
Computational
Geomet ry

Theory and Applications
ELSEVIER Computational Geometry 10 (1998) 289-303

A computational basis for higher-dimensional computational
geometry and applications"

K. Mehlhorn a,,, M. Mtiller b, S. N~iher c, S. Schirra a, M. Seel a C. Uhrig a, j. Ziegler a
Max-Planck-lnstitut fiir Informatik, Im Stadtwald, 66123 Saarbriicken, Germany

b RIB Bausoftware GmbH, Vaihinger Str. 151, 70507 Stuttgart, Germany
c Fachbereich Mathematik und lnformatik, Martin-Luther Universitiit Halle-Wittenberg, 06120 Halle, Germany

Communicated by C.M. Hoffmann; submitted 15 August 1997; accepted 6 January 1998

Abstract

In this paper we describe and discuss a kernel for higher-dimensional computational geometry and we present
its application in the calculation of convex hulls and Delaunay triangulations. The kernel is available in form of
a software library module programmed in C++ extending LEDA. We introduce the basic data types like points,
vectors, directions, hyperplanes, segments, rays, lines, spheres, affine transformations, and operations connecting
these types. The description consists of a motivation for the basic class layout as well as topics like layered
software design, runtime correctness via checking routines and documentation issues. Finally we shortly describe
the usage of the kernel in the application domain. © 1998 Elsevier Science B.V.

Keywords: Software library; Implementation; Convex hull; Delaunay triangulation

1. Introduction

A growing community within computer science, academia and industry tries to transfer the theo-
retical algorithmic knowledge to practical usable programs. What already happened in other parts of
computer science, namely the development of software libraries to speed up program implementation
is now also an issue within geometric computing. We are now in a situation where the available com-
puting power, the recent developments concerning exact arithmetic packages, and the identification of
reasonable geometric primitives allow us to design a programming toolbox for this purpose.

We describe and discuss a kernel for higher-dimensional computational geometry. We have imple-
mented all basic data types like points, vectors, directions, hyperplanes, segments, rays, lines, spheres,
affine transformations, and operations connecting these types in form of C++ class objects. The kernel
is structured into three layers:

~ This work was supported by ESPRIT Project 21957 (CGAL).
* Corresponding author.

0925-7721/98/$19.00 © 1998 Elsevier Science B.V. All rights reserved.
PII S0925-7721 (98)0001 I-X

290 K. Mehlhorn et al. / Computational Geometry 10 (1998) 289-303

- arbitrary precision integer and rational arithmetic (classes integer and rational),
- exact linear algebra (classes integer_vector and integer~natrix), and
- basic geometric objects (classes dd_rat_point, dd_rat_vector, dd_rat_direction, dd_rat_hyperplane,

dd_rat_segment, dd_rat_ray, dd_rat_line, dd_rat_sphere, and dd_aff_transformation).
On top of the kernel we implemented some classical computation tasks in higher-dimensional CG like
convex hulls and Delaunay triangulations. To make the kernel a toolbox for a wide user community
and to give the whole project some pedagogical value we aimed for the following.

Ease of use--we aimed for a natural and intuitive interface as far as construction of objects, the
conversion between objects, and the interaction of the classes and the operations are concerned. The
naming scheme tries to achieve a compromise between mnemonics and word length. We followed
a clean, complete and adaptable documentation scheme which provides all necessary information
for the user of the kernel and at the same time is integrated into the implementation to enforce
consistency between implementation and documentation. The information provided by this manual
production toolset consists of prototype information, semantic preconditions, helpful implementation
details and runtime information.

Functionality--we tried to provide a comprehensive functionality of the objects while avoiding in-
terface bloating. The identification of the set of primitives for higher level geometric applications
was partly a dynamic process influenced by application design (see Section 7).

Layered design--we designed the kernel in a layered fashion for several reasons. First, the func-
tionality of the lower levels is interesting in its own right. In particular, it can be used to realize
additional geometric primitives. Second, the fact that the linear algebra layer provides extensive
testing and checking routines considerably simplified the development of the geometry layer.

Efficiency--the code is designed to be as fast as possible respecting our primary goal: to develop
modular, reusable and maintainable components which are not prone to arithmetic shortcomings
like rounding errors. To optimize the runtime behaviour we use the LEDA memory management
and a handle-rep scheme to improve memory consumption and to allow identity tests on objects.

The design of our kernel was mainly influenced by three sources: the experiences with the two-
dimensional LEDA geometry kernel [16], our experiences with an experimental higher-dimensional
kernel [17], and discussions with the group developing the CGAL-kernel [9].

In this paper we want to give an overview of the kernel and the applications on top of it. We refer the
reader to our web-site [10] for the complete set of manual pages and for the complete documentation
of the kernel and the application packet.

In the following sections we describe the three software layers of the kernel and the application
layer, give implementation details, and report about experience with the two software packets.

