
Contents

8 Embedded Graphs page2
8.1 Drawings 3
8.2 Bidirected Graphs and Maps 5
8.3 Embeddings 10
8.4 Order-Preserving Embeddings of Maps and Plane Maps 15
8.5 The Face Cycles and the Genus of a Map 16
8.6 Faces, Face Cycles, and the Genus of Plane Maps 19
8.7 Planarity Testing, Planar Embeddings, and Kuratowski Subgraphs 23
8.8 Manipulating Maps and Constructing Triangulated Maps 68
8.9 Generating Plane Maps and Graphs 73
8.10 Faces as Objects 75
8.11 Embedded Graphs as Undirected Graphs 78
8.12 Order from Geometry 79
8.13 Miscellaneous Functions on Planar Graphs 81

Bibliography 85

Index 87

1

8

Embedded Graphs

Drawings of graphs are ubiquitous. In this chapter we introduce important mathemati-
cal concepts related to embedded graphs and we discuss algorithms that draw and embed
graphs and that deal with embedded graphs. We provide only a minimum of the required
mathematics and refer the reader to [Whi73] for a detailed treatment.

We start with the definition of what it means to draw a graph andan example of a drawing
algorithm. We discuss bidirected graphs and maps, our technical vehicle for dealing with
embedded graphs, in Section 8.2 and the concepts of embedding and planar embedding in
Section 8.3. In this section we also introduce functions that test the planarity of a graph, that
construct a plane embedding of a planar graph, and that exhibit a Kuratowski subgraph in
a non-planar graph. Their implementation is discussed in Section 8.7. Sections 8.4 and 8.5
introduce order-preserving embeddings, plane maps, face cycles, and the genus of maps. In
Section 8.6 and 8.12 we relate combinatorics and geometry. In particular, we prove that a
map is plane if and only if its genus is zero and we derive an upper bound on the number
of edges of any planar graph and we show how to construct the map induced by geometric
positions assigned to the nodes of a graph. In Section 8.8 we show how to modify maps,
in Section 8.9 we discuss the generation of random plane maps, and in Section 8.13 we
introduce functions that five-color a planar graph and choose a large independent set in
a planar graph. Section 8.10 introduces face items as a meansof dealing with faces in
the same way as with nodes and edges. In Section 8.11 we discuss our design choice of
representing maps by directed graphs instead of undirectedgraphs.

2

8.1 Drawings 3

0

1

2

3

4

5

6

Figure 8.1 A drawing produced by one of the graph drawing algorithms in AGD [JMN].

8.1 Drawings

We have already seen many drawings of graphs in this book. We have never defined what
we mean by a drawing, embedding, and planar embedding.

Let G be a graph and letSbe a surface, e.g., the plane or the sphere or the torus. We will
be almost exclusively concerned with the plane in this book.However, the concepts also
apply to more complex surfaces.

A drawing I of G in Sassigns a pointI (v) ∈ S to every nodev of G and a Jordan curve1

I (e) to every edgee = (v, w) such that:

(1) distinct points are assigned to distinct nodes, i.e.,I (v) 6= I (w) for v 6= w,
(2) the curve assigned to any edge connects the endpoints of the edge, i.e., ife = (v, w)

then I (e)(0) = I (v) and I (e)(1) = I (w).

A drawing in the plane is called a straight line drawing if every edge is drawn as a straight
line segment. Figure 8.2 shows some drawings.

An algorithm, that takes a graph and produces a drawing for it, is called agraph drawing
algorithm2. LEDA provides some graph drawing algorithms; see the section on graph draw-
ing in the manual andtry the button layout in a GraphWin for a demonstration. Many more
graph drawing algorithms are available in the systems AGD [JMN] and GDToolkit [Bat].

1 A Jordan curvec is a curve without self-intersections, i.e., a continuous mappingc : [0, 1] −→ Swith
c(x) 6= c(y) for 0 ≤ x < y < 1.

2 Graph drawing is an active area of research, see [BETT94, EM98, DETT98] for surveys.

4 Embedded Graphs

v3

v1

v4

v4

v2 v3 v2

v3 v3v2 v2

v1 v1

v1 v4

v4

Figure 8.2 Some drawings of the same graph. All drawings except for the right upper drawing
are embeddings.

Both systems are based on LEDA. Figure 8.1 shows a drawing produced by an algorithm in
AGD.

The functions

void SPRING EMBEDDING(onst graph& G,

node array<double>& xpos, node array<double>& ypos,

double xleft, double xright, double ybottom, double ytop,

int iterations = 250);

void SPRING EMBEDDING(onst graph& G, onst list<node>& fixed,

node array<double>& xpos, node array<double>& ypos,

double xleft, double xright, double ybottom, double ytop,

int iterations = 250);

compute straight line drawings of a graphG using a so-calledspring embedder3. A spring
embedder works iteratively. It models the nodes of a graph aspoints in the plane that repulse
each other, and it models each edge as a spring between the endpoints of the edge. In each
iteration the force acting on any node is computed as the sum of repulsive forces (from all
other nodes) and attractive forces (from incident edges), and the node is moved accordingly.
The number of iterations is determined by the parameteriterations.

Thex- andy-coordinates of the positions assigned to the nodes ofG are returned inxpos
andypos, respectively, and the points are constrained to lie in the rectangle defined byxleft,
xright, ybottom, andytop. The second version of the function keeps the positions of the
nodes infixedfixed.

Drawings in which edges do not cross are particularly nice. We call such drawings em-
beddings. Out of the four drawings shown in Figure 8.1 three are embeddings. Embeddings
are the topic of Section 8.3. The graphs in Figure 8.2 are undirected. For the purposes of

3 The name spring drawer would be more appropriate, as spring embedders do not produce embeddings, but
drawings. However, the name spring embedder is in general use.

8.2 Bidirected Graphs and Maps 5

e1

e2

e5 e4

e0

e3

Figure 8.3 A bidirected graph: We havereversal(e2i) = e2i+1 andreversal(e2i+1) = e2i for all i
with 0 ≤ i ≤ 2. Requirement (2) excludes the possibility thatreversal(e0) = e1, and
reversal(e3) = e0, and requirement (3) excludes the possibility thatreversal(e4) = e4 and
reversal(e5) = e5.

this chapter it is convenient to distinguish between the twoorientations of an edge. This
leads to the concepts of bidirected graphs and maps, which wetreat in the next section.

Exercise for 8.1
1 Implement a spring embedder.

8.2 Bidirected Graphs and Maps

A directed graphG = (V, E) is calledbidirectedif there is a bijective functionreversal:
E → E such that for every edgee = (v, w) with eR = reversal(e):

(1) eR = (w, v), i.e.,source(e) = target(eR) andtarget(e) = source(eR),
(2) reversal(eR) = e, and
(3) e 6= eR.

Property (1) ensures that reversal deserves its name, and properties (2) and (3) ensure that
reversal behaves properly in the presence of parallel edgesand self-loops. Figure 8.3 shows
an example of a bidirected graph and also illustrates properties (2) and (3). A bidirected
graph has an even number of edges.

The function

bool G.is bidireted();

returnstrue if G is bidirected and returnsfalseotherwise. The function

void G.make bidireted(<list<edge>& R);

adds a minimum number of edges toG so as to makeG bidirected. The added edges are
returned inR.

Every edgee of any graphG has a reversal information associated with it. It is accessed
through

G.reversal(e)

6 Embedded Graphs

e0 e4

e2

e1

e3

e5

Figure 8.4 A map: Every pair of edges{e, eR} with reversal(e) = eR andreversal(eR) = e is
drawn as two half-edges. For each half-edge the name of the half-edge is shown on the left side
of the half-edge.

and has typeedge. The reversal information of an edge is either undefined (=nil) or is an
edgeeR satisfying (1) to (3). The operation

G.set reversal(e,f)

sets the reversal information ofe to f and the reversal information off to e. The function
checks whether the created reversal information is legal and aborts if it is not. If the reversal
information ofe was defined prior to the operation, the reversal informationof eR is set to
nil by the operation. The same holds true forf .

A map is a graph in which the reversal information of every edge is defined. A map
is always a bidirected graph and every bidirected graph can be turned into a map by setting
the reversal information appropriately. The function

bool G.is map()

returnstrue if G is a map and the functions

bool G.make map()

void G.make map(list<edge>& R)

turn G into a map by setting the reversal information of every edge.The first function
requires thatG is bidirected (ifG is not bidirected, the function returnsfalseand sets the
reversal information of a maximal number of edges), the second function adds a minimum
number of edges toG so as to makeG bidirected and then turnsG into a map. Both
functions preserve reversal information, i.e., ifreversal(e) is defined before the call, then
reversal(e) is not changed by either call.

We call a pair of edges{e, eR} with reversal(e) = eR (and hencereversal(eR) = e) a
uedge(undirected edge) and say thate andeR form the uedge. The uedge comprisinge
andeR is denoted{e, eR} or {v, w}, wherev andw are the two endpoints ofe. The latter
notation is ambiguous in the presence of parallel edges. We depict maps as shown in Figure
8.4. For every uedge{e, eR} we draw “two half-edges that meet” and label theme andeR,
respectively.

We have no iteration statement that iterates over the uedgesof a graph. However, it is
easy to obtain the effect of iterating over uedges.

8.2 Bidirected Graphs and Maps 7

forall edges(e,G)

{ if (index(e) > index(G.reversal(e))) ontinue;

<body of loop>

}

Observe that the body of the loop is executed for exactly one edge in each uedge, namely
the one with smaller index.

We describe the implementations of some of the functions introduced above. We also
introduce a function that checks whether the reversal information of all edges is properly
defined. This section may be skipped on first reading.

We start with a functioncheckreversalinf that checks whether the reversal information
of every edge is either nil or satisfies (1) to (3) and raises anerror if this is not the case4.
The function is non-trivial to write because it cannot assume that the reversal information
of an edge has a meaningful value, i.e., the function has to cope with the possibility that
G.reversal(e) is non-nil and not an edge ofG for somee.

We proceed as follows. We introduce a mapis edgeof G from edges to bool that we
initialize to false. We then setis edgeof G[e] to true for all edgese of G. Next, we iterate
again over all edgese of G and make sure thatreversal(e) is eithernil or an edge ofG. In
a third step we make sure that (1) to (3) holds for all edgese whose reversal information is
notnil.

〈checkreversalinf.c〉+�
bool hek_reversal_inf(onst graph& G)

{ map<edge,bool> is_edge_of_G(false);

edge e;

forall_edges(e,G) is_edge_of_G[e℄ = true;

forall_edges(e,G)

{ edge r = G.reversal(e);

if (r == nil || !is_edge_of_G[r℄) return false;

}

forall_edges(e,G)

{ edge r = G.reversal(e);

if (r == e || G.reversal(r) != e ||

G.soure(e) != G.target(r) || G.target(e) != G.soure(r))

return false;

}

return true;

}

It is instructive to investigate what can go wrong when only the thirdforall edgesloop is
executed. It would then be possible thatr is different fromnil but not an edge ofG. The
access to the reversal, target, or source ofr could then result in a segmentation fault. The

4 We use the functioncheckreversalinf for testing purposes. Of course, all functions of the LEDA system are
designed to preserve the invariant that the reversal of every function is either nil or an edge ofG satisfying (1) to
(3) and hence, if none of the implementers of LEDA had ever made a mistake, the function would have never
raised an error.

8 Embedded Graphs

program above guards against this possibility by ensuring first that the reversal of any edge
e of G is eithernil or an edge ofG.

We next show the implementation of the functionmakemap. Its implementation is de-
rived from the functionIs Bidirectedgiven in Section 6.12.

