM) setting assumes- n < M < m for some appropriate constant 1.

A number of basic computational problems can be solved ffiGiently. The most
prominentexample iEM sorting [2, 15]: sorting: items of constant size takest(z) =
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O(55 logy,p ) 1/0s. BFS, however, seems to be hard for external-memory com
putation (and also parallel computation). Even the I883¢1 BFS algorithms known
requiref2(n) 1/Os.

Recall the standar@(n + m)-time internal-memory BFS algorithm. It visits the
vertices of the input grap&’ in a one-by-one fashion; appropriate candidate nodes for
the next vertex to be visited are kept in a FIFO quéuéifter a vertexv is extracted
from @, theadjacency list of v, i.e., the set of neighbors ofin G, is examined in order
to update: unvisited neighboring nodes are inserted iGtoRunning this algorithm
in external memory will result i (n + m) I/Os. In this bound th&(n)-term results
from the unstructured accesses to the adjacency lists9 the)-term is caused byn
unstructured queries to find out whether neighboring noees hlready been unvisited.

The bestEM BFS algorithm known (Munagala and Ranade [14]) overcomes th
latter problem; it require®(n + sort(n + m)) 1/Os on general undirected graphs.
However, the Munagala/Ranade algorithm still pays one ¢iCefich node.

In this paper we show how to overcome the first problem as wainew algorithm

for undirected graphs needs just{/ % + sort(n + m)) 1/Os. Our approach

is simple and has a chance to be practical. We also discusastsihs to undirected
single-source shortest-paths (SSSP) with small integge aekights and semi-external
BFS on directed Eulerian graphs.

This paper is organized as follows. In Section 2 we reviewipres work and put
our work into context. In Section 3 we outline a randomizetsian of our new ap-
proach. The details are the subject of Section 5. We stdntavieview of the algorithm
of Munagala and Ranade (Section 4) and then discuss our wament (Sections 5.1
and 5.2). Section 6 presents a deterministic version of ewrapproach. In Section 7
we sketch an extension to some single-source shortess-pathlem. Another modi-
fication yields an improved semi-external BFS algorithmdparse directed Eulerian
graphs (Section 8). Finally, Section 9 provides some catieturemarks and open prob-
lems.

2 PreviousWork and New Results

Previous Work. I/O-efficient algorithms for graph-traversal have beensidered in,
e.g., [1,3,4,7-14]. In the following we will only discussstdts related to BFS.

The currently fastest BFS algorithm for general undiredegphs [14] requires
©(n + sort(m)) 1/0s. The best bound known for directe BFS isO(min{n + {7 -
g (n+p5) - log, 5y }) 1Os [7-9]. This also yields af?(n+ 5"5 )-1/O algorithm
for SEM BFS.

Faster algorithms are only known for special types of gragtsort(n)) I/Os are
sufficient to solveEM BFS on trees [7], grid graphs [5], outer-planar graphs [&0H
graphs of bounded tree width [11]. Slightly sublinear 1/Oswanown for undirected
graphs with bounded maximum node degiethe algorithm [13] need@(w-l-
sort(n - (D - B)7)) I/0s andO(n - (D - B)") external space for an arbitrary parameter
0 < v < 1/2. Maheshwari and Zeh [12] proposed I/O-optimal algorithorssfnumber
of fundamental problems on planar graphs; in particulay tthow how to compute
BFS on planar graphs usir@@(sort(n)) 1/Os.



SSSP can be seen as the weighted version of BFS. Consegqadirklyown EM
SSSP algorithms do not perform better than the respeEtWeBFS algorithms listed
above. The best known lower bound for BFS(2¢min{n,sort(n)} + 2%) 1/Os. It
follows from the respective lower bound for the list-rarkiproblem [8].

