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Abstract. A certifying algorithm for a problem is an algorithm that provides a certificate with
each answer that it produces. The certificate is a piece of evidence that proves that the answer has
not been compromised by a bug in the implementation. We give linear-time certifying algorithms
for recognition of interval graphs and permutation graphs, and for a few other related problems.
Previous algorithms fail to provide supporting evidence when they claim that the input graph is not
a member of the class. We show that our certificates of nonmembership can be authenticated in
O(|V |) time.
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1. Introduction. A recognition algorithm is an algorithm that decides whether
some given input (graph, geometrical object, picture, etc.) has a certain property.
Such an algorithm accepts the input if it has the property or rejects it if it does not. A
certifying algorithm for a decision problem is an algorithm that provides a certificate
with each answer that it produces. The certificate is a piece of evidence that proves
that the answer has not been compromised by a bug in the implementation.

We give linear-time certifying algorithms for recognition of interval graphs and
permutation graphs. Previous algorithms fail to provide supporting evidence of non-
membership. We show that our certificates of nonmembership can be authenticated
in O(n) time, where n is the number of vertices.

A familiar example of a certifying recognition algorithm is a recognition algorithm
for bipartite graphs that computes a 2-coloring for bipartite input graphs and an
odd cycle for nonbipartite input graphs. A more complex example is the linear-time
planarity test which is part of the library of efficient data structures and algorithms
(LEDA) system [19, section 8.7]. It computes a planar embedding for planar input
graphs and a Kuratowski subgraph (a subdivision of K5 or K3,3) for nonplanar input
graphs.

Certifying versions of recognition algorithms are highly desirable in practice;
see [28, 20, 21] and [19, section 2.14] for general discussions on result checking. Con-
sider a planarity testing algorithm that produces a planar embedding if the graph
is planar, and simply declares it nonplanar otherwise. Though the algorithm may
have been proven correct, the implementation may contain bugs. When the algorithm
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declares a graph nonplanar, there is no way to check whether it did so because of a bug.

Given the reluctance of practitioners to assume on faith that a program is bug-
free, it is surprising that the theory community has often ignored the question of
requiring an algorithm to certify its output, even in cases when the existence of
adequate certificates is well known.

An authentication algorithm is an algorithm that check the validity of the certifi-
cate. In contrast to the case of an algorithm that solves the problem from scratch,
an authentication algorithm may reject the certificate if it is invalid, leaving open the
answer to the original problem. However, it must be the case that the authentication
algorithm provides a correct answer to the original problem if the certificate is valid,
and never declares an incorrect answer to the problem due to an invalid certificate.
The certificate has practical value when the algorithm for solving the problem from
scratch is difficult but the authentication algorithm is trivial.

For instance, in the case of planarity testing, the authentication algorithm cycles
through the edges of the Kuratowski subgraph, verifying that they are, in fact, present
in the graph and form a Kuratowski subgraph as claimed. Though planarity testing
in linear time is a complicated problem, checking a Kuratowski subgraph is a trivial
task, especially if the edges are supplied in a convenient order by the certificate.

The notion of a certifying algorithm is related to the concept of run-time checking.
Typically, run-time checking has been applied to very small fragments of code; for
example, a program to calculate square roots might check at run-time that the square
of the result equals the input value. An attempt to create a corresponding model
of run-time checking for more complex algorithms is given in [28] with motivations
which are very similar to our own. The authors conceive of a method for checking
whether a (possibly complex) program that computes a function has produced a
correct output. Their model does not require an algorithm to provide supporting
evidence with its answer, but subsequent calls to it are allowed in order to present it
with nondeterministically generated challenges after it has already returned a solution.
If it has answered incorrectly, it can pass with only a certain probability of success.
Confidence in the answer to within any desired probability can be attained through
a sufficiently large set of challenges.

An important distinction between run-time checking and certifying algorithms
is that run-time checking is generally conceived as being separate from the process
of producing the output, while certifying algorithms produce proofs of correctness
together with their output.

To clarify the difference between these two approaches, let us consider two valid,
but opposing, views on proofs of output correctness. One can take the view that it is
desirable to have a mechanism that uses as little information as possible in verifying
the correctness of the output, preferably only the standard format of the solution.
This approach has the advantage of enabling a user to check, using a single program,
the correctness of the output of any program that has been designed to solve the
problem.

Papers such as [1] have devised clever mechanisms of this form for verifying that
the output of any program that solves a diverse set of problems, including such prob-
lems as graph isomorphism and equivalence search, is correct. If such a mechanism
exists, one can take the position that there is no reason for the creator of the program
to work on a technique for verifying that the output is correct, since any errors will
be caught in a separate checking phase.

We instead want to shift the burden of creating proof of correctness to the software
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Fig. 1. An interval graph is the intersection graph of a set of intervals on a line. The graph
has one vertex for each of the intervals, and two vertices are adjacent if the corresponding intervals
intersect.

engineering phase as part of the design of the algorithm for solving the problem upon
which to base the program. In finding the solution to the problem, the algorithm often
goes through steps that can be used to create a simple certificate of correctness of the
output. We believe that it should be part of the routine process of algorithm design
to look for this certificate, and provide one wherever possible, rather than leaving this
to a separate checking phase.

An interval graph is the intersection graph of intervals on a line (see Figure 1).
That is, each vertex corresponds to an associated interval, and two vertices are ad-
jacent iff the corresponding intervals intersect. The intervals constitute an inter-
val model of the graph. Interval graphs have applications in molecular biology and
scheduling.

Several linear-time recognition algorithms for interval graphs are known [2, 4, 9,
11, 12, 13, 18]. These graphs come up in the context of a variety of problems in
scheduling and molecular biology; see [8, 24] for surveys. When a graph is an interval
graph, these algorithms produce a certificate in the form of an interval model. When
a graph is not an interval graph, none of these algorithms provides a certificate. How-
ever, the existence of certificates of rejection in the form of a forbidden substructure
characterization is also well known. We extend the linear-time algorithm of Korte
and Möhring [13] so that it also produces a certificate when a graph is not an interval
graph; see section 5.

A permutation graph is the graph of inversions in a permutation. That is, each
vertex corresponds to an element of the ground set of a permutation, and two vertices
are adjacent iff the permutation reverses the relative order of the two corresponding
elements (see Figure 2). If a graph is a permutation graph, we may show this by
giving a permutation model, which consists of two linear orderings (v1, v2, . . . , vn) and
(vπ(1), vπ(2), . . . , vπ(n)) of the vertices, such that two vertices vi and vj are adjacent
iff vi is before vj in exactly one of the orderings.

The only previous linear-time algorithm for recognizing permutation graphs is
given in [18]. This algorithm produces a permutation model if the graph is a member
of the class, and presents its failure to produce such a model as the only evidence that
a graph is not a member of the class. We give a linear-time algorithm that produces
a certificate also in the case of nonmembership; see section 6. The algorithm is based
on the following connection to comparability graphs. A graph G is a permutation
graph iff G and its complement G are comparability graphs.

A dag is transitive if, whenever (a, b) and (b, c) are directed edges of the dag,
(a, c) is also a directed edge. A transitive dag is a graphical representation of a
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Fig. 2. When a permutation acts on a sequence of elements, the corresponding permutation
graph has one vertex for each of the elements. Two vertices are adjacent if the permutation swaps
the relative order of the two elements.
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Fig. 3. A comparability graph is a graph whose edges can be oriented so that the resulting digraph
is acyclic and transitive. Part A depicts a comparability graph, part B is a transitive orientation,
and part C is a redrawing of part B that makes it easy to see that the result is transitive.

partial order (poset) relation. A graph is a comparability graph if orientations can be
assigned to its edges so that the resulting digraph is a transitive dag (see Figure 3).
Such an orientation is called a transitive orientation. A transitive orientation of a
comparability graph can be found in linear time [18].

Gallai gave a forbidden substructure characterization of comparability graphs [7].
Since a graph G is a permutation graph iff G and G are comparability graphs, this
forbidden structure in G or in G serves as a certificate that a graph is not a com-
parability graph. We do not know how to obtain this certificate in linear time for
noncomparability graphs; no linear-time recognition algorithm is known. However,
we show that when G is not a permutation graph, we may produce this certificate for
G or for G in linear time. The algorithm fails to give a linear-time certifying algorithm
for comparability graphs only because we cannot control whether the algorithm will
find the certificate in G or in G when both G and G fail to be comparability graphs.

Certifying algorithms also exist for optimization problems; linear programming
duality is a prime example. Primal and dual optimal solutions of a linear program
certify each other. A proper coloring of a graph is a coloring of the vertices such that no
adjacent vertices have the same color, and it is minimum if there is no proper coloring
that uses fewer colors. A linear-time algorithm is known for finding a maximum clique
and a minimum proper coloring of a comparability graph [18]. In a comparability
graph, the size of the maximum clique is always the same as the minimum number of
colors in a proper coloring. Since the vertices of a clique must all be colored differently
in any proper coloring, the clique is a certificate of minimality of the coloring, and the
coloring is a certificate that the clique is of maximum size. We give an algorithm that
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provides a certificate that the input graph is not a comparability graph whenever this
algorithm fails to find the desired coloring and clique.

2. Preliminaries. We consider only finite, undirected, and simple graphs. Let
G = (V,E) be a graph. We let n denote the number of vertices and m denote the
number of edges.

For W ⊆ V we denote by G[W ] the subgraph of G induced by W and we write
G − W instead of G[V − W ]. The neighborhood of v is N(v) = {u ∈ V |uv ∈ E}
and N [v] = N(v) ∪ {v}. If G is a directed graph, N−(v) = {u ∈ V |(u, v) ∈ E} and
N+(v) = {u ∈ V |(v, u) ∈ E}.

If P = (v1, v2, . . . , vk) is a path, u ∈ N(v1), and w ∈ N(vk), then uP denotes
the path (u, v1, v2, . . . , vk), and Pw denotes the path (v1, v2, . . . , vk, w). A P4 is an
induced subgraph on four vertices that is a path.

For an arc e = (a, b), let its transpose eT denote (b, a).

2.1. Representation of graphs. Analysis of the running time of an algorithm
requires an agreement between the user and the designer of an algorithm about an
appropriate format for the input data. No graph algorithm can claim an O(n +
m) running time if the input is provided in the form of an adjacency matrix, so a
consensus has arisen that it is reasonable to require that the input be an adjacency
list representation of the graph. If the user must spend Θ(n2) time converting an
adjacency matrix representation to this form before giving it as an input to the graph
algorithm, this cost is not attributed to the running time of the graph algorithm.

Let us view a graph as an abstract data type that supports the following queries,
possibly in addition to other queries:

• Neighbors(x): Given a vertex x, find its neighbors.
• Adjacency(x, y): Given two vertices, x and y, determine whether they are

adjacent.

Algorithm texts usually contain a discussion of the trade-offs in space and time
bounds for these two operations that arise in choosing an adjacency matrix represen-
tation or an adjacency list representation of a graph. The list of neighbors of a vertex
in an adjacency list representation is typically unordered. This gives an extremely
poor time bound for the Adjacency operation (Θ(n) in the worst case as opposed to
O(1) for the adjacency matrix).

This can easily be remedied by assuming that the adjacency lists are represented
by a standard representation of an ordered set, such as a sorted array or a balanced
binary search tree. This improves the time for the Adjacency query from Θ(n) in the
worst case to O(log n), without increasing the space requirements or the time bound
for the Neighbors operation. Moreover, it is possible to convert the unsorted variant
to the sorted variant in O(n + m) time by labeling the vertices with identifiers from
1 to n and then radix sorting the set of all edges according to the identifiers of their
endpoints.

The only disadvantages to adopting this ordered adjacency list representation as
a standard representation for sparse graphs seem to be cases where the data type
must also support dynamic graph operations such as insertion of edges or contraction
of vertices. Maintaining the sorted variant of the data structure can add an O(log n)
factor to the cost of such operations. However, most graph algorithms deal with static
graphs, and in the cases where the costs of these dynamic operations are an issue,
an algorithm can ignore the ordering in the input data and neglect to maintain the
invariant that it remain ordered as it executes.
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Why has this ordered adjacency list representation not been adopted as a standard
representation over the seemingly less desirable unordered one? This is probably
because any algorithm that makes repeated use of the Adjacency query can produce
the ordered representation from the unordered one in linear time before beginning
work on the problem. Since a graph algorithm is assumed to run in Ω(n + m) time,
the issue has been deemed inconsequential to the analysis of running times.

The possibility of graph algorithms that run in sublinear time, however, requires
a reexamination of this issue. In contrast to algorithms that solve a problem on a
graph from scratch, it is often the case that authentication algorithms can run in
sublinear time.

An example of this occurs in connection with the class of cographs, which are the
class of graphs that have no induced subgraph that is a P4. That is, they have no
induced subgraph that consists of exactly three edges forming a path (v1, v2, v3, v4)
on four vertices. It takes O(n + m) time to determine whether a given graph G is a
cograph without the aid of a certificate [5]. However, given a legitimate P4 that has
been pointed out by a distrusted source, it takes O(n) time to verify it on an unordered
adjacency list representation, and O(log n) time on the ordered representation, since
the Adjacency query takes O(log n) time. We therefore have a case where the choice
of an unordered adjacency list representation versus an ordered one makes a difference
in the analysis of the time bound of an algorithm.

We think that an ordered adjacency list representation would be a reasonable
alternative to the unsorted one as a general-purpose representation of sparse graphs.
In any case, there are compelling reasons to use the ordered representation when
analyzing sublinear algorithms, and we will assume this representation throughout
the paper. To be specific, since we deal only with problems involving static graphs,
let us assume that each adjacency list is implemented as a sorted array of neighbors.

Before leaving this topic, we should mention that although the Adjacency opera-
tion takes O(log n) time, we can improve this to O(1) by supplying what amounts to
a certificate of the answer to the Adjacency query. If the answer to Adjacency(x, y)
is true, the certificate consists of the location of the edge in the data structure, and
if the answer is false, the certificate consists of the location where it would appear if
it occurred. In either case, the user can check the result in O(1) time. The certificate
of a false answer cannot be made to work in this way on an unordered adjacency
list representation.

Given this, it is easy to see that verifying the presence of a P4 in a graph can
be improved to O(1) by building a certificate out of a collection of “subcertificates”
for individual Adjacency queries on all pairs of elements of {v1, v2, v3, v4}. The same
technique is useful for checking any induced subgraph that has been pointed out as a
certificate of an answer to a graph problem.

3. What constitutes a certificate. Since software that generates a certificate
could have a bug, a proposed certificate must be authenticated by verifying that it
does, in fact, prove the result. For instance, if an odd cycle in a graph is presented as
a certificate that the graph is not bipartite, authentication consists of verifying that
it is a cycle, it has odd length, and that the claimed edges occur in the graph. The
cycle can be given as a sequence of pointers to its edges in the input data structure,
and takes O(n) time for the user to authenticate, which is better than the O(n + m)
bound for checking whether a graph is bipartite.

A good certificate has an authentication algorithm that is conceptually simpler
than algorithms for the original problem, or has a better time bound, or has both. If



332 D. KRATSCH, R. M. MCCONNELL, K. MEHLHORN, AND J. P. SPINRAD

the authentication step is simple and efficient enough, it may be possible to perform
the check by visual inspection.

When the certificate is checked automatically, determining reliability of the im-
plementation of the authentication algorithm is an obvious goal. Otherwise, consider
the following scenario. The implementations of the certifying algorithm and of the
authentication algorithm are both faulty. The certifying algorithm produces both an
erroneous answer to the decision problem and an erroneous certificate, while the faulty
authentication algorithm then claims that the certificate proves the given answer. The
user is led to believe an erroneous conclusion.

A certificate is sublinear if its authentication algorithm has a tighter time bound
than a linear one. For instance, for a problem where arbitrary graphs can be given
as input, a certificate with an O(n) authentication algorithm is sublinear, since this
bound is never worse than linear and is often better. A certificate is strong (with
respect to current algorithmic knowledge) if its authentication algorithm has a better
time bound than that of the current fastest algorithm that solves the problem without
a certificate. It is weak if it takes the same time to authenticate as it does to solve
the original problem without the certificate, but may have other advantages such as
greatly simplifying the task conceptually.

One of the anonymous referees has inquired about the possibility of certifying
algorithms or authentication algorithms that require asymptotically more time or
space than a noncertifying algorithm. Given the importance of software reliability in
some industrial settings, the advantages of using these algorithms might outweigh the
extra costs. We have not yet found interesting examples to support this, however.

Some of these notions are related to concepts that come up in the theory of NP-
completeness. The class NP of decision problems are those for which, whenever the
answer is true, this answer can be confirmed in polynomial time if one is supplied
an appropriate certificate. The question of whether this is always possible without a
certificate is the famous question of whether P = NP. The notion of a certificate and
the time bound that it makes possible provides a precise mathematical definition of
the class NP.

A certifying algorithm that returns a strong or sublinear certificate can be dis-
tinguished on objective mathematical grounds from a noncertifying algorithm. To be
able to claim that certifying algorithms are a formal class of algorithms, we could
require all certifying algorithms to produce sublinear certificates. Unfortunately, this
restriction excludes many algorithms that produce certificates that are clearly useful
in practice.

In addition, though sublinear certificates appear to be common, if the rejection
certificate is sublinear, the acceptance certificate often fails to be sublinear, and if the
acceptance certificate is sublinear, the rejection certificate often fails to be sublinear.
For instance, the problem of recognizing bipartite graphs has a sublinear rejection
certificate (an odd cycle) and a weak acceptance certificate (a 2-coloring). Recog-
nizing connected graphs has a sublinear acceptance certificate (a spanning tree) and
a weak rejection certificate (a cut {V ′, V − V ′} that has no edges across it). Di-
rected acyclic graphs have a weak acceptance certificate (a topological sort) and a
sublinear rejection certificate (a directed cycle). A similar phenomenon is seen in
interval graphs and permutation graphs where the rejection certificate can be checked
in O(n) time, whereas the acceptance certificate is an O(n) representation of G that
defines the graph class and that requires O(n + m) time to verify that it faithfully
represents G.



CERTIFYING ALGORITHMS 333

What constitutes a weak certificate lacks the formal criteria that define sublinear
or strong certificates. A weak certificate has value if it dramatically simplifies the
task of solving the problem, without necessarily yielding a better time bound. There
is no satisfactory formal measure of the conceptual difficulty of an algorithm, though
differences are often obvious.

The value of proposed weak certificates must therefore be debated on a case-
by-case basis in much the way that the ill-defined notion of “significance” of any
new mathematical result is debated and evaluated through the peer-review process.
The certificates in our examples were recognized previously as having theoretical
relationships to the problems in question, independently of their use in algorithm
design or error checking.

We would therefore describe certifying algorithms as embodying an algorithm-
design philosophy, rather than a formal class of algorithms. We show through ex-
amples that the approach has been largely overlooked by both algorithm designers
and software engineers, and we argue that it can have significant economic impact
when algorithms are implemented. Moreover, in the case of graph algorithms, there
is an extensive literature on forbidden subgraph characterizations of graph classes
that promises to be a rich source of potential certificates for future work on certifying
variants of existing graph algorithms.

3.1. Proofs of correctness of authentication algorithms. An interesting
question raised by one of the anonymous referees of this paper is what relevance the
simplicity of the proof of the authentication algorithm should have. Suppose the input
is x, the correct output is y = f(x), and the certificate, w, proves that y = f(x). The
proof that the authentication algorithm accepts only valid triples (x, y, w) should be
trivial. The proof that the existence of such a triple proves that y = f(x) does not
need to be easy for the certificate to be useful.

Consider the question of deciding whether a graph is planar. A noncertifying
algorithm for solving this problem inputs a graph G and outputs a bit y = f(G) that
is equal to 1 iff the graph is connected and planar. A certifying algorithm for planarity
testing implemented in the LEDA package returns a Kuratowski subgraph when the
input graph is nonplanar. A Kuratowski subgraph K is difficult to find, but easy to
check once it is pointed out. Therefore, the proof that the authentication algorithm
accepts only valid triples (G, 0,K) is trivial. However, that K proves that f(G) = 0
is also easy to understand. It is not necessary for a user to understand why such a K
appears in every nonplanar graph in order to understand that it proves that such an
instance of a graph is nonplanar and that the program has answered truthfully.