A call of G.makemap() sets the reversal information of a maximal number of edges.
We proceed as follows: letv1, v2, . . . , vn be an arbitrary order on the nodes ofG, e.g., the
ordering given by the internal numbering of the nodes5. We make two listsESTandETS
of all edges whose reversal information is undefined.ESTstarts with all edges out ofv1,
followed by all edges out ofv2, For eachi , the edges out ofvi are in increasing order
of their target node.ETSstarts with all edges intov1, followed by all edges intov2,
For eachi , the edges intovi are in increasing order of the source node. We also want the
self-loops incident to anyvi to appear in reverse order in the two lists.

The listsEST and ETSare easy to generate. We collect all edges whose reversal in-
formation is undefined in a listEST and use bucket sort to rearrangeEST in increasing
lexicographic order. We use the index of the source node of anedge as the primary key and
the index of the target node as the secondary key. ForETSwe interchange the roles of the
primary and the secondary key, and we initializeETSto the reversal ofEST. The effect of
initializing ETSwith the reversal ofESTinstead of withETSis that the self-loops incident
to anyvi appear in reverse order in the two lists; this follows from the fact that bucket sort
is stable.

Having rearranged both lists we establish the reversal information. ESTstarts with all
edges out ofv1 sorted in order of increasing target andETSstarts with all edges intov1

sorted in order of increasing source. Both lists start with all self-loops incident tov1.
We scan over both lists and check whether the first edge onEST, call it e, can be paired

with the first edge onETS, call it r . We can paire and r if none of them was paired
previously and ifsource(e) = target(r), target(e) = source(r), ande 6= r . If e andr can
be paired, we pair them by setting their reversal information appropriately. The function
succeeds if all edges can be paired.

So assume thate andr cannot be paired. We show that at least one ofe andr will never
find a partner.

Assume first thatsource(e) 6= target(r). If source(e) < target(r) thenETScontains no
further edge which ends insource(e). Thuse cannot be paired. Similarly, ifsource(e) >

target(r) thenESTcontains no further edge that starts intarget(r). Thusr cannot be paired.
Assume next thatsource(e) = target(r) and target(e) 6= source(r). If target(e) is

less thansource(r) then ETScontains no further edge that starts insource(e) and ends
in target(e) and hencee cannot be paired. Iftarget(e) is greater thansource(r) thenEST
contains no further edge that ends intarget(r) and starts insource(r) and hencer cannot be
paired.

Assume finally thatsource(e) = target(r) andtarget(e) = source(r) ande = r , i.e.,e is
a self-loop. SinceESTandETScontain the self-loops incident to any node in reverse order

5 The internal number of a nodev is given byindex(v).

8.2 Bidirected Graphs and Maps 9

this can only happen if there is an odd number of self-loops incident tosource(e) and if e
is the middle element of the block of self-loops incident tosource(e). In this situation it is
OK if e stays unpaired and all other self-loops incident tosource(e) are paired.

〈makemap.c〉�
stati int map_edge_ord1(onst edge& e) { return index(soure(e)); }

stati int map_edge_ord2(onst edge& e) { return index(target(e)); }

bool graph::make_map()

{

int n = max_node_index();

int ount = 0;

edge e,r;

list<edge> EST;

forall_edges(e,(*this)) if (e->rev == nil) EST.append(e);

int number_of_undefined_reversals = EST.length();

list<edge> ETS = EST; ETS.reverse();

EST.buket_sort(0,n,&map_edge_ord2); // seondary key

EST.buket_sort(0,n,&map_edge_ord1); // primary key

ETS.buket_sort(0,n,&map_edge_ord1); // seondary key

ETS.buket_sort(0,n,&map_edge_ord2); // primary key

// merge EST and ETS to find orresponding edges

while (! EST.empty() && ! ETS.empty())

{ e = EST.head();

r = ETS.head();

if (e->rev != nil) { EST.pop(); ontinue; }

if (r->rev != nil) { ETS.pop(); ontinue; }

if (target(r) == soure(e))

{ if (soure(r) == target(e))

{ ETS.pop(); EST.pop();

if (e != r)

{ e->rev = r; r->rev = e;

ount += 2;

}

ontinue;

}

else // target(r) == soure(e) && soure(r) != target(e)

{ if (index(soure(r)) < index(target(e)))

ETS.pop(); // r annot be mathed

else

EST.pop(); // e annot be mathed

}

}

else // target(r) != soure(e)

{ if (index(target(r)) < index(soure(e)))

ETS.pop(); // r annot be mathed

else

EST.pop(); // e annot be mathed

}

10 Embedded Graphs

}

return ount == number_of_undefined_reversals;

}

Given the function above, it is trivial to extend a graphG to a map. A callG.makemap()

determines the reversal information of a maximal number of edges. For any edge whose
reversal information is still undefined, we add the reversededge toG and set the reversal
information accordingly.

〈makemap.c〉+�
void graph::make_map(list<edge>& R)

{ if (make_map()) return;

list<edge> el = all_edges();

edge e;

forall(e,el)

{ if (e->rev == nil)

{ edge r = new_edge(target(e),soure(e));

e->rev = r;

r->rev = e;

R.append(r);

}

}

}

Exercises for 8.2
1 Does the functioncheckreversalinf work if the mapis edgeof G is replaced by an edge

array?
2 Does the functioncheckreversalinf work if the last twoforall edgesloops are combined

into one?

8.3 Embeddings

Embeddingsare special drawings, namely drawings where no edge is drawnacross a node,
where the images of distinct edges do not cross, and where thetwo edges comprising a
uedge are embedded the same. Formally, we define as follows:

A drawing I of a graphG into a surfaceS is called anembeddingif the images of edges
contain no images of points in their relative interiors6, if the images of edges belonging
to distinct uedges are disjoint except for endpoints7, and if the curves assigned to edges
belonging to the same uedge are reversals of each other8.

Figure 8.1 shows three embeddings of a mapM0 into the plane;M0 has nodesv1, v2, v3,

6 I (e)(x) 6= I (v) for any edgee, nodev, and realx with 0 < x < 1
7 I (e)(x) 6= I (e′)(y) for edgese ande′ with e 6= e′ ande′ 6= reversal(e) and allx andy with 0 < x, y < 1
8 I (eR)(x) = I (e)(1 − x) for all edgese, eR = reversal(e), and allx, 0 ≤ x ≤ 1

8.3 Embeddings 11

andv4 and uedges{v1, v2}, {v1, v3}, {v1, v4}, and{v2, v3}, and will be used as the running
example in this chapter. An embedding into the plane is called a planar embedding, and
a planar embedding in which every edge is mapped to a straightline segment is called a
straight line embedding. A graphG is calledplanar if it has a planar embedding.

The function

bool Is Planar(onst graph& G)

tests whether the graphG = (V, E) has a planar embedding. It returnstrue if G is planar
andfalseotherwise. The running time isO(n + m).

The functions

bool PLANAR(graph& G, bool embed = false);

bool HT PLANAR(graph& G, bool embed = false);

bool BL PLANAR(graph& G, bool embed = false);

also test whether the graphG is planar. Whenembedis true, G is a map, andG is planar
(the functions rise an error whenembedis trueandG is not a map), the functions in addition
reorder the adjacency lists ofG such thatG becomes a plane map. The notion of plane map
is explained in Section 8.4. All of this takes timeO(n + m).

There are two implementations of the planarity test and planar embedding algorithm:
HT PLANAR realizes the planarity testing algorithm of Hopcroft and Tarjan, see [HT74]
or [Meh84, IV.10], and the embedding algorithm of Mehlhorn and Mutzel, see [MM95].
BL PLANAR realizes the planarity testing algorithm of Lempel,Even, and Cederbaum, and
Booth and Lueker, see [LEC67, Eve79, BL76], and the embedding algorithm of Nishizeki
and Chiba, see [NC88]. The implementation of HTPLANAR is documented in [MMN94]
and the implementation of BLPLANAR is discussed in Section 8.7. BLPLANAR is the
faster of our implementations and hence PLANAR is synonymous to BL PLANAR.

The functions

bool PLANAR(graph& G, list<edge>& el, bool embed = false);

bool HT PLANAR(graph& G, list<edge>& el, bool embed = false);

bool BL PLANAR(graph& G, list<edge>& el, bool embed = false);

behave like the functions above whenG is planar. IfG is non-planar, the functions also
return a proof of non-planarity in the form of the edgesel of a Kuratowski subgraph. The
identification of Kuratowski subgraphs takes linear timeO(n + m) in BL PLANAR and
PLANAR, and takes quadratic timeO(n2) in HT PLANAR. We explain the notion ofKu-
ratowski subgraph.

Figure 8.5 shows two non-planar graphs, the complete graphK5 on five nodes and the
complete bipartite graphK3,3 with three nodes on each side. The non-planarity of both
graphs will be shown in Lemma 3 in Section 8.6. It is a famous theorem of Kuratowski,
see [Kur30, Whi73], that every non-planar graphG contains a subdivision9 of eitherK5 or
K3,3, i.e., there is a setel of edges inG forming a subdivision of eitherK5 or K3,3. Figure
8.6 shows a Kuratowski subgraph of a non-planar graph.

9 Let K be an arbitrary graph. A subdivision ofK is obtained fromK by subdividing edges. To subdivide an edge
means to split the edge into two by placing a new vertex on the edge.

12 Embedded Graphs

K5 K3,3

Figure 8.5 The Kuratowski graphsK5 andK3,3.

Figure 8.6 A non-planar graph and the Kuratowski subgraph proving non-planarity. The edges
of the Kuratowski subgraph are shown in bold. This figure was generated with the xlman-demo
gw plan demo.

There is also a function that gives more information about the Kuratowski subgraph than
just the list of its edges.

int KURATOWSKI(graph& G, list<node>& V, list<edge>& E,

node array<int>& deg);

returns zero ifG is planar and returns one otherwise. IfG is non-planar, it computes a
Kuratowski subdivisionK of G as follows:V is the list of all nodes and subdivision points
of K . For allv ∈ V which are subdivision points, the degreedeg[v] is equal to 2. IfK is a
K5, thendeg[v] is equal to 4 for all nodesv ∈ V that are not subdivision points. IfK is a
K3,3, thendeg[v] is equal to−3 (+3) for the nodesv on the left (right) side of theK3,3.

If G is a plane map, the function

8.3 Embeddings 13

0 1

2

3

4

5

6

Figure 8.7 A straight line drawing produced by STRAIGHTLINE EMBEDDING. This figure
was generated with the xlman-demo gwplan demo.

int STRAIGHT LINE EMBEDDING(graph& G, node array<int>& xoord,

node array<int>& yoord);

computes for each nodev of G a point(xcoord[v], ycoord[v]) with integer coordinates in
the range [0.. 2(n−1)] such that the straight line embedding defined by these node positions
is an order preserving embedding ofG. The algorithm [F́48, dFPP88] has running time
O(n2). G must not have parallel edges and it must not have self-loops (since the existence of
parallel edges or self-loops excludes the existence of a straight line embedding). Figure 8.7
shows a straight line drawing produced by this algorithm.

The functionIs Planar played an important role in the development of LEDA. We added
the function to the system in 1991. The function had been implemented as part of a master’s
thesis and had been tested on a small number of examples (we did not have a large collection
of planar graphs available to us). The master’s thesis described the implementation; the
actual program was not part of the thesis.

In 1993 we were sent a planar graph which, however, our program declared non-planar.
When we started to revise the program we learned two things. First, we learned that writing
a function

14 Embedded Graphs

bool Is Planar(onst graph& G)

means asking for trouble. A function that answers a complex question like

Is G planar?

should not just return “YES” or “NO”;it should justify its answer in a way that is easily
checked by the caller of the function.

Second, we learned that documentation and implementation had to be tied together more
closely by the use of literate programming. Literate programming, first advocated by
D.E. Knuth, suggests to embed an implementation into a document that describes the al-
gorithm. All programs in this book are presented in a literate programming style. We first
used CWEB [KL93] and later switched to noweb [Ram94].