2. Arithmetic

The bottom layer of our kernel is exact integral computing. We use the LEDA datatypes integer
and rational. Any other bignum package providing the required functionality could be used instead.

The LEDA type integer realizes the mathematical type integer. The arithmetic operations ÷, - , , ,
/ , -~ - , - , (unary), + + , - - , the modulus operation (%, %=), bitwise AND (&, &=), bitwise
OR (I, I=), the complement operator (~), the shift operators (<<, >>), the comparison operators <,

K. Mehlhorn et al. / Computational Geometry 10 (1998) 289-303

Table 1
Runtime comparison of integer arithmetic

291

#Bits #Ops LEDA I GNU in seconds

+ - , /

32 106 1.1 5.1 1.3 5.5 1.6 7.5 4.7 26.6

64 106 1.2 5.0 1.3 5.4 4.2 10.9 24.8 36.6

500 106 1.8 7.3 1.86 7.8 158.8 272.7 225.7 375.3

1000 106 2.7 10.4 2.8 13.4 591.6 1063.4 736.5 1281.3

~<, >, ~>, = = , !=, and the stream operators are all available. These operations never overflow and
always yield the exact result. Of course, they may run out of memory.

Integers are essentially implemented by a vector of unsigned longs. The sign and the size are
stored in extra variables. Some time critical functions are implemented in SPARC assembler code.
The running time of addition is linear. In the multiplication Karazuba-Offman method [11] is used.
Thus the running time is O(Ll°g3), where L is the length of the operands.

A LEDA rational is essentially a pair of integers. The arithmetic operations +, - , , , / , + - , - ,
• =, / = , - (unary), + + , - - are available on rationals. In addition, there are functions to extract the
numerator and denominator, to cancel out the greatest common divisor of numerator and denominator,
to compute squares and powers, to round rationals to integers, and many others. LEDA's rational
numbers are not necessarily normalized, i.e., numerator and denominator of a rational number may
have a common factor. A call p.normalize() normalizes p. This involves a gcd-computation to find
the common factor m in numerator and denominator and two divisions to remove the m. Since
normalization is a fairly costly process we do not do it automatically.

We have run some runtime tests to compare the LEDA integers with the GNU Integers included
in GNU's C++ library. The tests have been executed on an Ultrasparc 140. We tested the four basic
operations +, - , , , / iteratively on a table of k-bit random numbers. The results are shown in Table 1.
A more comprehensive test description can be found in [20].

3. Linear algebra

The second layer of our kernel provides the standard operations of linear algebra encapsulated in
the two classes integer_vector and integer_matrix. These are vectors and matrices with integer entries
(= entries of type integer). The possible operations on matrices and vectors include the following.

Construction mechanisms--we can construct m-vectors, m x n-matrices from a tuple of equidimen-
sional vectors, identity matrices etc.

Data access operations--we can access the integral and rational components, the dimensions of ma-
trices and vectors, and the rows and columns of matrices.

Arithmetic operations--we provide the inner product, scalar multiplication to vectors and matrices,
and vector- and matrix-addition and -multiplication.

Operations based on solving a linear system--we can determine the solution of a linear system
Ax = b, calculate the determinant, rank, inverse, and independent columns of a matrix.

292 K. Mehlhorn et al. / Computational Geometry 10 (1998) 289-303

1. D e f i n i t i o n

An instance of da ta type integer_matrix is a mat r ix of variables of type integer, the so called ring

type. The ar i thmetic type integer is required to behave like integers in the mathemat ica l sense . . .

2. Creation

integer_matrix M(int n, int m);

creates an instance M of type integer_matrix of dimension n × m.

integer_matrix M(array< integer_vector > A);

creates an instance M of type integer_matrix. Let A be an array of m

column - vectors of common dimension n. M is initialized to an n x m
mat r ix with the columns as specified by A.

3. Operations

int M.diml () r e tu rns n, the number of rows of M.

integer_vector& M.row(int i) re tu rns the i - th row of M (an m - vector).
Precondition: 0 < i < n - 1.

integer& M(int i, int j) re tu rns Mi,j .
Precondition: 0 < i < n - 1 and 0 < j <: m - 1.

integer_matrix M + M1 Addition.
Precondition:
M . d i m l 0 = M l . d i m l 0
M l . d i m 2 0 .

and M.dim2 0 =

bool inverse(integer_matrix M, integer_matrix& inverse, integer& D, integer_vector& c)

determines whether M has an inverse. It also computes either the inverse as
(l / D) • inverse or a vector c such tha t c T • M = 0.

bool linear_solver(integer_matrix M, integer_vector b, integer_vector& x, integer& D,
integer_matrix& spanning_vectors, integer_vector& c)

determines the complete solution space of the linear sys tem M • z = b. If the
system is unsolvable then ca" • M = 0 and c a" • b ¢ 0. If the sys tem is solvable

then (1/D)x is a solution, and the columns of spanning_vectors are a maxi-
mal set of linearly independent solutions to the corresponding homogeneous

system.
Precondition: M . d i m l 0 = b.dim 0 .

4. I m p l e m e n t a t i o n

The da ta type integer_matrix is implemented by two-dimensional arrays o£ variables of type integer.
Operat ions determinant, inverse, linear~olver, and rank take t ime O(n3), column takes t ime O(n),
row, dim1, dim~, take constant time, and all other operat ions take time O(nm). The space re-
quirement is O(nm).

Fig. 1. The manual page of class integer_matrix, an excerpt.

K. Mehlhorn et al. / Computational Geometry 10 (1998) 289-303

Table 2
Runtime comparison of linear algebra modules

dim LEDA Maple V R3 Mathematica 2.0

20 1.3s 15.8s 31.6s

30 7.6s 92.4s 211.3s

40 28.4 s 363.7 s 840.3 s

100 32rain > 1 h > 1 h

293

The core operation of the last category is a Gaussian elimination scheme for a non-homogeneous
linear system Ax = b as described by Edmonds [8]. For a recent reference see the books of Schrijver
[19, Part I] or Yap [21, Lecture X]. Basically we transform the original matrix into a diagonalized
matrix of integral entries which encodes the numerators of the solution vector and accumulate in
parallel a common denominator of the numerator entries.

Fig. 1 shows an excerpt of the manual page of class integer_matrix. The same style is used for all
other types of the kernel. Each implemented class is documented by four major sections Definition,
Creation, Operations and Implementation. The first part gives an overview of the class specification
like intended usage of the class and implementation features which influence this usage like exact
arithmetic and proof features. The second and third part describe the user accessible operations of the
class like constructors, member operations, and functions which work on the class. The description of
each operation gives the semantics of it, describes the result transfer by return values and reference
parameters, and states preconditions for the usage of the operation. The fourth part of our manual page
completes the description by helpful implementation details and runtime and space bounds.

The cited description of the friend function linear~olver shows nicely the proof feature of our core
operation. Either a solution x is calculated which can be easily checked by substitution into the linear
system M x = b or a vector c is provided which proves the unsolvability of the system. Of course
there is also a selftest incorporated in the code which can be switched on by a compilation flag and
thus the testing can be done permanently.

In a second rnntime test we compared the LEDA linear algebra module with commercial math
packages like Maple V and Mathematica 2.0. We solved randomly generated non-homogeneous linear
systems with dim rows and columns and 32 bit entries. The tests were executed on a Sun Sparc 4
with 40 MHz. The results are shown in Table 2.

4. Geometric classes

As mentioned above we provide the geometric classes dd_rat_point, dd_rat_vector, dd_rat_direction,
dd_rat_hyperplane, dd_rat_segment, dd_rat_ray, dd_rat_line, dd_rat_sphere and dd_aff_transformation.

We first give a motivation for our interface design and review briefly the basics of analytical
geometry. We use d to denote the dimension of the ambient space and assume that our space is
equipped with a standard Cartesian coordinate system. The basic object within this space is a point p,
which we identify with its Cartesian coordinate vector p = (P0, • • •, Pd-1), where the pi, 0 ~< i < d, are
rational numbers. We store a dd_rat~point by homogeneous coordinates (h0,. • •, hd) where Pi = h~/hd

294 K. Mehlhorn et al. / Computational Geometry 10 (1998) 289-303

for all i, 0 ~< i < d, and the hi's are integer (LEDA type integer). The homogenizing coordinate hd
is always positive.

Points, vectors and directions are closely related but nevertheless clearly distinct types. In order
to work out the relationship, it is useful to identify a point with an arrow extending from the origin
(= an arbitrary but fixed point) to the point. In this view a point is an arrow attached to the origin.
A vector is an arrow that is allowed to float freely in space, more precisely, a vector is an equivalence
class of arrows where two arrows are equivalent if one can be moved into the other by a translation
of space. Points and vectors can be combined by some arithmetical operations. For two points p and
q the difference p - q is a vector (= the equivalence class of arrows containing the arrow extending
from q to p) and for a point p and a vector v, p + v is a point.

All operations of linear algebra apply to vectors, i.e., vectors can be stretched and shrunk (by
multiplication with a scalar) and inner and cross product applies to them. On the other hand, geometric
tests like affine collinearity or orientation only apply to points. Note that we distinguish the vector
type dd_rat_vector in this scenario of geometric objects from the data type integer_vector, which we
use to formulate calculations in our arithmetic linear algebra layer. We cannot identify both because
their role and thereby their functionality within their respective code module is quite different and we
don't want to have this mixed up.

A direction is also an equivalence class of arrows, where two arrows are equivalent if one can be
moved into the other by a translation of space followed by stretching or shrinking. Alternatively, we
may view a direction as a point on the unit sphere. In two-dimensional space directions correspond
to angles. As in the case of dd_rat_point we store dd_rat_vector and dd_rat_direction, respectively, as
a homogeneous tuple of integers with positive homogenizing component.