What happens when G is planar gives a better illustration of the point raised
by the referee. In this case, LEDA returns a planar combinatorial embedding. The
validity of a planar combinatorial embedding is also easy to authenticate once it is
pointed out, but it is more difficult to explain why it proves that the graph is planar.

For simplicity, assume for the moment that G is connected. Each undirected
edge uv of G can be viewed as consisting of two directed edges (u, v) and (v, u); let
twin((u, v)) = (v, u). A planar embedding of G induces a cyclic order on the directed
edges directed out of each vertex. Let πv((u, v)) be the permutation of the edges that
maps in clockwise order each edge out of a vertex to the next edge out of the vertex.
Clearly, πv has one cycle for each vertex. Given πv, let πf ((u, v)) = πv(twin((u, v));
it is easy to see that this is a permutation that maps each edge to the next edge about
the face that lies immediately to the left of the edge. Therefore, πf has a cycle for
each face.
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An abstraction of this is a combinatorial embedding of G, which consists of an
arbitrary cyclic order πv of the directed edges emanating from each vertex, but which
may or may not correspond to the cyclic orders induced by any embedding of G in the
plane. This nevertheless defines a second permutation πf ((u, v)) = πv(twin((u, v)))
as before. By a well-known theorem of Euler, a combinatorial embedding is planar iff
2c−m−n− f = 0, where f is the number of cycles πf , c is the number of connected
components of G, m is the number of edges, and n is the number of vertices.

To present this certificate, it is necessary only to give πv as a cyclic order of edges
out of each vertex and a pointer from each directed edge (u, v) to its twin (v, u).
An authentication algorithm must verify that πv induces a cyclic order on the edges
directed out of each vertex, count the cycles in πv and πf , and verify that Euler’s
relation applies.

Though this test is simple, the proof that it implies that G is planar is not easy
to explain to an unsophisticated programmer or user. (See [14] for a typical proof.)
The usefulness of the certificate lies in the fact that Euler’s formula applies to all
instances of the problem and has received the thorough scrutiny of many experts. A
person who trusts the theorem does not need to understand its proof in order to make
use of the certificate. The certificate is useful because it allows trust in a well-known
theorem to be substituted for trust in a program of dubious origin.

3.2. Preconditions and postconditions. One can imagine programs where
different subproblems are solved by procedures that produce certificates, and where
the program contains embedded code to authenticate each certificate before proceed-
ing.

Suppose that an O(log n) binary search procedure is asked to search a sorted array
of integers for an element i, and that the procedure returns with the answer that i
does not occur in the array. It could be the case that the array was not correctly
sorted, causing the binary search procedure to falsely declare that i does not occur
in it, even though the binary search procedure is correctly implemented. Checking
for this error would take O(n) time, which would obviate the advantages of using a
binary search procedure instead of a linear search.

Instead of this, we could define the binary search procedure as one that has a
precondition that the input array be sorted and a postcondition that its answer is
correct whenever the precondition is met. An error has occurred in the binary search
procedure only if the precondition is met and the returned answer is incorrect.

Let us formally define an error in the binary search procedure to be a circumstance
where the precondition is met but the returned value is incorrect. As in the case
of all certifying algorithms, the question of whether a procedure has erred in some
circumstance is separated from the question of whether it contains bugs. The binary
search procedure can provide a certificate that it has not erred by returning either
the index where i occurs, or else the index where i would occur if it is absent in the
array. If the procedure claims that i occurs, the authentication algorithm checks the
location to make sure that it is there. If the procedure claims that i does not occur,
the authentication algorithm checks the location to make sure that the element at that
position is smaller than i and the element at the next position is larger i. (Trivial
special cases occur when the index is the last in the array.)

Though this example is trivial, it illustrates the possibility of designing certificates
that show that either the returned value is correct or that the preconditions were
not met, without distinguishing which of these cases occurred. This exonerates a
procedure as the ultimate source of an error.
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As a nontrivial example of such a certificate, the transitive orientation algorithm
of [18] finds a transitive orientation of a comparability graph in O(n + m) time. If a
graph is given to the procedure that is not a comparability graph, then no transitive
orientation exists, and the procedure produces an orientation in O(n + m) time that
is not transitive, without recognizing this. Various nonlinear bounds for checking
whether an orientation is transitive are known, such as O(nm), O(m3/2), and the time
to multiply two n× n matrices, O(n2.376). These are the best bounds for recognizing
comparability graphs.

However, it is reasonable to view as a precondition the requirement that the input
to the transitive orientation algorithm be a comparability graph, since the orientation
is meaningless if this is not the case. Below, we show how to provide a certificate,
called an orientation tree, that shows that either the precondition has not been met
or the returned orientation is transitive. This certificate is quite simple to check in
O(n + m) time.

4. Chordal bipartite graphs. A chord in a simple cycle is an edge that is not
an edge of the cycle, but whose endpoints are both vertices in the cycle. In a bipartite
graph, every cycle is even, so every cycle has length at least four. A graph is chordal
bipartite if it has no chordless cycle of length greater than four.

Chordal bipartite graphs provide an easy introduction to techniques that we will
use to produce certifying algorithms. Lubiw [16] gives an O(n+m log2 n) noncertifying
algorithm for recognizing them. We show how to modify it to obtain a certifying
algorithm.

If M is a matrix, let Mi,j denote the element in row i, column j. The rows of a
matrix M are in lexical order if they are sorted in dictionary order. That is, whenever
{i, i+1} are a consecutive pair of rows and j is the first column where the rows differ,
then Mi+1,j > Mi,j . The columns are in lexical order if, as rows, they are in lexical
order in the transpose of the matrix.

A bipartite graph G with bipartition U,W can be represented with a Boolean
bipartite adjacency matrix A, which has one row i for each element of ui ∈ U , one
column for each element wi ∈ W , and for each pair {ui, wj}, Ai,j = 1 if uiwj is an
edge of G, and Ai,j = 0 otherwise.

Given a graph G, Lubiw’s algorithm tests whether G is bipartite, and, if so, finds
a bipartition and a doubly lexical ordering of the resulting bipartite adjacency matrix.
A doubly lexical ordering of a matrix is a permutation of the rows and columns such
that the resulting matrix passes the following two tests:

1. When the order of the columns is reversed, the rows are in lexical order.
2. When the order of the rows is reversed, the columns are in lexical order.

Every matrix has a doubly lexical ordering, so this is not a test of whether G is
chordal bipartite. Lubiw’s algorithm then searches this doubly lexical matrix A for
a configuration called a Gamma (Γ). A Γ is a pair (h, i) of rows and a pair (j, k) of
columns such that h < i, j < k, Ah,j = Ah,k = Ai,j = 1, and Ai,k = 0.

The critical theorem is that a bipartite graph is chordal bipartite iff a doubly
lexical ordering of its bipartite adjacency matrix has no Γ. Lubiw’s algorithm for
finding the doubly lexical ordering and testing for Γ’s uses a sparse representation of A
and takes O(n+m log2 n), which gives this bound for recognition of chordal bipartite
graphs. The bound for finding the doubly lexical ordering has been improved to
O(n+m log n) by Paige and Tarjan [22], and to O(n2) by Spinrad [26], and these give
bounds of O(n + m log n) and O(n2), respectively, for recognizing chordal bipartite
graphs.
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Though its proof of correctness is not obvious, Lubiw’s algorithm for searching
for a Γ with respect to given orderings of the bipartition classes is trivial to program
and runs in O(n+m) time. Therefore, a doubly lexical ordering is a strong certificate
that a graph is chordal bipartite. The certificate is represented by a bipartition of the
vertices and two orderings of the bipartition classes. The authentication algorithm
verifies that each of the two bipartition classes is an independent set and that the
graph has no Γ with respect to the given orderings of the bipartition classes. All of
this takes O(n+m) time. The doubly lexical ordering is therefore a strong certificate,
but not a sublinear one.

When a graph is not chordal bipartite, the same certificate can be used to show
this, so it is a strong certificate for this case also. However, with some additional
effort, we can obtain a sublinear certificate. Note that this precludes verifying the
correctness of a doubly lexical ordering, which requires Θ(n + m) time.

Lubiw [16] proves that when a Γ occurs in a doubly lexical ordering, it is part of a
chordless cycle that has at least six vertices. To find such a cycle, let {(a, b), (b, c), (c, d)}
be the Γ, and remove N(b)∪{b}∪N(c)∪{c}−{a, d} from the graph. Since the Γ is part
of a chordless cycle, there exists a path from a to d in this induced subgraph. Using
breadth-first search (BFS) starting at a, we may find a shortest path P from a to d in
this induced subgraph. Since {(a, b), (b, c), (c, d)} is a P4 and all members of P other
than a and d are nonneighbors of b and c, the union of P and the {(a, b), (b, c), (c, d)}
is a chordless cycle of length at least six. This chordless cycle can be returned as a
certificate that the input graph is not chordal bipartite.

On first inspection, this does not seem like a sublinear certificate. To verify
that the returned cycle C is indeed chordless, a skeptical user must spend O(n + m)
time in the worst case to verify that the cycle has no chords. The key to an O(n)
authentication algorithm is the observation that its purpose is to verify that the graph
has a chordless cycle and to not verify that C is an example of one.

An O(n) authentication algorithm first verifies that C is a cycle in G of size greater
than four. It then selects any four consecutive vertices (u, x, y, w) on the cycle and
verifies that x and y have no neighbors on C other than the ones that are supposed
to have. That is, it verifies that x has no neighbors on C other than u and y, and
y has no neighbors on C other than x and w, and that u and w are nonadjacent. If
these tests fail, the certificate is ruled faulty. Otherwise, even if C still has undetected
chords, the existence of a path from u to w that avoids the neighborhoods of x and y
proves the existence of a shortest such path, P . The union of (u, x, y, w) and such a
shortest path is a chordless cycle of length greater than four. Therefore, the user may
be certain that the graph has a chordless cycle based on this authentication algorithm,
even though the algorithm does not fully verify that C is itself chordless.