In the case of planarity testing, the learning process led toreports [MMN94, MM95,
HMN96] and to function

bool PLANAR(graph& G, list<edge>& el, bool embed)

which justifies its answers:

• WhenG is non-planar the function returns a proof of non-planarityin the form of the
setel of edges of a Kuratowski subgraph. The caller can easily check that the edges in
el form a Kuratowski subdivision ofG.

• When G is planar,embedis set totrue, andG is a map, the function reorders the
adjacency lists ofG such thatG becomes a plane map. A caller of PLANAR has two
ways to check whether the returned map is plane. He can eitherproduce a planar
drawing ofG with the help of STRAIGHTLINE EMBEDDING and visually inspect
the result, or he can compute the genus ofG. The genus of maps will be discussed in
Section 8.6 and it will be shown there that a map is plane iff its genus is zero. The
genus of a map can be computed by a simple program.

The fact that PLANAR justifies its answers and that the answers are easily checked can
be used to test the function on any input. Observe that testing is usually restricted to inputs
where the answer is known by other means. The following test program exploits the fact
that PLANAR can be tested on any input.

We choose integersn andm such that a random map withn nodes andm uedges has a
fair chance of being planar and a fair chance of being non-planar, generate random maps
with n nodes and aboutm edges, test them for planarity, and check the answer.

〈planar test.c〉+�
main(){

int n = read_int("n = "); int m = read_int("m = ");

graph G;

list<edge> el;

int P = 0; int K = 0;

while (P + K < 1000)

8.4 Order-Preserving Embeddings of Maps and Plane Maps 15

{ random_graph(G,n,m);

list<edge> R;

G.make_map(R);

if (PLANAR(G,el,true))

{ assert(Genus(G) == 0); P++; }

else

{ assert(CHECK_KURATOWSKI(G,el)); K++; }

}

out << "\n\nnumber of plane graphs = " << P;

out << "\n\nnumber of non-plane graphs = " << K; newline;

}

In a run withn = 50 andm = 55, the program above found 308 planar graphs and 692
non-planar graphs.

The function PLANAR was the first function in LEDA that justified its answers. By now,
many functions do. We have seen many examples already in the preceding chapters and we
will see more in the chapters to come.A general discussion of the role of program checking
in LEDA can be found in Section 2.14.

Exercises for 8.3
1 Let G be a non-planar graph. Show that the following strategy identifies the edges of

a Kuratowski subgraph. Iterate over all edgese of G. If G \ e is non-planar, removee
from G, and if G \ e is planar leaveG unchanged. The edges remaining inG form a
Kuratowski subgraph.

2 Write a function

bool CHECK KURATOWSKI(onst graph& G, onst list<edge>& el)

that returnstrue if the edges inel form a Kuratowski subdivision ofG.

8.4 Order-Preserving Embeddings of Maps and Plane Maps

We define the notion of an order preserving embedding of a map.
For a vertexv, we useA(v) to denote the set of edges with sourcev. The setA(v) is

stored as a cyclic list. For an edgee,

G.yli adj su(e);

G.yli adj pred(e);

return the successor and predecessor ofe, respectively, in the cyclic listA(source(e)).
We will, from now on, assume that the adjacency lists of the map M0, our running exam-

ple, are ordered as follows:

16 Embedded Graphs

cyclic adj succ

e

cyclic adj pred

Figure 8.8 Order-preserving embeddings: The cyclic order of the edgesin A(v) agrees with the
counter-clockwise ordering of the edges aroundv in the drawing.

v1 : e1 = (v1, v2), e2 = (v1, v4), e3 = (v1, v3)

v2 : e4 = (v2, v3), eR
1 = (v2, v1)

v3 : eR
3 = (v3, v1), eR

4 = (v3, v2)

v4 : eR
2 = (v4, v1).

Consider a drawing of a mapM into the plane (more generally, into any orientable sur-
face) and letv be any node ofM. The drawing defines a cyclic ordering on the edgesA(v)

emanating fromv, namely the counter-clockwise ordering10 of the curvesI (e), e ∈ A(v),
aroundI (v). A drawing is calledorder-preservingor order-compatibleif for every nodev
the counter-clockwise ordering of the curvesI (e), e ∈ A(v), aroundI (v) agrees with the
cyclic ordering of the edges inA(v), see Figure 8.8. In Figure 8.9 one of the embeddings
of M0 is order-preserving and one is not. In all further drawings of maps in this chapter we
will use order-preserving drawings.

A map is calledplaneif it has an order-preserving planar embedding. The function

bool Is Plane Map(onst graph& G)

returnstrue if G is a plane map and returnsfalseotherwise. We will see its implementation
in Section 8.6.

8.5 The Face Cycles and the Genus of a Map

We define a partition of the edges of a map into cycles, the so-called face cycles. We
introduce face cycles as purely combinatorial objects and will interpret them geometrically
in the next section. Based on the concept of face cycles we will define thegenusof a map.

10 A precise definition is as follows: for a positive realǫ consider the first intersections of the curvesI (e), e ∈ A(v),
with the circle of radiusǫ aroundI (v). For small enoughǫ this ordering does not depend onǫ.

8.5 The Face Cycles and the Genus of a Map 17

v3

eR
1

v4

e3

v1

v3

v4

v1

e3

e2

e1

e1

eR
2

e4 e4

eR
4 eR

4

eR
3 eR

3 eR
1

eR
2

e2

v2v2

Figure 8.9 Two planar embeddings of the mapM0: In the embedding on the left the
counter-clockwise ordering of the edges inA(v1) is e1, e2, e3 and in the embedding on the right
the ordering ise1, e3, e2. The embedding on the left is order-preserving.

e0

e1

e2

e3

e4

Figure 8.10 Face cycle successors and predecessors: We haveei+1 = facecyclesucc(ei) for all
i , 0 ≤ i < 5. Indices are mod 5. The drawing convention for maps is used.

For an edgee of a mapM we define the face cycle successor and face cycle predecessor
of e by:

fae yle su(e) = yli adj pred(reversal(e))

fae yle pred(e) = reversal(yli adj su(e)).

Figure 8.10 illustrates these definitions. The next lemma justifies the use of the namessucc
andpred and also shows that the functionfacecyclesuccdecomposes the edges of a map
into cycles.

Lemma 1 Let M be a map and let e be an edge of M. Then

(a) facecyclepred(facecyclesucc(e)) = e
(b) facecyclesucc(facecyclepred(e)) = e
(c) Let e0 = e and set ei+1 = facecyclesucc(ei) for i ≥ 0. Then there is a k such that

ek+1 = e0 and ei 6= ej for all i and j with 0 ≤ i < j ≤ k.

18 Embedded Graphs

Proof (a) and (b) We have

facecyclepred(facecyclesucc(e))

= reversal(cyclicadj succ(cyclicadj pred(reversal(e))))

= reversal(reversal(e))

= e

and

facecyclesucc(facecyclepred(e))

= cyclicadj pred(reversal(reversal(cyclicadj succ(e))))

= cyclicadj pred(cyclicadj succ(e))

= e

(c) Let k be minimal such thatek+1 = ei for somei ≤ k. Assumei > 0. Fromek+1 =
facecyclesucc(ek) andei = facecyclesucc(ei−1) and part (a) we concludeek = ei−1, a
contradiction to the definition ofk. Thusi = 0.

For an edgeeof a mapM we define theface cyclecontainingeas the cycle [e0, e1, . . . , ek]
wheree0 = e, ei+1 = facecyclesucc(ei) for i ≥ 0, ek+1 = e, andej 6= ei for 0 ≤ i < j ≤
k. Part (c) of the lemma above guarantees that this is a good definition. Every edge ofM
belongs to exactly one face cycle and the face cycles partition the edges ofM.

We illustrate the concept of face cycle on our running example, the mapM0. The face
cycle containing the edgee1 = (v1, v2) is

[e1, e4, eR
3 , e2, eR

2],

and the face cycle containing the edgeeR
1 = (v2, v1) is

[eR
1 , e3, eR

4].

Let us verify that this is indeed the case. We have

facecyclesucc(eR
1) = cyclicadj pred(reversal(eR

1)) = cyclicadj pred(e1) = e3,

facecyclesucc(e3) = cyclicadj pred(reversal(e3)) = cyclicadj pred(eR
3) = eR

4 ,

and

facecyclesucc(eR
4) = cyclicadj pred(reversal(eR

4)) = cyclicadj pred(e4) = eR
1 .

We want to stress that the concept of face cycles is purely combinatorial. It is made
without any reference to a drawing of a map. A geometric interpretation is given in the next
section.

We close this section with the definition of thegenusof a map. LetM be a map withm
edges,c connected components,n nodes,nz isolated nodes, andfc face cycles. Then

genus(M) = (m/2 + 2c − n − nz− fc)/2.

8.6 Faces, Face Cycles, and the Genus of Plane Maps 19

The genus of a map is always a non-negative integer, as we willshow in the next section,
and characterizes the surfaces into which a map can be embedded. For the mapM0 we have
m = 8, c = 1, n = 4, nz = 0, and f = 2, and hencegenus(M0) = 0. We will see in the
next section that this implies thatM0 is a plane map.

The following program computes the genus of a map. We determine the number of nodes
and edges and the number of isolated nodes in the obvious way,and we callCOMPONENTS
to determine the number of connected components. We determine the number of face cycles
by tracing them one by one. We iterate over all edgese of G. If the face cycle ofe has not
been traced yet, we trace it and mark all edges on the cycle as considered.

〈genus.c〉�
int Genus(onst graph& G)

{ if (!Is_Map(G)) error_handler(1,"Genus only applies to maps");

int n = G.number_of_nodes();

if (n == 0) return 0;

int nz = 0;

node v;

forall_nodes(v,G) if (outdeg(v) == 0) nz++;

int m = G.number_of_edges();

node_array<int> num(G);

int = COMPONENTS(G,num);

edge_array<bool> onsidered(G,false);

int f = 0;

edge e;

forall_edges(e,G)

{ if (!onsidered[e℄)

{ // trae the fae to the left of e

edge e1 = e;

do { onsidered[e1℄ = true;

e1 = G.fae_yle_su(e1);

}

while (e1 != e);

f++;

}

}

return (m/2 - n - nz - f + 2*)/2;

}

8.6 Faces, Face Cycles, and the Genus of Plane Maps

The purpose of this section is to relate combinatorics and geometry. We will define the faces
of an embedding and relate it to the face cycles of a map. We will prove that a map is plane
if and only if its genus is zero. We will also show thatK5 andK3,3 are non-planar graphs.

Consider a mapM and an embeddingI of M into an orientable surfaceS. The removal
of the embedding fromS leaves us with a family of open connected subsets ofS, called

20 Embedded Graphs

the faces of the embedding. In an embedding into the plane exactly one of the faces is
unbounded and all other faces are bounded. The unbounded face is also called theouter
face. We associate a set of edges with each faceF , the boundary ofF . An edgee belongs
to the boundary ofF if the “left side” of I (e) is contained inF , formally, if for every pointp
in the relative interior of the embeddingI (e) of e and every sufficiently small disk centered
at p, the part of the disk lying to the left ofI (e) is contained inF .

Consider the embeddings ofM0 shown in Figure 8.9. In the embedding on the left, the
boundary of the unbounded face consists of the edgeseR

1 , e3, andeR
4 , and the boundary of

the bounded face consists of the edgese1, e4, eR
3 , e2, andeR

2 . In the embedding on the right,
the boundary of the unbounded face consists of the edgeseR

1 , e2, eR
2 , e3, andeR

4 , and the
boundary of the bounded face consists of the edgese1, e4, andeR

3 . In the embedding on the
left the face boundaries correspond to the face cycles ofM0.

