1

Intersecting two polyhedra one of which is convex

by

Kurt Mehlhorn and Klaus Simon

Fachbereich 10, Informatik, Universitat des Saarlandes, 6600, Saarbriicken,
West Germany.

Abstract: Let P and Q be polyhedra one of which is convex Let n and m be
the number of edges of P and Q respectively and let s be the number of edges of the
intersection P N Q. We show how to compute PN Q in time O((n+ m + s) log(n +
m + 8)). Previously only algorithms with running time O(nm) were known.

2 Chapter

1. Introduction:

The treatment of solids and surfaces in three-dimensional space is one of the fun-
damental topics in computer graphics and computer-aided design. One of the goals
of computational geometry (cf. Mehlhorn, Vol 3 for a textbook treatment) is to
provide efficient algorithms for the basic operations (e.g. intersection, visibility,
hidden line elimination) on these objects. In this paper we show how to compute
the intersection of two polyhedra, one of which is convex, efficiently. More precisely,
we show:

Theorem 1. Let P be a convex polyhedron with n vertices, let @ be an arbitrary
polyhedron with m edges, and let P N Q be a polyhedron with s edges. Given P
and Q one can compute PN Q in time O((n + m + 8) log(n + m + s)).

Previously only solutioqs with running time O(nm) were known. The new algorithm
is better provided that 8 < n/log(n + m). It remains open whether a subquadratic
algorithm for intersecting two arbitrary polyhedra exists.

There are at least three O((n+m) log(n+m)) solutions in the literature (Muller-
Preparata, Dobkin-Kirkpatrick, Hertel-Mantyla-Mehlhorn-Nievergelt) for the inter-
sectjon of two convex polyhedra. The solution by Muller and Preparata is based on
duality and seems to be intimately tied to convexity. However, the results of the
other two papers can be combined (and slightly extended) to yield the new result
presented here.

We borrow from [HMMN] the idea of reducing the intersection problem to the
support problem which we now define. Let P and Q be the surfaces of P and Q
respectively. Then P N Q is a straight-line graph embedded into three-dimensional
space. The support problem is to compute at least one point of every connected
component of PN Q. Our proof of the main theorem is based on the following two

lemmas.

Lemma 1. The support problem for P and Q can be solved in time O((n +
m) log(n + m)).

Lemma 2. Given a solution for the support problem for P and Q one can compute
the intersection of P and Q in time O((n + m + s) log(n + m + s)).

A proof of lemma 2 can be found in section 3. The basic idea is to compute first
PN Q and then PN Q by a graph traversal algorithm. This is similar to [HMMN].
The proof of lemma 1 can be found in section 2. Our solution for the support
problem is based on the hierarchical representation of convex polyhedra introduced
by Dobkin-Kirkpatrick and later used in Edelsbrunner-Maurer. This representation
allows for “binary search” on convex objects and thus yields fast algorithms for the
intersection of a convex polyhedron with lines and planes.

2. Data structures and a solution to the support problem 3

Throughout this paper we assume for simplicity that P and Q are in general posi-
tion, i.e. that no edge of P intersects an edge of Q. The general case will be treated
in the full paper. If P and Q are in general position then every connected compo-
nent C of PN Q is a polygon whose vertices are given by edge-face intersections
and whose edges are given by face-face intersections.

%l Data structures and a solution to the support pro-
em

A polyhedron consists of vertices, edges and faces. A vertex is a point in R?, an
edge is a line segment connecting two vertices and a face is a subset of some plane
whose boundary is a polygon; cf. Figure 1 for an example.

