
Contents

14 Manual Pages and Documentation page2
14.1 Lman and Fman 2
14.2 Manual Pages 5
14.3 Making a Manual: The Mkman Command 23
14.4 The Manual Directory in the LEDA System 24
14.5 Literate Programming and Documentation 25

Bibliography 31

Index 32

1

14

Manual Pages and Documentation

This chapter is authored jointly with Evelyn Haak, Michael Seel, and Christian Uhrig.

Software requires documentation. In this chapter we explain:

• how to make LEDA-style manual pages,

• how to make a LEDA-style manual,

• and how to write documentations in the style of this book.

14.1 Lman and Fman

Lman and Fman are the LEDA tools for manual production and quick reference to manual
pages. We will discuss Fman at the end of the section. The command

Lman T[.lw|.nw|.h℄ options

searches for a file with name T.lw, T.nw, T.h, or T (in this order) first in the current directory
and then in the directory LEDAROOT/incl/LEDA and produces aLEDA-style manual page
from it. Thus

Lman sortseq

Lman myprojet.lw

produce the manual page of sorted sequences and of myproject, respectively.
The extraction of the manual page is guided by the so-called manual comments contained

in the file-argument of Lman. A manual comment is any comment of the form

/*{\Mommand ... arbitrary text ... }*/

2

14.1 Lman and Fman 3

/*{\Manpage {stak} {E} {Staks} {S}}*/

template<lass E> lass _CLASSTYPE stak : private SLIST

{

/*{\Mdefinition

An instane |S| of the parameterized data type |\Mname| is a sequene of

elements of data type |E|, alled the element type of |S|. Insertions or

deletions of elements take plae only at one end of the sequene, alled

the top of |S|. The size of |S| is the length of the sequene, a stak

of size zero is alled the empty stak.}*/

void opy_el(GenPtr& x) onst { x=Copy(ACCESS(E,x)); }

void lear_el(GenPtr& x) onst { Clear(ACCESS(E,x)); }

publi:

/*{\Mreation}*/

stak() {}

/*{\Mreate reates an instane |\Mvar| of type |\Mname| and initializes

it to the empty stak.}*/

stak(onst stak<E>& S) : SLIST(S) {}

~stak() { lear(); }

stak<E>& operator=(onst stak<E>& S)

{ return (stak<E>&)SLIST::operator=(S); }

/*{\Moperations 2.5 4}*/

E top() onst { return ACCESS(E,SLIST::head());}

/*{\Mop returns the top element of |\Mvar|.\\

\preond S is not empty.}*/

void push(E x) { SLIST::push(Copy(x)); }

/*{\Mop adds x as new top element to |\Mvar|.}*/

E pop() { E x=top(); SLIST::pop(); return x; }

/*{\Mop deletes and returns the top element of |\Mvar|.\\

\preond S is not empty.}*/

int empty() { return SLIST::empty(); }

/*{\Mop returns true if |\Mvar| is empty, false otherwise.}*/

}

*{\Mimplementation

Staks are implemented by singly linked linear lists.

All operations take time $O(1)$. }*/

Figure 14.1 A file decorated by manual comments. The file is part of the header file of the data
type stack. Figure 14.2 shows the manual page produced by Lman.

where Mcommand is one of so-called manual commands. We discuss manual commands
in Section 14.2.2. Every manual comment causes Lman to extract part of the manual.
Figures 14.1 and 14.2 show a file augmented by manual commentsand the manual page
produced from it.

The layout of the manual page is fine-tuned by the options-argument of Lman. We will
discuss the available options in Section 14.2.8. Options may also be put in a configuration
file Lman.cfgin either the home directory or the working directory. Command line options

4 Manual Pages and Documentation

Stacks (stack)

1. Definition

An instanceS of the parameterized data typestack<E> is a sequence of ele-

ments of data typeE, called the element type ofS. Insertions or deletions of

elements take place only at one end of the sequence, called the top ofS. The

size ofS is the length of the sequence, a stack of size zero is called the empty

stack.

2. Creation

stack<E> S; creates an instanceSof typestack<E> and initializes it

to the empty stack.

3. Operations

E S.top() returns the top element ofS.

Precondition: S is not empty.

void S.push(E x) addsx as new top element toS.

E S.pop() deletes and returns the top element ofS.

Precondition: S is not empty.

int S.empty() returns true ifS is empty, false otherwise.

Figure 14.2 The manual page produced from the file in Figure 14.1.

take precedence over options in the working directory whichin turn take precedence over
options in the home directory.

Fman is our tool for quick reference to manual pages. The command

Fman T[.lw|.nw|.h℄ filter

searches for a file with name T.lw, T.nw, T.h, or T (in this order) first in the current directory
and then in the directory LEDAROOT/incl/LEDA and extracts manual information from it.
The information is displayed in ASCII-format. For example,

Fman sortseq insert

Fman sortseq reation

give information about operation insert of type sortseq andabout the different ways of
creating a sorted sequence, respectively.

Fman

gives information about Fman and the available filters.

Fman uses Perl [WS90] and Lman uses Perl, LATEX [Lam86], and xdvi.

14.2 Manual Pages 5

Please try out Lman and Fman before proceeding. If they do notwork, the error is very
likely to be one of the following (if not, you should refer to the LEDA installation guide):

• One of the required systems Perl, LATEX, and xdvi is not installed.

• The environment variable LEDAROOT is not set to the root directory of the LEDA
system.

• LEDAROOT/Manual/cmd is not part of your PATH.

• LEDAROOT/Manual/tex is not part of your TEXINPUTS.

14.2 Manual Pages

Figure 14.2 shows a typical LEDA manual page. It is produced from the file in Fig-
ure 14.1 by a call of the Lman utility. Observe that the file contains comments starting
with /*{\M... and ending with}*/. They are calledmanual comments. They start with
a so-called manual command, e.g.,Mdefinition or Mop and control the extraction of the
manual page from the header file. There are about twenty different manual commands.
We will discuss them in turn in this section. Before doing so,we justify our decision to
incorporate all manual information into the header files of the LEDA system.

In the early years of the LEDA project we kept the manual page of a data type separate
from its implementation. The manual was contained in a tex-file and the implementation
was contained in an h-file and a c-file. Updates of a data type usually required changes to
all three files and this led to a consistency problem between the three files. The consistency
between h-file and c-file is a minor issue since every compilerrun checks it. However, we
found it almost impossible to keep the manual pages consistent with the implementation.
The inconsistencies between manual and implementation hadtwo causes:

• Clerical errors: Frequently, things that were supposed to be identical were different,
e.g., a type was spelledsort_seq in the manual andsortseq in the implementation,
or the parameters of a function were permuted.

• Lack of discipline: We frequently forgot to make changes dueto lack of time or other
reasons. We were quite creative in this respect.

In 1994 we decided to end the separation between implementation and manual. We incor-
porated the manual into the h-files in the form of so-called manual comments and wrote
a tool calledLman that extracts the tex-file for the manual page automaticallyfrom the
h-file. Every manual comment produces part of the manual page, e.g., the manual com-
ment starting with\Mdefinition produces the definition section of the manual page, and
a comment starting with\Mop produces an entry for an operation of the data type. Such
an entry consists of the return type, an invocation of the operation, and a definition of the

6 Manual Pages and Documentation

semantics in the form of a text. Only the latter piece of information is explicitly contained
in the Mop-comment, the other two pieces are generated automatically from the C++-text in
the header file. Experience shows that our decision to incorporate manual pages into header
files greatly alleviates the consistency problem:

• Clerical errors are reduced because things that should be identical are usually only
typed once. For example, the fact that the C++-text in the manual is automatically
generated from the C++-text in the header file guarantees the consistency between the
two.

• Lack of discipline became a lesser issue since the fact that the header file of the
implementation and the tex-file for the manual page are indeed the same file makes it a
lot easier to be disciplined.

Lman produces manual pages in a two-step process. It first extracts a TEX-file from the
header file and then applies LATEX. The first step is directed by the manual commands in the
header file and the second step uses a specially developed setof TEX macros. We discuss
the manual commands in Section 14.2.2 and the TEX macros in Section 14.2.5.

The first phase is realized by a Perl-programlextractthat reads the file-argument and the
options and produces a (temporary) TEX-file of the form:

\doumentlass[a4paper,size pt℄{artile}

\usepakage{Lweb}

\begin{doument}

output of lextrat

\end{doument}

The program lextract is defined in the fileext.nwin LEDAROOT/Manual/noweb.

14.2.1 The Structure of Manual Pages
All manual pages of the LEDA system are organized in one of twoways depending whether
the page defines a data type or a collection of functions. Since manual pages are extracted
from header files, the corresponding header files are organized accordingly. Examples of
header files for data types are stack.h, sortseq.h, and list.h, and examples of header files for
collections of functions are planealg.h, planegraphalg.h, and mcmatching.h.

All header files for classesfollow the format shown in Figure 14.3. Theheader files for
collections of functionshave no particular structure.

14.2.2 The Manual Commands
We discuss the manual commands in the order in which they are typically used in the header
file of a class.

The Manpage Command: A manual comment of the form

/*{\Manpage {type} {parlist} {title} {varname}}*/

produces the header line of the manual page fortype. The argumentparlist is the list of

14.2 Manual Pages 7

/*{\Manpage Comment }*/

lass DT {

/*{\Mdefinition omment }*/

/*{\Mtypes omment }*/

// type definitions

private:

// private data and funtions

publi:

/*{\Mreation omment }*/

// onstrutors and destrutors and their manual entries

/*{\Moperations omment }*/

// operations and their manual entries

};

// friends and their manual entries

/*{\Mimplementation omment }*/

/*{\Mexample omment }*/

Figure 14.3 The generic structure of a header file for a class. Any of the parts may be omitted.

type parameters of the type,title is the title of the manual page, and the optional argu-
mentvarname is used in the manual page as the name of a canonical object of the type. The
argumentparlist is empty if the type has no type parameters. The following comments
produce the header lines for character strings, linear lists, and sorted sequences, respec-
tively.

/*{\Manpage {string} {} {Charater Strings} {s}}*/

/*{\Manpage {list} {E} {Linear Lists} {L} }*/

/*{\Manpage {sortseq} {K,I} {Sorted Sequenes} {S} }*/

The Manpage command produces the header line for the manual page and defines place-
holders\Mtype, \Mname, and\Mvar. The first placeholder stands fortype, the second
placeholder stands for eithertype or type<parlist> depending on whetherparlist
is empty or not, and the third placeholder stands forvarname. In the last example the
placeholders\Mtype, \Mname, and\Mvar have valuessortseq, sortseq<K,I>, andS,
respectively.

The placeholders can be used instead of their values in latermanual comments. This helps
to maintain consistency. The placeholders are also used in the generation of the manual
entries for the constructors and member functions, e.g., inFigure 14.2 all operations are
applied to the canonical stack variableS.

What does lextract do when it encounters a Manpage-command?It records the values of
all placeholders and outputs

\setion*{title (type')}

wheretype' is obtained fromtype by quoting all occurrences of the underscore character
(i.e., replacing_ by _). When LATEX executes this line it will produce the header line of
the manual page. If a manual page is to be included into a larger document, it is convenient
to number the manual pages. The optionnumbered=yes causes the preprocessor to output

8 Manual Pages and Documentation

\setion{title (type')} \label{title}\label{type}

The labels can be used to refer to the data type in other parts of an enclosing document.

The manual page of a class consists of sectionsDefinition, Types Creation, Opera-
tions, Implementation, andExample; any of the sections may be omitted. Accordingly,
we have the manual commands\Mdefinition, \Mypes, \Mreation, \Moperations,
\Mimplementation, and\Mexample.

The Mdefinition Command: A manual command of the form

/*{\Mdefinition body }*/

produces the definition part of a manual page. For example,

template <lass E>

lass list {

/*{\Mdefinition

An instane [[\Mvar℄℄ of lass |\Mname| is a ...

}*/

produces

1. Definition

An instanceL of classlist<E> is a ...

The body of a definition comment (and of any of the other comments to come) is an
arbitrary LATEX text. As suggested by the literate programming tools CWEB [KL93] and
noweb [Ram94] we added the possibility of quoting code.Quoted codeis given special
typographic treatment. There are two ways of quoting code:

• By enclosing it between verticals bars (| . . . |), or

• By enclosing it between double square brackets ([[. . .℄℄).

Quoted code is typeset according to the following rules: first all occurrences of the place-
holders\Mtype, \Mname, and\Mvar are replaced by their values. We call this stepplace-
holder substitution. In the example above this step yields1:

template <lass E>

lass list {

/*{\Mdefinition

An instane [[L℄℄ of lass |list<E>| is a ...

}*/

In a second step we apply what we callC++ to LATEX conversionto quoted code. For code
quoted by double square brackets this means using typewriter font for the quoted code and
for code quoted by vertical bars this produces a math-like appearance, e.g., all identifiers

1 We assume that the Mdefinition command is executed in the context of the Manpage comment for lists given
above, i.e.,L is the name of the canonical list andlist〈E〉 is the type of the list. We make the analogous
assumption for all examples to follow.

14.2 Manual Pages 9

are put into math-italics and<= is typeset as≤. All code in this book is typeset using one
of the two quoting mechanisms.

We give some examples of the quoting mechanisms. Be aware that putting an identifier
between vertical bars is different from putting it between dollar signs except for identifiers
consisting of a single character.

|diff| produces diff
$diff$ produces di f f

|x1| produces x1
$x1$ produces x1
x produces x
|x| produces x

[[diff℄℄ produces diff

Sometimes, one wants to produce vertical bars and/or doublesquare brackets in the out-
put. We provide TeX-macros to this effect. The macros\Lvert, \DLK and\DRK expand to
|, [[, and℄℄, respectively. The TeX-macro\Labs{...} puts its argument between vertical
bars, Lvert and Labs can only be used in math-mode.

We close this paragraph with awarning. The quoting mechanism by vertical bars is not
perfect. In principle one can put any piece of text between vertical bars. The preprocessor
attempts to understand the C++ structure of the text and generates output accordingly. Since
the preprocessor has only limited knowledge of the syntax ofC++, it succeeds only in simple
cases:

|diff| produces diff
|diff + x1| produces diff + x1

|diff+x1| produces diff + x1
|list_item| produces list item

|GRAPH<POINT,int>| produces GRAPH<POINT, int>
|mark[v℄ <= ur_mark| produces mark[v] ≤ cur mark

$|soure|(e_0)$ produces source(e0)

The Mtypes and Mtypemember Commands:A manual command of the form

/*{\Mtypes w}*/

produces the header line of the type part of the manual. The argumentw is optional. The
argumentw governs the layout of the entries for the local types of the data type. We will
discuss it below. The manual entries for the local types are produced by Mtypemember
commands. We give an example which is taken from the header file for the LEDA extension
package for higher-dimensional geometry.

/*{\Mtypes 4}*/

typedef h_Simplex<CHTRAITS,POINT,PLANE>* h_simplex;

/*{\Mtypemember the item type for simplies of the omplex.}*/

typedef h_Simplex<CHTRAITS,POINT,PLANE>* h_faet;

/*{\Mtypemember the item type for faets of the omplex.}*/

10 Manual Pages and Documentation

typedef r_Vertex<CHTRAITS,POINT>* h_vertex;

/*{\Mtypemember the item type for verties of the omplex.}*/

produces

2. Types

chsimplex the item type for simplices of the complex.

chfacet the item type for facets of the complex.

chvertex the item type for vertices of the complex.

Each Mtypemember command produces a manual entry for a localtype. Each manual entry
is typeset on a line of its own and a two-column layout is followed. There is a column of
width w containing the name of the local type and a column containingthe text explaining
the local type. The name of the type is extracted automatically from the type definition
preceding the manual comment.

The Mcreation and Mcreate Commands: A manual command of the form

/*{\Mreation name w}*/

produces the header line of the creation part of the manual. The argumentsname andw are
optional. If name is present, it is used as the value of the placeholder\Mvar. We recommend
that you define\Mvar already in the Manpage command and keep the possibility to define it
in the Mcreation command for reasons of backward compatibility. The argumentw governs
the layout of the entries for the constructors of the data type. We will discuss it below.
The manual entries for the constructors are produced by Mcreate commands. We give an
example.

/*{\Mreation}*/

vetor();

/*{\Mreate reates an instane |\Mvar| of type |\Mname|;

|\Mvar| is initialized to the zero-dimensional vetor.}*/

vetor(int d);

/*{\Mreate reates an instane |\Mvar| of type |\Mname|;

|\Mvar| is initialized to the zero vetor of dimension d.}*/

produces (assuming that Mvar stands for v and Mname stands for vector)

3. Creation

vector v; creates an instancev of type vector; v is initialized to the zero-
dimensional vector.

vector v(int d); creates an instancev of typevector; v is initialized to the zero vector
of dimensiond.

14.2 Manual Pages 11

Each Mcreate command produces a manual entry for a constructor. The manual entries are
typeset in the form of a variable declaration for a variable Mvar of type Mname, i.e., for the
default constructor the entry has the form

Mname Mvar;

and for a constructor taking arguments the entry has the form

Mname Mvar(parameter list);

In the second case the parameter list is extracted automatically from the code unit preceding
the manual comment. What is a code unit?

A code unitis a maximal sequence of consecutive non-blank lines not containing a com-
ment. In other words, the line preceding a code unit is eitherempty or the end of a comment,
the line following a code unit is either empty or the beginning of a comment, and all lines
in a code unit are non-empty and do not belong to a comment. A code unit from which the
preprocessor is supposed to extract a function declarationshould contain exactly one such
declaration. The general form for generating an entry for a constructor is therefore:

<empty line or end of a omment>

<ode unit>

<zero or more empty lines>

/*{\Mreate body }*/

The body of the Mcreate command contains the text that explains the constructor. Place-
holder substitution and C++ to LATEX conversion are applied to it. We give some more
examples.

vetor(double d, double e)

{ ... inline implementation of onstrutor ...}

/*{\Mreate This is okay.}*/

vetor(double d, double e, double f)

/*{\Mreate This is also okay.}*/

{ ... inline implementation of onstrutor ...}

vetor();

vetor(int d);

/*{\Mreate illegal, sine ode unit ontains more

than one onstrutor.}*/

vetor(double d)

{ ... inline implementation of onstrutor ...}

/*{\Mreate illegal, sine ode unit preeding

the manual omment ontains no onstrutor.}*/

vetor(long d); /*{\Mreate illegal, sine manual omment

must start on a new line}*/

We still need to discuss the role of the optional argumentw. The layout for the manual
entry of a constructor follows either the two-column formatshown in Figure 14.4 or the

12 Manual Pages and Documentation

declaration description
〈 declwidth 〉〈 createtextwidth 〉

Figure 14.4 The two-column layout for constructors.

declaration
〈 textwidth 〉

description
〈 createtextwidth 〉

Figure 14.5 The two-row layout for constructors.

two-row format shown in Figure 14.5. The argumentw defines the value ofdeclwidth. The
default value of declwidth is 40% of the textwidth. The valueof createtextwidthis defined
by

createtextwidth= textwidth− declwidth.

We use two-column layout if the declaration is short enough to fit into a box of width
declwidth and use two-row layout otherwise. The argumentw is either a pure number or a
number followed by one of the TEX units of length (mm, cm, in, pt, or em). A missing unit
is taken to be cm, i.e., 3.2 is equivalent to 3.2cm.

The Mdestruct Command: Mdestruct applies to the destructor of a class.

~vetor();

/*{\Mdestrut The destrutor ...}*/

produces

∼vector() The destructor ...

It is customary in LEDA to produceno manual entry for the assignment operator, the
copy constructor, and the destructor of a class because the semantics of these operations is
defined in a uniform way for all LEDA types (see Section 2.3) and hence there is no need
to define them again for each data type. In fact, it would be confusing. Think twice before
you break this rule.

We now come to the section for the operations of a data type. Itis started by a Mopera-
tions comment.

The Moperations Command: A comment of the form

/*{\Moperations a b }*/

generates the header line of the operations part. The lengthargumentsa andb are optional.
An entry in the operations part is displayed in either a three-column layout as shown in
Figure 14.6 or a two-row layout as shown in Figure 14.7. The values of typewidthand

14.2 Manual Pages 13

return type function call description
〈 typewidth 〉〈 callwidth 〉〈 descriptwidth 〉

Figure 14.6 The three-column layout for the operations of a data type.

return type function call
〈 typewidth 〉〈 longcallwidth 〉

description
〈 descriptwidth 〉

Figure 14.7 The two-row layout for the operations of a data type.

callwidth are set toa andb, respectively, and the value ofdescriptwidthis defined by the
equation

descriptwidth= textwidth− typewidth− callwidth.

We choose the three-column layout if the function call fits into a box of width callwidth and
the two-row layout otherwise2. If the return type does not fit into a box of width typewidth,
we combine the return type and the function call into a singleunit and attempt to put it
into a box of width typewidth+ callwidth. If the combined unit fits, we use a modified
three-column layout, if it does not fit, we use a modified two-row layout.

An operation of a data type is either a member or a friend. In either case it can be a
function or an operator. Operators may be binary or unary. Wehave a manual command for
each case. The existence of distinct manual commands for thedistinct cases is a historical
relict. The current version of the extractor knows the syntax of C++ sufficiently well to
be able to distinguish the cases without guidance by the manual command; this was not the
case for an earlier version of the extractor. We find that the use of distinct manual commands
increases readability.

The Mop Command: The Mop command applies to member functions of a data type. For
example,

list_item append(E x);

/*{\Mop appends a new item \Litem{x} to list |\Mvar| and

returns it

(equivalent to |\Mvar.insert(x,\Mvar.last(),after)|).}*/

generates (assuming that Mvar has value L)

list item L.append(E x) appends a new item〈x〉 to list L and returns it
(equivalent toL.insert(x, L.last(), after)).

2 In earlier versions of the preprocessor the choice between the two layout styles had to be done manually. We
therefore had two versions of each manual command. The standard version selected three-column layout and the
version with an appended character “l” selected two-row layout. You can still find manual commands Mopl and
Mfuncl in many LEDA header files.

14 Manual Pages and Documentation

Note how the content of the first two columns is extracted fromthe code unit preceding
the manual comment. Also note that we use member-function-call-syntax for the second
column and that the function is applied to the canonical object of the type (which is the
value of placeholder Mvar). We give some more examples.

list_item append(onst E& x);

/*{\Mop appends a new item \Litem{x} to

list |\Mvar| and returns it\\

(equivalent to |\Mvar.insert(x\,Mvar.last(),after)|).}*/

also produces the manual entry above. This reflects our view that a const-reference-parameter
is equivalent to a value-parameter. The optiononstref=yes does not suppress const-ref
pairs. The next function is long and hence is typeset in two-row layout.

list_item insert(E x, list_item it, int diretion = after);

/*{\Mop inserts a new item \Litem{x} after or

before item |it|. }*/

produces (assuming that Mvar has value L)

list item L.insert(E x, list item it, int direction = after)

inserts a new item〈x〉 after or before itemit.

In either layout style it may happen that the return type doesnot fit into a box of width
typewidth. In this case we combine return type and function call into a single unit for which
we allot a box of width typewidth + callwidth. For example,

two_tuple<int,int> strange();

/*{\Mop a strange funtion. }*/

produces (assuming that Mvar has value L)

two tuple<int, int> L.strange() a strange function.

The Mbinop Command: Mbinop applies tobinary operatorsdefined as member func-
tions.

integer operator+(onst integer& y);

/*{\Mbinop returns |\Mvar + y|. }*/

produces (assuming that Mvar has value x)

integer x + y returnsx + y.

There are two facts worth noting about this output. First, weuse operator-call-syntax for
the second column. Second, we suppress the type of the argument y. The rule is as follows.
For an operator of classT the type of any value argument of typeT is not shown. The
optionpartypes=yes turns off this behavior.

14.2 Manual Pages 15

The Munop Command: Munop applies tounary operatorsdefined as member functions.

integer operator++(){....}

/*{\Munop returns the value of |\Mvar| and inrements it.}*/

produces (assuming that Mvar has value x)

integer ++x returns the value ofx and increments it.

We put the operator applied to the canonical variable into the second column. Of course,
unary operators are typeset as either prefix or postfix operators as prescribed by the syntax
of C++.

The Marrop Command: Marrop applies to thearray access operator.

E& operator[℄(list_item it) { ... return ... }

/*{\Marrop returns a referene to the

entry |it| of |\Mvar|.}*/

produces (assuming that Mvar has value L)

E& L[list item it] returns a reference to the entryit of L.

The Mfunop Command: Mfunop applies to thefunction call operator.

string operator()(int i, int j) onst { return sub(i,j); }

/*{\Mfunop returns the substring of |\Mvar| ... }*/

produces (assuming that Mvar has value s)

string s(int i, int j) returns the substring ofs ...

The Mstatic Command: Mstatic applies tostatic member functions. For example, the
type bigfloat has a static memberround modethat determines the current rounding mode.
A static member functionset round modeis used to set the rounding mode.

stati void set_round_mode(rounding_modes m =TO_NEAREST);

{round_mode = m;}

/*{\Mstati sets |round_mode| to |m|.}*/

produces (assuming that Mname has value bigfloat)

void bigfloat::set roundmode(roundingmodes m= TO NEAREST)

setsround modeto m.

16 Manual Pages and Documentation

The Mfunc Command: Mfunc applies tonon-member functionsof a data type.

friend integer abs(onst integer& x);

/*{\Mfun returns the absolute value of |x|.}*/

produces

integer abs(integer x) returns the absolute value ofx.

Note that thefriend qualifier does not appear in the manual. After all, it has nothing to do
with the semantics of the operation but is only an information for the compiler.

The Mbinopfunc Command: Mbinopfunc applies tobinary operatorsthat are non-member
functions. You have probably got the rule by now. Commands ending with op apply to
members and commands ending with func apply to non-members.

friend string operator+(onst string& x, onst string& y);

/*{\Mbinopfun returns the onatenation of |x| and |y|.}*/

friend ostream& operator<<(ostream& O, onst string& s);

/*{\Mbinopfun writes string |s| to output stream |O|. }*/

produces

string x + y returns the concatenation ofx andy.

ostream& ostream& O ≪ s writes strings to the output streamO.

The Munopfunc Command: Munopfunc applies tounary operatorsthat are nonmember
functions.

friend integer operator-(onst integer& x)

/*{\Munopfun unary minus ... }*/

produces

integer −x unary minus ...

The Mconversion Command: Mconversion applies touser-defined conversion operators.
The following definition within class integer

operator rational()

/*{\Monversion onverts an |\Mtype| to a rational.}*/

produces (assuming that Mvar has value x)

rational x converts anintegerto a rational.

14.2 Manual Pages 17

Invisible Functions: Sometimes there is the need to generate a manual entry for a function
or operator that does not exist. A typical situation is as follows. A typeA is derived from
a typeB and inherits a function fromB. We want the function to appear in the manual
page of typeA but we do not want the function to appear in the header file (because typeA
inherits it and including it in the header file would obscure the situation). The solution is to
put the function inside a comment, e.g.,

/* inherited

void sort_edges() { graph::sort_edges(); }

*/

/*{\Mop the edges of G are sorted inreasingly aording

to their ontents. }*/

The begin and the end of the comment must be on separate lines.The starting line may
contain a text that explains the situation.

Code Units with More than One Function Definition: The restriction that a code unit
contains only one function definition is sometimes unnatural. An example is two closely
related functions for which one wants to produce only one manual entry.

friend bool operator==(onst string& x, onst har* y);

friend bool operator==(onst string& x, onst string& y);

/*{\Mbinopfun true iff x and y are equal.}*/

produces

bool string x == string y true iff x andy are equal.

Another example is conditional definitions, e.g., the access function in the array data type
which depends on the compiler flag LEDACHECKING OFF.

#if defined(LEDA_CHECKING_OFF)

E& operator[℄(int x) { return LEDA_ACCESS(E,v[x-Low℄); }

#else

E& operator[℄(int x) { return LEDA_ACCESS(E,entry(x)); }

#endif

/*{\Marrop returns $A(x)$.\\

\preond $a\le x\le b$. }*/

produces (assuming that Mvar has value A)

E& A[int x] returnsA(x).
Precondition: a ≤ x ≤ b.

If a code unit contains more than one function definition our preprocessor attempts to extract
thelastdefinition. It outputs the extracted definition on standard output (except with option
warnings=no) and asks for an acknowledgment (except with optionak=no).

18 Manual Pages and Documentation

The Mimplementation Command: A command of the form

/*{\Mimplementation body}*/

produces the header line of the implementation part and typesets body. For example,

/*{\Mimplementation The data type |\Mtype| is realized

by doubly linked linear lists. All operations take

onstant time exept

for the following operations: |searh| and |rank|

take linear time $O(n)$, ...

}*/

produces

5. Implementation

The data typelist is realized by doubly linked linear lists. All operations take constant time
except for the following operations:searchandrank take linear timeO(n), ...

The Mexample Command: The Mexample command is used to produce the header line
of the example part and to include program code into the manual. The simplest way to
include program code is to use the verbatim environment of LATEX.

/*{\Mexample The following little example illustrates

the list data type.

\begin{verbatim}

#inlude <LEDA/list.h>

main()

{

list<string> L;

L.append("hello world");

}

\end{verbatim} }*/

produces

6. Example

The following little example illustrates the list data type.

#inlude <LEDA/list.h>

main()

{

list<string> L;

L.append("hello world");

}

14.2 Manual Pages 19

The Mtext Command: The Mtext command can be used to add arbitrary text to the man-
ual. For example,

/*{\Mtext

\headerline{Additional Operations for two-dimensional Points}

The following operations are only available for points

in two-dimensional spae.

We will not mention this preondition in the sequel.

}*/

produces

Additional Operations for two-dimensional Points

The following operations are only available for points in two-dimensional space. We will
not mention this precondition in the sequel.

Generally,

/*{\Mtext body }*/

adds body to the document. The body is subject to placeholdersubstitution and C++ to
LATEX conversion. The Mtext command can be used to include arbitrary LATEX commands
into the output of the preprocessor. We did this already for the header line command in the
example above. Another frequent use of the Mtext command is to change the values of the
parameters governing the layout. For example

/*{\Mtext

\settowidth{\typewidth}{|void|}

\addtolength{\typewidth}{\olsep}

\omputewidths

}*/

sets the width of the first column to the width ofvoid plus the value of colsep, where colsep
is predefined as 1.5em. The command\omputewidths causes the recomputation of the
dependent variable descriptwidth.

The Moptions Command: The Moptions command allows us to include preprocessor op-
tions directly into the header file. For example, the header file for LEDA’s window type
contains

/*{\Moptions

usesubsripts=yes

}*/

and hence this section of the LEDA-manual is typeset with subscripts, see also Section 14.2.4.

The Msubst Command: The Msubst command allows us to define additional placehold-
ers. For example,

20 Manual Pages and Documentation

/*{\Msubst

int_type integer

quot_type rational

}*/

introduces the placeholdersint_type andquot_typewith valuesinteger andrational,
respectively.

14.2.3 Warnings and Acknowledgments
The preprocessor issues warnings and error messages and asks the user to acknowledge
them. With the optionak=no no acknowledgments are necessary and the optionwarnings=no

suppresses the warnings. One can also suppress warnings fora single manual comment,
e.g.,

/*{\Moptions nextwarning=no }*/

point head();

point start();

/*{\Mop returns the start point of |\Mvar|}*/

suppresses the warning that there is more than one function definition in the current code
section. We recommend running Lman withwarnings=yes andak=yes and using the
mechanism above to turn off warnings individually.

14.2.4 Subscripts
Sometimes program variables are numbered and it would be nice to typeset the numbers as
subscripts. The optionusesubsripts=yes does exactly this. Within the context of this
option|x0| is typeset asx0 and|x11| is typeset asx11. Note that the subscript rule is
applied only to identifiers consisting of a single character. Thus|diff1| is still typeset as
diff1.

14.2.5 TEX macros
We defined a collection of TEX-commands that facilitate the production of manual pages;
they are contained inMANUAL.ma in LEDAROOT/Manual/tex.

Many data types in LEDA are defined in terms of items. We have adopted the convention
that items are enclosed in angular braces. The command\Litem produces items. It takes
a single argument and encloses it in angular braces. The argument is typeset in math-
mode, i.e.,\Litem{x} produces〈x〉, \Litem{x,y} produces〈x, y〉, and\Litem{diff}
produces〈di f f 〉. The last example shows that identifiers of length more than one should
be enclosed in vertical bars, e.g.,\Litem{|diff|} produces〈diff 〉.

The wordPreconditionappears frequently in manual pages;\preond produces it. The
macro\CC produces C++. The command\headerline{arg} produces a header line,
i.e., it prints its argument in boldface and disallows pagebreaks after the header line. The
commands\DLK and\DRK produce[[and℄℄, respectively.

Vertical bars require some care. Recall that vertical bars have a special meaning (they

14.2 Manual Pages 21

bracket C++ text) and therefore we need to make special provisions to produce vertical bars
in LATEX-text produced by our preprocessor. The command\Lvert expands to a vertical
bar, i.e., the preprocessor leaves it alone and its TEX-definition is \def\Lvert{|}. A
frequent use of vertical bars in mathematical text is to denote absolute values. The command
\Labs produces absolute values, e.g.,$x + \Labs{|diff|} + z$ producesx+|diff |+z.
The commands\Lvert and\Labs can only be used in math-mode, i.e., in order to produce
a | within text you need to write\Lvert.

MANUAL.ma also defines the LATEX environmentmanual. This environment sets parindent
to zero, parskip to 14pt and increases baselineskip slightly above its standard value. The
manual is typeset in this environment.

The file MANUAL.pagesize in LEDAROOT/Manual/tex defines textwidth, textheight,
topmargin, evensidemargin, and oddsidemargin. Values which work well with European
a4-size paper and US legal-size paper are predefined in this file.

14.2.6 Applying Lman to Web-Files
Followers of literate programming do not split their implementations into h-files and c-files
but combine them into a single file. This causes no problem forLman as it ignores all but
the manual commands and the code units preceding them.

A problem may arise if the web-system in use allows the user toput formatting instruc-
tions into the code chunks as, for example, CWEB does. In thiscase the manual extractor
must purge the code of formatting instructions. The standard version of ext knows how to
remove CWEB’s formatting instructions. In order to adapt the manual extractor to another
web-system which allows formatting instructions in code chunks you need to edit the code
chunk<purge code unit. . .> in ext.nw. We have used Lman successfully on CWEB, noweb,
and Lweb-files.

14.2.7 Redirecting Output
Lman and Ldoc write the extracted manual page to the fileoutfile. In the case of Ldoc
the default value ofoutfile is equal tobasename.man wherebasename.lw is the input
file to Ldoc. In the case of Lman the outfile is some internal file. You may redirect the
output to a different file by assigning tooutfile in an Moptions command, e.g., after

/*{\Moptions outfile=type.man }*/

the output will be written to filetype.man. This feature is useful for at least two purposes.
The first use is to generate several manual pages from the samesource. This can be

achieved by always directing the output to the appropriate man-file. There is a small incon-
venience: LATEX expects manual pages to be enclosed in the manual environment. However,
the required\begin{manual} and\end{manual} commands are generated automatically
only for the default outfile. So one needs to write:

/*{\Moptions outfile=type.man }*/

/*{\Mtext \begin{manual} }*/

now ome the ommands than generate the manual

/*{\Mtext \end{manual} }*/

22 Manual Pages and Documentation

The second use of redirecting output is to rearrange the material within a single manual
page. It is conceivable that one wants to use a different order of presentation in the manual
page and in the implementation. Assume that the manual consists of two parts and that
we want to arrange the two parts in reverse order in the manualand in the documentation.
Write:

\setion{The Manual Page}

\begin{manual}

\input{part1.man}

\input{part2.man}

\end{manual}

\setion{Code}

/*{Moptions outfile=part2.man }*/

the stuff that goes into part 2

/*{Moptions outfile=part1.man }*/

the stuff that goes into part 1

14.2.8 The Lman Options
The behavior of Lman can be fine-tuned by options. A callLman without arguments
gives a short survey of all available options. Options are specified in assignment syntax
variable=value. There must be no blank on either side of the equality sign. Inthe list of
options to follow we list the default value of each option first.

size=f12, 11, 10g: Determines the font size.

constref=fno, yesg: Determines how const-ref parameters are displayed. With the no-
option a const-ref parameteronst T& x is displayed as a value parameterT x and with
the yes-option it is displayed in full.

partypes=fno, yesg: Determines how parameters of unary and binary operators aredis-
played. Consider, for example, an operator+ of a class number. With the no-option the op-
eratoroperator+(number x, number y) is displayed asx + y and with the yes-option
it is displayed asnumber x + number y.

numbered=fno, yesg: Determines whether the header line of the manual page is num-
bered. You probably want it numbered when the manual page becomes part of a larger
document.

title=fyes, nog: If title is set to no, the manpage comment produces no output.

warnings=fno, yesg: Determines whether Lman gives warnings. You probably want to use
the no-option when you inspect LEDA manual pages and the yes-option when you design
manual pages yourself.

ack=fno, yesg: Determines whether Lman asks for acknowledgments of warnings.

usesubscripts=fno, yesg: Determines whether variables consisting of a single character
followed by a number are displayed as subscripted variables.

14.3 Making a Manual: The Mkman Command 23

filter=fall, signatures, definition, creation, operations, implementation, example, op-
nameg: Determines which part of the manual page is shown. The all-option shows the
complete manual page, the signature-option shows the signatures of all operations of the
data type, the next five options show only the corresponding section of the manual page,
and the opname-option shows only the operation with the samename.
outfile=fstringg: Determines whether the TEX-file generated is only written on a tempo-
rary file (the default option) or on the file with name string.

latexruns=f1, 0, 2g: Determines the number of LATEX runs used to produce the manual
page. LATEX needs to be run twice if the manual page contains cross references.

xdvi=fyes, nog: Determines whether the manual page is displayed by xdvi. If latexruns is
at least one and xdvi is no then the resulting dvi-file is copied into file T.dvi in the working
directory.

Lman can be customized by putting options in a file Lman.cfg ineither the home direc-
tory or the working directory. Command line options take precedence over options in the
working directory which in turn take precedence over options in the home directory.

14.3 Making a Manual: The Mkman Command

Many manual pages combined into a single document make a manual. We explain a simple
mechanism to produce LEDA-style manuals. Assume that we want to produce a document
consisting of a title page, an introduction, and the manual pages of types A and B. Assume
also that the manual information about types A and B is contained in files with extension
ext

3 in a common directorydir and that the working directory contains a master TeX-file
as shown in Figure 14.8 and also a fileIntrodution.tex. The command

Mkman dir ext

cycles through all filesf.ext in dir and calls

lextrat f.ext /extrat/f.tex

for each one of them. This creates filesextrat/A.tex andextrat/B.tex after which
the master file may be processed with LATEX.