5. Interval graphs. An undirected graph is chordal if it has no chordless cycle
of length at least four. Three independent vertices x, y, z of a graph G are an asteroidal
triple (AT) of G if, between each pair of these vertices, there is a path that contains
no neighbors of the third. A graph is said to be AT-free if it has no AT. For more
information on these and other graph classes we refer the reader to [3, 8]. We will
rely on the following well-known theorem.

Theorem 5.1 (see [15]). A graph is an interval graph iff it is chordal and AT-
free.

A graph is chordal iff it has a perfect elimination ordering, which is an order-
ing (v1, v2, . . . , vn) of the vertices such that for each vi, N(vi) ∩ {vi+1, vi+2, . . . , vn}
is a clique [6]. A perfect elimination ordering of a chordal graph can be found in
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linear time by the lexicographical BFS (LexBFS) algorithm [25, 8]. A modification
of this algorithm points out a chordless cycle of length at least four as a certificate of
nonmembership [27]. Hence, this is a linear-time certifying recognition algorithm for
chordal graphs.

5.1. The certificates. When the graph is an interval graph, we produce an
interval model, just as the prior algorithms do. For the authentication step, it is easy
to check whether this model corresponds to the input graph in time that is linear in
the size of the input graph. The basic trick is to work left-to-right through the model,
generating edges implied by the model and rejecting the certificate immediately if the
number of edges exceeds the number of edges in the graph. Otherwise, when finished,
verify that the generated edges are the same as those in the graph by labeling the
vertices with identifiers from 1 to n, and then radix sorting the set of all edges of G
according to the identifiers of their endpoints. Since authentication takes linear time,
the interval model is a weak certificate.

When the graph is not an interval graph, Theorem 5.1 provides the basis of our
certificate: we produce either a chordless cycle or an AT. Despite initial appearances,
these can be turned into sublinear certificates. For the AT, we accomplish this by
returning not only the triple, but for each pair in the triple, the sequence of edges of
a simple path between them that avoids the neighborhood of the third. The sequence
of edges may be given by pointers to the corresponding edge structures in the user-
supplied data. Given the triple, it is easy to find these three paths in linear time.
The authentication algorithm must verify that each proposed path is, in fact, a path,
that its edges occur in G, and that no neighbors of the third vertex occur on it. If
each path is given by pointers to edges in the input structure in the order in which
they occur on the path, this is accomplished in O(n) time by marking the neighbors
of each vertex in the triple. This is a sublinear certificate because O(n) is a better
bound than O(n + m).

As in the case of chordal bipartite graphs, a chordless cycle can be used to verify
in O(n) time that such a cycle exists, without fully verifying that the given cycle
is an example of one. The authentication algorithm is the same as in the chordal
bipartite case, except that when (u, x, y, w) are consecutive vertices, the certificate is
not rejected if u and w are adjacent.

5.2. Generating the certificates. For our certifying algorithm, we use the
linear-time algorithm of Korte and Möhring [13] as a subroutine. Though this is not
a certifying algorithm, it produces a certificate in the form of an interval representation
in the case where the graph is an interval graph.

Suppose the input graph is not an interval graph. Using the algorithm of [27], we
return a chordless cycle if the graph is not chordal.

It remains to show how to produce a certificate in the case where the graph is
chordal, but not an interval graph. Henceforth, we will assume that this case applies.

The algorithm of Korte and Möhring produces a perfect elimination ordering
(v1, v2, . . . , vn), and incrementally decides whether the subgraph induced by the ver-
tices {vn, . . . , vi} is an interval graph. Since we now assume that the graph is not
an interval graph, it fails when considering a particular vertex vi−1. The subgraph
induced by the vertices {vn, . . . , vi} is an interval graph and the subgraph induced by
{vn, . . . , vi, vi−1} is not.

In the remainder of this section, we use G to denote the subgraph induced by
{vn, . . . , vi} and we let x = vi−1. The graph G + x is a chordal graph, but not an
interval graph, and hence it must contain an AT by Theorem 5.1. The neighbors of x
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form a clique in G since (v1, v2, . . . , vn) is a perfect elimination ordering of the input
graph.

The Korte–Möhring algorithm provides an interval model of G. We may assume
without loss of generality that all endpoints in the interval model of G are pairwise
distinct, since, when they are not, they can be perturbed to make this true without
altering the represented graph. Let us then number the endpoints in left-to-right
order, and for each vertex, let l(v) and r(v) denote the numbers of the left and
right endpoints of the interval corresponding to v. This gives a “normalized” interval
model where I(v) = [l(v), r(v)] is the interval that corresponds to v, all endpoints are
distinct, and l() and r() are integer-valued functions from V (G) to {1, 2, . . . , 2n}.

Lemma 5.2. Let G be an interval graph such that G′ = G + x is not an interval
graph and N(x) is a clique. Then x is a member of every AT of G′.

Proof. Suppose {a, b, c} is an AT of G′ and x �∈ {a, b, c}. There is a path P
from a to b in G′ that avoids the neighborhood of c. If P contains x, then, since the
neighborhood of x is a clique, x’s predecessor and successor on P must be adjacent,
and x can be spliced out of P to yield a path in G. Thus, there is a path in G from a
to b that avoids the neighborhood of c. By symmetry among the members of {a, b, c},
{a, b, c} is an AT of G, contradicting the assumption that G is an interval graph.

Definition 5.3. Let us say that interval [x1, x2] precedes interval [y1, y2] iff
x1 < y1 and x2 < y2. Let P be a path in G. Let the rightward extent R(P ) of P
denote max {r(u)|u is a vertex on P}, and let the leftward extent L(P ) of P denote
min {l(w)|w is a vertex in P}. Let D(x) =

⋂
{I(v)|v ∈ N(x)} be the intersection of

the intervals representing the neighbors of x. Then D(x) �= ∅ since the neighbors of x
form a clique.

Since an AT is an independent set, in any AT {x, y, z} of G′, one of I(y) and I(z)
precedes the other, and if I(y) precedes I(z), then r(y) < l(z).

Lemma 5.4. Let {x, y, z} be an AT in G′, where I(y) precedes I(z). Then

r(y) < l(D(x)) < r(D(x)) < l(z).

Proof. Assume otherwise, say, l(D(x)) < r(y), and consider any path P from z to
v ∈ N(x) avoiding N(y). Then v �∈ N(y). Together with l(v) ≤ l(D(x)), this implies
r(v) < l(y). Since r(y) < l(z), P must contain a neighbor of y, a contradiction.

Definition 5.5. If r(y) < l(D(x)), then let R(y) = min {R(P )|P is a path from
y to a neighbor of x}. That is, R(y) is the minimum rightward extent of any path
from y to a neighbor of x. Similarly, if r(D(x)) < l(z), then let L(z) = max {L(P )|P
is a path from z to a neighbor of x}. That is, L(z) is the maximum leftward extent
of any path from z to a neighbor of x.

Lemma 5.6. If r(y) < l(D(x)) < r(D(x)) < l(z), then {x, y, z} is an AT in G′ iff
y and z are in the same component of G−N(x) and [r(y), R(y)] precedes [L(z), l(z)].

Proof. If {x, y, z} is an AT in G′, then y and z are in the same component of
G − N(x), since there is a path of G′ that avoids the neighborhood of x. There is
a path from y to x in G′ that avoids the neighborhood of z, and hence a path to a
neighbor of x in G that contains no neighbor of z. Since r(y) < l(z), the intervals
of all vertices on this path have their right endpoint to the left of l(z). Therefore,
R(y) < l(z). By mirror symmetry, r(y) < L(z).

If {x, y, z} is not an AT in G′, then since {x, y, z} is an independent set, every
path of G′ between some pair of the vertices contains a neighbor of the third. If
every path between y and z contains a neighbor of x, then y and z are in different
components of G−N(x). If all paths from y to a neighbor of x contain a neighbor of
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z, then the rightward extent of all such paths is greater than l(z), and R(y) > l(z).
By mirror symmetry, r(y) < L(z).

Lemma 5.6 gives the strategy of our approach for finding an AT in G′. Removing
the intervals corresponding to N(x) from the interval model of G gives an interval
model of G−N(x). We look for a component whose intervals span [l(D(x)), r(D(x))].
For each y in the component such that r(y) < l(D(x)) we compute R(y), and for
each z in the component such that r(D(x)) < l(z) we compute L(z). We then look
for a pair [r(y), R(y)], [L(z), l(z)], such that [r(y), R(y)] precedes [L(z), l(z)], using
Lemma 5.7, which we give first.

Lemma 5.7. Given two sets X and Y of intervals, where the right endpoints of
X are given in ascending order and the left endpoints of Y are given in descending
order, it takes O(|X | + |Y|) time to either determine that no interval in X precedes
any interval in Y, or else return a ∈ X and b ∈ Y such that a precedes b.

Proof. As a base case, if X or Y is empty, there is no such pair. Otherwise, select
u ∈ X that minimizes r(u), and select w ∈ Y that maximizes l(w). If l(u) < l(w) and
r(u) < r(w), then return (u,w) as (a, b). Otherwise, if l(u) ≥ l(w), then u is not a
candidate for a since its left endpoint does not lie to the left of any left endpoint in Y.
Let X := X −{u}. By mirror symmetry, if r(u) ≥ r(w), then w is not a candidate for
b, so let Y := Y − {w}. By induction on the size of |X | + |Y|, a recursive call on the
new X and Y solves the original problem. Because of the way the data are sorted, it
takes O(1) time to select u and w and to prepare the recursive call, in which |X |+ |Y|
has been reduced by at least 1.

To use Lemma 5.7, we let X = {[r(y), R(y)]|r(y) < l(D(x))} and let Y =
{[L(z), l(z)]|r(D(x)) < l(z)}. Since r() and l() are integer functions from 1 to 2n,
sorting the endpoints as required by the lemma takes O(n) time.

Therefore, by Lemmas 5.6 and 5.7, the problem of finding an AT reduces in linear
time to computing R(y) at each y such that r(y) < l(D(x)) and L(z) at each z such
that r(D(x)) < l(z). We give the procedure for R(), and by mirror symmetry, this
gives the procedure for L().

Definition 5.8. A path P in G is increasing if, whenever u is earlier than v on
P , r(u) < r(v). Let Dr be the orientation of G−N(x), where (u, v) is an arc in Dr

iff uv is an edge in G−N(x) and r(u) < r(v).