The common one-dimensional straight-line objects in d-space like lines, rays and segments (which
we allow to be trivial) are implemented in the classes dd_rat_line, dd_rat_ray and dd_rat_segment and
determined by a pair of points.

With respect to the user interface we can group together points, vectors, directions, and on the other
hand segments, rays and lines. For the first group there are common operations to access Cartesian
and homogeneous coordinates. Conversions within the first group can be made by explicit operations.
For the second group there are similar operations to access the coordinates of the determining pair of
points.

Oriented hyperplanes in the class dd_rat_hyperplane can be used to model halfspaces and affine
hulls of (d - 1)-dimensional point sets. They are internally stored as a (d + 1)-tuple of integer
coefficients. Finally oriented spheres of type dd_rat_sphere are helpful in computations involving
proximity calculations like Voronoi diagrams or Delaunay triangulations. They are stored as a tuple
of d + 1 dd_rat_points.

For all of our basic geometric types we have affine transformations, which can be used by a call of a
common member operation which gets an dd_aff_transformation-instance as an argument and delivers
a transformed object.

All object classes mentioned use a common handle-rep scheme which is already used in many
modules of LEDA. We distinguish between a front-end object which is created by the constructor and
a storage object of concrete geometric information which is referenced from the front-end object. The
advantages of this scheme emerge in case of frequent copy construction and assignment where only
references have to be redirected and no geometric information has to be copied. For large objects
this lessens memory consumption and allows us to improve equality checks by testing the reference

K. Mehlhorn et al. / Computational Geometry I0 (1998) 289-303 295

1. D e f i n i t i o n

An instance of da ta type dd_rat_point is a point with homogeneous coordinates in an arbi t rary
dimensional s p a c e . . .

2. C r e a t i o n

dd_rat_point p(int d = 2);

introduces a variable p of type dd_rat_point in d-dimensional space.

dd_rat_point p(integer_vector c, integer D);

introduces a variable p of type dd_rat_point initialized to the point with
homogeneous coordinates (+ c 0 , . . . , :t=ca-1, +D), where d is the dimen-
sion of c and the sign chosen is the sign of D.
Precondition: D is non-zero.

3. O p e r a t i o n s

int

rational

integer

dd_rat_vector

p.dim()

p.coord(int i)

p.hcoord(int i)

p - q

dd_rat_point p + dd_rat_vector v

int or ienta t ion(array< dd_rat_point > A)

returns the dimension of p.

returns the i th Cartesian coordinate of p.

returns the i th homogeneous coordinate of p.

returns p - q.
Precondition: v.d i rn() = = q .d im() .

returns p + v.
Precondit ion: p.dim() = = v . d i m () .

determines the orientat ion of the points in A, where A consists of d + 1 points in d -
space. This is the sign of the determinant

1 1 1 1
A[0] A[1] . . . A[d]

where A[i] denotes the Cartesian coordinate vector of the i th point in A.
Precondition: A.size() == d + 1 and A[i].dim() == d VO < i < d.

bool contained_in_affine_hull(array< dd_rat_point > A, dd_rat_point z)

determines whether z is contained in the affine hull of the points in A.

4. I m p l e m e n t a t i o n

Points are implemented by arrays of integer as an i tem type. All operat ions like . . .

Fig. 2. The manual page of class rid_rat_point, an excerpt.

296 K. Mehlhorn et al. / Computational Geometry 10 (1998) 289-303

addresses before a comparison of geometric coordinate information. As in the case of our linear algebra
module we use LEDA's improved memory management module which gives us a certain speed-up
compared to the standard C++ allocation scheme.

We now take a closer look at two example manual pages, by which we elaborate further on the
features of our data types. Fig. 2 shows an excerpt from the point class manual page.

The default dimension of all objects is 2. This means that a call to the standard constructor
dd_rat_point() delivers an instance of type dd_rat_point for planar geometry. A point in d-dimensional
space is constructed by p(integer_vector c, integer D) or p(integer_vector c). In addition, there are
standard initialization operations which allow comfortable creation of objects for the dimensions 2
and 3, which are not shown here. The data access operations allow access to the dimension and
to Cartesian and homogeneous coordinates. Operator overloading allows the intuitive calculation of
dd_rat49oint difference, which results in a dd_rat_vector and the translation of dd_rat49oints by adding
a dd_rat_vector. The orientation predicate and other affine operations use LEDA arrays as a container
type for a tuple of points.

The basic operations provided on straight line objects are mainly position checks of points with
respect to the objects, like contains() and intersection calculation between all higher dimensional
objects like segments, rays, lines and hyperplanes.