All header files of LEDA are contained in the directory LEDAROOT/incl/LEDA and the
master file for manual production is called MANUAL.tex and iscontained in the directory
LEDAROOT/Manual/MANUAL. Thus an execution of

Mkman $LEDAROOT/inl/LEDA h

latex MANUAL.tex

in the latter directory produces the dvi-file of the LEDA manual. Since LEDAROOT/incl/LEDA
and h are the default values of the first and second argument ofMkman, respectively, the

3 Typical extensions are h, nw, and lw.

24 Manual Pages and Documentation

\doumentlass[12pt,a4paper℄{book}

\usepakage{Lweb}

\begin{doument}

\title {A Simple Manual}

\maketitle

\input{Introdution.tex}

\input{extrat/A.tex}

\input{extrat/B.tex}

\end{doument}

Figure 14.8 A master tex-file for a simple manual.

#!/bin/sh -f

if ($1 == "") then

set soure = $LEDAROOT/inl/LEDA

set ext = h

else

set soure = $1

if ($2 == "") then

set ext = h

else

set ext = $2

endif

endif

\rm -r -f extrat

mkdir extrat

eho Extrating manual pages ...

eho " "

foreah f ($soure/*.$ext)

eho "extrating manual from $f"

lextrat $f extrat/`basename $f .$ext`.tex

end

Figure 14.9 The shell script Mkman for manual production.

first line may actually be abbreviated to Mkman. Figure 14.9 shows the shell script that
realizes Mkman.

14.4 The Manual Directory in the LEDA System

The subdirectory Manual of the LEDA directory contains all files that are relevant for man-
ual production, see Figure 14.10.

14.5 Literate Programming and Documentation 25

LEDAROOT

|

Manual

________________|__________________

| | | | | |

DVI MANUAL md ontrib noweb tex

Figure 14.10 The subdirectory Manual of the LEDA directory.

• MANUAL contains the tex-sources for the LEDA-Manual.

• DVI contains the dvi-files obtained by applying Lman to all header files of the LEDA
system. The dvi-files in DVI are accessed by the online manualviewer xlman.

• cmd contains the commands Lman, Mkman,

• contrib contains sources of contributions made by persons outside the LEDA group.

• noweb contains the noweb-sources for all programs used for manual production. In
particular, the noweb-fileext.nw contains the Perl programs and shell scripts for
lextract, Lman, Mkman,

• tex contains the TEX files required for manual production.

14.5 Literate Programming and Documentation

Many data types and algorithms of the LEDA system are documented in the literate pro-
gramming system noweb [Ram94] and its LEDA-dialect Lweb. Ldoc and lweave are our
tools to turn noweb- and Lweb-files into nice looking documents.

Literate programming advises to integrate specification, implementation, and documen-
tation into a single file and to use tools (usually calledtangleandweave) to extract program
and to typeset documentation. Among the many literate programming systems we have
used CWEB[KL93] and noweb4: our current favorite is noweb and its LEDA-dialect Lweb.
We used Lweb to produce this book.

14.5.1 Noweb and Lweb
We start with a brief review of noweb, see also Section 2.7. Noweb provides commands
notangleandnoweavethat can be applied to so-called noweb-files. A noweb-file foo.nw
contains program source code interleaved with documentation. When notangle is given a
noweb-file, it extracts the program and writes it to standardoutput, and when noweave is
given a noweb-file it produces a LATEX source on standard output.

4 noweb can be obtained by anonymous ftp from CTAN, the Comprehensive TeX Archive Network, in directory
web/noweb.

26 Manual Pages and Documentation

______ noweave________ LaTeX soure

|

|

foo.nw

|

|______ notangle_______ program

A noweb-file is a sequence ofchunks. A chunk is either adocumentation chunkor acode
chunk. Documentation chunks begin with a line that starts with an at-sign (@) followed by
a space or newline. Code chunks begin with

<<code chunk name>>=

on a line by itself. Chunks are terminated by the beginning ofanother chunk or by the end
of the file. Several code chunks may have the same name. Notangle concatenates their
definitions to produce a single chunk. Code chunks contain source code and references to
other code chunks.

Notangle extracts code by expanding one code chunk. In the expansion process code
chunk definitions behave like macro definitions, i.e., if thedefinition of chunk XXX contains
references to other code chunks then these chunks are also expanded, and so on.

Noweave produces a LATEX source from a noweb-file. To this end it copies the docu-
mentation chunks verbatim to standard output (except for quoted code, see below) and it
typesets code chunks in typewriter font. Note that this implies that documentation chunks
starting with an @-sign followed by a newline-character start a new paragraph in the sense
of LATEX and that documentation chunks containing non-white stuffon the same line as the
@-sign do not. Code may bequotedwithin documentation chunks by placing double square
brackets ([[. . .℄℄) around it. Noweave typesets quoted code in typewriter font.

This completes our review of noweb.Lweb is our local dialect of noweb which we de-
veloped for the production of this book and for the documentation of the LEDA system.
Lweb-files have extension.lw. Figure 14.11 shows an Lweb file and Figure 14.12 shows
the result of applying lweave to it. The differences betweenLweb and noweb are the fol-
lowing:

• Code can be quoted by either double square brackets ([[. . .℄℄) or vertical bars
(| . . . |). Code quoted in double square brackets is set in typewriterfont and code
quoted in vertical bars is typeset in mathitalics font. Thiswas already discussed in
Section 14.2.2.

• Program examples can be included in documentation chunks bylines that start with
@c. The text after the program example must start with an @-sign followed by a
space-character or a newline-character.

• Empty lines in program chunks generate somewhat less vertical space than an empty
line in a verbatim-like environment. This makes code chunkslook better.

• Page breaks are forbidden between the first few and the last few lines of a code chunk.

14.5 Literate Programming and Documentation 27

_______lweave_____________ LaTeX soure

|

|

foo.lw

|

|______ notangle___________ program

Lweb-files have extension .lw. Notangle applies also to Lweb-files and noweave is re-
placed by lweave; lweave is realized as a pair of pre- and postprocessor to noweave. The
preprocessor handles the code quoted by vertical bars and the program examples and the
postprocessor takes care of empty lines in code chunks. The implementation of lweave is
part of ext.nw in LEDAROOT/Manual/noweb.

14.5.2 Documentation
Many classes and programs of the LEDA-system are documentedusing Lweb and this book
is also an Lweb document. We recommend having at least the following major sections in
a documentation:

• A preamble consisting of the title page, the table of contents, and maybe an abstract
and an introduction.

• A manual page as discussed in the previous section.

• A section containing the header file augmented by manual comments so as to allow
manual extraction.

• A section containing the c-file.

• A section containing test, example, or demo programs.

Figure 14.13 shows a simple Lweb-file stack.lw having the recommended structure. More
substantial examples can be found in the subdirectory Lweb of the LEDAROOT directory.