Our strategy for computing R() is to find a way to restrict our attention to
increasing paths from y to N(x), which allows us to work in Dr rather than in G.
Since Dr is a dag, this simplifies the problem.

Lemma 5.9. If there is a path P from u to v with rightmost extent R(P ) = r(v),
then there is an increasing path P ′ from u to v such that R(P ′) = R(P ).

Proof. If u = v, P is vacuously increasing. Suppose P has length greater than
0 and the lemma is true for shorter paths. Let w be the first vertex on P with
r(w) > r(u). R(P ) = r(v) implies r(u) < r(v), so w exists. Then I(u) and I(w)
intersect, and hence u and w are neighbors. By induction, there is an increasing path
P ′′ from w to v and P ′ = uP ′′ satisfies the lemma.

Lemma 5.10. Let r(y) < l(D(x)) and let P be a path in G from y to a neighbor
v of x. Then there is a path P ′v from y to v such that R(P ′v) ≤ R(P ) and P ′ is
increasing.

Proof. If R(P ) = r(v), then the claim follows from Lemma 5.9. Otherwise, let w
be the first vertex on P such that I(w) intersects D(x), and let P ′′ be the portion of
P from y to w. Since R(P ′′) = r(w), there is an increasing path P ′ from y to w, and
since I(w) intersects D(x), w and v are adjacent.
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Lemma 5.11. It takes linear time to compute R(y) for every y ∈ V (G) such that
r(y) < l(D(x)).

Proof. By Lemma 5.10, we need only consider well-behaved paths in G that consist
of a directed path in Dr, followed by a single edge of G to a neighbor of x. For any such
well-behaved path P , R(P ) is the maximum of the last two values of r() on the path.
For each y ∈ V (G)−N(x), let Ri(y) = min{R(P )|P is a well-behaved path of length
at most i}, or ∞ if there is no such path. The value of R1(y) is trivial to compute
at all nodes in V − N(x) in linear time. Let (up, up−1, . . . , u1) be a topological sort
of Dr. Then Ri(ui) = min {R1(ui)} ∪ {Rj(uj)|(ui, uj) is an arc of Dr}. This may be
computed by induction on i in linear time. For any y = uk such that r(y) < l(D(x)),
R(y) = Rk(uk), since y has at most k − 1 successors in Dr.

5.3. Comparison with the original Korte–Möhring algorithm. One of the
anonymous referees has asked for a clarification of why the Korte–Möhring algorithm
is not already a certifying algorithm, producing a sublinear certificate of rejection,
just as ours does.

Answering this question requires more details about how the algorithm works.
The Korte–Möhring algorithm paper [13] defines a modified PQ tree (MPQ tree) for
an interval graph G, which gives a way of representing implicitly all possible interval
representations of G. Vertices of G are associated with nodes of the MPQ tree; details
about this representation are given in the paper.

As described above, the Korte–Möhring algorithm works by induction on a per-
fect elimination order (v1, v2, . . . , vn). Let Gi denote the subgraph of G induced by
{vn, vn−1, . . . , vi}, and let Ti be its MPQ tree. At each step i − 1 it produces the
MPQ tree Ti−1 of Gi−1 from the MPQ tree Ti of Gi, unless Gi−1 fails to be an
interval graph, in which case it rejects Gi−1, and hence G is not an interval graph.

At each step, recognizing whether Gi−1 is an interval graph is trivial, since this is
the case iff the neighbors of vi−1 in Gi have a certain relationship to Ti that is quite
easy to check in O(n) time. If G is not an interval graph, the test will fail at some
step i− 1.

Since it is possible to verify that G is not an interval graph in O(n) time using Ti

and vi−1, the referee has suggested that (Ti, Vi−1) be returned as a sublinear certificate
of rejection.

Though compelling, this idea has the subtle flaw that it violates the principle
that it must not be possible for an authentication algorithm to be induced to make
a false declaration by an erroneous or counterfeit certificate. It must either declare a
correct answer to the original problem, or it must correctly declare that the claimed
certificate contains an error and fails to show what it claims to show. Showing that
(Ti, vi−1) fails the simple O(n) test demonstrates only that either Gi−1 is not an
interval graph, or that Ti is not the correct MPQ tree for Gi, or that Ti is the correct
MPQ tree for Gi but that (v1, v2, . . . , vn) is not a perfect elimination order. In fact,
the authors make clear that an additional requirement for the algorithm to work is
for (v1, v2, . . . , vn) to be a special case of a perfect elimination order produced by the
LexBFS algorithm.

Therefore, in addition to verifying that (Ti, vi−1) fails to have the required simple
relationship to Ti, it is also necessary to verify that Ti is the correct MPQ tree for Gi

and that (v1, v2, . . . , vn) is a LexBFS order.
A necessary step in checking that Ti is the correct MPQ tree for Gi is to check

that an interval model it implies correctly reflects every edge of Gi. Otherwise, it
leaves open the possibility that Ti is the MPQ tree for some interval graph G′

i �= Gi.
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The authentication algorithm will falsely declare that Gi−1 is not an interval graph if
G′

i + vi−1 is not an interval graph, but Gi + vi−1 is. There is little hope of finding a
sublinear algorithm for checking whether a given interval model faithfully represents
a given graph G, though this is easily accomplished in linear time. The claim that it
is a sublinear certificate cannot be made, given what is currently known, and there
are reasons to believe that this will not change in the future.

Whether (Ti, vi−1) is useful as a weak certificate depends on the question of
whether it clearly simplifies conceptually the task of verifying that G is not an interval
graph. In constructing Ti, checking whether Tj and vj−1 satisfy the required test for
j > i is quite simple, but updating Tj to produce Tj−1 when it passes this test is
considerably more complicated. Though it takes linear time, the problem of checking
that an interval model Ii implied by the MPQ tree Ti faithfully represents Gi is a
fairly simple task. However, once this has been accomplished, one must still verify
that Ti is the correct MPQ tree for Ii. This problem is one of the main subjects
of a forthcoming paper [17]; it is shown there that it can be solved in O(n) time.
The algorithm is quite involved, though it is possible that a simpler algorithm could
accomplish the task in O(n + m) time. As for verifying the LexBFS order, there is
an algorithm for checking whether an order is a perfect elimination order [8], but we
do not know of an algorithm for verifying a LexBFS order other than rerunning the
LexBFS algorithm that produced it. An interesting question is whether the interval
representation could help.

In summary, the usefulness of (Ti, vi−1) in simplifying the problem significantly
without leaving open the possibility of giving erroneous output has not been demon-
strated. If this is accomplished, it appears unlikely that the resulting authentication
will compete in simplicity with the one for checking a given AT or given chordless
cycle, or that it will be sublinear.

6. Comparability graphs. Let us consider an undirected graph G to be a
special case of a digraph, namely, the symmetric digraph where if (x, y) is a directed
arc, then so is (y, x). The undirected edge xy is just the pair {(x, y), (y, x)}. Finding
a transitive orientation of an undirected graph G amounts to deleting one arc from
each symmetric pair so that the remaining arcs form a transitive digraph.

Suppose (a, b) and (b, c) are arcs of G and (a, c) is not. Any orientation of G where
both (a, b) and (b, c) appear must fail to be transitive, due to the forced absence of
(a, c) in the orientation. Then (b, c) is incompatible with (a, b), as is (b, a), since a
transitive orientation must be antisymmetric. We may represent the incompatibility
relation with an incompatibility graph whose vertices are the arcs of G and whose
(undirected) edges are the incompatible pairs of arcs of G. (See Figure 4.)

We show in section 6.3 that the following is an immediate corollary of a result
from [7, 8].

Theorem 6.1. An undirected graph G is a comparability graph iff its incompati-
bility graph is bipartite.

The following is a consequence of Theorem 6.18, which we give in section 6.3, and
gives a sublinear certificate that a graph is not a comparability graph, since it can be
checked in O(n) time.

Theorem 6.2. When G fails to be a comparability graph, its incompatibility
graph has an odd cycle of length O(n).

A linear-time algorithm for finding a transitive orientation of a comparability
graph is given in [18]. This transitive orientation algorithm represents the orientation
it assigns to the edges implicitly by giving a linear extension (topological sort) of the
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Fig. 4. The incompatibility graph of a graph. There is one vertex for each directed edge, and
two are adjacent if one is the transpose of the other, or if they are of the form {(a, b), (b, c)} and (a, c)
is not an edge. Two adjacent edges cannot appear in a transitive orientation. Therefore, a transitive
orientation must be an independent set in the incompatibility graph. Reversing the direction of the
edges in a transitive orientation yields a new transitive orientation. From this observation, it is
easy to see that the incompatibility graph of a comparability graph is bipartite.

orientation that it produces. This allows it to be applied to G in time linear in the
size of G.

When the transitive orientation algorithm is asked to provide a transitive orienta-
tion of a graph G that is not a comparability graph, it produces an acyclic orientation
of the graph, which it represents with a linear extension. This orientation must con-
tain an incompatible pair, namely, a pair {(a, b), (b, c)} of directed edges in series such
that ac is not an edge of G, and hence (a, c) is not a directed edge in the orienta-
tion. No general linear-time algorithm for finding an incompatible pair in a dag is
known. Because of this, no linear-time algorithm is known for recognizing compara-
bility graphs, even though a linear-time algorithm for transitively orienting them is
available.

We prove the following lemma in section 6.3.

Lemma 6.3. Given an incompatible pair in the orientation of a graph G produced
by the transitive orientation algorithm of [18], it takes O(n + m) time to find an odd
cycle of length O(n) in G’s incompatibility graph, and given an incompatible pair in
an orientation of G by the algorithm, it takes O(n + m) time to find an odd cycle of
length at O(n) in G’s incompatibility graph.