New Results. We present a nel#M BFS algorithm for undirected graphs. It comes

in two versions (randomized and deterministic) and reguarly O( % +

sort(n + m)) 1/0Os (expected or worst-case, respectively). For spagehgrwithm =

O(n) and realistic machine parameters, g,/ %)-term in the I/O-bound will

be dominant. In that case our approach improves upon thpéffrmance of the best
previous algorithm [14] by a factor 6?(v/ D - B). More generally, the new algorithm is
asymptotically superior to the old algorithm for = o( —2-B2__): on denser graphs

logrr/ 5 n/B
both approaches requit@(sort(n + m)) /Os.
A simple extension of our new BFS algorithm solves the SS®Blpm on undi-
rected graphs with integer edge-weights {ih,..., W} for small W: it requires

O( W + W -sort(n +m)) /Os. After another modification we obtain an im-
proved algorithm forSEM BFS on sparse directed Eulerian graphs: it achieves
O((D”.j,% + sort(n + m) - logn) 1/0s. A performance comparison for our BFS algo-

rithms is depicted in Figure 1.
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Fig. 1. Comparison: I/O-performance of the new BFS algorithms.

3 High-Level Description of the New BFS Algorithm

Our algorithm refines the algorithm of Munagala and Ranadgyhich constructs the
BFS tree level-by-level. It operates in two phases. In a firgise it preprocesses the
graph and in the second phase it performs BFS using the iatimmgathered in the
first phase.



The preprocessing partitions the graph into disjoint saplgsS;, 0 < i < K
with small average internal shortest-path distancesstt partitions the adjacency lists
accordingly, i.e., it constructs an external file = FyFi ... F; ... Fx—1 whereF;
contains the adjacency lists of all nodesSn The randomized partition is created by
choosing seed nodes independently and uniformly at randitimprobability ¢ and
running a BFS starting from all seed nodes. Then the expeutetber of seed nodes
is K = O(u - n) and the expected shortest-path distance between any tves b
subgraph is at mo<P(1/u). The expected 1/0O-bound for constructing the partition is
O(;45 + sort(n +m)).

In the second phase we perform BFS as described by Munag&lRamade with
one crucial difference. We maintain an external file(= hot adjacency lists) which
is essentially the union of alF; such that the current level of the BFS-tree contains a
node inS;. Thus it suffices to scak (i.e., to access the disk blocksHfin consecutive
fashion) in order to construct the next level of the tree.lEaubfile F; is added tcH
at most once; this involves at maS{ K + sort(n + m)) 1/Os in total. We prove that
after an adjacency list was copied#f it will be used only forO(1/u) steps on the
average; afterwards the respective list can be discardeu#. We obtain a bound of

O(p-n+ ;%gf'}g + sort(n +m)) on the expected number of I/Os for the second phase.

Choosingu = min{1, |/-25™} gives our bound.

4 TheAlgorithm of Munagala and Ranade

We review the BFS algorithm of Munagala and Ranade [14],_BIRS for short. We
restrict attention to computing the BF&el of each node, i.e., the minimum number
of edges needed to reacHrom the source. For undirected graphs, the respective BFS
tree or the BFS numbers can be obtained efficiently: in [4 ghown that each of the
following transformations can be done usi@gsort(n + m)) I/Os: BFS Numbers»
BFS Tree— BFS Levels— BFS Numbers.

Let L(t) denote the set of nodes in BFS levebnd letA(t) := N(L(t — 1)) be
the multi-set of neighbors of nodes It — 1). MR_BFS buildsL(t) as follows: A(t)
is created by L(t — 1)| accesses to the adjacency lists of all nodes(h— 1). This
cause(|L(t — 1)| + |A(t)|/(D - B)) I/Os. Observe tha®(1 + z/(DB)) I/Os are
needed to read a list of length Then the algorithm removes duplicates frot(t).
This can be done by sortind(¢) according to the node indices, followed by a scan
and compaction phase; hence, the duplicate eliminatiastaksort(| A(¢)|) I/Os. The
resulting setd’(t) is still sorted.

Now MR_BFS computed,(t) := A'(t)\{L(t—1)UL(t—2)}. Figure 2 provides an
example. Filtering out the nodes already contained in thieddistsL(t—1) or L(t —2)
is possible by parallel scanning. Therefore, this step @addne using?((|A(¢)| +
|L(t—1)|+|L(t—2)[)/(D-B)) Os. Sincey”, |A(t)| = O(m) andy", |L(t)| = O(n),
MR_BFS require® (n+sort(n+m)) I/Os. The@(n) 1/0Os result from the unstructured
accesses to theadjacency lists.