14.5.3 Ldoc
Ldoccombines the functionality of Lman and lweave. A call

Ldo XXX[.lw℄ options

produces a file XXX.man in the working directory and a temporary file temp.lw. The for-
mer file contains the manual and is essentially the file produced by Lman (except for the
preamble and postamble required by LATEX). The Lman-options constref, partypes, warn-
ings, ack, and usesubscripts apply. The file temp.lw is obtained by the deletion of all manual
comments (except for Mpreamble comments) from the input file. The optiondelman=no
suppresses the deletion. The temporary file temp.lw is then sent through lweave and the
result is moved to XXX.tex in the working directory.

We introduced an additional manual comment for the use with Ldoc, the Mpreamble
comment. As far as Lman is concerned it is equivalent to the Mtext command, i.e., its

28 Manual Pages and Documentation

\doumentlass[a4paper℄{artile}

\usepakage{Lweb}

\begin{doument}

\subsubsetion{Jordan Sorting}

We proeed to desribe an implementation. Its global

struture is given by:

�

<<inlude statements>>;

<<typedefs and global variables>>;

<<lass point>>;

<<lass braket>>;

<<proedure Jordan sort>>;

� As outlined above, we onstrut three data strutures

simultaneously: the sorted list of the numbers proessed so

far, all it |L|, and the

upper and lower tree of brakets. Eah item of the

list |L| ontains its absissa (a |float|) and pointers

to the brakets in the two trees ontaining it.

<<lass point>>=

lass point{

private:

float absissa;

braket* braket_in_upper_tree;

braket* braket_in_lower_tree;

publi:

<<member funtions of lass point>>

}

� A node of either tree orresponds to a braket.

A braket needs to know its two endpoints

(as items in the list |L|), its sorted sequene

of sub-brakets (a |sortseq<braket*,>| whih we

abbreviate as |hildren_list|),

and its position among its siblings (a |seq_item|).

\end{doument}

Figure 14.11 An Lweb file: It is part of the section on sorted sequences of this book.

body is included into the produced tex-file after placeholder substitution and C++ to LATEX
conversion. Ldoc produces two output files, namely XXX.man and temp.lw. The output of
Mpreamble commands is put into the latter file instead of the former. A typical use of the
Mpreamble command is the definition of a LATEX-command whose body should be subjected
to C++ to LATEX-conversion. The following example is taken from LEDA’s geo rep class.

14.5 Literate Programming and Documentation 29

We proceed to describe an implementation. Its global structure is given by:

〈include statements〉;
〈typedefs and global variables〉;

〈class point〉;
〈class bracket〉;
〈procedure Jordan sort〉;

As outlined above, we construct three data structures simultaneously: the sorted list of
the numbers processed so far, call itL, and the upper and lower tree of brackets. Each
item of the listL contains its abscissa (afloat) and pointers to the brackets in the two trees
containing it.

〈class point〉�

lass point{

private:

float absissa;

braket* braket_in_upper_tree;

braket* braket_in_lower_tree;

publi:

〈member functions of class point〉

}

A node of either tree corresponds to a bracket. A bracket needs to know its two endpoints
(as items in the listL), its sorted sequence of sub-brackets (asortseq<bracket∗, > which
we abbreviate aschildrenlist), and its position among its siblings (aseqitem).

Figure 14.12 The result of applying lweave + latex to the file of Figure 14.11.

/*{\Mpreamble

\newommand{\grsummary}

{The lass |geo_rep| is used to represent points, hyperplanes,

diretions, and vetors. The latter ...}

}*/

14.5.4 The Implementation of Ldoc
Ldoc is based on the commandslextract, ldel, andweave, where weave is noweave for
noweb and lweave for Lweb.

foo.[lw|nw|w℄ - ldel - foo-del.[lw|nw|w℄ - weave - foo.tex

| |

lextrat \input{foo.man}

| |

foo.man --

Ldoc first uses lextract to extract the manual and ldel to remove the manual comments, it
then applies the appropriate weave command to the output of ldel, and it finally applies
LATEXand xdvi to the resulting file. All Lman options apply. In order to try out Ldoc copy

30 Manual Pages and Documentation

\doumentlass[a4paper℄{artile}

\usepakage{Lweb}

\begin{doument}

\title{Stak\\ |stak| }

\author{Kurt Mehlhorn}

\maketitle

\tableofontents

\setion{The Manual Page of Type Stak}

\input{stak.man}

� \setion{The Header File}

<<stak.h>>= the file of Figure 1.2

� \setion{The Implementation}

<<stak.>>= ...

� \setion{A Test Program}

<<stak-test.>>= ...

�

\end{doument}

Figure 14.13 The generic structure of a documentation.

sortseq.lw from LEDAROOT/Lweb to a directory where you havewrite-permission and
then call Ldoc sortseq.

Bibliography

[KL93] D. Knuth and S. Levy.The CWEB System
of Structured Documentation, Version 3.0.
Addison-Wesley, 1993.

[Lam86] L. Lamport.LATEX. Addison-Wesley, 1986.
[Ram94] N. Ramsey. Literate programming

simplified. IEEE Software, pages 97–105, 1994.
[WS90] L. Wall and R.L. Schwartz.Programming

perl. O’Reilly & Associates, 1990.

31

Index

.lw, 26

callwidth, 13

descriptwidth, 13
documentation, 2–30

code unit, 11, 17
example of a header file, 3
example of a manual page, 4
Fman, 4
Ldoc, 27
leave, 27
literate programming, 21, 25–30
Lman, 2–5

options, 22
redirecting output, 21

lweave, 26
Lweb, 26
making a manual, 23–24
manual commands, 6–20

Manpage, 6
Marrop, 15
Mbinop, 14
Mbinopfunc, 16
Mconversion, 16
Mcreate, 10
Mcreation, 10
Mdefinition, 8
Mdestruct, 12
Mexample, 18
Mfunc, 16
Mfunop, 15
Mimplementation, 18
Mname, 10
Mop, 13
Moperations, 12
Moptions, 19
Mpreamble, 28
Mstatic, 15

Msubst, 19
Mtext, 19
Mtypemember, 9
Mtypes, 9
Munop, 15
Munopfunc, 16
Mvar, 10

manual comment, 2
manual directory, 24–25
manual pages, 5–23

invisible functions, 17
structure, 6
TEX macros, 20
warnings, 20

Mkman command, 23
notangle, 25
noweave, 25
noweb, 25

Fman,seedocumentation

header file
decoration for manual production, 6

Ldoc,seedocumentation
Lman,seedocumentation
lweave,seedocumentation
Lweb,seedocumentation

manual
how to make one,seedocumentation

manual comment, 2

notangle,seedocumentation
noweave,seedocumentation
noweb,seedocumentation

typewidth, 13

32