The boundary of a face consists of one or more cycles11, which we callboundary cycles.
In the case of an order-preserving embedding boundary cycles and face cycles are the same.

Lemma 2 Let I be an order-preserving embedding of a map M. The boundary cycles of the
faces of I are in one-to-one correspondence to the face cycles of M.

Proof Let e = (v, w) be any edge ofM and consider the boundary cycleC containing
I (e). Let g = (w, z) be the edge such thatI (g) follows I (e) in C. Then I (g) follows
I (reversal(e)) in the clockwise ordering of the embedded edges aroundI (v). SinceI is an
order-preserving embedding we haveg = facecyclepred(e). Thus, boundary cycles and
face cycles are the same.

The next theorem shows that the genus of a map gives a combinatorial condition whether
a map is plane. It is more generally true, see [Whi73], that the genus of a mapM character-
izes the oriented surfaces into whichM can be embedded in an order-preserving way. The
following theorem is due to Euler [Eul53] and Poincaré [Poi93].

Theorem 1 Let M be any map. Then genus(M) ≥ 0. Moreover, M is a plane map iff
genus(M) = 0.

Proof We observe first that it suffices to prove the claims for a connected mapM. Let M1,
. . . , Mc be the connected components ofM. Then12 m =

∑
mi , n =

∑
ni , nz =

∑
nzi ,

fc =
∑

fci , andc =
∑

ci and hence

genus(M) =
∑

genus(Mi).

Let us assume for the moment that the claims hold for connected maps, i.e., we have
genus(Mi) ≥ 0 andMi is plane iffgenus(Mi) = 0 for all i . We concludegenus(M) ≥ 0. If
M is plane then allMi ’s are plane. Thus,genus(Mi) = 0 for all i and hencegenus(M) = 0.
Conversely,genus(M) = 0 impliesgenus(Mi) = 0 for all i (sincegenus(Mi) > 0 for some

11 In a connected graph the boundary of each face consists of exactly one cycle.
12 We usemi to denote the number of edges inMi and analogously forni , nzi , fci , andci .

8.6 Faces, Face Cycles, and the Genus of Plane Maps 21

w

v

p q

eR

e

e1

e3

e4
e2

Figure 8.11 The edgese andeR belong to distinct face cyclese◦ p andeR ◦ q. Removal ofe
andeR leaves us with a connected graph sincep andq provide alternative connections between
v andw. Let e1 = facecyclesucc(e), e2 = facecyclepred(e), e3 = facecyclepred(eR), and
e4 = facecyclesucc(eR). Removal ofe andeR makese1 the face cycle successor ofe3, ande4

the face cycle successor ofe2. No other successor relationship is affected. We conclude that the
removal ofe andeR generates the face cyclep ◦ q and affects no other face cycles. Thus,
fc′ = fc − 1.

i would imply genus(M j) < 0 for some j). Thus, Mi is plane for alli and henceM is
plane.

For connected maps we use induction on the number of edges. Ifm = 0 thenn = nz= 1
andfc = 0. Thus,M is plane andgenus(M) = 0. We turn to the induction step.

Assume first thatM contains a uedge{e, eR} such thate andeR belong to different face
cycles. Removal ofeandeR generates a mapM ′ with m′ = m−2,n′ = n, c′ = c = 1,nz′ =
nz = 0, andfc′ = fc − 1, see Figure 8.11. Thus,genus(M) = genus(M ′). By induction
hypothesis,genus(M ′) ≥ 0 andM ′ is plane iffgenus(M ′) = 0. Fromgenus(M ′) ≥ 0 we
concludegenus(M) ≥ 0. We next show thatM is plane iffgenus(M) = 0. If M is plane
then M ′ is plane (since an order-preserving embedding ofM ′ is obtained from an order-
preserving embedding ofM by removing the images ofe andeR). Thusgenus(M ′) = 0
by induction hypothesis and hencegenus(M) = 0. Conversely, ifgenus(M) = 0 then
genus(M ′) = 0 and hence there is an order-preserving embeddingI ′ of M ′, by induction
hypothesis. By Lemma 2 there is a faceF in the embeddingI ′ with boundary cyclep ◦ q.
We embede andeR into F and obtain an order-preserving embeddingI of M.

Assume next that for every uedge{e, eR} of M, e andeR belong to the same face cycle.
Consider any nodev and letA(v) = (e0, e1, . . . , ek−1) be the cyclic list of edges out ofv.
Then

ei = facecyclesucc(eR
i+1)

for all i , 0 ≤ i < k, by the definition of face cycles, see Figure 8.12. Sinceei andeR
i

belong to the same face cycle by assumption, all edges incident to v belong to the same
face cycle and, sinceM is connected, all edges ofM belong to the same face cycle. Thus,
fc = 1. SinceM is connected, the number of uedges is at leastn − 1. Thus,m ≥ 2(n − 1),
c = 1, nz= 0, and hencegenus(M) ≥ 0. We next show thatM is plane iffgenus(M) = 0.
If M is plane consider an order-preserving embeddingI of M. The face cycles ofM are

22 Embedded Graphs

eR
0

eR
3

v

eR
2 e0

eR
1

e1

e2

e3

Figure 8.12 A nodev with A(v) = (e0, e1, e2, e3). There is a face cycle containingeR
i+1 andei

for all i , 0 ≤ i < 4. Indices are modulo 4.

in one-to-one correspondence to the faces of the embedding.Since there is only one face
cycle, there is only one face, and henceM cannot contain a cycle. Thus,m = 2(n − 1) and
hencegenus(M) = 0. Conversely, ifgenus(M) = 0 then(m/2+ 2− n − 1) = 0 and hence
m = 2(n− 1). The number of uedges is therefore equal ton− 1 and hence the uedges form
a tree. For a tree there is clearly an order-preserving embedding.

The theorem above implies that the test of whether a graphG is a plane map is trivial to
implement. We only have to test whetherG is a map and whether the genus ofG is zero.

bool Is Plane Map(onst graph& G) { return Is Map(G) && Genus(G) == 0; }

We draw some more consequences of Theorem 1. It implies an upper bound on the
number of edges in a planar graph (without self-loops and parallel edges) and it implies that
the Kuratowski graphsK5 andK3,3 are non-planar.

Lemma 3

(a) Let M be a connected plane map in which every face cycle consists of at least d edges,
where d≥ 3. Then

m/2 ≤ d

d − 2
(n − 2),

i.e., M has at most(d/(d − 2)) · (n − 2) uedges.
(b) Let M be a connected planar map without self-loops and without parallel edges. Then

M has at most3n − 6 uedges, if n> 3, and a node of degree at most five.
(c) Let M be a connected bipartite planar map without self-loopsand without parallel

edges. Then M has at most2n − 4 uedges, if n≥ 4.
(d) The complete graph K5 on five nodes is not planar.
(e) The complete bipartite graph K3,3 with three nodes on each side is not planar.

8.7 Planarity Testing, Planar Embeddings, and Kuratowski Subgraphs 23

Proof (a) If every face cycle consists of at leastd edges thenm ≥ d · fc. Thus,

0 = genus(M) = m/2 + 2 − n − fc ≥ m/2 + 2 − n − m/d

and hence(m/2) · (1 − 2/d) ≤ n − 2 orm/2 ≤ (d/(d − 2)) · (n − 2).
(b) and (c) Reorder the adjacency lists ofM such thatM becomes a plane map. IfM has

no self-loops and no parallel edges, every face cycle ofM consists of at least three edges.
If, in addition, M is bipartite, every face cycle ofM consists of at least four edges. The
bounds on the number of edges now follow from part (a). If every node would have degree
six or more, the total number of edges would be at least 6n/2 = 3n.

(d) A planar graph with five nodes and no self-loops and no parallel edges has at most
nine uedges by part (b). The graphK5 has 5· 4/2 = 10 uedges.

e) A planar bipartite graph with six nodes and no self-loops and no parallel edges has at
most eight uedges by part (c). The graphK3,3 has 3· 3 = 9 uedges.

Exercise for 8.6
1 It is obvious from the definition ofgenus(M) that 2·genus(M) is an integer. The purpose

of this exercise is to show thatgenus(M) is an integer. In the proof of Theorem 1 we
have constructed for every connected mapM a connected mapM ′ such thatgenus(M) =
genus(M ′) and such thatM ′ has a single face cycle. LetM ′′ be obtained fromM ′ by
removing an edgee and its reversaleR. Determine the number of edges, nodes, face
cycles, and connected components ofM ′′ and conclude thatgenus(M ′) − genus(M ′′) is
an integer. Use this observation and induction to show that the genus of every map is an
integer.

8.7 Planarity Testing, Planar Embeddings, and Kuratowski Subgraphs

This section is joint work with D. Ambras, R. Hesse, Christoph Hundack, and E. Kalliwoda.

We give the details of the planarity test, the planar embedding algorithm, and the algo-
rithm for finding Kuratowski subgraphs. For each algorithm we will first derive the required
theory and then give an implementation. All implementations run in linear time and are col-
lected in the file

〈 bl planar.c〉�
#inlude <LEDA/graph_alg.h>

#inlude <LEDA/pq_tree.h>

#inlude <LEDA/array.h>

#inlude <assert.h>

〈auxiliary functions〉
〈planarity test〉
〈planar embedding of biconnected maps〉

24 Embedded Graphs

1

2

3

4

5

6

7

8

9

Figure 8.13 A biconnectedst-numbered graphG. Nodes is labeled 1 and nodet is labeled 9.

〈planar embedding of arbitrary maps〉
〈Kuratowski graphs in biconnected maps〉
〈Kuratowski graphs in arbitrary graphs〉

8.7.1 The Lempel–Even–Cederbaum Planarity Test
We discuss the planarity testing algorithm invented by Lempel, Even, and Cederbaum
[LEC67, Eve79]. We assume thatG = (V, E) is a biconnected graph13, thate0 = (s, t)
is an arbitrary edge ofG, and that the nodes ofG are st-numbered, i.e.,s is numbered 1,
t is numberedn, and every node distinct froms andt has a lower and a higher numbered
neighbor.

We will first discuss the required theory and then describe animplementation based on
PQ-trees.

The Theory: We identify nodes with their st-number, i.e.,V = {1, . . . , n}. Figure 8.13
shows an example of an st-numbered biconnected graph. We will use it as our running
example.

Let Vk = {1, . . . , k} and letGk = (Vk, Ek) be the graph induced byVk, i.e., Ek consists
of all edges ofG whose endpoints are both inVk. We extendGk to a graphBk. For each
edge(v, w) of G with v ≤ k andw ≥ k + 1 there is a node and an edge inBk. They
are called virtual nodes and virtual edges, respectively. We label every virtual node with its
counterpart inG. Figure 8.14 shows the graphB7 for our running example.

If G is planar,Bk has a plane embedding which resembles a bush: nodev, 1 ≤ v ≤ k, is
drawn at heightv, all virtual nodes are put on a horizontal line at heightk+1, and all edges
are drawn asy-monotone curves14. We call such an embedding abush formfor Bk and we

13 The rather trivial extension to arbitrary graphs will be given at the end of the section.
14 A curve isy-monotone if any horizontal line intersects the curve at most once.

8.7 Planarity Testing, Planar Embeddings, and Kuratowski Subgraphs 25

1

2

3

4

5

6

7

8

9

8 8

9 9 9 9

Figure 8.14 The graphB7 for the graphG of Figure 8.13. There are three virtual nodes labeled
8, one for each edge connecting node 8 to a node labeled 7 or less in G, and there are five virtual
nodes labeled 9, one for each edge connecting node 9 to a node labeled 7 or less inG. The nodes
4, 6, and 7 comprise a biconnected component which we denoteH0 for later reference.

1

2

3

4

5

6

7

8 9 99 8 9 8 9

Figure 8.15 A bush form for the graphB7 of Figure 8.14.

call the horizontal line at heightk + 1 the horizon. The existence of bush forms will follow
from the discussion to come. Figures 8.15 and 8.16 shows two bush forms for the graph of
Figure 8.14.

Theleaf wordof a bush form is a sequence in{N, E}∗, whereE represents a virtual node
labeledk + 1, N represents a virtual node labeledk + 2 or larger, and the virtual nodes are
listed in their left-to-right order on the horizon. The bushform in Figure 8.15 has leaf word
E N N N E N E Nand the bush form in Figure 8.16 has leaf wordN E E E N N N N. A bush
form for Bk is calledextendibleif all virtual nodes labeledk + 1 are consecutive on the
horizon, i.e., if its leaf word is inN∗E∗N∗. An extendible bush form̂Bk is readily extended

26 Embedded Graphs

1

2

3

4

5

6

7

8 99 8 8 9 9 9

Figure 8.16 An extendible bush form forB7.

to a bush formB̂k+1 for Bk+1. We move all nodesv, v > k + 1, to heightk + 2, we merge
all virtual nodes labeledk + 1 into a single node (since they are consecutive on the horizon,
merging does not destroy planarity), and add a new virtual edge and node for each edge
(k + 1, w) with w > k + 1.

The question is now how to decide whetherBk has an extendible bush form, and how to
find an extendible bush form. We show:

Theorem 2 Bk+1 has a bush form iff Bk has a bush form and no obstructions. Moreover, if
Bk has no obstructions then any bush form̂Bk of Bk can be transformed into an extendible
bush form of Bk by a sequence of permutations and flippings.

We still need to define several of the terms used in the theoremabove. An obstruction
is either an obstructing articulation point or an obstructing biconnected component. In
the definition of either kind of obstruction we need the concepts of clean, mixed, or full
subgraph. A subgraph ofBk is calledclean, mixed, or full if none, some but not all, or all
of its virtual nodes are labeledk + 1.

An articulation pointv of Bk is obstructingif there are three or more components of
Bk \ v that are mixed.

Consider the graphB7 of Figure 8.14. Node 4 is an articulation point andB7 \4 has three
components: Two of them are mixed and one is full. Node 4 is non-obstructing. Please
convince yourself that none of the articulation points is obstructing.

We come to biconnected components ofBk. A nodey of a biconnected componentH
is called anattachmentnode ofH if it is also the endpoint of an edge outsideH . Attach-
ment nodes are articulation points ofBk and hence are embedded on the boundary of the
outside face in every bush form ofBk. In the graphB7 the biconnected componentH0 has
attachment nodes 4, 6, and 7.

Let y0, y1, . . . , yp−1 be the attachment nodes of a biconnected componentH of Bk. We

8.7 Planarity Testing, Planar Embeddings, and Kuratowski Subgraphs 27

B̂k

yh+1

p

q

B̂′
k

yi

yh

y j

yh+1

y j

yiyh p

Figure 8.17 yh andyh+1 are adjacent attachment nodes on the boundary cycle ofH in B̂k, but
are separated byyi andy j in the boundary cycle ofH in B̂′

k.

usey0 for the lowest numbered attachment node;y0 is also the lowest numbered node in
H . Any bush formB̂k of Bk induces an embedding ofH (simply remove all nodes outside
H and their incident edges). In this embedding ofH the boundary of the outside face of
H is a simple cycle, which we call theboundary cycle15 of H in B̂k. A counter-clockwise
traversal of the boundary cycle yields a cyclic order on the attachment nodes, which we call
the cyclic order induced by the bush form. Consider Figures 8.15 and 8.16. The cyclic order
of the attachment nodes 4, 6, and 7 is 4, 6, 7 in the first figure and is 4, 7, 6 in the second
figure.

Lemma 4 Let y0, y1, . . . , yp−1 be the attachment nodes of a biconnected component H of
Bk in the cyclic order induced by some bush formB̂k of Bk. Then any other bush form of Bk

induces either the same cyclic order or its reversal.

Proof Assume otherwise, i.e., there is a bush formB̂′
k such that the attachment nodes appear

in a different cyclic order inB̂′
k. Then there must be indicesh, i , and j such thatyh and

yh+1 (indices are modp) are separated byyi andy j in the boundary cycle ofH in B̂′
k, see

Figure 8.17. The embeddinĝB′
k implies that any pair of paths connectingyh to yh+1 andyi

to y j , respectively, must cross. On the other hand, the embeddingB̂k implies the existence
of non-crossing paths.

Let y0, y1, . . . , yp−1 be the attachments ofH in one of their cyclic orders16. Thecompo-
nent of Bk opposite to H at yi is the subgraph ofBk spanned by all nodes that are reachable
from yi without using an edge ofH . We denote it byCi . EachCi is either clean, mixed, or
full. We define the signature ofH as the word

s0s1 . . . sp−1 ∈ {clean,mixed,full}∗

wheresi describes the status ofCi . In the graphB7, the component opposite toH0 at 6 is
full, the component opposite toH0 at 7 is clean, and the component opposite toH0 at 4 is

15 A node ofH which is not an attachment node ofH may lie on the boundary cycle ofH in some bush forms and
may not lie on the boundary cycle in others. Attachment nodesbelong to the boundary cycle in every bush form.

16 There are two by the preceding lemma. For the definition in this paragraph it does not matter which one is chosen.

28 Embedded Graphs

B CA A BC

permutation

flipping

A B C C B A

Figure 8.18 Permuting and flipping.

mixed. The signature ofH0 is “mixed clean full” for the ordering 4, 7, 6 and “mixed full
clean” for the ordering 4, 6, 7.

A biconnected componentH is non-obstructingiff a cyclic shift of its signature is in

clean∗ mixed1
0 full∗ mixed1

0 clean∗,

where mixed10 denotes zero or one occurrence of mixed, and is obstructing otherwise.
We come to permutations and flippings. Permutations apply toarticulation points ofBk.

Let v be an articulation point ofBk. Then, if v > 1, exactly one component ofBk with
respect tov contains nodes lower thanv, and if v = 1, no component does17. We call
the component containing lower numbered nodes theroot componentof v and all other
componentsnon-root componentsof v.

In the graphB7 of Figure 8.14 the root component of node 4 contains nodes 5, 1, 2, 3,
two copies of 8, and three copies of 9.

Consider now any bush form̂Bk of Bk. A sub-bushof B̂k with lowest numbered node
v is the restriction ofB̂k to the union of some non-root components with respect tov. In
particular, each non-root component ofv corresponds to a sub-bush ofB̂k. A permutation
operationpermutes the sub-bushes corresponding to the non-root components with respect
to an articulation pointv and aflipping operationflips over a sub-bush, see Figure 8.18.

We are now ready for the if-direction of Theorem 2.

17 Observe that any nodeu with u < v can reach 1 without passing throughv by the virtue ofst-numberings.

8.7 Planarity Testing, Planar Embeddings, and Kuratowski Subgraphs 29

F M F M

v

F FM MC C

Figure 8.19 Permuting the sub-bushes ofB̂ with respect tov. C, M, and F stand for clean,
mixed, and full sub-bushes, respectively.

Lemma 5 If Bk has a bush form and no obstructions then any bush formB̂k can be trans-
formed into an extendible bush form by a sequence of permutations and flippings.

Proof We want to use induction over sub-bushes and therefore provea slightly stronger
claim. We call a sub-bushincompleteif there is a virtual node labeledk+1 outside the sub-
bush and we call a sub-bushstrongly extendibleif its leaf word is inN∗ E∗ or E∗N∗. We
show that every sub-bush can be transformed into an extendible sub-bush, i.e., a sub-bush
whose leaf word is inN∗E∗N∗, and that every incomplete sub-bush can be transformed into
a strongly extendible sub-bush.

Let B̂ be any sub-bush. If̂B has only one virtual node, the claims are obvious. So, assume
otherwise and letv be the lowest numbered node in̂B. We distinguish cases according to
whetherv is an articulation point of̂B or not.

If v is an articulation point of̂B then at most two of the components ofB̂ with respect
to v are mixed. We can therefore permute the components such thatall full and all clean
components are consecutive and such that the two mixed components bracket the full com-
ponents, see Figure 8.19. We apply the induction hypothesisto the sub-bushes and therefore
may assume that the sub-bushes are extendible or even strongly extendible (for incomplete
sub-bushes). We complete the induction step with two observations. First, the mixed sub-
bushes are incomplete except if there is at most one mixed sub-bush and this sub-bush
contains all virtual nodes labeledk + 1. Second, ifB̂ is incomplete then there is at most
one mixed sub-bush since the root component ofBk with respect tov is mixed. Thus,B̂ can
be transformed into an extendible bush form and into a strongly extendible bush form ifB̂
is incomplete. The transformation consists of transformations of the sub-bushes, permuting
the sub-bushes, and maybe flipping one of the mixed sub-bushes.

If v is not an articulation point of̂B, let H be the biconnected component ofB̂ containing
v. Let y0, y1, . . . , yp−1 with v = y0 be the attachment points ofH in Bk in one of their two
cyclic orders. We have a sub-bushB̂i of B̂ for the componentCi of Bk opposite toyi for
all i , 1 ≤ i ≤ p − 1. SinceH is non-obstructing and sinceC0 is either clean or mixed (it

30 Embedded Graphs

cannot be full since it contains the edge(s, t)), we have

s1 . . . sp−1 ∈ clean∗ mixed1
0 full ∗ mixed1

0 clean∗

if C0 is clean and we have

s1 . . . sp−1 ∈ clean∗ mixed1
0 full∗ ∪ full ∗ mixed1

0 clean∗

if C0 is mixed. In either case we conclude thatB̂ can be transformed into an extendible
bush form and into a strongly extendible bush form ifB̂ is incomplete and henceC0 is
mixed. The transformation consists of transformations of sub-bushes followed (maybe) by
a flipping of the two mixed sub-bushes.

Figure 8.20 illustrates Lemma 5. It shows a sequence of transformations that transform
the bush form of Figure 8.15 into the extendible bush form of Figure 8.16.

We summarize. The Lempel–Even–Cederbaum planarity test constructs a sequencêB0,
B̂1, B̂2, . . . , B̂n of bush forms. In iterationk + 1 the bush formB̂k is first transformed into
an extendible bush form̂B′

k and then extended to a bush form̂Bk+1. The transformation to
an extendible bush form uses permutations and flippings and is possible ifB̂k contains no
obstructions.

The running time of the Lempel–Even–Cederbaum test isO(n2) in its original form.
Booth and Lueker improved the running time toO(n + m) by the introduction of thePQ-
tree data structure, which we will discuss in the next section. In Section 8.7.3 we will show
that the existence of an obstruction implies the existence of a Kuratowski graph inG.

The PQ-Tree Data Structure: Booth and Lueker [BL76] introduced the PQ-data structure
to keep track of the sequence of bush forms arising in the Lempel–Even–Cederbaum pla-
narity test. PQ-trees have wider applications than planarity testing but we will not discuss
them here.

PQ-trees have the following interface.

pq tree T(m);

declares a PQ-treeT which can represent bush forms in which every edge is labeledwith
an integer in [1.. m]. After the declarationT represents the empty bush form with no nodes
and no edges. We useS to denote the set of virtual edges in the current bush form.S is
empty initially.

The operation

bool T.replae(list<int>& L, list<int>& U, list<int>& I)

adds a node to the current bush form. The node is incident to the virtual edgesL in the
current bush form and introduces new virtual edgesU . We must haveL ⊆ S, U is a set
of integers (= edges) that have never been inS before, andL = ∅ iff S = ∅; the latter
requirement corresponds to the fact that only node 1 is incident to no edge from below. The
new set of virtual edges becomes(S\ L) ∪ U .

The function returnstrue if the current bush form is extendible, i.e., can be transformed to

8.7 Planarity Testing, Planar Embeddings, and Kuratowski Subgraphs 31

8 9 9 9 8 9 8 9

7
6

5

4
3

2

1

B̂

8 9 8 9 9 9 8 9

7
6

5

4

3
2

1

B̂′

B̂

9 8 8 8 9 9 9 9

7
6

5
4

3

2
1

makingB̂

strongly extendible

by flipping B̂′

makingB̂ extendible

by permuting the sub-bushes

and flippingB̂′

B̂′

Figure 8.20 Transforming the bush form of Figure 8.15 into an extendiblebush form.

a bush form in which all edges inL are contiguous on the horizon. The function returnsfalse
otherwise. Once a call ofreplacehas returnedfalse, the PQ-tree becomes non-functional
and no further operations can be applied to it.

The last argumentI is irrelevant for the planarity test and is only required forthe con-
struction of a planar embedding. We will discuss it in the next section.

32 Embedded Graphs

The amortized running time ofreplaceis proportional to the length ofL plus the length
of U and the running time of the declarationT(m) is O(m).

We are now ready for the planarity test. The function PLANTEST expects a biconnected
graphG, an st-numberingstnumof its nodes, and a listst list containing the nodes ofG in
increasing order of st-number, and returnstrue iff G is a planar graph.

If G has less than five nodes thenG is planar. So assume thatG has at least five nodes.
We declare a PQ-treeT(m), wherem is one larger than the maximal index of any edge18.
We useT to maintain the bush formŝBk for k = 0, 1, 2,

We iterate over the nodes in increasing order of st-number. For eachv, we collect the
edges that connectv to lower numbered nodes inL, and we collect the edges that connectv

to higher numbered nodes inU . Self-loops are ignored as they do not affect planarity. We
update the bush form by

T.replae(L,U,I),

where I is a dummy argument. If the call is not successful, we break from the loop and
returnfalse, if the call is successful, we proceed to the next node. If allnodes can be added
to the bush form we returntrue.

〈planarity test〉�
stati bool PLANTEST(graph& G, node_array<int>& st_num,

list<node>& st_list)

{

int n = G.number_of_nodes();

int m = G.max_edge_index() + 1;

if (n < 5) return true;

pq_tree T(m);

int stv = 1;

node v;

forall(v,st_list)

{

list<int> L, U, I;

edge e;

forall_inout_edges(e,v)

{ node w = G.opposite(v,e);

int stw = st_num[w℄;

if (stw < stv) L.push(index(e)+1);

if (stw > stv) U.push(index(e)+1);

}

if (!T.replae(L,U,I)) break;

stv++;

}

return stv == n+1;

}

18 The data type graph numbers edges with non-negative integers. The number of an edge is called its index. Since
PQ-trees expect positive numbers, we identify any edge withits index plus one.

8.7 Planarity Testing, Planar Embeddings, and Kuratowski Subgraphs 33

The program above performs the planarity test in timeO(n+m). This follows from the fact
that the declaration ofT requires timeO(m) and that the total cost of allreplaceoperations
is O(n + m) and that an st-numbering can be computed in linear time (see Section 7.4).

The program above is short and elegant. It performs a complextask, namely, to test
whether a graph is planar, in linear time and a few lines of code. Of course, all the com-
plexity is hidden in the implementation of PQ-trees.

Can you trust the program above? “Yes, you can trust it”, but “ it would be unwise to do
so”. We have not explained the inner workings of PQ-trees, their implementation is complex
(almost 2000 lines), and most seriously there is no way to check the answer of the program
above. It just says “yes” or “no”. In the sections to come we will extend the program above
to a program that can be checked. We show how to compute planarembeddings of planar
graphs and Kuratowski subgraphs of non-planar graphs.

8.7.2 Planar Embeddings
Chiba et al [CNAO85, NC88] have shown how to extend the planarity test of Lempel,
Even, and Cederbaum to an embedding algorithm. We review their algorithm and give
the implementation of functions

stati bool PLAN EMBED(graph& G, node array<int>& st num,

list<node>& st list);

bool BL PLANAR(graph& G, bool embed);

The first function takes a biconnected mapG, an st-numberingstnumof G, and the list of
nodes ofG in increasing order of st-number, and tests whetherG is planar. IfG is planar,
it reorders the adjacency lists ofG such thatG becomes a plane map.

The second function applies to any mapG. It returnstrue if G is planar and it returns
falseotherwise. IfG is planar andembedis true, G is turned into a plane map. Ifembedis
true andG is not a map, the function aborts. Ifembedis false, the function applies to any
graphG.

Biconnected st-numbered Maps: We discuss the function PLANEMBED. The planarity
testing algorithm constructs a sequence of bush formsB̂0, B̂1, B̂2, . . . , B̂n. The construction
is implicit in the sense that the bush forms are hidden in the internal structure of the PQ-
tree. We wantB̂n. The construction ofB̂k+1 from B̂k consists of two steps: first,̂Bk is
transformed into an extendible bush form̂B′

k and then nodek + 1 is added to obtain̂Bk+1.
For a nodev let L(v) be the set of edges(v, w) with w < v, and for any integerk with

k ≥ v let Lk(v) be the counter-clockwise order of the edges inL(v) in the bush formB̂k.
The embedding algorithm is based on the following observations:

• The cyclic order of the adjacency listsA(v), v ∈ V , can be constructed from the lists
Ln(v), v ∈ V .

• The sequenceLk(k) is readily extracted from the PQ-tree data structure.

• The sequenceLk+1(v) is equal toLk(v) or L rev
k (v) for k ≥ v.

34 Embedded Graphs

We provide more details on the last item and postpone the discussion of the other two
items.

Bush forms are transformed by permutations and flippings. Permutations have no effect
on the order of the listsL(v) for anyv. They have a dramatic effect on the order of the lists
U (v), whereU (v) is the set of edges(v, w) with v < w. For this reason we do not keep
track of the order of theU (v)’s during the construction process but determine their orders
in a second phase (this is the subject of the first item). A flipping of a sub-bush with lowest
numbered vertexw reverses the order ofL(v) for all v in the sub-bush withv 6= w and does
not affect the order ofL(v) for any otherv. We conclude thatLk+1(v) is equal to either
Lk(v) or L rev

k (v) for anyv with v ≤ k. We say that nodev is flipped in iterationk + 1 if
Lk+1(v) = L rev

k (v). If v is not flipped in iterationk + 1 thenLk+1(v) = Lk(v).
We conclude thatLn(v) is equal toLv(v) if v is flipped an even number of times and is

equal toL rev
v (v) if v is flipped an odd number of times. We next show how to determine

efficiently how often nodes are flipped. We could maintain a counter for each node and
increment it whenever the node is flipped. Since a linear number of nodes may be flipped in
each iteration, this would result in a quadratic algorithm.We are aiming for linear running
time and hence need a more compact way to maintain the counters.

In the graphBk+1 there is a unique biconnected componentHk+1 havingk + 1 as its
highest numbered node. We callHk+1 the biconnected component formed in iterationk+1.

Lemma 6 All edges in L(k + 1) are contained in Hk+1 and any biconnected component H
of Bk is either contained in Hk+1 or edge-disjoint from Hk+1, see Figure 8.21.

Proof Consider any two lower neighborsu andv of k + 1. They are connected by a path of
length two throughk + 1 and they are connected by a path which avoidsk + 1, the second
half-sentence being a consequence ofst-numbering. Thus, all edges inL(k + 1) belong to
Hk+1 and the first part of the lemma is shown.

Any two edges belonging to the same biconnected component ofBk belong to the same
biconnected component ofBk+1. This proves the second part of the lemma.

For a biconnected componentH of Bk let V+(H) denote the set of nodes ofH except
for the lowest numbered node ofH . A flipping operation changes either the order ofL(v)

for all nodesv ∈ V+(H) or for no nodev ∈ V+(H). This follows from the fact that a
biconnected component is either contained in a sub-bush or disjoint from it. We say that a
biconnected componentH is flipped in iterationk + 1 if all nodes inV+(H) are flipped in
iterationk + 1.

Lemma 7 There is a transformation of̂Bk to an extendible bush form in which only bicon-
nected components H of Bk are flipped that become part of Hk+1.

Proof Let B̂′
k be the extendible bush form produced by the strategy of Lemma5 and assume

that some biconnected componentH that does not become part ofHk+1 is flipped by the

8.7 Planarity Testing, Planar Embeddings, and Kuratowski Subgraphs 35

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
���������������

���
���
���
���

���
���
���
���
���
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

���
���
���
���
���

���
���
���
���
������
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

�
�
�

�
�
�k + 1

Figure 8.21 The biconnected components ofBk are indicated as ovals and articulation points
are indicated as solid circles. The hatched biconnected components become part ofHk+1.

transformation fromB̂k to B̂′
k. Let y = y(B̂′

k) be the lowest numbered node that is part of a
biconnected componentH that is flipped by the transformation tôB′

k and does not become
part of Hk+1. Consider the bush form̂B′′

k obtained by flipping the smallest sub-bushB̂ that
containsH . B̂′′

k is extendible since no leaf labeledk + 1 is contained inB̂. Moreover,
either no biconnected component that does not become part ofHk+1 is flipped in B̂′′

k or
y(B̂′′

k) > y(B̂′
k).

We conclude that̂Bk can be transformed into an extendible bush form in which only
biconnected components are flipped that become part ofHk+1.

We can now explain the third argument of functionreplaceof classpqtree. It consists of
three parts, which in iterationk + 1 are as follows (see Figure 8.22):

• An integerl specifying the number of components ofBk that are merged intoHk+1.

• A sequencej0, j1, . . . , jl−1 of integers, whereH| j0|, . . . , H| jl−1| are the biconnected
components ofBk that are merged intoHk+1, and j i is positive if H j i is not flipped in
iterationk + 1 and is negative otherwise.

• The edges19 in L(k + 1) in their counter-clockwise order aroundk + 1 in B̂k+1.

We denote the third argument ofreplaceby I because it contains the instructions of how to
obtainB̂k+1 from B̂k.

19 More precisely, the sequence of numbers identifying the edges.

36 Embedded Graphs

9 9 9 9 9 9

8
7

6
5

4
3

2

1

Figure 8.22 The bush formB̂8 obtained from adding node 8 to the bush form of Figure 8.16.
The biconnected componentH8 consists of the biconnected componentsH3, H5, andH7 and the
edges inL(8). The counter-clockwise order of the edges inL(8) is (8, 3), (8, 1), (8, 6). The
biconnected componentsH3 andH7 are flipped when going from the bush form̂B7 of Figure
8.15 toB̂8. ThusI = 3, −3, 5, −7, (8, 3), (8, 1), (8, 6), where the first 3 indicates that three
components are merged intoH8, the sequence−3, 5, −7 indicates that the merged components
areH3, H5, andH7 and thatH3 andH7 are flipped, and where(8, 3), (8, 1), (8, 6) form L(8).

We are now ready for the implementation of PLANEMBED. It consists of three phases.
In the first phase, we run the planarity test of the preceding section with three changes:

• We are now dealing with a map and therefore store only one direction of each edge in
the PQ-tree. In phase one we are dealing with listsL(v) and hence we store the
direction from larger to smaller nodes. We construct the lists L(v) andU (v) by
iterating over all edges out ofv: edges to lower numbered nodes are put intoL(v) and
the reversals of edges to higher numbered nodes are put intoU (v). We put edge
reversals intoU (v) in order to guarantee that for each uedge the direction goingfrom
higher to smaller st-number is put into the PQ-tree. Self-loops are ignored in phase
one.

• We define an arrayEDGE that stores for each integer in [1..m] the edge corresponding
to it.

