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Abstract 

In this paper we describe and discuss a kernel for higher-dimensional computational geometry and we present 
its application in the calculation of convex hulls and Delaunay triangulations. The kernel is available in form of 
a software library module programmed in C++ extending LEDA. We introduce the basic data types like points, 
vectors, directions, hyperplanes, segments, rays, lines, spheres, affine transformations, and operations connecting 
these types. The description consists of a motivation for the basic class layout as well as topics like layered 
software design, runtime correctness via checking routines and documentation issues. Finally we shortly describe 
the usage of the kernel in the application domain. © 1998 Elsevier Science B.V. 

Keywords: Software library; Implementation; Convex hull; Delaunay triangulation 

1. Introduction 

A growing community within computer science, academia and industry tries to transfer the theo- 
retical algorithmic knowledge to practical usable programs. What already happened in other parts of 
computer science, namely the development of software libraries to speed up program implementation 
is now also an issue within geometric computing. We are now in a situation where the available com- 
puting power, the recent developments concerning exact arithmetic packages, and the identification of 
reasonable geometric primitives allow us to design a programming toolbox for this purpose. 

We describe and discuss a kernel for higher-dimensional computational geometry. We have imple- 
mented all basic data types like points, vectors, directions, hyperplanes, segments, rays, lines, spheres, 
affine transformations, and operations connecting these types in form of C++ class objects. The kernel 
is structured into three layers: 
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- arbitrary precision integer and rational arithmetic (classes integer and rational), 
- exact linear algebra (classes integer_vector and integer~natrix), and 
- basic geometric objects (classes dd_rat_point, dd_rat_vector, dd_rat_direction, dd_rat_hyperplane, 

dd_rat_segment, dd_rat_ray, dd_rat_line, dd_rat_sphere, and dd_aff_transformation). 
On top of the kernel we implemented some classical computation tasks in higher-dimensional CG like 
convex hulls and Delaunay triangulations. To make the kernel a toolbox for a wide user community 
and to give the whole project some pedagogical value we aimed for the following. 

Ease of use--we aimed for a natural and intuitive interface as far as construction of objects, the 
conversion between objects, and the interaction of the classes and the operations are concerned. The 
naming scheme tries to achieve a compromise between mnemonics and word length. We followed 
a clean, complete and adaptable documentation scheme which provides all necessary information 
for the user of the kernel and at the same time is integrated into the implementation to enforce 
consistency between implementation and documentation. The information provided by this manual 
production toolset consists of prototype information, semantic preconditions, helpful implementation 
details and runtime information. 

Functionality--we tried to provide a comprehensive functionality of the objects while avoiding in- 
terface bloating. The identification of the set of primitives for higher level geometric applications 
was partly a dynamic process influenced by application design (see Section 7). 

Layered design--we designed the kernel in a layered fashion for several reasons. First, the func- 
tionality of the lower levels is interesting in its own right. In particular, it can be used to realize 
additional geometric primitives. Second, the fact that the linear algebra layer provides extensive 
testing and checking routines considerably simplified the development of the geometry layer. 

Efficiency--the code is designed to be as fast as possible respecting our primary goal: to develop 
modular, reusable and maintainable components which are not prone to arithmetic shortcomings 
like rounding errors. To optimize the runtime behaviour we use the LEDA memory management 
and a handle-rep scheme to improve memory consumption and to allow identity tests on objects. 

The design of our kernel was mainly influenced by three sources: the experiences with the two- 
dimensional LEDA geometry kernel [16], our experiences with an experimental higher-dimensional 
kernel [17], and discussions with the group developing the CGAL-kernel [9]. 

In this paper we want to give an overview of the kernel and the applications on top of it. We refer the 
reader to our web-site [10] for the complete set of manual pages and for the complete documentation 
of the kernel and the application packet. 

In the following sections we describe the three software layers of the kernel and the application 
layer, give implementation details, and report about experience with the two software packets. 

2. Arithmetic 

The bottom layer of our kernel is exact integral computing. We use the LEDA datatypes integer 
and rational. Any other bignum package providing the required functionality could be used instead. 