6.1. Minimum proper coloring and maximum clique. The algorithm of [18]
for finding a minimum proper coloring and maximum clique in a comparability graph
proceeds as follows. Given an arbitrary input graph G, it finds an acyclic orientation
that will be transitive if the input is a comparability graph. It then labels each vertex
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Fig. 5. Finding a maximum clique and minimum proper coloring in a comparability graph. The
color of each vertex is the length of the longest directed path originating in a transitive orientation.
A longest path is a clique. Since the size of a clique is a lower bound on the number of colors in a
proper coloring, the coloring is a certificate that the clique is of maximum size and the clique is a
certificate that the proper coloring is a minimum one.

with the length of the longest directed path originating at the vertex in the result-
ing directed acyclic graph. This labeling is easily accomplished in O(n + m) time
by labeling each vertex as it finishes during a depth-first search of the graph. (See
Figure 5.) Each neighbor of the vertex is already labeled at that point, so the vertex
can be labeled with one plus the maximum of the labels of its neighbors. This is a
proper coloring, since for any edge xy of G, the label of one of x and y will exceed
the other’s by at least 1.

If the longest path is a clique, then the coloring is a minimum one and the path is
a maximum clique. This is because the size of a clique is a lower bound on the number
of colors needed, and since the clique has the same number of vertices as the number
of colors used, the coloring serves as a certificate that the clique is a maximum one
and the clique serves as a certificate that the coloring is a minimum one. These are
weak certificates, since it takes O(n+m) time for a user to verify that the coloring is
a proper one and that the path is a clique.

If G is not a comparability graph, the algorithm still assigns an acyclic orientation,
which allows the vertices to be colored as before, and finds a maximum-length directed
path P . If P is a clique in G, then it is a maximum clique and the coloring is a
minimum proper coloring, so these may be returned as each other’s certificate just
as in the case where G is a comparability graph. If P is not a clique in G, then
there exist two consecutive arcs (a, b) and (b, c) on P such that (a, c) is not an edge,
and these are easy to find in linear time. Since (a, b) and (b, c) are an incompatible
pair, an odd cycle in the incompatibility graph may then be found in O(n+m) time,
by Lemma 6.3. As pointed out above, this is a sublinear certificate that G is not a
comparability graph.

6.2. Permutation graphs. In [18], it is shown that the transitive orientation
algorithm given there gives rise to a linear-time bound for recognizing permutation
graphs. The algorithm is based on the following characterization of permutation
graphs.

Theorem 6.4 (see [23, 8]). An undirected graph G is a permutation graph iff G
and its complement G are both comparability graphs.

When G is a permutation graph, the algorithm finds a topological sort of a tran-
sitive orientation D of G and a topological sort of a transitive orientation D′ of G.
D∪D′ is a tournament (an orientation of a complete graph) and acyclic. It then finds
the unique topological sort of D ∪D′ to yield a linear ordering of V , and the unique
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topological sort of DT ∪ D′ to give a second linear arrangement of V . By results
from [23, 8], these two linear arrangements are a permutation model of G.

When G is not a permutation graph, the procedure in [18] produces a faulty
permutation model of G. Success or failure of an authentication algorithm on the
permutation model it produces provides the basis for deciding whether the graph
is a permutation graph in that algorithm. The procedure is not a certifying algo-
rithm, since the permutation model could also have been faulty due to a bug in the
implementation.

A linear-time authentication algorithm for a proposed permutation model is given
in [18]. The permutation model is therefore a weak certificate.

The algorithm for recognizing permutation graphs given in [18] uses the transitive
orientation algorithm to find linear extensions of orientations D and D′ of G and of
G. Since it provides a certificate if G is a permutation graph, we will assume in the
remainder of the paper that G is not. In this case, at least one of D and D′ has an
incompatible pair.

We now describe how to find an incompatible pair in D or D′ in time linear in the
size of G, given G and linear extensions π and τ of D and of D′. This constitutes proof
that the implementation of the transitive orientation algorithm failed to produce an
orientation of G or of G that is transitive. However, it is not a certificate that G is not
a permutation graph, since the failure could be due to a bug in the implementation
of the algorithm.

Lemma 6.5. Let G be a graph, and let D and D′ be acyclic orientations of G
and G. Then D ∪D′ and DT ∪D′ are both acyclic iff D and D′ are each transitive.

Proof. Since D ∪D′ is a tournament, then if it has a cycle, it has a three-cycle.
Suppose there is a directed three-cycle (x, y), (y, z), (z, x) in D ∪D′. Since D and D′

are both acyclic, one of these arcs belongs to D and another belongs to D′. Suppose
without loss of generality that (x, y), (y, z) belong to D. Then since (x, z) �∈ D,
D is not transitive. An identical argument applies if DT ∪ D′ contains a directed
three-cycle.

Next, suppose that one (or both) of D and D′ fails to be transitive. Assume with-
out loss of generality that D fails to be transitive. Then there exists an incompatible
pair {(a, b), (b, c)}. Therefore (a, c) is not an arc of D, and since D is acyclic, (c, a) is
not an arc of D. Therefore, (a, c) or (c, a) is an arc of D′; if (a, c) is an arc of D′, then
{a, b, c} induces a three-cycle in DT ∪D′, and if (c, a) is an arc of D′, then {a, b, c}
induces a three-cycle in D ∪D′.

Lemma 6.6. Let G, D, and D′ be as in Lemma 6.5. Given a three-cycle in D∪D′

or DT ∪D′, it takes O(1) time to return an incompatible pair in D or in D′.

Proof. Suppose the three-cycle occurs in D∪D′. Since each of D and D′ is acyclic,
two of the arcs of the cycle occur in one of D and D′ and give an incompatible pair
in it.

Let p(x) be the number of predecessors of x ∈ V in D ∪D′. This is just |N−(x)|
in D plus |N−(x)| in D′.

Lemma 6.7. If for each i ∈ {0, 1, . . . , n−1} there exists x ∈ V such that p(x) = i,
then D ∪D′ is acyclic.

Proof. (By induction on i.) Suppose D ∪ D′ has n vertices and satisfies the
conditions of the lemma. The claim is immediate if n = 1. Suppose n > 1 and the
claim holds for n−1. There is a vertex s in D∪D′ such that p(s) = n−1. Since every
other vertex is a predecessor of s, no directed cycle of D ∪D′ contains s. However,
removal of s leaves an induced subgraph of D ∪ D′ on n − 1 vertices that satisfies
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the condition of the lemma, so by the induction hypothesis, there can be no directed
cycle that excludes s.

Lemma 6.8. Let G, D, and D′ be as in Lemma 6.5, and let π and τ be topological
sorts of D and D′, respectively. Given G, π, and τ , it takes O(n + m) time to find a
three-cycle in D ∪D′ or else determine that D ∪D′ is acyclic.

Proof. In O(n) time, we may label the elements of V with their position numbers
in π and in τ . In O(n + m) time, we can then label every x ∈ V with the value of
|N−(x)| in D by counting, for each vertex, the neighbors in G with earlier position
numbers. To find N−(x) in D′ we cannot do this directly in linear time, since D′ is
an orientation of G, which might not have O(n + m) size. Instead, let i(x) be the
number of predecessors of x in τ ; i(x) is just the position number of x in τ , minus
one. Let q(x) denote the number of neighbors of x in G that have earlier position
numbers in τ . We can then compute |N−(x)| in D′ as i(x)− q(x). It takes O(n+m)
time to compute q(x) for all x ∈ V , and hence O(n + m) time to label each x ∈ V
with |N−(x)| in D′.

If the condition of Lemma 6.7 holds, then D ∪ D′ is acyclic. Otherwise, there
exist x, y ∈ V such that p(x) = p(y). Without loss of generality, suppose that
(x, y) ∈ D ∪D′. Since y has x as a predecessor, and x and y have the same number
of predecessors, then in D∪D′, x must have a predecessor z that y does not have. In
O(n) time, we may list the predecessors of x in D and in D′, do the same for y, and
compare these two lists to find such a z. Then (x, y), (y, z), (z, x) is a three-cycle.

By symmetry, Lemma 6.8 also applies to DT ∪ D′. The linear time bound for
finding the incompatible pair now follows by Lemma 6.6.

6.3. Proof of Theorem 6.1, Theorem 6.2, and Lemma 6.3. In this sub-
section, we give a linear-time algorithm to find an odd cycle of length O(n) in the
incompatibility graph of G, given an incompatible pair in the orientation assigned to
it by the transitive orientation algorithm. We show how to apply the algorithm to G
in time linear in the size of G.

Let Γ be the relation on arcs, where (u,w)Γ(x, y) if u = x and w and y are
nonadjacent or w = y and u and x are nonadjacent. (This accepted term has nothing
to do with the Γ’s defined in section 4.) When (u,w)Γ(x, y), any transitive orientation
that contains one of the arcs must also contain the other. Let G = (V,E) be an
arbitrary undirected graph, and let AG be its directed arcs. Let ΓG be the graph
(AG,Γ) whose vertices are the arcs of G and whose edges are the pairs of elements
in Γ.

Definition 6.9. A transposed path is a path in ΓG between an arc (x, y) of G
and its transpose (y, x).

The following is well known.
Theorem 6.10 (see [7, 8]). An undirected graph G is a comparability graph iff

it has no transposed path.
Lemma 6.11. If there is a transposed path of length at most k in ΓG, then there

is an odd cycle in G’s incompatibility graph of length at most k + 1.
Proof. Note that e1Γe2 iff e1 �= eT2 and e1e

T
2 is an edge of the incompatibility

graph. A path (e0, e1, . . . , ek) in ΓG can be turned into a path in ΓG by replacing
each edge of odd index with its transpose. An odd-length path from e0 to eT0 in
Γ maps to an odd-length cycle from e0 to e0 in the incompatibility graph, and an
even-length path from e0 to eT0 in Γ maps to an even-length path from e0 to eT0 in the
incompatibility graph, which, together with the edge (eT0 , e0), defines an odd cycle in
the incompatibility graph.
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Proof of Theorem 6.1. The proof is immediate from Lemma 6.11.

Re-expressing Theorem 6.10 as Theorem 6.1 makes it immediately obvious to a
user that the certificate proves that G has no transitive orientation. Since a skeptical
user can check an edge of the incompatibility graph in O(1) time, an odd cycle of size
O(n) in the incompatibility graph is a sublinear certificate that G is not a compara-
bility graph if the odd cycle has size O(n). However, ΓG is useful for explaining the
algorithm to generate the certificate. The constructive proof of Lemma 6.11 shows
how to convert a transposed path to an odd cycle of the incompatibility graph in time
proportional to the length of the transposed path.