We assume that polyhedra are represented by the quad-edge data structure of
Guibas-Stolfi, see also Edelsbrunner-Maurer. In this data structure each undirected
edge e is stored as a pair of directed edges e and sym e. Also each face is essentially
stored as a circular list of its boundary edges. More precisely, each directed edge
e stores its origin org e and pointers to neighboring edges ¢ = onext ¢ and ¢’ =
dnext e where ¢ and ¢ are edges on the boundary of the face to the left of e (as
seen from outside the polyhedral body) and org ¢’ = org sym e and org ¢ =
org e, cf. Figure 2. Note that the quad-edge structure allows the clockwise and

counterclockwise traversal of the edges incident to any given vertex

For convex polyhedra we use in addition the hierarchical representation introdu-
ced by Dobkin-Kirkpatrick. A sequence Py, P,..., P of convex polyhedra is a
hierarchical representation of P if

a) P, is a tetrahedron and P, = P
b) V; = Vit1 — ;41 where V; is the vertex set of P; and I;4, is an independent
set of vertices of P;,;, i.e. no two vertices of I;, are connected by an edge of

Vigr.

Fact (Kirkpatrick, Dobkin-Kirkpatrick)

a) There are constants ¢; and ¢ such that I, exists with |[;4;| > |Vi41|/e1 and
deg(v) < ¢, for all vertices v € I;4; where deg(v) is the degree of vertex v.
Moreover, I;;1 can be determined in time O(]V,41]).

b) A hierarchical representation with £k = O(logn) can be constructed in time

O(n).

We stipulate that each P; in the hierarchical representation is stored as a quad-edge -
structure and that P, and P;4, are tied together as follows. Let e be an edge of
P;. If e is also an edge of P,; then e (as an edge of P;) points to e (as an edge of
Pi+1). If e is not an edge of P4+, then there is a unique vertex v € I;;, such that

4 Chapter

the interior of the triangle spanned by e and v does not intersect P, cf. Figure
3. In this case we let e point to edge g of P;y; with org’g = v and org sym g
= org e. Dobkin-Kirkpatrick and later Edelsbrunner-Maurer have shown how to
use the hierarchical representation for detecting intersections and for performing
extremal queries on convex polyhedra. The following theorem can be proved by
their methods.

Theorem 2 Let P be a convex polyhedron given by its hierarchical representation.
a) If [is a line then ! N P can be computed in time O(log n).
b) If A is a plane then it can be decided in time O(logn) whether A NP is
empty. If AN P # @ then one point p € A NP can be computed in the same time
bound.

"~ We will next show how Theorem 2 can be used to solve the support problem.

Consider the following algorithm. It computes a set S which is a solution to the
support problem.

(1) S:=0

(2) for all edges ¢ of Q

(3) do S:=Su(enP) od;

(4) for all faces f of @

(5) do let h be the plane supporting f
(6) ifhNP#D

(7) then let p be the intersection of A with an edge of P;
(8) if p€ f then S:=SuU{p} fi

(9) fi

(10) od

Theorem 3 The algorithm above solves the support problem in time O(m logn)

Proof: We argue correctness first. Let C be a connected compound of PN Q. We
distinguish two cases, cf. Figure 4.

Case 1 C contains a point on an edge e of Q. Then a point of C is clearly determined
in line 3.

Case 2 C does not contain a point on an edge e of Q, i.e. C is completely
contained in a face f of Q. Let h be the plane supporting f and let p be any
intersection of A with an edge of P. Then p is a point of C.

This shows that at least one point of every connected component C is added to S.
Conversely, it is trivial to see that only points of PN Q are added to S. This proves
correctness.

The running time is also easily estimated. For each edge or face of Q we need time
O(logn) for computing intersections in lines 3 or 6 respectively for a total cost of
O(mlogn). Also for each f of Q we need to test for at most one point p whether
p € f. This can clearly be done in time proportional to the number of vertices of
f. Thus the total cost of line 8 is O(m). This completes the proof of theorem 3.