The LEDA type integer realizes the mathematical type integer. The arithmetic operations ÷, - ,  , ,  
/ ,  -~ - ,  - ,  (unary), + + ,  - - ,  the modulus operation (%, %=), bitwise AND (&, &=), bitwise 
OR (I, I=), the complement operator (~), the shift operators (<<, >>), the comparison operators <, 
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Table 1 
Runtime comparison of integer arithmetic 

291 

#Bits #Ops LEDA I GNU in seconds 

+ - , / 

32 106 1.1 5.1 1.3 5.5 1.6 7.5 4.7 26.6 

64 106 1.2 5.0 1.3 5.4 4.2 10.9 24.8 36.6 

500 106 1.8 7.3 1.86 7.8 158.8 272.7 225.7 375.3 

1000 106 2.7 10.4 2.8 13.4 591.6 1063.4 736.5 1281.3 

~<, >, ~>, = = ,  !=, and the stream operators are all available. These operations never overflow and 
always yield the exact result. Of course, they may run out of memory. 

Integers are essentially implemented by a vector of unsigned longs. The sign and the size are 
stored in extra variables. Some time critical functions are implemented in SPARC assembler code. 
The running time of addition is linear. In the multiplication Karazuba-Offman method [11] is used. 
Thus the running time is O(Ll°g3), where L is the length of the operands. 

A LEDA rational is essentially a pair of integers. The arithmetic operations +, - ,  , ,  / ,  + - ,  - ,  
• =,  / = ,  - (unary), + + ,  - -  are available on rationals. In addition, there are functions to extract the 
numerator and denominator, to cancel out the greatest common divisor of numerator and denominator, 
to compute squares and powers, to round rationals to integers, and many others. LEDA's rational 
numbers are not necessarily normalized, i.e., numerator and denominator of a rational number may 
have a common factor. A call p.normalize( ) normalizes p. This involves a gcd-computation to find 
the common factor m in numerator and denominator and two divisions to remove the m. Since 
normalization is a fairly costly process we do not do it automatically. 

We have run some runtime tests to compare the LEDA integers with the GNU Integers included 
in GNU's C++ library. The tests have been executed on an Ultrasparc 140. We tested the four basic 
operations +, - ,  , ,  / iteratively on a table of k-bit random numbers. The results are shown in Table 1. 
A more comprehensive test description can be found in [20]. 

3. Linear algebra 

The second layer of our kernel provides the standard operations of linear algebra encapsulated in 
the two classes integer_vector and integer_matrix. These are vectors and matrices with integer entries 
(= entries of type integer). The possible operations on matrices and vectors include the following. 

Construction mechanisms--we can construct m-vectors, m x n-matrices from a tuple of equidimen- 
sional vectors, identity matrices etc. 

Data access operations--we can access the integral and rational components, the dimensions of ma- 
trices and vectors, and the rows and columns of matrices. 

Arithmetic operations--we provide the inner product, scalar multiplication to vectors and matrices, 
and vector- and matrix-addition and -multiplication. 

Operations based on solving a linear system--we can determine the solution of a linear system 
Ax = b, calculate the determinant, rank, inverse, and independent columns of a matrix. 
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1. D e f i n i t i o n  

An instance of  da ta  type integer_matrix is a mat r ix  of variables of type integer, the so called ring 

type. The  ar i thmetic  type integer is required to behave like integers in the mathemat ica l  sense . . .  

2. Creation 

integer_matrix M(int  n, int m);  

creates an instance M of type integer_matrix of dimension n × m.  

integer_matrix M( array< integer_vector > A); 

creates an instance M of type integer_matrix. Let A be an array of m 

column - vectors of common dimension n. M is initialized to an n x m 
mat r ix  with the columns as specified by A. 

3. Operations 

int M.diml  ( ) r e tu rns  n, the number  of rows of M.  

integer_vector& M.row( int i) re tu rns  the i - th row of M (an m - vector).  
Precondition: 0 < i < n - 1. 

integer& M(int  i, int j )  re tu rns  Mi,j .  
Precondition: 0 < i < n -  1 and 0 < j <: m -  1. 

integer_matrix M + M1 Addition. 
Precondition: 
M . d i m l  0 = M l . d i m l  0 
M l . d i m 2  0 .  

and M.dim2 0 = 

bool inverse(integer_matrix M, integer_matrix& inverse, integer& D, integer_vector& c) 

determines whether  M has an inverse. It also computes  either the inverse as 
( l / D )  • inverse or a vector c such tha t  c T • M = 0. 

bool linear_solver(integer_matrix M, integer_vector b, integer_vector& x, integer& D, 
integer_matrix& spanning_vectors, integer_vector& c) 

determines the complete solution space of the linear sys tem M • z = b. If  the 
system is unsolvable then ca" • M = 0 and c a" • b ¢ 0. If  the sys tem is solvable 

then (1/D)x is a solution, and the columns of spanning_vectors are a maxi- 
mal set of linearly independent  solutions to the corresponding homogeneous 

system. 
Precondition: M . d i m l  0 = b.dim 0 .  

4. I m p l e m e n t a t i o n  

The  da ta type  integer_matrix is implemented by two-dimensional  arrays o£ variables of type integer. 
Operat ions  determinant, inverse, linear~olver, and rank take t ime O(n3), column takes t ime O(n), 
row, dim1, dim~, take constant  time, and all other  operat ions take time O(nm). The  space re- 
quirement  is O(nm). 

Fig. 1. The manual page of  class integer_matrix, an excerpt. 
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Table 2 
Runtime comparison of linear algebra modules 

dim LEDA Maple V R3 Mathematica 2.0 

20 1.3s 15.8s 31.6s 

30 7.6s 92.4s 211.3s 

40 28.4 s 363.7 s 840.3 s 

100 32rain > 1 h > 1 h 
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The core operation of the last category is a Gaussian elimination scheme for a non-homogeneous 
linear system Ax  = b as described by Edmonds [8]. For a recent reference see the books of Schrijver 
[19, Part I] or Yap [21, Lecture X]. Basically we transform the original matrix into a diagonalized 
matrix of integral entries which encodes the numerators of the solution vector and accumulate in 
parallel a common denominator of the numerator entries. 

Fig. 1 shows an excerpt of the manual page of class integer_matrix. The same style is used for all 
other types of the kernel. Each implemented class is documented by four major sections Definition, 
Creation, Operations and Implementation. The first part gives an overview of the class specification 
like intended usage of the class and implementation features which influence this usage like exact 
arithmetic and proof features. The second and third part describe the user accessible operations of the 
class like constructors, member operations, and functions which work on the class. The description of 
each operation gives the semantics of it, describes the result transfer by return values and reference 
parameters, and states preconditions for the usage of the operation. The fourth part of our manual page 
completes the description by helpful implementation details and runtime and space bounds. 

The cited description of the friend function linear~olver shows nicely the proof feature of our core 
operation. Either a solution x is calculated which can be easily checked by substitution into the linear 
system M x  = b or a vector c is provided which proves the unsolvability of the system. Of course 
there is also a selftest incorporated in the code which can be switched on by a compilation flag and 
thus the testing can be done permanently. 

In a second rnntime test we compared the LEDA linear algebra module with commercial math 
packages like Maple V and Mathematica 2.0. We solved randomly generated non-homogeneous linear 
systems with dim rows and columns and 32 bit entries. The tests were executed on a Sun Sparc 4 
with 40 MHz. The results are shown in Table 2. 

4. Geometric classes 

As mentioned above we provide the geometric classes dd_rat_point, dd_rat_vector, dd_rat_direction, 
dd_rat_hyperplane, dd_rat_segment, dd_rat_ray, dd_rat_line, dd_rat_sphere and dd_aff_transformation. 

We first give a motivation for our interface design and review briefly the basics of analytical 
geometry. We use d to denote the dimension of the ambient space and assume that our space is 
equipped with a standard Cartesian coordinate system. The basic object within this space is a point p, 
which we identify with its Cartesian coordinate vector p = (P0, • • •, Pd-1), where the pi, 0 ~< i < d, are 
rational numbers. We store a dd_rat~point by homogeneous coordinates (h0,. • •, hd) where Pi = h~/hd 
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for all i, 0 ~< i < d, and the hi's are integer (LEDA type integer). The homogenizing coordinate hd 
is always positive. 

Points, vectors and directions are closely related but nevertheless clearly distinct types. In order 
to work out the relationship, it is useful to identify a point with an arrow extending from the origin 
(= an arbitrary but fixed point) to the point. In this view a point is an arrow attached to the origin. 
A vector is an arrow that is allowed to float freely in space, more precisely, a vector is an equivalence 
class of arrows where two arrows are equivalent if one can be moved into the other by a translation 
of space. Points and vectors can be combined by some arithmetical operations. For two points p and 
q the difference p - q is a vector (= the equivalence class of arrows containing the arrow extending 
from q to p) and for a point p and a vector v, p + v is a point. 

All operations of linear algebra apply to vectors, i.e., vectors can be stretched and shrunk (by 
multiplication with a scalar) and inner and cross product applies to them. On the other hand, geometric 
tests like affine collinearity or orientation only apply to points. Note that we distinguish the vector 
type dd_rat_vector in this scenario of geometric objects from the data type integer_vector, which we 
use to formulate calculations in our arithmetic linear algebra layer. We cannot identify both because 
their role and thereby their functionality within their respective code module is quite different and we 
don't want to have this mixed up. 

A direction is also an equivalence class of arrows, where two arrows are equivalent if one can be 
moved into the other by a translation of space followed by stretching or shrinking. Alternatively, we 
may view a direction as a point on the unit sphere. In two-dimensional space directions correspond 
to angles. As in the case of dd_rat_point we store dd_rat_vector and dd_rat_direction, respectively, as 
a homogeneous tuple of integers with positive homogenizing component. 

The common one-dimensional straight-line objects in d-space like lines, rays and segments (which 
we allow to be trivial) are implemented in the classes dd_rat_line, dd_rat_ray and dd_rat_segment and 
determined by a pair of points. 

With respect to the user interface we can group together points, vectors, directions, and on the other 
hand segments, rays and lines. For the first group there are common operations to access Cartesian 
and homogeneous coordinates. Conversions within the first group can be made by explicit operations. 
For the second group there are similar operations to access the coordinates of the determining pair of 
points. 

Oriented hyperplanes in the class dd_rat_hyperplane can be used to model halfspaces and affine 
hulls of (d - 1)-dimensional point sets. They are internally stored as a (d + 1)-tuple of integer 
coefficients. Finally oriented spheres of type dd_rat_sphere are helpful in computations involving 
proximity calculations like Voronoi diagrams or Delaunay triangulations. They are stored as a tuple 
of d + 1 dd_rat_points. 

For all of our basic geometric types we have affine transformations, which can be used by a call of a 
common member operation which gets an dd_aff_transformation-instance as an argument and delivers 
a transformed object. 

All object classes mentioned use a common handle-rep scheme which is already used in many 
modules of LEDA. We distinguish between a front-end object which is created by the constructor and 
a storage object of concrete geometric information which is referenced from the front-end object. The 
advantages of this scheme emerge in case of frequent copy construction and assignment where only 
references have to be redirected and no geometric information has to be copied. For large objects 
this lessens memory consumption and allows us to improve equality checks by testing the reference 
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1. D e f i n i t i o n  

An instance of da ta  type dd_rat_point is a point with homogeneous coordinates in an arbi t rary  
dimensional s p a c e . . .  

2. C r e a t i o n  

dd_rat_point p(int d = 2); 

introduces a variable p of type dd_rat_point in d-dimensional space. 

dd_rat_point p( integer_vector c, integer D);  

introduces a variable p of type dd_rat_point initialized to the point with 
homogeneous coordinates ( + c 0 , . . . ,  :t=ca-1, +D),  where d is the dimen- 
sion of c and the sign chosen is the sign of D.  
Precondition: D is non-zero. 

3. O p e r a t i o n s  

int 

rational 

integer 

dd_rat_vector 

p.dim( ) 

p.coord( int i) 

p.hcoord( int i) 

p - q  

dd_rat_point p + dd_rat_vector v 

int or ienta t ion(array< dd_rat_point > A) 

returns the dimension of p. 

returns the i th  Cartesian coordinate of p. 

returns the i th  homogeneous coordinate  of p. 

returns p - q. 
Precondition: v.d i rn( )  = =  q .d im( ) .  

returns p + v. 
Precondit ion:  p.dim( ) = =  v . d i m ( ) .  

determines the orientat ion of the points in A, where A consists of d + 1 points in d - 
space. This  is the sign of the determinant  

1 1 1 1 
A[0] A[1] . . .  A[d] 

where A[i] denotes the Cartesian coordinate  vector of the i th  point in A. 
Precondition: A.size( ) == d + 1 and A[i].dim( ) == d VO < i < d. 

bool contained_in_affine_hull( array< dd_rat_point > A, dd_rat_point z) 

determines whether  z is contained in the affine hull of the points in A. 

4. I m p l e m e n t a t i o n  

Points  are implemented  by arrays of integer as an i tem type.  All operat ions like . . .  

Fig. 2. The manual page of class rid_rat_point, an excerpt. 
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addresses before a comparison of geometric coordinate information. As in the case of our linear algebra 
module we use LEDA's improved memory management module which gives us a certain speed-up 
compared to the standard C++ allocation scheme. 

We now take a closer look at two example manual pages, by which we elaborate further on the 
features of our data types. Fig. 2 shows an excerpt from the point class manual page. 

The default dimension of all objects is 2. This means that a call to the standard constructor 
dd_rat_point( ) delivers an instance of type dd_rat_point for planar geometry. A point in d-dimensional 
space is constructed by p(integer_vector c, integer D) or p(integer_vector c). In addition, there are 
standard initialization operations which allow comfortable creation of objects for the dimensions 2 
and 3, which are not shown here. The data access operations allow access to the dimension and 
to Cartesian and homogeneous coordinates. Operator overloading allows the intuitive calculation of 
dd_rat49oint difference, which results in a dd_rat_vector and the translation of dd_rat49oints by adding 
a dd_rat_vector. The orientation predicate and other affine operations use LEDA arrays as a container 
type for a tuple of points. 

The basic operations provided on straight line objects are mainly position checks of points with 
respect to the objects, like contains( ) and intersection calculation between all higher dimensional 
objects like segments, rays, lines and hyperplanes. 

To manipulate all the basic objects we implemented affine transformations in form of a class 
dd_aff_transformation. Objects of this type are basically transformation matrices which can be applied 
to the objects by the common member function transform(). We provide basic construction of such 
transformations like translation, scaling, rotations of a 2D-subspace spanned by base vectors. As 
general planar rotations specified by angles are not representable by rational coefficients we offer a 
mechanism to construct rational approximated rotation instances calculated with respect to a given 
direction (angle) and an error bound as described in [4]. The primitive affine transformations can 
finally be combined. The usage of this class is presented in Fig. 3. 

5. Applications: convex hulls and Delaunay triangulations 

The convex hull and the Delaunay triangulation problem are traditionally specified as functions, i.e., 
given a set of points compute their convex hull or their Delaunay triangulation in some representation. 
We specify both problems as data types that support insertions and a large variety of query operations. 
In the case of convex hulls we support navigation through the interior and the boundary of the 
hull and we support membership and visibility queries. In the case of Delaunay triangulations we 
support navigation through the triangulation, we support locate 1 and nearest neighbor queries, and 
we support range queries with spheres and simplices. For two-dimensional convex hulls and Delaunay 
triangulations we also support an interface to the LEDA graph and window classes [14,16]. In this 
way one can, for example, construct two-dimensional nearest and furthest site Voronoi diagrams and 
minimum spanning trees, display hulls and Delaunay triangulations. 

The next two sections present parts of the specifications of convex hulls and Delaunay triangulations, 
respectively. 

A locate query finds the simplex of the triangulation containing the query point. 
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1. D e f i n i t i o n  

An instance of the da ta  type dd_aff_transformation is an affine t ransformat ion of d-dimensional 
space. It  is specified by a square integer mat r ix  M of dimension d + 1. All entries in the last row 
of M except the diagonal entry must be zero; the diagonal entry must be non-zero. A point p with 
homogeneous coordinates (p[0] , . . . ,p[d])  can be t ransformed into the point p.transform(A), where 
A is an affine t ransformat ion created from M by the constructors  below. 

2. C r e a t i o n  

dd_aff_transformation t(int d = 2); 

introduces a t ransformat ion in d-dimensional space. 

3. O p e r a t i o n s  

dd_aff _transformation dd_aff _transformation : : translation( dd_rat_vector vec ) 

returns a t ranslat ion corresponding to the translat ion vector vec. 

dd_aff_transformation dd_aff_transformation::scahng( integer num, integer den, int d = 2) 

returns a scaling by a scale factor num/den.  

dd_aff_transformation dd_aff_transformation:: planar_rotation( dd_rat_direction dir, integer num, 
integer den, int el = 0, 
int e~ = 1, int d = 2) 

returns a planar rotat ion within the plane spanned by the base vec- 
tors b~l and be2 in d-space. The  rotat ions parameters  are given by 
the 2-dimensional direction dir, such that  the difference between the 
sines and cosines of the rotat ion given by dir and the approximat ion 
rotat ion are at most  num/den  each. 
Precondition: dir.dim( ) = =  2 and num < den is positive and 0 < 
el < e2 < d 

dd_aff_transformation t$ * tl 

composit ion of t ransformations.  Note that  t ransformations are not  
necessarily commutat ive ,  t2 • t l  is the t ransformat ion which trans- 
forms first by t l  and then by t2. 