To manipulate all the basic objects we implemented affine transformations in form of a class
dd_aff_transformation. Objects of this type are basically transformation matrices which can be applied
to the objects by the common member function transform(). We provide basic construction of such
transformations like translation, scaling, rotations of a 2D-subspace spanned by base vectors. As
general planar rotations specified by angles are not representable by rational coefficients we offer a
mechanism to construct rational approximated rotation instances calculated with respect to a given
direction (angle) and an error bound as described in [4]. The primitive affine transformations can
finally be combined. The usage of this class is presented in Fig. 3.

5. Applications: convex hulls and Delaunay triangulations

The convex hull and the Delaunay triangulation problem are traditionally specified as functions, i.e.,
given a set of points compute their convex hull or their Delaunay triangulation in some representation.
We specify both problems as data types that support insertions and a large variety of query operations.
In the case of convex hulls we support navigation through the interior and the boundary of the
hull and we support membership and visibility queries. In the case of Delaunay triangulations we
support navigation through the triangulation, we support locate 1 and nearest neighbor queries, and
we support range queries with spheres and simplices. For two-dimensional convex hulls and Delaunay
triangulations we also support an interface to the LEDA graph and window classes [14,16]. In this
way one can, for example, construct two-dimensional nearest and furthest site Voronoi diagrams and
minimum spanning trees, display hulls and Delaunay triangulations.

The next two sections present parts of the specifications of convex hulls and Delaunay triangulations,
respectively.

A locate query finds the simplex of the triangulation containing the query point.

K. Mehlhorn et al. / Computational Geometry 10 (1998) 289-303 297

1. D e f i n i t i o n

An instance of the da ta type dd_aff_transformation is an affine t ransformat ion of d-dimensional
space. It is specified by a square integer mat r ix M of dimension d + 1. All entries in the last row
of M except the diagonal entry must be zero; the diagonal entry must be non-zero. A point p with
homogeneous coordinates (p[0] , . . . ,p[d]) can be t ransformed into the point p.transform(A), where
A is an affine t ransformat ion created from M by the constructors below.

2. C r e a t i o n

dd_aff_transformation t(int d = 2);

introduces a t ransformat ion in d-dimensional space.

3. O p e r a t i o n s

dd_aff _transformation dd_aff _transformation : : translation(dd_rat_vector vec)

returns a t ranslat ion corresponding to the translat ion vector vec.

dd_aff_transformation dd_aff_transformation::scahng(integer num, integer den, int d = 2)

returns a scaling by a scale factor num/den.

dd_aff_transformation dd_aff_transformation:: planar_rotation(dd_rat_direction dir, integer num,
integer den, int el = 0,
int e~ = 1, int d = 2)

returns a planar rotat ion within the plane spanned by the base vec-
tors b~l and be2 in d-space. The rotat ions parameters are given by
the 2-dimensional direction dir, such that the difference between the
sines and cosines of the rotat ion given by dir and the approximat ion
rotat ion are at most num/den each.
Precondition: dir.dim() = = 2 and num < den is positive and 0 <
el < e2 < d

dd_aff_transformation t$ * tl

composit ion of t ransformations. Note that t ransformations are not
necessarily commutat ive , t2 • t l is the t ransformat ion which trans-
forms first by t l and then by t2.

4. I m p l e m e n t a t i o n

Affine Transformat ions are implemented by matrices of integers as an i tem type. All operat ions
like creation, init ialization, input and output on a t ransformat ion ~ take t ime O(~.dim()2). dim()
takes constant t ime. The operat ions for inversion and composit ion have the cubic costs of the used
mat r ix operations. The space requirement is O(t.dim()2).

Fig. 3. The manual page of class dd_affAransformation, an excerpt.

298 K. Mehlhorn et al. / Computational Geometry 10 (1998) 289-303

5.1. Convex hulls

An instance C of type chull is the convex hull of a multi-set S of points in d-dimensional space.
We call S the underlying point set and d or dim the dimension of the underlying space. We use dcur
or dcurrent to denote the affine dimension of S. The data type supports incremental construction of
hulls.

The closure of the hull is maintained as a simplicial complex, i.e., as a collection of simplices
where the intersection of any two is a face of both. 2 In the sequel we reserve the word sim-
plex for the simplices of dimension dcur. For each simplex there is an item of type ch_simplex
and for each vertex there is an item of type ch_vertex. Each simplex has 1 + dcur vertices in-
dexed from 0 to dcur; for a simplex s and an index i, C.vertex(s, i) returns the ith vertex of s.
For any simplex s and any index i of s there may or may not be a simplex t opposite to the
ith vertex of s. The function C.opposite3implex(s, i) returns t if it exists and returns nil oth-
erwise. If t exists then s and t share dcur vertices, namely all but the vertex with index i of
s and the vertex with index C.index_of_vertex_in_opposite3implex(s, i) of t. Assume that t exists
and let j = C.index_of_vertex_in_opposite_simplex(s, i). Then s = C.opposite_simplex(t,j) and i =
C. index_of_vertex_in_opposite 3implex(t, j).