A module of an undirected graph G = (V,E) is a set X of vertices such that for
each vertex y ∈ V −X, either every element of X is a neighbor of y or no member of
X is a neighbor of y. V , the empty set, and the singleton subsets {{x}|x ∈ V } are
trivial modules. G is prime if it has only trivial modules. A set of vertices in G is a
module iff it is a module in G, and hence G is prime iff its complement is prime.

The problem of verifying that G is a comparability graph reduces in linear time to
the problem of verifying that a set of prime induced subgraphs is a set of comparability
graphs [7, 18]. A transposed path in an induced subgraph is also a transposed path
in G. Therefore, when G or G is not a comparability graph, producing a transposed
path in G or in G reduces in linear time to the same problem in the special case where
G is prime.

Theorem 6.12 (see [7, 8]). Let G be a prime undirected graph. If G is not a
comparability graph, then ΓG has one connected component. Otherwise, ΓG has two
components, where one component contains the transposes of the arcs in the other
component.

We show how to modify the transitive orientation algorithm of [18] so that it
creates a record that allows us to find a path of length O(n) in ΓG between any two
arcs that are included in its orientation of a prime graph G.

The transitive orientation algorithm of [18] begins with a partition P = {{v}, V −
{v}} of the vertices V of a prime graph G, where v is a selected initial lone vertex.
In a process called vertex partitioning, it iteratively refines the partition using the
following step, until P is the partition of V into one-element subsets:

• Select a vertex x as a pivot, and a partition class Y that does not contain
x. Split Y into two classes, Ya = Y ∩ N(x) of vertices that are adjacent
to x and Yn = Y − N(x) of vertices that are nonadjacent to x. Let P :=
(P − {Y }) ∪ {Ya, Yn}.

Figure 6 gives an example. Performing the first pivot on the initial lone vertex
v splits V − {v} into nonneighbors {c, f, g} and neighbors {a, e, w}. Performing a
pivot on w then splits the class {c, f, g} into neighbors {c, f} and nonneighbor {g}.
Performing a pivot on {f} then splits {a, e, w} into nonneighbor {a} and neighbors
{e, w}, etc. Since G is prime, any partition class of size greater than one fails to
be a module, so it is always possible to find a pivot that will split it. The vertex
partitioning procedure halts when all partition classes are of size 1.

During the partitioning, a linear arrangement of the partition classes is main-
tained, so that when a set Y is split into two sets, Yn and Ya, these two sets occupy
consecutive places at the former position of Y , with Ya placed farther than Yn from
the partition class that contains the pivot. Initially, the lone vertex {v} is placed first.
For example, in Figure 6, when v splits {a, c, e, f, g, w}, it is in a class that precedes
{a, c, e, f, g, w}, so the neighbors {a, e, w} are placed after the nonneighbors, {c, f, g}.
In the next step, when w then splits {c, f, g}, w is in a class that follows {c, f, g}, so
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v    |    a  c  e  f  g  w

v    |    c  f  g    |    a  e  w

v    |    c  f    |    g    |    a e w

v    |    c  f    |    g    |    a    |    e  w

v    |    f    |    c    |    g    |    a    |    e  w

v    |    f    |    c    |    g    |    a    |    e    |    w

w    |    a  g    |    c  e  f  v

w    |    g    |    a    |    c  e  f  v

w    |    g    |    a    |   f  v    |    c  e

w    |    g    |    a    |    f  v    |   c    |    e

w    |    g    |    a    |    f    |    v    |    c    |    e

w    |    a  c  e  f  g  v

a v c g

f
e

wa v c g

f
e

w

First run of the partitioning
procedure:

Second run of the partitioning
procedure:

Orientation implied by final
ordering of vertices

Input graph G

Fig. 6. The transitive orientation algorithm of [18] performs two vertex partition refinements
on a prime comparability graph in order to find a linear ordering of the vertices that gives a topo-
logical sort of a transitive orientation of the graph. The final ordering given by the second partition,
(w, g, a, f, v, e, c) in this example, is the topological sort, which gives implicitly the transitive ori-
entation of the graph. Arrows indicate pivot vertices that are used for the next refinement of the
partition.

the neighbors {c, f} are placed before the nonneighbor {g} in the ordering.
It is shown in [18] that if the initial lone vertex v is a source or sink in a transitive

orientation of G, then the final ordering of vertices will be a topological sort of that
transitive orientation. Moreover, it is shown that if v is an arbitrary vertex, then
the rightmost vertex in the final ordering must be a source or sink in a transitive
orientation of G. (The reasons will become apparent below.) Therefore, the procedure
is run twice, once starting with arbitrary initial lone vertex v to identify a source/sink
w, and once starting with w as the initial lone vertex to find a topological sort of the
transitive orientation. Since the topological sort implies the orientations of the edges,
this gives the transitive orientation if G is a comparability graph. In the illustration,
the ordering (w, g, a, f, v, c, e) produced by the second run of the vertex partitioning
gives the transitive orientation depicted in the graph at the bottom.

Let us now examine what happens when G is not a comparability graph. The
procedure still produces an ordering of the vertices. Since G has no transitive ori-
entation, this orientation must contain a pair (a, b) and (b, c) of directed edges such
that (a, c) is not an edge, namely, an incompatible pair. An incompatible pair does
not serve as a certificate that G is not a comparability graph, since it shows only
that either G is not a comparability graph or the implementation of the transitive
orientation algorithm has a bug.

We therefore seek a mechanism to turn an incompatible pair into a certificate
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that G is not a comparability graph.

To accomplish this, we define a parent relation on the directed arcs of G that
results from the vertex partitioning procedure. Suppose a set Y is split into Yn and
Ya by a pivot vertex x. Let (y, z) be an arc from Yn to Ya. By the definition of Yn

and Ya, xy is not an edge of G, and xz is, so (y, z)ΓG(x, z) and (z, y)ΓG(z, x). Let
(x, z) be the parent of (y, z), and let (z, x) be the parent of (z, y).

Lemma 6.13. If arc a1 is the parent of arc a2, then a1ΓGa2.

Clearly, every arc has a unique parent except those that are incident to the initial
lone vertex, which have no parents. At a given point in the partition refinement, let us
say that a directed arc is protected if both of its endpoints are currently within a single
partition class, and exposed if its endpoints are in two different partition classes. The
parent relation is acyclic, since the parent is always exposed earlier than the child. All
arcs are assigned a parent except those that are incident to the initial lone vertex, so
the parent relation arising from one run of the vertex partitioning procedure defines
a forest of rooted trees on the arcs of G, and the roots of these trees are the arcs
incident to the initial lone vertex.

Let P1 be the parent relation arising from the first run of the vertex partitioning
procedure, which begins with partition {{v}, V −{v}} and discovers a source/sink w.
Let P2 be the parent relation arising from the partition {{w}, V − {w}}. The arcs
incident to v are the tree roots in P1, and the arcs incident to w are the tree roots
in P2. Therefore, the only arcs that fail to have parents in both P1 and P2 are (v, w)
and (w, v). Moreover, since w is in the rightmost class after every pivot during the
first run of the partitioning procedure, every time it is in a class that is split by a
pivot, it is in the class that contains neighbors of the pivot. Since it is a neighbor of
the pivot, the parent of each edge incident to w that gets exposed by the pivot is also
incident to w.

Therefore, all arcs incident to w lie in the two trees of P1 that are rooted at (v, w)
and (w, v). Let P ′

1 be the restriction of P1 to arcs incident to w; that is, P ′
1 is two

trees rooted at (v, w) and (w, v) that span the arcs incident to w.

It follows that P ′
1∪P2 consists of exactly two trees T(v,w) and T(w,v) that are rooted

at (v, w) and (w, v) and that span all directed arcs of G. Whenever a1 and a2 are arcs
of G where a1 is a parent of a2, a1ΓGa2. By Lemma 6.13, any transitive orientation of
G that contains (v, w) must contain every arc in T(v,w) and any transitive orientation
of G that contains (w, v) must contain every arc in T(w,v). The arcs spanned by the
two trees are the two transitive orientations of G if G has a transitive orientation. Let
us therefore call T(v,w) and T(w,v) the orientation trees.

Figure 7 depicts one of the two orientation trees produced by the two runs of the
vertex partitioning algorithm in Figure 6. Each node is labeled with two vertices and
represents the arc from the first vertex label to the second. (The other orientation tree
is identical except that the directions of all of the edges are reversed.) The parent
relation on arcs determined by the second run (P2) is shown with solid edges; the
parent relation on edges incident to w determined by the first run (P ′

1) are shown
with dashed edges.

Given a parent arc a1 and child arc a2, it is easy to check in O(1) time that a1ΓGa2.
Performing this on all parent-child pairs allows a user to confirm in O(n + m) time
that if G has a transitive orientation, then it must be the orientation consisting of
the nodes of one of the two trees. It therefore serves as a certificate either that the
precondition that G was a comparability graph was violated or that the orientation
is transitive, without identifying which of these two cases occurred. In either case, it
exonerates an implementation of the transitive orientation algorithm of providing a
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(w,f) (a,v)

(a,e)

(w,e)

(g,e)

(g,c)

(w,c)

(w,v)

(v,e)(f,e)

Fig. 7. The orientation tree defined by the two runs of the vertex partitioning procedure shown
in Figure 6. Solid edges depict the parent relation implied by the second run of the partitioning
procedure and form a forest of trees rooted at arcs incident to w. Dashed edges give the parents of
edges incident to w that are implied by the first run of the partitioning procedure. Together, these
edges link this forest together into a tree rooted at (w, v).

nontransitive orientation of a comparability graph.
In contrast to a simple transitive orientation, the orientation trees contain infor-

mation that allows us to find a transposed path if G is not a comparability graph.
In this case, each of the trees must contain two edges (a, b) and (b, c) that form an
incompatible pair, which implies that ac is not an edge of G, and (b, a)ΓG(b, c).

Suppose without loss of generality that (a, b) and (b, c) occur within T(v,w). To
document that G is not a comparability graph, we may find the least common ancestor
(d, e) of (a, b) and (b, c) in T(v,w). Let P(a,b) be the path from (a, b) to (d, e) and P(b,c)

be the path from (b, c) to (d, e) in T(v,w). P(a,b) ∪ P(b,c) defines a path in ΓG from
(a, b) to (b, c). Taking these together with (b, a)ΓG(b, c), we get a transposed path
from (a, b) to (b, a)—a certificate that G is not a comparability graph.