4. Conclusion 5

3. Computing the intersection

Let S be a solution to the support problem for P and Q. Each point p € S is given
as an edge-face intersection. We will now describe how to compute PN @ from S.
We compute P N Q first and then compute P N Q in a second stage. We assume
throughout this section that all faces of P and Q are triangulated. A triangulation
can be computed in time O((n+ m) log m) by a number of triangulation algorithms,
e.g. Hertel-Mehlhorn.

Let C be a connected component of PN Q and let p € S be a vertex of C. It is
easy to trace C starting in p in time proportional to the number of vertices of C as
follows. Let p be the intersection of edge e and face f and let f; and f; be the two
faces incident to e. Then fN f; and f N f, define edges of C' and also the vertices
adjacent to p,... (cf. Figure 5).

In this way we can trace all components of PN Q in time O(s) except for one small
detail. We have to avoid to trace the same component twice. We therefore insert
all vertices encountered into a dictionary and use this dicitionary to make sure that
no component is traced twice. Thus the total cost of tracing the components of

PN Q is O(slog(n + m)).

All this point we have computed PN Q. It remains to compute those edges of PN Q
which are part of edges of P and Q. Again this can be done by a simple graph
traversal algorithm. The details are as follows. We first sort for every edge e of P
(and Q) the vertices of P N Q which lie on e. This takes time O(slog(n + m)) and
splits every edge into intervals which alternately belong to PN Q and do not. We
subdivide the edges as given by these intervals and throw away all parts outside
PN Q. A simple graph traversal will then yield P N Q.

This proves lemma 2 and theorem 1 in the case that PN Q # 0. So let us finally
assume that PN Q = 0. Then either PNQ =B or P D Q or Q O P. We can
distinguish these three cases by testing a single vertex of P for containment in Q
and a single vertex of @ for containment in P. These tests can certainly be done
in time O(n+m) and therefore P N Q can be computed in the desired time bound.

4. Conclusion

We presented a simple and efficient algorithm fol computing the intersection of
a convex and an arbitrary polyhedron. The algorithm combines ideas developed
previously for the intersection of two convex polyhedra; in particular, it uses the
reduction to the support problem [HMMN] and the hierarchical representation of
convex polyhedra [DK].

6 Chapter

5. References

[1] H. Edelsbrunner, H.A. Maurer: “Finding Extreme Points in Three Dimensions and
Solving the Post-Office Problem in the Plane”, Information Processing Letters, to

appear.

(2] St. Hertel, M. Mantyla, K. Mehlhorn, J. Nievergelt: “Space Sweep Solves Intersec-
tion of Two Convex Polyhedra Elegantly”, Acta Informatica, 21, 501-519, 1984.

[3] St. Hertel, K. Mehlhorn: “Fast Triangulation of Simple Polygons”, FCT 83, LNCS
Vol 158, 207-218.

(4] D.P. Dobkin, D.G. Kirkpatrick: “Fast Detection of Polyhedral Intersections”, 9th
ICALP, LNCS 140, 154-165, 1982.

[5] D. Kirkpatrick: “Optimal Search in Planar Subdivisions”, SICOMP 12, 28-35, 1983.

[6] K. Mehlhorn: “Data Structures and Efficient Algorithms”, Vol 3: “Multi-dimen-
sional Data Structures and Computational Geometry”, Springer Verlag, EATCS
Monographs in. Computer Science, 1984. ‘

-
[7] D.E. Muller, F.P. Preparata: “Finding the Intersection of Two Convex Polyhedra”,
TCS 7, 217-236, 1978.

Figure 1: A triangular cylinder with a triangular cylindrical
hole. The edges (v,w) and (u,z) have to be included because
the boundary of every face is required to be a polygon.

€I=oua4c

0r3 e 45“" e

Figure 2:

-p

removal of v

Figure 3: Pi is obtained from Pi+1 by removal of v.edge (a,b)

of Pi ?oints to edge (v,a) of Pi+1'

Figure 4: P is a tetrahedron, Q is L-shaped. P N Q consists of two

components one of which is completely contained in a face of Q.

Figure 5:

