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Abst rac t .  We give an overview of the LEDA platform for combinatorial 
and geometric computing and an account of its development. We discuss 
our motivation for building LEDA and to what extent we have reached 
our goals. We also discuss some recent theoretical developments. This 
paper contains no new technical material. It is intended as a guide to 
existing publications about the system. We refer the reader also to our 
web-pages for more information. 

1 W h a t  is L E D A ?  

LEDA [MN95, MNU96] aims at being a comprehensive software platform for 
combinatorial and geometric computing. It provides a sizable collection of data  
types and algorithms. This collection includes most of the data  types and algo- 
rithms described in the text books of the area ([AtHJ83, Meh84, Tar83, CLR90, 
0 'R94,  Woo93, Sed91, Kin90, van88, NH93]). In particular, it includes stacks, 
queues, lists, sets, dictionaries, ordered sequences, partitions, priority queues, 
directed, undirected, and planar graphs, lines, points, planes, and polygons, and 
many algorithms in graph and network theory and computational geometry, 
e.g., shortest paths, matchings, maximum flow, rain cost flow, planarity testing, 
spanning trees, biconnected and strongly connected components, segment in- 
tersection, convex hulls, Delaunay triangulations, and Voronoi diagrams. LEDA 
supports applications in a broad range of areas. It has already been used in 
such diverse areas as code optimization, VLSI design, graph drawing, graphics, 
robot motion planning, traffic scheduling, machine learning and computational  
biology. 

We discuss different aspects of the LEDA system. 

Ease of Use: The library is easy to use. In fact, only a small fraction of our users 
are algorithms experts and many of our users are not even computer scientists. 
For these users the broad scope of the library, its ease of use, and the correctness 
and efficiency of the algorithms in the library are cruciM. 
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The LEDA manual [MNU96] gives precise and readable specifications for 
the data  types and algorithms mentioned above. The specifications are short 
(typically not more than a page), general (so as to allow several implementations) 
and abstract (so as to hide all details of the implementation). 

Extend ib i l i t y :  Combinatorial and geometric computing is a diverse area and 
hence it is impossible for a library to provide ready-made solutions for all appli- 
cation problems. For this reason it is important that  LEDA is easily extendible 
(see also section 4.4) and can be used as a platform for further software devel- 
opment. In many cases LEDA programs are very close to the typical text book 
presentation of the underlying algorithms. The goal is the equation 

Algorithm + LEDA = Program. 

We give an example. Dijkstra's shortest path algorithm takes a directed graph 
G = (V, E ) ,  a node s G V, called the source, and a non-negative cost function on 
the edges cost  : E -+ R>0. It computes for each node v E V the distance fl'om 
s. A typical text book presentation of the algorithm is as follows. 

set dist(s) to O. 

set dist(v) to infinity for v different from s. 

declare all nodes unreached. 

while there is an unreached node 

{ let u be an unreached node with minimal dist-value. 

declare u reached. 

forall edges e = (u,v) out of u 

set dist(v) = min(dist(v), dist(u) + cost(e) ) 
} 

(*) 

The text book presentation will then continue to discuss the implementation of 
line (*). It will state that  the pairs {(v, dis t (v ) ) ;  v unreached) should be stored 
in a priority queue, e.g., a Fibonacci heap, because this will allow the selection 
of an unreached node with minima/distance value in logarithmic time. It wilt 
probably refer to some other chapter of the book for a discussion of priority 
queues. 

We now give the corresponding LEDA program; it is very similar to the 
presentation above. 

#include <LEDA/graph.h> 

#include <LEDA/node_pq.h> 

void DIJKSTRA(const graph &G, node s, const edge_array<double>~ cost, 

node_array<doubls>~ dist) 

{ node_pq<double> PQ(G); 

node v; 

edge e; 

forall_nodes(v,G) 



{ if (v == s) dist[v] = O; else dist[v] = MAXDOUBLE; 

PQ.insert(v,dist[v]); 
} 

while (!PQ.empty() ) 

{ node u = PQ.del_min(); 

forall adj_edges(e,u) 

{ v = target(e); 

double c = dist[u] + cost[e]; 

if ( c < dist[v] ) 

{ PQ.decrease_inf(v,c); dist[v] = c; } 
} 

We start by including the graph and the node priority queue data type. We use 
edge_arrays and node_arrays (arrays indexed by edges and nodes respectively) 
for the functions cost and dist. We declare a priority queue PQ for the nodes of 
graph G. It stores pairs (v, dist[v]) and is empty initially. The forall_nodes-toop 
initializes dist and PQ. In the main loop we repeatedly select a pair (u, dist[u]) 
with minimal distance value and then scan through all adjacent edges to update 
distance values of neighboring vertices. 

Correctness: We try to make sure that the programs in LEDA are correct. 
We start from correct algorithms, we document our implementations carefully 
(at least recently), we test them extensively, and we have developed program 
checkers (see subsection 4.1) for some of them. We want to emphasize that 
many of the algorithms in LEDA are quite intricate and therefore non-trivial 
to implement. In the combinatorial domain it is frequently possible to obtain 
a. correct implementation by sacrificing efficiency, e.g., by using linear search in 
the realization of a dictionary. In the geometric domain it is usually difficult to 
obtain a correct implementation even if efficiency plays no role. This is due to the 
so-called degeneracy and precision problem [MN94]. The geometric algorithms in 
LEDA use exact arithmetic and are therefore free from failures due to rounding 
errors. Moreover, they can handle all degenerate cases. 

K:~.ciency: LEDA contains the most efficient realizations known for its types. 
For many data types the user may even choose between different implementa- 
tions, e.g., for dictionaries he may choose between ab-trees, BB[a]-trees, dynamic 
perfect hashing, and skip lists. The declarations 

dictionary<string,int> DI; 
dictionary<string,int,skip_list> D2; 

declare D1 as a dictionary from string to int with the default implementation 
and select the skip list implementation for D2. 
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Availability and Usage: LEDA is realized in C++ and runs on many different 
platforms (Unix, Windows95, Windows NT, OS/2) with many different compil- 
e r s .  

LEDA is now used at more than 1500 academic sites. Academic use is free, see 
h t t p  ://www. mpi-sb, mpg. de/LEDt/leda,  html. A commercial version of LEDA 
is marketed LEDA Software GmbH. There are license holders in the telecommu- 
nication industry (ATR (Japan), Comptel (Finland), E-Plus (Germany), France 
T616com (Prance), MCI (USA)), in the graphics industry (Aristo Technolo- 
gies (USA), Cadabra (Canada), Compass Design (LISA), Fuji (Japan), Men- 
tor Graphics (USA), MUS (Germany)), in the automotive industrie (Daimler 
Benz (Germany), Ford (USA), Honda (Japan)), in the computer industry (DEC 
(USA), IBM (USA), Siemens AG (Germany), Silicon Graphics (USA), SUN 
(USA)), and other industries (Chevron (USA), CFP (Germany), Dolphin (The 
Netherlands), Howmedica (Germany), Lufthansa (Germany), Neovista (USA), 
Prediction (USA), Sony (Japan), VTT (Finland)). 

History: We started the project in the fall of 1988. We spent the first 6 months 
on specifications and on selecting our implementation language. Our test cases 
were priority queues, dictionaries, partitions, and algorithms for shortest paths 
and minimum spanning trees. We came up with the item concept as an abstrac- 
tion of the notion "pointer into a data structure". It worked successfully for the 
three data types mentioned above and we are now using it for most data. types 
in LEDA. Concurrently with searching for the correct specifications we inves- 
tigated several languages for their suitability as our implementation platform. 
We looked at Smalltalk, Modula, Ada, Eiffel, and C++. We wanted a language 
that supported abstract data types and type parameters (polymorphism) and 
that was widely available. We wrote sample programs in each language. Based 
on our experiences we selected C++ because of its flexibility, expressive power, 
and availability. We are even more convinced now that our choice was the right 
o n e .  