The correctness of this BFS algorithm crucially dependsheninput graph being
undirected: assume inductively that levél®), ..., L(¢ — 1) have already been com-
puted correctly and consider a neighlboof a nodeu € L(t — 1). Then the distance
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Fig.2. A phase in the BFS algorithms of Munagala and Ranade [14]elLE{t) is composed
out of the disjoint neighbor vertices of levB(t — 1) excluding those vertices already existing in
eitherL(t — 2) or L(t — 1).

from the source nodeto v is at least — 2 because otherwise the distance:ofould
be lesstham — 1. Thusv € L(t —2) U L(t — 1) U L(t) and hence it is correct to assign
precisely the nodes iA’(¢) \ {L(t — 1) U L(t — 2)} to L(¢).

Theorem 1 ([14]). Undirected BFScan be solved using O(n + sort(n + m)) 1/0s.

5 The New Approach

We show how to speed-up the Munagala/Ranade approachBM®) of the previous
section. We refer to the resulting algorithm assF_BFS. We may assume w.l.0.g. that
the input graph is connected (otherwise we may run the raimo® (sort(n + m))-
I/0 connected-components algorithm of [1] and only keeprthées and edges of the
component’; that contains the source node; all nodes outsidé ofvill be assigned
BFS-level infinity, and the BFS computation continues witl). We begin with the
randomized preprocessing part afd7_BFS:

5.1 Partitioning a Graph into Small Distance Subgraphs

As a first step, EST_BFS restructures the adjacency lists of the graph repratsemt
it grows disjoint connected subgraplsfrom randomly selected nodes and stores
the adjacency lists of the nodesd in an external fileF. The nodes; is called the
master node of subgraphS;. A node is selected to be a master with probabjlity=

DB
see later. Additionally, we make sure that the source nodethe graph will be the
master of partitiorS,. Let K be the number of master nodes. TH&E ] = 1 + un.

The partitioning is generated “in parallel”: in each roued¢ch master nods tries
to capture all unvisited neighbors of its current sub-gr&phf several master nodes
want to include a certain node into their partitions then an arbitrary master node
among them succeeds.

At the beginning of a phase, the adjacency lists of the nogdag bn the bound-
aries of the current partitions are active; they carry theellaf their master node. A
scan through the set of adjacency lists removes these thlige appends them in no

min{1, /25™}. This choice of. minimizes the total cost of the algorithm as we will



particular order to the filé, and forms a set of requests for the involved target nodes.
Subsequently, the requests are sorted. A parallel scareafdtted requests and the
shrunken representation for the unvisited parts of the graph allosvsouidentify and
label the new boundary nodes (and their adjacency listgh Bdjacency list is active
during at most one phase. The partitioning procedure stopse there are no active
adjacency lists left.

The expected I/O-performance of the preprocessing stegndispon the speed with
which the graph representation shrinks during the parniitigp process.

Lemmal. Letv € G bean arbitrary node; then v is assigned to some subgraph (and
hence is removed from the graph representation) after an expected number of at most
1/p rounds.

Proof: Consider a shortest path = (s, uj, ..., us, u1,v) from the source nodeto v
inG. Letk, 1 < k < j, be the smallest index such that is a master node. Then
is assigned to a subgraph in or before thth round. Due to the random selection of
master nodes, we ha¥&gk] < 1/u. O

The parallel randomized construction of the partitions atsplies:

Corollary 1. Consider an arbitrary nodev € S; and let s; be the master node of the
subgraph S;. The expected shortest-path distance between v and s; in S; isat most 1/ .

By Lemma 1, the expected total amount of data being procehks#tly the partitioning
is bounded byX := O3,y 1/1 - (1 + degree(v))) = O((n + m)/u). However,
sorting only occurs for active adjacency lists. Thus the@preessing require®((n +
m)/(u - D - B) + sort(n + m)) expected I/Os.

After the partitioning phase each node knows the (index ®f subgraph to which
it belongs. With a constant number of sort and scan opemtim can partition the
adjacency lists into the forma 7 . .. F; . .. F|s)—1, WwhereF; contains the adjacency
lists of the nodes in partitios;; an entry(v, w, S(w), fs()) from the list ofv € F;
stands for the edgév, w) and provides the additional information thatbelongs to
subgrapls (w) whose subfileFs ) starts at positiorfs ., within 7. The edge entries
of eachF; are lexicographically sorted. In totaF occupiesO((n + m)/B) blocks
of external storage (spread over thedisks in round-robin fashion)F consists ofi’
subfiles withE[K] = 1 + u - n. The size of the subfiles may vary widely. Some spread
out over several disk blocks and some may share the sameldidk Bhe following
lemma summarizes the discussion.

Lemma 2. Therandomized preprocessing of FAST_BFSrequires O( ;y’,g + sort(n +
m)) expected |/Os.

5.2 TheBFSPhase

We construct the BFS levels one by one as in the algorithm afiddala and Ranade
(MR_BFS). The novel feature of our algorithm is the use of a soetadrnal file?{.
We initialize H with Fy. Thus, in particular}{ contains the adjacency list of the source



nodes of level L(0). The nodes of each created BFS level will also carry idenifier
the subfilesF; of their respective subgraplss.

When creating leveL(t) based onL(t — 1) and L(¢t — 2), FAST_-BFS does not
access single adjacency lists like MB¥S does. Instead, it performs a parallel scan
of the sorted listd.(¢ — 1) and#. While doing so, it extracts the adjacency lists of all
nodew; € L(¢t—1) thatcan be foundif. LetV; C L(¢—1) be the set of nodes whose
adjacency lists could be obtained in that way. In a secon] BisT_BF S extracts from
L(t — 1) the partition identifiers of those nodeslia := L(t — 1) \ V4. After sorting
these identifiers and eliminating duplicateg,sF_.BFS knows which subfiles; of
F contain the missing adjacency lists. The respective saidite concatenated into a
temporary fileF' and then sorted. Afterwards the missing adjacency listthionodes
in V5> can be extracted with a simple scan-step from the sgfRtednd the remaining
adjacency lists can be merged with the sortedts@t one pass.

After the adjacency lists of the nodeslit — 1) have been obtained, the S€{L(t—

1)) of neighbor nodes can be generated with a simple scan. Apdins the augmented
format of the adjacency lists is used in order to attach thgtjpm information to each
node inN(L(t — 1)). Subsequently, /&T_BFS proceeds like MBBFS: it removes
duplicates fromN (L(t — 1)) and also discards those nodes that have already been
assigned to BFS levels(t — 1) and L(¢t — 2). The remaining nodes constitul&t).

The constructed levels are written to external memory asaemutive stream of data,
thus occupying(n/(D - B)) blocks striped over th® disks.

Since RAST_BFS is simply a refined implementation of MBFS, correctness is
preserved. We only have to reconsider the I/O-bounds:

Lemma 3. The BFS-phase of FAST_BFS requires O(y - n + 25% + sort(n +m))
expected 1/0s.

Proof: Apart from the preprocessing oABT_-BFS (Lemma 2) we mainly have to deal
with the amount of I/Os needed to maintain the data strudrEor the construction
of BFS levelL(t), the contents of the sorted sé&& L(t — 2), andL(t — 1) will be
scanned a constant number of times. The firsB blocks of#H, L(t — 2), andL(¢t — 1)
are always kept in main memory. Hence, scanning these eata idoes not necessarily
cause /O for each level. External memory access is onlyeté#dhe data volume is
£2(D - B). In that case, however, the number of I/Os needed to saata items over
the whole execution of &T_BFS is bounded b (z/(D - B)).

Unstructured 1/0 happens whéhis filled by merging subfileg; with the current
contents ofH{. For a certain BFS level, data from several subfifesnay be added to
H. However, the data of each singfé will be merged with{ at most once. Hence, the
number of 1/0s needed to perform the mergings can be splitdsat

(a) the adjacency lists being loaded frofrand
(b) those already being iH.

The I/0 bound for part (a) i©(>", (1 + ‘fo‘} logar/p M) = O(K +sort(n +m))
I/Os, andE[K] =1+ u - n.