5.2. Delaunay triangulations

An instance DT of type dd_delaunay is the nearest and furthest site Delaunay triangulation of a set S
of points in some d-dimensional space. We call S the underlying point set and d or dim the dimension
of the underlying space. We use dcur or dcurrent to denote the affine dimension of S. The data type
supports incremental construction of Delaunay triangulations and various kinds of query operations
(in particular, nearest and furthest neighbor queries and range queries with spheres and simplices).

A Delaunay triangulation is a simplicial complex. All simplices in the Delaunay triangulation have
dimension dcur. In the nearest site Delaunay triangulation the circumsphere of any simplex in the
triangulation contains no point of S in its interior. In the furthest site Delaunay triangulation the
circumsphere of any simplex contains no point of S in its exterior. If the points in S are co-circular
then any triangulation of S is a nearest as well as a furthest site Delaunay triangulation of S. If the
points in S are not co-circular then no simplex can be a simplex of both triangulations. Accordingly,
we view DT as either one or two collection of simplices. If the points in S are co-circular there is just
one collection: the set of simplices of some triangulation. If the points in S are not co-circular there
are two collections. One collection consists of the simplices of a nearest site Delaunay triangulation
and the other collection consists of the simplices of a furthest site Delaunay triangulation.

For each simplex there is an item of type dt3implex and for each vertex of the triangulation there
is an item of type dt_vertex. Each simplex has 1 + dcur vertices indexed from 0 to dcur. Similar
operations as for convex hulls are provided. For any simplex s and any index i, DT.vertex_of(s, i)
returns the ith vertex of s. There may or may not be a simplex t opposite to the vertex of s with
index i. There are similar adjacency operations as listed for the chull type above. In general, a vertex
belongs to many simplices.

2 The empty set is a facet o f every s implex.

K. Mehlhorn et al. / Computational Geometry 10 (1998) 289-303 299

Any simplex of DT belongs either to the nearest or to the furthest site Delaunay triangulation or
both in the degenerate case. The test DT.simplex_ofmearest(dt_simplex s) returns true if s belongs to
the nearest site triangulation and the test DT.simplex_of_furthest(dt~implex s) returns true if s belongs
to the furthest site triangulation.

5.3. Further implementation issues

The implementation of type chull follows [5] and Delaunay triangulations are reduced to convex hulls
through the well-known lifting map, see, for example, [6,7]. Based on our kernel a class regl_complex
was implemented that can represent so-called regular simplicial complexes. A simplicial complex is
called regular if all maximal simplices, i.e., simplices that are not a subsimplex of another simplex
of the complex, have the same dimension. The class regl_complex provides operations for navigation
through the complex and update operations. The class chull is derived from regl_complex and the class
dd_delaunay is derived from chull.

The insertion of a new point x to the convex hull follows a simple scheme. If x implies a dimension
jump (x is not contained in the affine hull of the current convex hull) then the update of C is just an
expansion of all simplices of C by a new vertex located in x. If x implies no dimension jump then
C must only be updated if x is outside the hull and the update concerns all boundary facets visible
from x. The implementation handles degenerate inputs as described in [3].

The work horse for the query operations on convex hulls and Delaunay triangulations is a method

C.visibility_search(dd_rat~oint x, list<ch_facet>& visible_facets,

int& location, ch_facet& f);

that constructs the list of all x-visible hull facets in visible_facets, returns the position of x with respect
to the current hull in location (-1 for inside, 0 for on the boundary, and + 1 for outside) and, if x is
contained in the boundary of C, returns a facet incident to x in f .

The membership query and the visible facets query for hulls are easily realized by this method and
the nearest neighbor and the range query for Delaunay triangulations use it in an essential way. The
nearest neighbor query for Delaunay triangulations lifts the query point (using the lifting map), then
determines all visible facets of the hull, and then selects the best vertex by linear search through their
vertices. This method is only efficient in low-dimensional space. The range query with spheres lifts
the sphere (using the lifting map) and then finds all vertices of the hull that lie below the resulting
hyperplane which is obtained by the lifting map.

We use program checking [2,15] in our implementation. In particular:
- the class regl_complex provides a method RC.check_topology() that partially checks whether RC is

an abstract simplicial complex, 3 and a method RC.is_Delaunay(kind) that checks whether RC is a
nearest (kind = nearest) or furthest (kind = furthest) site Delaunay triangulation of its vertex set;

- the class chull provides a method C.check() that verifies convex hulls as described in [15];

3 The method checks whether the neighborhood relationship on simplices is symmetric, whether all vertices of a simplex
are distinct, and whether two neighboring simplices share all but one of their vertices. It does not check whether simplices
that share all but one of their vertices are actually neighbors in the complex.