• In iterationk we store the outputI of PQ-tree operationreplacein I [k].

Here comes phase one.

〈PLAN EMBED: phase 1〉�
int n = G.number_of_nodes();

if (G.number_of_edges() == 0) return true;

int m = G.max_edge_index() + 1;

// interfae for pq_tree

pq_tree T(m);

list<int>* I = new list<int>[n+1℄;

8.7 Planarity Testing, Planar Embeddings, and Kuratowski Subgraphs 37

edge* EDGE = new edge[m+1℄; // EDGE[i+1℄ = edge with index i

edge e;

forall_edges(e,G) EDGE[index(e)+1℄ = e;

// planarity test

int stv = 1;

node v;

forall(v,st_list)

{

list<int> L, U;

edge e;

forall_adj_edges(e,v)

{ int stw = st_num[target(e)℄;

if (stw < stv) L.push(index(e) + 1);

if (stw > stv) U.push(index(G.reversal(e)) + 1);

}

if (!T.replae(L,U,I[stv℄)) break;

stv++;

}

At the end of phase one, we either havestv< n+1 and thenG is non-planar, orstv= n+1
and thenG is planar andI [k] contains the instruction list of thek-th iteration for allk,
1 ≤ k ≤ n. Thus:

〈planar embedding of biconnected maps〉�
stati int PLAN_EMBED_K(graph& G, node_array<int>& st_num,

list<node>& st_list)

{ 〈PLAN EMBED: phase 1〉
if (stv == n+1) { 〈PLAN EMBED: phase 2〉 }

delete[℄ EDGE;

delete[℄ I;

return stv - 1;

}

stati bool PLAN_EMBED(graph& G, node_array<int>& st_num,

list<node>& st_list)

{ return PLAN_EMBED_K(G,st_num,st_list) == G.number_of_nodes(); }

The first version of the function is needed for the search for Kuratowski subgraphs in the
next section. It returns the largest integerk such thatBk has a bush form.

We come to the second phase. The purpose of the second phase isto determine for each
node the order ofL(v) in B̂n. This is eitherLv(v) or L rev

v (v) depending on whetherv is
flipped an even or an odd number of times.

Noden is not flipped at all. Consider now a nodej < n and assume thatH j is merged
into Hk in iterationk. Then j is not flipped in iterationsj +1 tok−1, is flipped in iteration
k if I [k] contains− j in its second part and is not flipped in iterationk if I [k] contains+ j
in its second part, and is flipped in iterations later thank iff node k is flipped. Thus it is

38 Embedded Graphs

easy to compute the number of times any nodev is flipped by iterating over all nodes in
downward order of st-number.

It actually suffices to compute the parity of the number of times a node is flipped; the
parity is+1 if the number is even and is−1 otherwise. Assume that we process nodek and
let j be such thatH j is merged intoHk in iterationk. Then the parity ofj is equal to the
sign of the occurrence ofj in I [k] times the parity ofk. In the piece of code below, node
k tells nodej , if the parity of j is odd, by putting the indicator ODD as the first element of
I [j].

The order ofLn(v) is equal to the third part ofI (v), if v is flipped an even number of
times, and is equal to the reversal of the third part ofI (v) otherwise.

〈PLAN EMBED: phase 2〉�
node_array<list<edge> > L_n(G);

onst int EVEN = +1; onst int ODD = -1;

int stv = n;

forall_rev(v,st_list)

{

if (stv == 1) break; // for v = t down to s+1

list<int>* I_v = &I[stv℄;

int d = 1;

int l = I_v->pop();

if (l == ODD)

{ d = -1;

l = I_v->pop();

}

// l = number of omponents merged into H_v

int i;

for(i = 0; i < l; i++)

{ int j = d * I_v->pop();

if (j < 0) I[-j℄.push(ODD); // tell j that it is odd

}

if (d > 0)

forall(i,*I_v) L_n[v℄.append(EDGE[i℄);

else

forall(i,*I_v) L_n[v℄.push(EDGE[i℄);

stv--;

}

〈PLAN EMBED: phase 3〉

We come to the third and last phase of PLANEMBED. We knowLn(v) for every node
v and want to compute the counter-clockwise order of the edgesin U (v), whereU (v) is the
set of edges connectingv to higher numbered nodes. Self-loops will be treated as an add-on.
We compute the ordering of the edges inU (v) by so-calledleftmost depth-first search.

Consider a depth-first search starting int that uses only edges inL(v) and that considers
the edges inL(v) in their counter-clockwise order. Such a depth-first searchis called a

8.7 Planarity Testing, Planar Embeddings, and Kuratowski Subgraphs 39

t

5

3

9

4
2

3
81

5

4

7

6

2 9

Figure 8.23 A leftmost depth-first search starting int . For every nodev the edges going to
lower numbered neighbors are explored in left-to-right order. The edge labels indicate the order
in which the edges are explored.

t

z

w v

u

ev

QwQv

ew

Figure 8.24 The edge(u, v) is after(u, w) in the clockwise order of edges inU(u) but (v, u) is
explored before(w, u).

leftmost depth-first search, as the edges inL(v) are explored in left-to-right order (if drawn
downwards fromv) for anyv and, more generally, the grapĥBn is explored in a left-to-right
fashion. This implies that for any nodev, the edges inU (v) are explored in left-to-right
fashion, i.e., clockwise order, see Figure 8.23.

Lemma 8 A leftmost depth-first search explores the edges in U(u) in clockwise order for
any node u.

Proof Assume otherwise. Letu be the highest numbered node such thatU (v) is ordered
incorrectly, say edge(u, v) is after edge(u, w) in the clockwise order of edges inU (u), but
(v, u) is explored before(w, u). Consider the pathsPv andPw from t to u, which follow the
tree paths tov andw in the depth-first search tree, respectively, and then take the edge(v, u)

40 Embedded Graphs

or (w, u), respectively, see Figure 8.24. Letz be the node furthest fromt and different from
u that is common to both path. LetQv and Qw be the induced paths fromz to u passing
throughv andw, respectively, and letev andew be the first edges on these paths. Thenev

precedesew in the counter-clockwise order of the edges inL(z).
The pathsQv andQw arey-monotone,Qv is left of Qw “near” z, andQv is right of Qw

“near” u, and hence the two paths must cross. By definition ofz they do not cross in a node
and hencêBn is not a bush form ofBn.

The following function LMDFS realizes leftmost depth-firstsearch and builds a list
embedlist containing all edges in∪uU (u) in the order in which they are explored; the edge
which is explored first comes last in the list, and the edge which is explored last comes first
(since edges are pushed on the list and not appended). In other words, for each nodeu the
edges inU (u) occur in counter-clockwise order inembedlist. The edges do not necessarily
occur consecutively.

LMDFS reuses the arraystnum to record whether a node has been visited. leftmost
depth-first search

〈auxiliary functions〉�
stati void LMDFS(graph& G, node v, onst node_array<list<edge> >& L_n,

node_array<int>& st_num, list<edge>& embed_list)

{

if (st_num[v℄ < 0) return;

st_num[v℄ = -1;

edge e;

forall(e,L_n[v℄)

{ embed_list.push(G.reversal(e));

LMDFS(G,target(e),L_n,st_num,embed_list);

}

}

We use LMDFS in a functionembeddingthat reorders the adjacency lists. We first build a
list embedlist containing for each nodev the set of edges inA(v) in counter-clockwise order
but not necessarily consecutively, and then use the sortingfunctionG.sortedges(embedlist)
to rearrange the adjacency lists accordingly.

We buildembedlist in three steps. In the first step we copy the listsL n[v] to embedlist,
in the second step we call LMDFS to add the edges in∪vU (v) in their counter-clockwise
order, and in the third step we deal with all self-loops. The self-loops can be added in any
order, we only have to make sure that the two directions of a self-loop are placed next to
each other. In this way there will be no crossings between self-loops.

〈auxiliary functions〉+�
stati void embedding(graph& G, node t, node_array<int>& st_num,

node_array<list<edge> >& L_n)

{

list<edge> embed_list;

node v; edge e;

8.7 Planarity Testing, Planar Embeddings, and Kuratowski Subgraphs 41

forall_nodes(v,G)

forall(e,L_n[v℄) embed_list.append(e);

LMDFS(G,t,L_n,st_num,embed_list);

// append self-loops at the end of the list

edge_map<bool> treated(G,false);

forall_nodes(v,G)

{ edge e;

forall_adj_edges(e,v)

if (target(e) == v && !treated[e℄)

{ embed_list.append(e); embed_list.append(G.reversal(e));

treated[e℄ = treated[G.reversal(e)℄ = true;

}

}

G.sort_edges(embed_list);

}

After all this preparatory work phase three reduces to a callof embedding.

〈PLAN EMBED: phase 3〉�
node t = st_list.tail();

embedding(G,t,st_num,L_n);

The running time of PLANEMBED is O(n + m). We have already argued that phase
one takes linear time. Phase two touches every edge once and hence takes also linear time.
Phase three consists of a depth-first search followed by extracting the adjacency lists from
embedlist and hence takes linear time.

Arbitrary Maps: We give the implementation ofBL PLANAR(G, embed). Recall thatG
must be a map ifembedis true. The implementation is fairly simple.

We extendG to a biconnected graph (ifembedis false) and to a biconnected map (if
embedis true), compute an st-numbering ofG, call the planarity test for biconnected graphs
and maps, respectively, and remove the added edges. The function MakeBiconnectedis
discussed in the exercises of Section 7.4. It makes a graph biconnected by adding edges. It
does so without destroying planarity.

〈planar embedding of arbitrary maps〉�
bool BL_PLANAR(graph& G, bool embed)

{ if (G.number_of_edges() <= 0) return true;

// prepare graph

list<edge> el;

if (embed)

{ if (!G.make_map())

error_handler(1,"BL_PLANAR: an only embed maps.");

Make_Bionneted(G,el);

edge e;

forall(e,el)

{ edge x = G.new_edge(target(e),soure(e));

42 Embedded Graphs

el.push(x);

G.set_reversal(e,x);

}

}

else

Make_Bionneted(G,el);

node_array<int> st_num(G);

list<node> st_list;

ST_NUMBERING(G,st_num,st_list);

bool plan;

if (embed)

plan = PLAN_EMBED(G,st_num,st_list);

else

plan = PLANTEST(G,st_num,st_list);

// restore graph

edge e; forall(e,el) G.del_edge(e);

return plan;

}

8.7.3 Kuratowski Subgraphs
We describe functions to extract Kuratowski subgraphs. We first give a simple algorithm
with quadratic running time, then a linear time algorithm for biconnected graphs, and finally
a linear time algorithm for arbitrary graphs.

We start with a simple algorithm that computes Kuratowski subgraphs in quadratic time
O((n + m)m). We iterate over all edgese of G. We hidee and check the planarity ofG \ e.
If G \ e is non-planar, we leavee hidden, and ifG \ e is planar, we adde to the set of edges
of the Kuratowski subgraph and restore it. At the end we restore all edges. The running
time of this algorithm ism times the running time of the planarity test. The running time
can be improved toO(n2) by observing that it suffices to consider 3n+7 uedges ofG, since
a planar graph withn nodes can have at most 3n+6 edges according to Lemma 3. We leave
it to the exercises to implement this improvement.

〈auxiliary functions〉+�
stati void KURATOWSKI_SIMPLE(graph& G, list<edge>& K)

{ K.lear();

if (BL_PLANAR(G,false))

error_handler(1,"KURATOWSKI_SIMPLE: G is planar");

list<edge> L = G.all_edges();

edge e;

forall(e,L)

{ G.hide_edge(e);

if (BL_PLANAR(G,false))

{ G.restore_edge(e);

K.append(e);

}

8.7 Planarity Testing, Planar Embeddings, and Kuratowski Subgraphs 43

}

G.restore_all_edges();

}

We turn to the linear time algorithm of Karabeg and Hundack, Mehlhorn, and Näher
[Kar90, HMN96] to find Kuratowski subgraphs. We assume thatG a biconnected non-
planar map without self-loops and parallel edges.