With respect to (b) we observe first that the adjacencyAdisof an arbitrary node
v € §; stays inH for an expected number at mostfu rounds. This follows from the



fact that the expected shortest-path distance betweemanyddes of a subgraph is at
most2/u: let L(t") be the BFS level for whiclF; (and henced,) was merged witl{.
Consequently, there mustbe a nade S; that belongsto BFS levél(t'). Lets; be the
master node of subgragh and letd(z, y) denote the number of edges on the shortest
path between the nodesandy in ;. Since the graph is undirected, the BFS leved of
will lie betweenL(t') andL(t' + d(v', s;) + d(s;,v)). As soon aw becomes assigned
to a BFS level A, is discarded fron#{. By Corollary LE[d(v', s;) + d(s;,v)] < 2/p.

In other words, each adjacency list is parttofor expected)(2/u) BFS-levels. Thus,
the expected total data volume for (b) is bounded’yn + m)/u). This results in
O((n+m)/(p- D - B)) expected I/Os for scannirfg during merge operations. By the
same argumentation, each adjacency liskitakes part in at mosP(1/u) scan-steps
for the generation oV (L(-)) and L(+). Similar to MR.BFS, scanning and sorting all
BFS levels and set¥y (L(+)) takesO(sort(n + m)) /Os. O

Combining Lemmas 2 and 3 and making the right choice pields:
Theorem 2. External memory BFSon arbitrary undirected graphs can be solved using
O(y/ =tm) o sort(n + m)) expected 1/0s.

Proof: By our lemmas the expected number of 1/0s is bounde®fy - n + M’?ET’}B +

sort(n 4+ m)). The expression is minimized fgi®> - n - D - B = n 4+ m. Choosing
p=min{1,/n - D - B/(n+m)} the stated bound follows. O

6 TheDeterministic Variant

In order to obtain the result of Theorem 2 in the worst casg,itds sufficient to modify
the preprocessing phase of Section 5.1 as follows: instegiwing subgraphs around
randomly selected master nodes, the deterministic vagietracts the subfile; from
an Euler Tour around the spanning tree for the connected eoemtC'; that contains
the source node. Observe that,; can be obtained with the deterministic connected-
components algorithm of [14] usir@((1 + loglog(D - B -n/m)) - sort(n +m)) /Os.
The same amount of I/O suffices to compute a (minimum) sparnée7’ for C; [3].
After T has been built, the preprocessing constructs an Euler ToundT’ using
a constant number of sort- and scan-steps [8]. Then the sobroken at the source
nodes; the elements of the resulting list can be stored in consexotder using the
deterministic list-ranking algorithm of [8]. This caus@$sort(n)) I/Os. Subsequently,
the Euler Tour can be chopped into pieces of gizg with a simple scan step. These
Euler Tour pieces account for subgraghith the property that the distance between
any two nodes oF; in G is at mostl/u — 1. Observe that a nodeof degreed may
be part of©(d) different subgraphs;. However, with a constant number of sorting
steps it is possible to remove duplicates and hence makettisatreach node of's
is part of exactly one subgrap$i, for example of the one with the smallest index;
in particular,s € Sy. Eventually, the reduced subgrap$isare used to create the re-
ordered adjacency-list fileg;; this is done as in the old preprocessing and takes another
O(sort(n + m)) l/Os.



The BFS-phase of the algorithm remains unchanged; the raddifieprocessing,
however, guarantees that each adjacency list will be patetxternal set for at
most1/u BFS levels: if a subfileF; is merged withH for BFS levelL(t), then the BFS
level of any node in S; is at mostL(t) + 1/ — 1. The bound on the total number
of 1/Os follows from the fact tha©((1 + loglog(D - B - n/m)) - sort(n + m)) =

O(4/ % + sort(n +m)) .

Theorem 3. There is a deterministic algorithm that solves external memory BFS on
undirected graphsusing O(y/=2E™) 4 sort(n 4 m)) 1/0s.

7 Extension to some SSSP Problem

We sketch how to modify AT_BFS in order to solve the Single-Source Shortest-
Paths (SSSP) problem on undirected graphs with integeredgghts in{1,..., W}
for small 1/, Due to the “BFS-bottleneck” all previous algorithms forS§Srequired

£2(n) 1/0s. Our simple extension ofAST_BFS need)(/ W + W -sort(n +

m)) 1/Os. Thus, for sparse graphs and consténthe resulting algorithm &ST_SSSP
requiresO(—7 + sort(n)) /Os.