For instance, suppose edge ae is removed from the graph of Figure 6. The resulting
graph is no longer a comparability graph, but it is easy to see that the removal of this
particular edge does not affect any of the steps of either of the two runs of the vertex
partitioning procedure. Therefore, the transitive orientation algorithm still produces
the topological sort (w, g, a, f, v, c, e) of an orientation that contains the incompatible
pair ((a, v), (v, c)). The least common ancestor of (a, v) and (v, e) in the orientation
tree of Figure 7 is (w, v). The union of the paths from (a, v) and (v, c) to this least com-
mon ancestor forms the path ((v, e), (g, e), (w, e), (w, c), (w, v), (a, v)) which, together
with ((e, v)ΓG(a, v)), is a transposed path ((v, e), (g, e), (w, e), (w, c), (w, v), (a, v), (e, v))
from (v, e) to (e, v). A skeptic can check each of the links of this path once they are
pointed out and conclude that the graph is not, in fact, a comparability graph.

T(v,w) and T(w,v) have size O(m); we now show how to construct them in O(m)
time. For this, we modify the vertex partitioning procedure to produce the data
structure pictured on the right side of Figure 8. The construction is illustrated for
the run of the vertex partitioning procedure, where w is the initial lone vertex; the
data structure, where v is the initial lone vertex, is constructed in the same way. The
data structure is a tree whose nodes represent subsets of V . The root of the tree is
V , its children are {w} and V −{w} if w is the initial lone vertex, and the remaining
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a v c g

f
e

w

V

w    |    a  g    |    c  e  f  v

w    |    g    |    a    |    c  e  f  v

w    |    g    |    a    |   f  v    |    c  e

w    |    g    |    a    |    f  v    |   c    |    e

w    |    g    |    a    |    f    |    v    |    c    |    e

w    |    a  c  e  f  g  v

{c,e,f,v}(g)

{f,v}(a)

{f} {v} {c} {e}

{a}{g}

{w}
{a,c,e,f,g,v}(w)

{a,g}(c)

{c,e}(f)

Fig. 8. The Hasse diagram of a run of the vertex partitioning procedure. If a set Y is split into
two sets Yn and Ya by a pivot, Yn and Ya are its children. In the figure, each set is labeled with its
members, as well as the pivot that split it if it is an internal node. For the data structure, it is not
necessary to label internal nodes with their members, so the data structure requires O(n) space.

nodes are the remaining sets that appear at some point during the vertex partitioning
procedure. When a partition class Y is split into Yn and Ya by a pivot x, Yn and Ya

are the children of Y . In other words, the tree is the Hasse diagram of the subset
relation on the partition classes that appear at some point during the refinement. Let
us refer to it as the Hasse diagram of the run of the partition refinement algorithm.

Each node is labeled with the identity of the pivot, in parentheses, that caused
it to split into its two children during the refinement. For instance, when {c, e, f, v}
is split into {f, v} and {c, e} by pivot g, {f, v} and {c, e} become the children of
{c, e, f, v}, and {c, e, f, v} is labeled with the pivot (g) that split it.

To represent this tree with a data structure, we label each leaf with its sole
member, and label each internal node only with the pivot that caused it to split, but
not with a list of members. The members of the set X represented by an internal
node can be found in O(|X|) time by visiting its leaf descendants, which is just as
efficient as labeling the node explicitly with the members of X. This allows each
internal node to take O(1) space, so the data structure for the Hasse diagram takes
O(n) space. The time to construct it does not affect the O(n + m) time to run the
vertex partitioning procedure, since it requires creating two children of size O(1) each
time a partition class is split by the procedure.

Lemma 6.14. Suppose (a, b) is an arc of G. Let Y be the least common ancestor
of {a} and {b} in the Hasse diagram.

• If Y = V , then (a, b) has no parent.
• Otherwise, let c be the pivot that split Y into nonneighbors Yn and neighbors
Ya of c. Then if a ∈ Yn and b ∈ Ya, then (c, b) is the parent of (a, b), and if
b ∈ Ya and a ∈ Yn, then (a, c) is the parent of (a, b).

Proof. The proof is immediate from the definition of the parent function.

Corollary 6.15. Given the Hasse diagram and a set A of arcs of G, it takes
O(|A| + n) time to find the parents of the members of A.
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Proof. Numbering the leaves from 1 to n in left-to-right order allows one to find,
for any two vertices, which is earlier on the leaf order in O(1) time. By the off-line
least common ancestors algorithm of Harel and Tarjan [10], given k pairs of nodes
in a rooted tree with O(n) nodes, it takes O(k + n) time to find the least common
ancestor of each of the k pairs. By the rule for ordering partition classes, for an arc
(a, b) with a least common ancestor split by pivot c, a ∈ Yn if a is in between b and
c in this order, and b ∈ Yn otherwise. In the former case, (c, b) is the parent and, in
the latter case, (a, c) is the parent.

Corollary 6.16. It takes O(n+m) time to find the two orientation trees implied
by the transitive orientation algorithm.

Proof. It takes O(n+m) time to get the parents of all arcs not incident to the lone
initial vertex w in the parent relation defined by the second run of the partitioning
procedure by Corollary 6.15, and it takes O(n) time to get the parents of arcs incident
to w, but not v in the first run. The union of these two sets of parent pointers is
formed by the two orientation trees.

Since the arcs of G are nodes of the orientation trees, these trees have Θ(m)
nodes. However, we can now state the following.

Corollary 6.17. The orientation trees have height O(n).

Proof. Recall that an arc is exposed during partitioning at the point when its
endpoints are separated into two different partition classes. Each time a partition
class splits, the number of partition classes increases by one, and this number is
initially equal to one when the initial lone vertex is separated from V and equal to n
when the partitioning procedure terminates. Therefore, classes are split at most n−1
times. When a split of a class exposes an arc, this means that the parent of the arc
was exposed by an earlier split. Therefore, there is no chain longer than n− 1 in the
parent relation implied by one run of the partitioning procedure.

Each path from an arc of G to the arc (w, v) or (v, w) that is the root of the
orientation tree follows zero or more parent pointers defined by the second run of the
partitioning procedure to arrive at an arc incident to w, followed by zero or more
parent pointers defined by the first run of the partitioning procedure, through arcs
incident to w, to arrive at (w, v) or (v, w). The height of the tree is therefore at most
2n− 2.

Theorem 6.18. Given an incompatible pair ((a, b), (b, c)) in the orientation of a
graph G produced by the transitive orientation algorithm, it takes O(n + m) time to
find an odd cycle of length O(n) in G’s incompatibility graph.

Proof. It takes O(n+m) time to find the orientation tree that contains (a, b) and
(b, c) by Corollary 6.16. It takes O(n) time to find the path from (a, b) to (b, c) in this
tree by Corollary 6.17. By Lemma 6.13, this path, together with (b, c)ΓG(b, a), is a
transposed path from (a, b) to (b, a). The constructive proof of Lemma 6.11 shows
how to turn this into an odd cycle of the incompatibility graph of size O(n).

Proof of Theorem 6.2. The proof is immediate from Theorem 6.18 and Lemma 6.11.

Note that we do not claim an O(n+m) certifying algorithm for recognizing com-
parability graphs, and no such bound is known for recognizing them, with or without
a certificate. The bottleneck for recognition of comparability graphs is finding an in-
compatible pair in the orientation produced by the algorithm of [18]. It is noteworthy,
however, that this gives a certifying algorithm for recognizing comparability graphs
that is as fast as any currently known, and that produces a sublinear certificate of
rejection.

Lemma 6.19 (see [18]). Given a graph G with n vertices and m edges, it takes
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O(n+m) time to find an ordering of the vertices that is a topological sort of a transitive
orientation of G if G is a comparability graph.

The algorithm works by symmetry in the roles of edges and nonedges. It performs
the pivots exactly as it does for orienting G, but reverses the roles of the set Yn of
nonneighbors and the set Ya of neighbors of the pivot. The only effect of this is that it
reverses the relative order of Yn and Ya when we replace Y with these two sets in the
ordering of partition classes. This trick is used in [18] to get linear-time recognition
of permutation graphs.

However, one difficulty we now face in producing a certificate that G is not a
comparability graph in this time bound is that the number of arcs in G, hence the
number of nodes of its orientation trees, is Θ(n2 −m), which does not conform to our
desired O(n + m) time bound. We cannot construct the orientation trees for G and
stay within our time bound.

Fortunately, given an incompatible pair ((a, b), (b, c)), the construction of Theo-
rem 6.18 requires us only to find the paths from (a, b) and (b, c) to their least common
ancestor in the orientation tree, not the whole orientation tree. These paths have
length O(n) by Corollary 6.17.

Lemma 6.20. Given an incompatible pair ((a, b), (b, c)) in the orientation of G
produced by the algorithm of Lemma 6.19, it takes O(n) time to find an odd cycle of
size O(n) in the incompatibility graph of G.

Proof. Creation of the Hasse diagram is not affected by the modification of the
partitioning algorithm for Lemma 6.19. To find the parent of an arc (a, b) of G in one
run of the partitioning algorithm, mark the ancestors of a in the Hasse diagram. This
takes O(n) time. Search upward from b until a marked node is encountered. This
is the least common ancestor A1 of {a} and {b} in the Hasse diagram. Suppose by
induction that the least common ancestor Ak in the Hasse diagram has been found
for {x} and {y}, where (x, y) is some ancestor of (a, b) in the parent relation. Let z
be the pivot label of this ancestor. Search upward from z until a marked node of the
Hasse diagram is encountered. This is the least common ancestor Ak+1 in the Hasse
diagram of the parent of (x, y) in T1. Since this Ak+1 is higher in the Hasse diagram
than any other least common ancestor found so far, the search upward from z uses
a different set of edges of the Hasse diagram from those used by previous upward
searches. The cost of this search can be charged to the edges traversed during the
search. The cost of finding all ancestors in the Hasse diagram is O(n), and the length
of the path is O(n).
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