4. I m p l e m e n t a t i o n  

Affine Transformat ions  are implemented  by matrices of integers as an i tem type.  All operat ions 
like creation, init ialization, input  and output  on a t ransformat ion ~ take t ime O(~.dim()2). dim( ) 
takes constant  t ime. The  operat ions for inversion and composit ion have the cubic costs of the used 
mat r ix  operations.  The  space requirement  is O(t.dim()2).  

Fig. 3. The manual page of class dd_affAransformation, an excerpt. 
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5.1. Convex hulls 

An instance C of type chull is the convex hull of a multi-set S of points in d-dimensional space. 
We call S the underlying point set and d or dim the dimension of the underlying space. We use dcur 
or dcurrent to denote the affine dimension of S. The data type supports incremental construction of 
hulls. 

The closure of the hull is maintained as a simplicial complex, i.e., as a collection of simplices 
where the intersection of any two is a face of both. 2 In the sequel we reserve the word sim- 
plex for the simplices of dimension dcur. For each simplex there is an item of type ch_simplex 
and for each vertex there is an item of type ch_vertex. Each simplex has 1 + dcur vertices in- 
dexed from 0 to dcur; for a simplex s and an index i, C.vertex(s, i) returns the ith vertex of s. 
For any simplex s and any index i of s there may or may not be a simplex t opposite to the 
ith vertex of s. The function C.opposite3implex(s, i) returns t if it exists and returns nil oth- 
erwise. If t exists then s and t share dcur vertices, namely all but the vertex with index i of 
s and the vertex with index C.index_of_vertex_in_opposite3implex(s, i) of t. Assume that t exists 
and let j = C.index_of_vertex_in_opposite_simplex(s, i). Then s = C.opposite_simplex(t,j) and i = 
C. index_of_vertex_in_opposite 3implex( t, j ). 

5.2. Delaunay triangulations 

An instance DT of type dd_delaunay is the nearest and furthest site Delaunay triangulation of a set S 
of points in some d-dimensional space. We call S the underlying point set and d or dim the dimension 
of the underlying space. We use dcur or dcurrent to denote the affine dimension of S. The data type 
supports incremental construction of Delaunay triangulations and various kinds of query operations 
(in particular, nearest and furthest neighbor queries and range queries with spheres and simplices). 

A Delaunay triangulation is a simplicial complex. All simplices in the Delaunay triangulation have 
dimension dcur. In the nearest site Delaunay triangulation the circumsphere of any simplex in the 
triangulation contains no point of S in its interior. In the furthest site Delaunay triangulation the 
circumsphere of any simplex contains no point of S in its exterior. If the points in S are co-circular 
then any triangulation of S is a nearest as well as a furthest site Delaunay triangulation of S. If the 
points in S are not co-circular then no simplex can be a simplex of both triangulations. Accordingly, 
we view DT as either one or two collection of simplices. If the points in S are co-circular there is just 
one collection: the set of simplices of some triangulation. If the points in S are not co-circular there 
are two collections. One collection consists of the simplices of a nearest site Delaunay triangulation 
and the other collection consists of the simplices of a furthest site Delaunay triangulation. 

For each simplex there is an item of type dt3implex and for each vertex of the triangulation there 
is an item of type dt_vertex. Each simplex has 1 + dcur vertices indexed from 0 to dcur. Similar 
operations as for convex hulls are provided. For any simplex s and any index i, DT.vertex_of(s, i) 
returns the ith vertex of s. There may or may not be a simplex t opposite to the vertex of s with 
index i. There are similar adjacency operations as listed for the chull type above. In general, a vertex 
belongs to many simplices. 

2 The  empty  set is a facet o f  every s implex.  
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Any simplex of DT belongs either to the nearest or to the furthest site Delaunay triangulation or 
both in the degenerate case. The test DT.simplex_ofmearest(dt_simplex s) returns true if s belongs to 
the nearest site triangulation and the test DT.simplex_of_furthest(dt~implex s) returns true if s belongs 
to the furthest site triangulation. 