300 K. Mehlhorn et al. / Computational Geometry. 10 (1998) 289-303

- we have algorithms that check whether a graph is a nearest or furthest site Delaunay diagram of its
vertex set, whether a graph is a triangulation of its vertex set, and whether a graph is a nearest or
furthest site Voronoi diagram.

The representation of convex hulls and Delaunay triangulations in data types chull and dd_delaunay
is simplex-based, i.e., simplices are the main objects and lower dimensional faces are only implicitly
represented. In two-dimensional space there is an alternative representation which makes the vertices
and edges the primary objects and represents simplices (-- triangles) implicitly as faces of a planar
graph. This is the representation used for two-dimensional Delaunay triangulations (type delaunay) in
LEDA. If DT has type dd_delaunay, DTG has type GRAPH<POINT, int>, 4 and kind is one of nearest
or furthest, then

DT. graphrep(DTG, kind) ;

constructs the graph representation of DT in DTG. All LEDA graph algorithms can then be applied
to DTG. For example,

compute_voronoi(DTG, VD, kind) ;

will construct the graph representation of the Voronoi diagram in VD, and

edge_array<rational> dist(DTG) ;

forall_edges(e, DTG)

dist[e] = DTG[source(e)] .sqr_dist(DTG[target(e)]);

list<edge> L = MIN_SPANNING_TREE(DTG,dist);

will construct in L the set of edges comprising a minimum spanning tree of DTG.

6 . D o c u m e n t a t i o n

The full documentation of the kernel consists of about 240 pages [10] and the documentation of the
application layer comprises about 100 pages [12].

Fig. 4 shows the implementation of the orientation-predicate of the class dd_rat_point and one
member operation of class chull. For each class the documentation and the implementation are collected
in a noweb-file. See [18] for an introduction to noweb. Different tools are used to give different views
of the noweb-file: the noweb tool n o t a n g l e extracts the code, i.e., the view needed by the C++
compiler, and the LEDA tools Lman and L d o c give the manual view and the documentation view,
respectively. See [13] for an introduction to this tools.

The figure also illustrates the vertical interaction between the software layers. In case of the
orientation-predicate the determinant calculation is done by determinant() provided as a friend of
integer_matrix. Most affine operations on point tuples map to the solution of a corresponding lin-
ear system calculated by our linear algebra layer. Notice that precondition checks are formulated as
preprocessor macros which can be switched off by the flag -Dr,EDA_CHECKING_OFF.

4 In LEDA, GRAPH<POINT, int> is the type of graphs where each node has an associated information of type POINT
and each edge has an associated information of type int; the edge information is not used in this code.

K. Mehlhorn et al. / Computational Geometry 10 (1998) 289-303 301

Orientat ion

(dd_rat_point.h) = --

int orientation(const array<rat_point> & A);

Semant l c s :de te rmines the orientation of the points in A, where A consists of d + 1 points in
d-space. This is the sign of the determinant

1 1 1 1
A[O] A[I] . . . Aid]

where A[i] denotes the Cartesian coordinate vector of the i th point in A.

We are given an array A of d + 1 points in d-space and compute their orientation. Multiplying
the / th column of the above matrix by the homogenizing coordinate of A[i] leaves the sign of the
determinant unchanged. We set up this matrix and return its determinant. Actually, it is more
convenient to transpose it and to make the first row the last. This changes the sign if the number
of rows is even, i.e., if d is odd.

(implement ing dd_rat_point)+~
i n t
orientation(const array< dd_rat_point > ~ A)
{

TUPLE_DIM_CHECK(A,orientation)

int al = A.lo,(); // the lo,er index start of IAI

int d = A.high() - al; // A contains d + i points

LEDA_0PT_PREC0ND((A[all.dim() == d),"orientation: \

needs AE].dim() + I many input points.")

integer_matrix M(d+l); // quadratic

for (int i = O; i <= d; i++)

for (int j = 0; j <= d; j++)

M(i,j) = A[al + i].hcoord(j);

int ro,_eorrection = ((d ~ 2 == 0) ? +I : -I);

// ,e invert the sign if the row number is even i.e. d is odd

return row_correction * sign of_determinant(M);

Fig. 4. The implementation style.

7. Experimental experiences

Both programs rely heavily on the fact that the kernel is exact. For example, the insertion routine
for convex hulls distinguishes cases according to whether the newly inserted point lies in the affine
hull of the points already present or not, and the checking programs would hardly make sense without
exact primitives.

302 K. Mehlhorn et al. / Computational Geometry 10 (1998) 289-303

In the early stages of program development the checking feature of the kernel was particularly
useful. For example, the convex hull program needs to compute the hyperplane defined by a set of
points. This can be done by solving a linear system. In the first version of the program we set up the
wrong linear system. It was very useful that the linear system solver gives a proof of unsolvability
and does not just claim unsolvability. This located the error fairly quickly.