A first, publication about LEDA appeared in MFCS 1989 (Lecture Note in 
Computer Science, Volume 379) and ICALP 1990 (Lecture Notes in Computer 
Science, Volume 443). Stefan Niiher became the head of the LEDA project, and 
he is the main designer and implementer of LEDA. 

In the second half of 1989 and during 1990 Stefan Niiher implemented a 
first version of the combinatorial part (= data structures and graph algorithms) 
of LEDA (Version 1.0). Version 2.0 allowed to use arbitrary data types (not 
only pointer and simple types) as actual type parameters of parameterized data 
types. It included a first implementation of the two-dimensional geometry library 
(libP) and an interface to the X-Window system for graphical input and output 
(data type window). Version 3.0 switched to the template mechanism to real- 
ize parameterized data types (macro substitution was used before), introduced 
implementation parameters that allow to choose between different implementa- 
tions, extended the LEDA memory management system to user-defined classes, 
and further improved the efficiency of many data types and algorithms. Version 
3.1 provided a more efficient graph data type and contained new data types 
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(arbitrary precision number types and basic geometric objects) used for robust 
implementat ions of geometric algorithms and Versions 3.2 and 3.3 contained 
more geometry and new tools for documentat ion and manual  production. 

LEDA Software G m b H  was founded in early 1995. 

2 W h y  d id  w e  b u i l d  L E D A ?  

We had four main reasons: 

1. We had always felt that  a significant fraction of the research done in the 
algorithms area was eminently practical. However, only a small part  of it 
was actually used. We frequently heard from our former students that  the 
effort needed to implement  an advanced da ta  structure or algorithm is too 
large to be cost-effective. We concluded that  algorithms research must include 
implementation if the field wants to have maximum impact. 

2. Even within our own research group we found different implementat ions of 
the same balanced tree da ta  structure. Thus there was constant reinvention 
of the wheel even within our own tight group. 

3. Many of our students had implemented algorithms for their master ' s  thesis. 
Work invested by these students was usually lost after the students gradu- 
ated. We had no depository for implementations.  

4. The specifications of advanced da ta  types which we gave in class and which 
we found in text books, including the one written by one of the authors, were 
incomplete and not sufficiently abstract.  They contained phrases of the form: 
"Given a pointer to a node in the heap its key can be decreased in constant 
amortized t ime".  This implied that  a user of a da ta  structure had to have 
knowledge of its implementation.  As a consequence combining implementa-  
tions was a non-trivial task. A case in point is the shortest pa th  problem in 
graphs. We taught  priority queues in the early weeks of an algorithm course 
and Dijkstra 's  algorithm for the shortest path problem in later weeks. Our 
students found it difficult to combine the programs. 

The goal of the LEDA project i s  to overcome these shortcomings by creating a 
platform for combinatorial  and geometric computing. The LEDA library should 
contain the major  findings of the algorithms communi ty  in a form that  makes 
them directly accessible to non-experts having only a limited knowledge in the 
area. In this way we hoped to reduce the gap between research and application. 

3 D i d  w e  a c h i e v e  o u r  g o a l s ?  

We believe that  we have reached the last goal and have at least partially reached 
the first three goals. 

LEDA was first distributed in the summer  of 1990. Its user communi ty  has 
grown ever since. LEDA is now used at more than 1500 academic and industrial 
sites in over 50 different countries world-wide. Industrial use started in 1994. 
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Many users of LEDA are outside computer science and only a small fraction of 
our users are from the algorithms community. We therefore believe that  we have 
reached our first two goals. The impact of algorithms research has increased and 
there is considerable use of LEDA and hence reuse of implementations. However, 
the gap between algorithms research and algorithms use is still quite large. In 
particular, many of the non-expert users of LEDA complain that  a tutorial is 
missing. We hope that  the forthcoming LEDAbook [MN] will help. 

We have also partially achieved our third goal. We now do have a depository 
for our students work and we have just introduced the concept of LEDA exten- 
sion packages (LEPs) that  will allow a wider community to contribute. We come 
back to LEPs in section 4.4. 