5.3. Further implementation issues 

The implementation of type chull follows [5] and Delaunay triangulations are reduced to convex hulls 
through the well-known lifting map, see, for example, [6,7]. Based on our kernel a class regl_complex 
was implemented that can represent so-called regular simplicial complexes. A simplicial complex is 
called regular if all maximal simplices, i.e., simplices that are not a subsimplex of another simplex 
of the complex, have the same dimension. The class regl_complex provides operations for navigation 
through the complex and update operations. The class chull is derived from regl_complex and the class 
dd_delaunay is derived from chull. 

The insertion of a new point x to the convex hull follows a simple scheme. If x implies a dimension 
jump (x is not contained in the affine hull of the current convex hull) then the update of C is just an 
expansion of all simplices of C by a new vertex located in x. If x implies no dimension jump then 
C must only be updated if x is outside the hull and the update concerns all boundary facets visible 
from x. The implementation handles degenerate inputs as described in [3]. 

The work horse for the query operations on convex hulls and Delaunay triangulations is a method 

C.visibility_search(dd_rat~oint x, list<ch_facet>& visible_facets, 

int& location, ch_facet& f); 

that constructs the list of all x-visible hull facets in visible_facets, returns the position of x with respect 
to the current hull in location ( -1  for inside, 0 for on the boundary, and + 1 for outside) and, if x is 
contained in the boundary of C, returns a facet incident to x in f .  

The membership query and the visible facets query for hulls are easily realized by this method and 
the nearest neighbor and the range query for Delaunay triangulations use it in an essential way. The 
nearest neighbor query for Delaunay triangulations lifts the query point (using the lifting map), then 
determines all visible facets of the hull, and then selects the best vertex by linear search through their 
vertices. This method is only efficient in low-dimensional space. The range query with spheres lifts 
the sphere (using the lifting map) and then finds all vertices of the hull that lie below the resulting 
hyperplane which is obtained by the lifting map. 

We use program checking [2,15] in our implementation. In particular: 
- the class regl_complex provides a method RC.check_topology( ) that partially checks whether RC is 

an abstract simplicial complex, 3 and a method RC.is_Delaunay(kind) that checks whether RC is a 
nearest (kind = nearest) or furthest (kind = furthest) site Delaunay triangulation of its vertex set; 

- the class chull provides a method C.check( ) that verifies convex hulls as described in [15]; 

3 The method checks whether the neighborhood relationship on simplices is symmetric, whether all vertices of a simplex 
are distinct, and whether two neighboring simplices share all but one of their vertices. It does not check whether simplices 
that share all but one of their vertices are actually neighbors in the complex. 
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- we have algorithms that check whether a graph is a nearest or furthest site Delaunay diagram of its 
vertex set, whether a graph is a triangulation of its vertex set, and whether a graph is a nearest or 
furthest site Voronoi diagram. 

The representation of convex hulls and Delaunay triangulations in data types chull and dd_delaunay 
is simplex-based, i.e., simplices are the main objects and lower dimensional faces are only implicitly 
represented. In two-dimensional space there is an alternative representation which makes the vertices 
and edges the primary objects and represents simplices (-- triangles) implicitly as faces of a planar 
graph. This is the representation used for two-dimensional Delaunay triangulations (type delaunay) in 
LEDA. If DT has type dd_delaunay, DTG has type GRAPH<POINT, int>, 4 and kind is one of nearest 
or furthest, then 

DT. graphrep(DTG, kind) ; 

constructs the graph representation of DT in DTG. All LEDA graph algorithms can then be applied 
to DTG. For example, 

compute_voronoi(DTG, VD, kind) ; 

will construct the graph representation of the Voronoi diagram in VD, and 

edge_array<rational> dist(DTG) ; 

forall_edges(e, DTG) 

dist[e] = DTG[source(e)] .sqr_dist(DTG[target(e)]); 

list<edge> L = MIN_SPANNING_TREE(DTG,dist); 

will construct in L the set of edges comprising a minimum spanning tree of DTG. 

6 .  D o c u m e n t a t i o n  

The full documentation of the kernel consists of about 240 pages [10] and the documentation of the 
application layer comprises about 100 pages [12]. 

Fig. 4 shows the implementation of the orientation-predicate of the class dd_rat_point and one 
member operation of class chull. For each class the documentation and the implementation are collected 
in a noweb-file. See [18] for an introduction to noweb. Different tools are used to give different views 
of the noweb-file: the noweb tool n o t a n g l e  extracts the code, i.e., the view needed by the C++ 
compiler, and the LEDA tools Lman and L d o c  give the manual view and the documentation view, 
respectively. See [13] for an introduction to this tools. 