We have used classes chull and ddMelaunay on problems up to dimension 10. We have also
compared it to the qhull-program of Barber et al. [1] and the hull-program of Clarkson. The first
method computes approximate convex hulls and the latter method computes exact hulls but works
only for a limited (albeit large) range of coordinate values. Both methods are significantly faster than
ours. This is mostly due to their use of floating point arithmetic. Neither of the algorithms provides
the rich functionality that we provide.

8. Availability and extensions

The whole kernel has been used internally since June 96 and is available in form of an exten-
sion package to the LEDA software library. The complete specification of the listed data types
and the code projects can be obtained via WWW from the LEDA home page h t t p : / / w w w .
mpi -sb. mpg. de / LEDA.

In cooperation with the CGAL-project the code base was extended with number type templatization.
This allows runtime comparisons depending on the plugged in arithmetic components. We want to
evaluate the use of modular integer data types within the linear algebra packet as well as in different
geometric application scenarios. An adapted version of the templatized code will become part of the
CGAL-kernel.

9. Conclusions

We described the layered design of a kernel for higher dimensional computational geometry and gave
two examples for applications. The primary goal was to develop a useful base for geometric application
design including checkable correctness, efficiency based on existing software library concepts and a
clear and comprehensive documentation scheme.

References

[1] C. Barber, D. Dobkin, H. Hudhanpaa, The quickhull program for convex hulls, ACM Trans. Math. Software
22 (1996) 469-483.

[2] M. Blum, M. Luby, R. Rubinfeld, Self-testing/correcting with applications to numerical problems, in: Proc.
22nd Annual ACM Symp. on Theory of Computing, 1990, pp. 73-83.

[3] C. Burnikel, K. Mehlhorn, S. Schirra, On degeneracy in geometric computations, in: Proc. SODA '94, 1994,
pp. 16-23.

[4] J. Canny, B.R. Donald, E.K. Ressler, A rational rotation method for robust geometric algorithms, in: Proc.
of the 8th ACM Symposium on Computational Geometry, 1992, pp. 251-260.

[5] K.L. Clarkson, K. Mehlhorn, R. Seidel, Four results on randomized incremental constructions, Com-
putational Geometry: Theory and Applications 3 (1993) 185-212.

K. Mehlhorn et al. / Computational Geometry 10 (1998) 289-303 303

[6] H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer, Berlin, 1987.
]7] H. Edelsbrunner, R. Seidel, Voronoi diagrams and arrangements, in: J. O'Rourke (Ed.), Proceedings of the

Symposium on Computational Geometry, Baltimore, MD, June 1985, ACM Press, New York, pp. 251-262.
[8] J. Edmonds, Systems of distinct representatives and linear algebra, J. Res. Nat. Bureau Standards 71(B)

(1967) 241-245.
[9] A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, S. Schrnherr, The CGAL kernel: A basis for geometric

computation, in: M.C. Lin, D. Manocha (Eds.), Applied Computational Geometry: Towards Geometric
Engineering: Workshop (FCRC-96; WACG-96), Philadelphia, PA, USA, 27-28 May 1996; selected papers,
in: Lecture Notes in Computer Science, Vol. 1148, Springer, Berlin, 1996, pp. 191-202.

[I0] Lep distribution: http : //www. mpi- sb. mpg. de/LEDA/www/leps/dd_geokernel, html.
[11] D.E. Knuth, The Art of Computer Programming, Vol. 2, Seminumerical Algorithms, Addison-Wesley,

Reading, MA, 1969.
[12] K. Mehlhorns home page: h t t p : / /www.mpi - sb .mpg . d e / ~ m e h Z h o r n / P r o g r a m s , html .
[13] LEDA book preview: http : //www .mpi-sb .mpg. de/~mehlhorn/LEDAbook, html.
[14] K. Mehlhorn, S. N~iher, LEDA, a platform for combinatorial and geometric computing, Commun. ACM 38

(1995) 96-102.
[15] K. Mehlhorn, S. Naher, T. Schilz, S. Schirra, M. Seel, R. Seidel, C. Uhrig, Checking geometric programs or

verification of geometric structures, in: Proc. of the 12th Annual Symposium on Computational Geometry,
1996, pp. 159-165.

[16] K. Mehlhorn, S. N~iher, C. Uhrig, The LEDA User Manual, 1995.
[17] M. MUller, J. Ziegler, An implementation of a convex hull algorithm, Technical Report MPI-I-94-105,

Max-Planck-Institut fur Informatik, Saarbrticken, 1994.
[18] Noweb home page: http: //www. ca. virginia, edu/~nr/noweb/.
[19] A. Schrijver, Theory of Linear and Integer Programming, Wiley, Chichester, 1986.
[20] M. Seel, A runtime test of integer arithmetic and linear algebra in LEDA, Research Report MPI-I-96-1-033,

Max-Planck-Institut far Informatik, Saarbriicken, 1996.
[21] C.K. Yap, Fundamental Problems in Algorithmic Algebra, Princeton University Press, Princeton, NJ, 1997.