We have achieved our last goal. The specifications of our data  types are 
sufficiently abstract and precise so as to allow their combination without any 
knowledge of implementation. We have seen an example in section 1. Many of 
our specifications are based on the so-called item concept which gives an abstract 
treatment of pointers into a data  structure. Different components of LEDA can 
be combined without knowledge of the implementation. 

The project also had a number of positive side-effects which we did not fore- 
see. Firstly, LEDA's wide use gives us tremendous satisfaction 4. Secondly, our 
experiences with the system suggested many difficult and well motivated prob- 
lems for theoretical algorithms research. We will discuss program checking, run- 
ning time prediction, and theoretical issues in the implementation of geometric 
Mgorithms below. The system has changed the way we do algorithms 7~search. 

4 R e c e n t  d e v e l o p m e n t s  

A strength of the LEDA project is its strong theoretical underpinning. We believe 
that only our strong theoretical background allowed us to build LEDA. In the 
last two years we paid particular attention to program checking, running t ime 
prediction, and the correct implementation of geometric programs. 

4.1 P r o g r a m  c heck ing  

Programming is a notoriously error-prone task; this is even true when program- 
ruing is interpreted in a narrow sense: going from a (correct) algorithm to a 
program. The standard way to guard against coding errors is program testing. 
The program is exercised on inputs for which the output  is known by other 
means, typically as the output  of an alternative program for the same task. 
Program testing has severe limitations: 

- It is usually only done during the testing phase of a program. Also, it is 
difficult, to determine the "correct" suite of test inputs. 

4 We stated above that algorithms research must include implementation to have max- 
imal impact, We might add: without implementation algorithm research is less re- 
warding. 
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- Even if appropriate test inputs are known it is usually difficult to determine 
the correct outputs for these inputs: alternative programs may have different 
input and output  conventions or may be too inefficient to solve the test cases. 

Given that  program verification, i.e., formal proof of correctness of an imple- 
mentation, will not be available on a practical scale for some years to come, 
program checking has been proposed as an extension to testing [BK89, BLR90]. 
The cited papers explored program checking in the area of algebraic, numerical, 
and combinatorial computing. In [MNS+96, MM95, HMN96] we discuss pro- 
gram checkers for planarity testing and a variety of geometric tasks. We have 
also added program checkers to some of the LEDA programs, e:g., the planarity 
test provides a planar drawing for a planar g raph  and a Kuratowski subgraph 
for a non-planar graph. A user of the planarity algorithm has thus the possibility 
to verify that  the output  of the algorithm is correct. 

4 . 2  R u n n i n g  T i m e  P r e d i c t i o n  

Big-O analysis of algorithms is concerned with the asymptotic analysis of algo- 
rithms, i.e., with the behavior of algorithms for large inputs. It does not allow 
the prediction of actual running times of real programs on real machines and 
therefore its predictive value is limited. 

- An algorithm with running time O(n) is faster than an algorithm with run- 
ning time O(n 2) for sufficiently large n. Is n = 106 large enough? Asymptotic 
analysis of algorithms is of little help to answer this question. It is however 
true that a well-trained algorithms person who knows program and analysis 
can make a fairly good guess. 
For a user of LEDA statements of asymptotic running times are almost 
meaningless as he/she has no way to estimate the constants involved. After 
all, the purpose of LEDA is to hide the implementations from our users. 

The two items above clearly indicate that  we need more than asymptotic 
analysis in order to have a theory with predictive value. The ultimate goal of 
analysis of algorithms must be a theory that allows to predict the actual running 
time of an actual program on an actual machine with reasonable precision (say 
within a factor of two). We must aim for the following scenario: When a program 
is installed on a particular machine a certain number of well-chosen tests are 
executed in order to learn about machine parameters relevant for the execution 
of the program. This knowledge about the machine is combined with the analysis 
of the algorithm to predict running time on specific inputs. In the context of an 
algorithms library one could even hope to replace statements about asymptotic 
execution times by statements about actual execution times during installation of 
the library. In [FM97] we show for a small number of programs (Fibonacci heaps, 
Dijkstra's shortest path algorithm, and a maximum weight matching algorithm) 
that  running time prediction within a factor of less than two and a wide range 
of machines is feasible. 
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4.3 Implementation of geometric algorithms 