The figure also illustrates the vertical interaction between the software layers. In case of the 
orientation-predicate the determinant calculation is done by determinant( ) provided as a friend of 
integer_matrix. Most affine operations on point tuples map to the solution of a corresponding lin- 
ear system calculated by our linear algebra layer. Notice that precondition checks are formulated as 
preprocessor macros which can be switched off by the flag -Dr,EDA_CHECKING_OFF. 

4 In LEDA, GRAPH<POINT, int> is the type of graphs where each node has an associated information of type POINT 
and each edge has an associated information of type int; the edge information is not used in this code. 
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Orientat ion 

( dd_rat_point.h ) = -- 

int orientation(const array<rat_point> & A); 

Semant l c s :de te rmines  the orientation of the points in A, where A consists of d + 1 points in 
d-space. This is the sign of the determinant 

1 1 1 1 
A[O] A[I] . . .  Aid] 

where A[i] denotes the Cartesian coordinate vector of the i th point in A. 

We are given an array A of d + 1 points in d-space and compute their orientation. Multiplying 
the / th  column of the above matrix by the homogenizing coordinate of A[i] leaves the sign of the 
determinant unchanged. We set up this matrix and return its determinant. Actually, it is more 
convenient to transpose it and to make the first row the last. This changes the sign if the number 
of rows is even, i.e., if d is odd. 

( implement ing  dd_rat_point)+~ 
i n t  
orientation(const array< dd_rat_point > ~ A) 
{ 

TUPLE_DIM_CHECK(A,orientation) 

int al = A.lo,(); // the lo,er index start of IAI 

int d = A.high() - al; // A contains d + i points 

LEDA_0PT_PREC0ND((A[all.dim() == d),"orientation: \ 

needs AE].dim() + I many input points.") 

integer_matrix M(d+l); // quadratic 

for (int i = O; i <= d; i++) 

for (int j = 0; j <= d; j++) 

M(i,j) = A[al + i].hcoord(j); 

int ro,_eorrection = ( (d ~ 2 == 0) ? +I : -I ); 

// ,e invert the sign if the row number is even i.e. d is odd 

return row_correction * sign of_determinant(M); 

Fig. 4. The implementation style. 

7. Experimental experiences 

Both programs rely heavily on the fact that the kernel is exact. For example, the insertion routine 
for convex hulls distinguishes cases according to whether the newly inserted point lies in the affine 
hull of the points already present or not, and the checking programs would hardly make sense without 
exact primitives. 
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In the early stages of program development the checking feature of the kernel was particularly 
useful. For example, the convex hull program needs to compute the hyperplane defined by a set of 
points. This can be done by solving a linear system. In the first version of the program we set up the 
wrong linear system. It was very useful that the linear system solver gives a proof of unsolvability 
and does not just claim unsolvability. This located the error fairly quickly. 

We have used classes chull and ddMelaunay on problems up to dimension 10. We have also 
compared it to the qhull-program of Barber et al. [1] and the hull-program of Clarkson. The first 
method computes approximate convex hulls and the latter method computes exact hulls but works 
only for a limited (albeit large) range of coordinate values. Both methods are significantly faster than 
ours. This is mostly due to their use of floating point arithmetic. Neither of the algorithms provides 
the rich functionality that we provide. 

8. Availability and extensions 

The whole kernel has been used internally since June 96 and is available in form of an exten- 
sion package to the LEDA software library. The complete specification of the listed data types 
and the code projects can be obtained via WWW  from the LEDA home page h t t p : / / w w w .  
mpi -sb. mpg. de / LEDA. 

In cooperation with the CGAL-project the code base was extended with number type templatization. 
This allows runtime comparisons depending on the plugged in arithmetic components. We want to 
evaluate the use of modular integer data types within the linear algebra packet as well as in different 
geometric application scenarios. An adapted version of the templatized code will become part of the 
CGAL-kernel. 

9. Conclusions 

We described the layered design of a kernel for higher dimensional computational geometry and gave 
two examples for applications. The primary goal was to develop a useful base for geometric application 
design including checkable correctness, efficiency based on existing software library concepts and a 
clear and comprehensive documentation scheme. 
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