For integer weights id 1, ..., W}, the maximum shortest-path distance of an arbi-
trary reachable node from the source neds bounded by - (n — 1). FAST_.SSSP
subsequently identifies the set of nodes with shortest-giatancesdl, 2,.. ., denoted
by levelsL(1), L(2), ...; forW > 1 some levels will be empty. During the construc-
tion of level L(t), FAST_SSSP keeps the fir& - B blocks of each leveL(t — W —
1),...,L(t + W — 1) in main memory. The neighbor nodd& L(t — 1)) of L(t — 1)
are puttoL(t), ..., L(t + W — 1) according to the edge weights. After discarding du-
plicates from the tentative sét(t), it is checked againdt(t — W — 1),...,L(t — 1)
in order to remove previously labeled nodes frdit). For the whole algorithm this
causes at mogP(W - sort(n +m)) 1/Os.

Using the randomized preprocessing efSfF_BFS, the expected length of stay for
an arbitrary adjacency list ifif is multiplied by a factor of at modi” (as compared
to FAST_BFS): the expected shortest-path distance between anyddesn, v € S;
is at mostW - E[d(u, s;) + d(s;,v)] < 2-W/u. Hence, the expected number of I/Os
to handle# is at mostO(W/u - (n +m)/(D - B) + W - sort(n + m)). The choice

W-(n+m)
n-D-B

@ = min{1,
results.

} balances the costs of the various phases and the stated bound

8 Semi-External BFS on Sparse Directed Eulerian Graphs

The analysis for EST_.BFS as presented in the previous sections does not transfer t
directed graphs. There are two main reasons: (i) In order to dete®iqusly labeled
nodes during the construction of BFS leVv€k) it is usually not sufficient to check just
L(t — 1) andL(t — 2); a node ind'(t) may already have appeared before in any level
L(0),..., L(t — 1). (ii) Unless a subgrap; is strongly connected it is not guaranteed



that once a node € S; is found to be part of BFS levdl(t), all other nodes’ € S;
will belong to BFS some levels(t') havingt’ < t + |S;|; in other words, adjacency
lists for nodes inS; may stay (too) long in the data structuie

Problem (i) can be circumvented in tiBEM setting by keeping a lookup table in
internal memory. Unfortunately, we do not have a generaitgni for (ii). Still we ob-
tain an improved 1/0O-bound fdBEM BFS on sparse directegllerian graphst. The
preprocessing is quite similar to the deterministic unctd variant of Section 6. How-
ever, instead of grouping the adjacency lists based on asr Eaur around apanning
tree, we partition them concerning an Euler Circuit for thieole graph:

The PRAM algorithm of [6] yields an Euler Circuit i®?(logn) time; it applies
O(n + m) processors and usé€Xn + m) space. Hence, this parallel algorithm can be
converted into afEM algorithm which require®(log n - sort(n + m)) 1/Os [8]. Let
(vo,v1,--.,Um—1,0Um) denote the order of the nodes on an Euler Circuitdoistart-
ing from one occurrence of the source node, i¢.= s. Let the subgrapl$; contain
the nodes of the multi-st;.(p.g)1/s, - -, V(it1).(p.By/3—1 }- AS in the determinis-
tic preprocessing for the undirected case (Section 6), & naday be part of several
subgraphss;; thereforep’s adjacency list will only be kept in exactly one subfjté.
We impose another additional restriction: the subfilgnly store adjacency lists of
nodes having outdegree at mogt- B)'/?; these nodes will be calldight, nodes with
outdegree larger thafD - B)'/? are callecheavy. The adjacency lists for heavy nodes
are kept in a standard representation for adjacency lists.

The BFS-phase of the direct&EM version differs from the fully-external undi-
rected approach in two aspects: (i) The BFS léug) is constructed ad’ (¢) \ {L(0) U
L(1)u...U L(t — 1)}, whereL(0), L(1),...,L(t — 1) are kept in internal mem-
ory. (i) The adjacency list of eacheavy nodev is accessed separately usi®gl +
outdegree(v) /(D - B)) 1/Os at the time the lists needs to be read. Adjacency lists of
heavy nodes aneot inserted into the data structuté Each such adjacency list will be
accessed at most once. As there are at mg&tD - B)'/3 heavy nodes this accounts
for O(m/(D - B)'/?) extra l/Os.