Geometric algorithms are frequently formulated under two unrealistic assump- 
tions: computers are assumed to use exact real arithmetic (in the sense of 
mathematics) and inputs are assmned to be in general position. The naive 
use of floating point arithmetic as an approximation to exact real arith- 
inetic very rarely leads to correct implementations. In a sequence of papers 
[BMS94a, See94, MN94, BMS94b, FGK+96, BRMS97] we investigated the de- 
generacy and precision issues and extended LEDA based on our theoretical work. 
LEDA now provides exact geometric kernels for two-dimensional and higher 
dimensional computational geometry [MMN+97] and also correct implementa- 
tions for basic geometric tasks, e.g., two-dimensional convex hulls, Delaunay di- 
agrams, Voronoi diagrams, point location, line segment intersection, and higher- 
dimensional convex hulls and Delaunay diagrams. 

4.4 LEDA Extension Packages 

LEDA extension packages are a new fea tu re  of the LEDA project structure. 
Up to two years ago, most of LEDA has been developed by a small group of 
persons under the tight supervision of Stefan N~her; no code went into the system 
that  was not thoroughly understood by either Stefan N~her or Christian Uhrig. 
The growing numbers of contributors and the fact that  Stefan N~her has new 
responsibilities as a professor has forced us to a change of the project structure. 
We decided to split LEDA into a core system (the actual LEDA version) and to 
shift enhancements into additional software packages. 

LEDA extension packages (LEPs) extend LEDA into particular application 
domains and areas of algorithmics not covered by the core system. LEDA ex- 
tension packages satisfy requirements, which guarantee compatibility with the 
LEDA philosophy. LEPs have a LEDA-style documentation, they are imple- 
mented as platform independent as possible and the installation process allows 
a close integration into the LEDA core library. 

Currently, there are no released LEPs available, but there are several LEP un- 
der construction: PQ-trees (coordinated by Sebastian Leipert, Koeln), dynamic 
graph algorithms (coordinated by David Alberts, Halle), the homogeneous pla- 
nar CGAL geokernel (coordinated by Stefan Schirra, Saarbriicken), a homoge- 
neous d-dimensional geokernel (coordinated by Michael Seel, Saarbriicken), and 
a library for graph drawing (DFG-project Automatisches Graphenzeichnen). 

R e f e r e n c e s  

[AHU83] 

[BK89] 

[BLR90] 

A.V. Aho, J.E. HopcrofG and J.D. Ullman. Data structures and algorithms. 
Addison-Wesley, 1983. 
M. Blum and S. Kannan. Programs That Check Their Work. In Proc. o/ 
the 21th Annual A C M  Syrup. on Theory o/ Coruputing, 1989. 
M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applica- 
tions to numerical problems. In Proc. 22nd Annual A CM Syrup. on Theory 
o~ Coruputing, pages 73 83, 1990. 



15 

[BMS94a] 

[BMS94b] 

[BRMS97] 

[CLR90] 

[FGK+96] 

[FM97] 

[HMN96] 

[Kin90] 

[Meh84] 
[MM95] 

[MMN+g7] 

[MN] 

[MN94] 

[MN95] 

[MNS+96] 

[MNU96] 

INn93] 

[O'R94] 

[Sed91] 