Theorem 4. Semi-external memory BFS on directed Eulerian graphs requires
O( 57 +sort(n +m) - logn) 1/Osin the worst case.

Proof: As already discussed before the modified preprocessing easobe using
O(sort(n + m) - logn) I/Os.

The amount of data kept in eadh is bounded by)((D - B)?/3). Hence, access-
ing and merging all then/(D - B)'/? subfilesF; into # during the BFS-phase takes
O(m/(D - B)'/? + sort(m)) 1/Os (excluding I/Os to scan data already store@n

A subfile F; is calledregular if none of its adjacency lists stays # for more than
2- (D - B)'/? successive BFS levels; otherwisg,is calleddelayed. The total amount
of data kept and scanned# from regular subfiles is at mo&(m/(D - B)'/? . (D -
B)?/3.(D - B)'/3) = O(m - (D - B)*/?). This cause®(m/(D - B)'/?) I/Os.

1 An Euler Circuit of a graph is a cycle that traverses everyesafghe graph precisely once. A
graph containing an Euler Circuit is called Eulerian. If eedied graph is connected then it is
Eulerian provided that, for every vertexindegree(v) = outdegree(v).



Now we turn to the delayed subfiles: Bt := {F;,, F,,..., Fi. }, k < m/(D -
B)'/3, be the set of all delayed subfiles, whéje< ;1. Furthermore, let;, be the
time (BFS level) whenF;, is loaded intdH; similarly let t;j be the time (BFS level)
after which all data fron#;, has been removed froi again.

Recall that the source node is the first node on the Euler Circuit
(vo,v1,--.,Um—1,Um, o). Hence, node; has BFS level at mogt Furthermore, if;
belongs to BFS levet < i then the successive nodg.; on the Euler Circuit has BFS
level at mostz + 1. As F;, contains (a subset of) the adjacency lists of the light nodes
the multi-sef{v; . p.g)y1/3, -, V(ig+1)-(p-B)1/3—1 }, We findt; < (ig +1)- (D-B)'/3,
More generally,

th <ty ,+(ij—ij_1+1)-(D-B)"/3.

The formula captures the following observation: once ath@d.F; has been loaded into
4, the data ofF;_; will have been completely processed after the fiextl)-(D-B)'/3
BFS levels the latest. As eadh contains at mosP((D - B)?/3) data, the total amount
of data scanned i# from delayedF; is bounded byZ = Zfzo(t;j —ti,)-(D-B)*/3
<(io+1)-(D-B)+ E?:l(tij_l —ti; + (ij —ij—1 +1)-(D-B)'/?) - (D B)*3.
The latter sum telescopes, afids easily seen to be boundedhy: (D - B)>/3 + (i), +
k+1)- (D - B). Together withk, i, < m/(D - B)'/? andt;, < n this implies another
O((n +m)/(D - B)'/3) 1/0s. O

Note that Theorem 4 still holds under the weaker memory dmmdd/ = 2(n/(D-
B)?/3): instead of maintaining ahVl boolean array foell n nodes it is sufficient to
remember subsets of siz#(M) and adapt the adjacency lists BM whenever the
IM data structure is full [8]. This can happen at m&§(D - B)?/?) times; eactEM
adjustment of the adjacency lists can be done u8lt{@ + m)/(D - B)) l/Os.

Theorem 4 also holds for graphs that @early Eulerian, i.e., )", |indegree(v)

— outdegree(v)| = O(m/n): a simple preprocessing can connect nodes with unbal-
anced degrees via pathsrolummy nodes. The resulting gra@his Eulerian, has size
O(n + m), and the BFS levels of reachable nodes from the originalrgvél remain
unchanged.

9 Conclusions

We have provided a new BFS algorithm for external memory.desreral undirected
sparse graphs it is much better than any previous apprdaunhbylfacilitate I/O-efficient
solutions for other graph problems like demonstrated foress§ SSP problem. However,
it is unclear whether similar 1/0-performance can be adkdesn arbitrary directed
graphs. Furthermore, it is an interesting open questioritven¢here is a stronger lower-
bound for external-memory BFS. Finally, finding an algaritifior depth-first search
with comparable 1/0-performance would be important.
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