Ch. Burnikel, K. Mehlhorn, and S. SchilTa. On degeneracy in geometric 
computations. In Proc. SODA 94, pages 16-23, 1994. 
Ch. Burnikel, K. Mehlhorn, and St. Schirra. How to compute the Voronoi 
diagram of line segments: Theoretical and experimental results. In 
Springer-Verlag Berlin/New York, editor, LNCS, volmne 855 of Proceed- 
ings of ESA '95, pages 227-239, 1994. 
Ch. Burnikel, R.Fleischer, K. Mehlhorn, and S. Schirra. A strong and easily 
computable separation bound for arithmetic expressions involving square 
roots. In Proc. SODA 97, pages 702-709, 1997. 
T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Inhvduction to Algorithms. 
MIT Press/McGraw-Hill Book Company, 1990. 
A. Fabri, G.-3. Giezeman, L. Kettner, S. Schirra, and S. Sch6nherr. The 
CGAL Kernel: A basis for geometric computation. In Workshop on Applied 
Computational Geometry (~G~ CG96), LNCS, 1996. 
Uh'ich Finkler and Kurt Mehlhorn. Rmltime prediction of real programs 
on real machines. In Proceedings 8th A CM-SIAM Symposium on Discrete 
Algorithms (SODA '97), January 1997. 
C. Hundack, K. Mehlhorn, and S. Ns A Simple Linear Time Algorithm 
for Identi~Ting Kuratowski Subgraphs of Non-Planar Graphs. Manuscript, 
1996. 
J.tt. Kingston. Algorithms and Data Structures. Addison-Wesley Publish- 
ing Company, 1990. 
K. Mehlhorn. Data structures and algorithms 1,2, and 3. Springer, 1984. 
K. Mehlhorn and P. Mutzd. On the Embedding Phase of the Hopcroft and 
Tarjan Planarity Testing Algorithm. Algorithmiea, 16(2):233-242, 1995. 
K. Mehlhorn, Mfiller, S. Ns S. Schirra, M. Seel, C. Uhrig, and 

J. Ziegler. A computational basis for higher-dimensional computational 
geometry and its applications. In Proceedings of the Syrup. on Computa- 
tional Geometry, 1997. http://www.mpi-sb.mpg.de/-seet. 
K. Mehlhorn and S. Ns The LEDA Platform for Combina- 
torial and Geometric Computing. Cambridge University Press, 
forthcoming. Draft versions of some chapters are available at 
http ://www. mpi-sb, mpg. de/~mehlhorn. 
K. Mehlhorn and S. N~iher. The implementation of geometric algorithms. 
In 13th. World Computer Congress IFIP95, volume 1, pages 223-231. Else- 
vier Science B.V. North-Holland, Amsterdam, 1994. 
K. Mehlhorn and S. Ns LEDA: A platform for combinatorial and geo- 
metric computing. Communications of the ACM, 38(1):96-102, 1995. 
K. Mehlhorn, S. N/iher, T. Schilz, S. Schirra, M. Seel, R. Seidel, and Ch. 
Uhrig. Checking Geometric Programs or Verification of Geometric Struc- 
tures, tn Proc. of the 12th Annual Symposium on Computational Geometry, 
pages 159-165, 1996. 
Kurt Mehlhorn, S. NSher, and Ch. Uhrig. The LEDA User Manual (Ver- 
sion R 3.4). Technical report, Max-Planck-Institut ffir Infbrmatik, 1996. 
ht tp://www.mpi-sb.mpg.de/LEDA/leda.html. 
J. Nievergelt and K.H. Hinrichs. Algorithms and Data Structures. Prentice 
Hall Inc., 1993. 
J. O'Rourke. Computational Geometry in C. Cambridge University Press, 
1994. 
R. Sedgewick. Algorithms. Addison-Wesley Publishing Company, 1991. 



16 

[See94] 

[Tar83] 

[va~88] 

[Woo93] 

Michael Seel. Eine Implementierung abstrakter Voronoidiagu'amme. Mas- 
ter's thesis, Max-Planck-Institut f/it Informatik, 1994. 
R.E. Tarjan. Data structures and network algorithms. In CBMS-NSF 
Regional Conference Series in Applied Mathematics, volume 44, 1983. 
C.J. van Wyk. Data Structures and C programs. Addison-Wesley Publish- 
ing Company, 1988. 
D. Wood. Data Structures, Algorithms, and Performance. Addison-Wesley 
Publishing Company, 1993. 