When the planarity test algorithm is run onG there will be a minimalk such thatBk has
a bush form butBk+1 does not, becauseBk contains an obstruction. Thenk + 1 < n since
B̂n−1 can always be extended. We show

Lemma 9 If Bk has a bush form and contains an obstruction then G contains a Kuratowski
subgraph.

An obstruction is either an obstructing articulation pointor an obstructing biconnected
component. We deal with obstructing articulation points first and then with obstructing
biconnected components. For both cases we need some simple facts about trees. For a tree
T and a subsetS of its nodes we useT(S) to denote the smallest subtree ofT connecting
all nodes inS. If |S| ≤ 3 thenT(S) contains a noder , called thejoin of S in T , such that
the paths fromr to the nodes inSare pairwise edge-disjoint (r ∈ S is allowed). If|S| = 3,
the join is unique.

Lemma 10 Letv be an articulation point of Bk and let T be a depth-first search tree of Bk

rooted atv. If w and z are distinct virtual nodes in some connected componentC of Bk with
respect tov then the join of{v, w, z} in T is distinct fromv, w, and z.

Proof Let u be the first node reached in a depth-first search ofC starting inv. SinceC is
a component with respect tov, C\v is connected. This implies that all nodes inC\v are
descendants ofu in T .

In the sequel we useTt to denote a tree on nodes{k + 1, . . . , n} rooted att (= n) and
where each nodev, v < n, has an incoming edge from a higher numbered node. Such a tree
exists sinceG is st-numbered.

We also useTs to denote a depth-first search tree ofBk. Ts is rooted ats except if
explicitly specified otherwise.

An Obstructing Articulation Point: Let v be an obstructing articulation point, i.e., at
least three of the components with respect tov are mixed. LetCi , 0 ≤ i ≤ 2, be a mixed
component with respect tov, let wi be a leaf20 labeledk + 1 in Ci and letzi be a large21

leaf inCi . Let Ts be a depth-first search tree ofBk rooted atv.
Let Ti be the subgraph ofTs spanned byv, wi , andzi , and letxi be the join ofTi . Consider

the subgraphK of G consisting of:

20 We will use leaf and virtual node as synonyms in this section.
21 A large leaf is a leaf that is labeledk + 2 or larger.

44 Embedded Graphs

r

z0

x0

z1

x1

z2

x2

k + 1

v

Figure 8.25 A K3,3 with sides{x0, x1, x2} and{v, k + 1, r }.

• T0, T1, T2, and the treeTt (z0, z1, z2).

Let r be the join ofz0, z1, andz2 in Tt . Thenr 6= k + 1 and henceK is a subdivision of
K3,3 with sides{x0, x1, x2} and{k + 1, v, r }, see Figure 8.25.

An Obstructing Biconnected Component: Let H be a biconnected component with at-
tachment nodesy0, y1, . . . , yp−1. We assume thaty0 is the lowest numbered attachment
node and thaty0, y1, . . . , yp−1 appear in this order on the boundary cycle ofH in B̂k,
where B̂k is a bush form ofBk. Let Ci be the part ofBk opposite toH at yi and let
s(Ci) ∈ {clean, mixed, full } be the status ofCi . We have

s(C0)s(C1) . . . s(Cp−1) /∈ clean∗ mixed1
0 full ∗ mixed1

0 clean∗,

sinceH is obstructing.

Lemma 11 One of the cases below arises:

(1) There are indices a, b, c, and d such that ya, yb, yc, and yd occur in this order on the
boundary cycle of H, and Ca and Cc are non-clean and Cb and Cd are non-full.

(2) There are indices a, b, and c such that ya, yb, and yc occur in this order on the boundary
cycle of H, and Ca, Cb, and Cc are mixed.

In either case, 0 is among the selected indices.

Proof Observe first, thatC0 is either clean or mixed, but never full (since there is a leaf
labeledn in C0 andk + 1 < n). If

s(C1) . . . s(Cp−1) /∈ clean∗ mixed1
0 full∗ mixed1

0 clean∗,

then there area, b, c with 1 ≤ a < b < c ≤ p − 1 andCa andCc are non-clean andCb is
non-full. SinceC0 is non-full we are in case (1) withd = 0. So assume that

s(C1) . . . s(Cp−1) ∈ clean∗ mixed1
0 full ∗ mixed1

0 clean∗.

8.7 Planarity Testing, Planar Embeddings, and Kuratowski Subgraphs 45

ThenC0 is non-clean (and hence mixed) andp − 1 ≥ 2 sinceH is non-obstructing other-
wise.

If case (1) does not arise witha = 0 then there are nob, c, andd with 1 ≤ b < c < d ≤
p − 1 with Cb andCd non-full andCc non-clean, i.e., anyCc between two non-fullCb and
Cd is clean. Thus, eitherp − 1 = 2 or

s(C1) . . . s(Cp−1) ∈ clean∗ mixed1
0 full ∗ ∪ full ∗ mixed1

0 clean∗.

In the latter situationH is non-obstructing, and hence this case is excluded. In the former
situationC1 andC2 must be mixed sinceH is non-obstructing otherwise. Thus, (2) arises.

We next exhibit Kuratowski subgraphs for cases (1) and (2).
Assume first that there are indicesa, b, c, andd such thatya, yb, yc, andyd occur in this

order on the boundary cycle ofH , Ca andCc are non-clean andCb andCd are non-full. We
call this anobstructing cycle with four alternating attachments. Consider the subgraphK
of G consisting of:

• the boundary cycle ofH ,

• a path fromya to a copy ofk + 1 in Ca,

• a path fromyc to a copy ofk + 1 in Cc,

• a path fromyb to a large leafzb in Cb,

• a path fromyd to a large leafzd in Cd,

• the treeTt ({k + 1, zb, zd}).

Let r be a join ofk + 1, zb, andzd in Tt ; we may assume thatr 6= k + 1 (observe that
zb 6= k + 1 andzd 6= k + 1). K is a subdivision ofK3,3 with sides{yb, yd, k + 1} and
{ya, yd, r }, see Figure 8.26.

Assume next that there are indicesa, b, andc such thatya, yb, andyc occur in this order
on the boundary cycle ofH andCa, Cb, andCc are mixed. We call this acycle with three
mixed attachments. Consider the subgraphK of G consisting of:

• the boundary cycle ofH ,

• treesTs({yi , wi , zi }) wherei ∈ {a, b, c}, wi is a leaf labeledk + 1 in Ci , andzi is a
large leaf inCi ,

• treeTt ({k + 1, z1, z2, z3}).

Let y′
i be the join ofyi , zi , andwi . Theny′

i is distinct fromzi andwi but may be equal to
yi . Figure 8.27 illustrates the situation.

We can obtain aK5 from K by contracting the paths connectingyi with y′
i for i ∈

{a, b, c} and by contracting the edges inTt({za, zb, zc}). We can now appeal to the fact that
if a graphK can be contracted to a subdivision ofK3,3 or K5 then it contains a subdivision

46 Embedded Graphs

r

zb zd k + 1

yd

yc

yb

ya

Figure 8.26 An obstructing cycle with four alternating attachments gives rise to aK3,3 with
sides{ya, yc, r } and{yb, yd, k + 1}.

k + 1 za zb zc

y′
b

yby′
a

ya

y′
c

yc

Figure 8.27 An obstructing cycle with three mixed attachments yields aK5 after contraction of
the paths fromyi to y′

i for i ∈ {a, b, c} and contraction of the edges in treeTt ({za, zb, zc}).

of K3,3 or K5 before the contraction, see [NC88, Lemma 1.2] and the exercises. We will
exploit this fact in our implementation.

For completeness we also exhibit the Kuratowski subgraphs directly. We distinguish
three cases.

If yi = y′
i for all i ∈ {a, b, c} andTt ({k + 1, za, zb, zc}) contains a node of degree four

thenK is a subdivision ofK5.

8.7 Planarity Testing, Planar Embeddings, and Kuratowski Subgraphs 47

r2

zb zck + 1

yc

yb

ya

r1

za

Figure 8.28 An obstructing cycle with three mixed attachments yields aK3,3 if yi = y′
i for

i ∈ {a, b, c} andTt ({k + 1, za, zb, zc}) contains no node of degree four. In the figure,k + 1 is
paired withza.

If yi = y′
i for all i ∈ {a, b, c} andTt ({k + 1, za, zb, zc}) contains no node of degree four

thenTt ({k + 1, za, zb, zc}) contains two nodes of degree three, sayr1 andr2. The removal
of the path joiningr1 andr2 pairsk + 1 with somezi . We remove fromK the path fromyi

to the copy ofk + 1 in Ci and the part of the boundary cycle ofH joining the other twoy’s
and obtain a subdivision ofK3,3, see Figure 8.28, with sides{ya, k + 1, r2} and{yb, yc, r1}.

If yi 6= y′
i for some i ∈ {a, b, c}, say ya 6= y′

a, let r be the join ofza, zb, zc in
Tt({za, zb, zc}). We obtain a subdivision ofK3,3 with sides{ya, k + 1, r } and{y′

b, y′
c, y′

a}
from K by deleting the part of the boundary cycle ofH that connectsyb and yc, and by
replacingTt({k + 1, za, zb, zc}) by Tt ({za, zb, zc}), see Figure 8.29.

This completes the proof of Lemma 9.

We turn to a linear time implementation. The following function assumes thatG is a
biconnected non-planar map without self-loops and parallel edges. It computes the set of
edges of a Kuratowski subgraph ofG in K .

〈Kuratowski graphs in biconnected maps〉�
stati void Kuratowski(graph& G, list<edge>& K)

{ node v; edge e;

string urrent_ase; // for debugging purposes

〈compute st-numbering〉
int k = PLAN_EMBED_K(G,st_num,st_list);

if (k == G.number_of_nodes())

error_handler(1,"Kuratowski: G must be non-planar");

〈compute bush form B for Bk〉
〈obstructing articulation point〉
〈obstructing biconnected component〉

}

48 Embedded Graphs

k + 1 za zb zc

y′
b

yby′
a

ya

y′
c

yc

r

Figure 8.29 An obstructing cycle with three mixed attachments yields aK3,3 if ya 6= y′
a.

We start by computing an st-numbering ofG. Next we call PLANEMBED K to find k
such thatBk has a bush form butBk+1 has not. We compute a bush formB for Bk and then
search for an obstruction inB. This will be the most difficult part of the implementation.
Having found an obstruction we extract a Kuratowski subgraph as shown in the proof of
Lemma 9.

Compute st-Numbering: We compute an st-numbering and the nodess andt .

〈compute st-numbering〉�
node_array<int> st_num(G);

list<node> st_list;

ST_NUMBERING(G,st_num,st_list);

node s = st_list.head();

node t = st_list.tail();

The Bush Form B for Bk: We construct a bush formB for Bk. We declareB of type
GRAPH<node, edge> and let every node and edge ofB know its original inG. We add a
nodetopB to B and connect it to every virtual node (by a uedge). In this wayB becomes a
biconnected map.

We st-number the nodes ofB by first numbering the non-virtual nodes, then the virtual
nodes, and finally the nodetopB. We store the st-numbering instnumB, the ordered list of
nodes inst listB. Finally, sB is the node inB that corresponds tos andtB is a virtual node
in B that is connected tosBby an edge.tB is a large leaf in the root component of every
articulation point and in the part ofB opposite toy0 for any biconnected componentH with
lowest attachment nodey0.

8.7 Planarity Testing, Planar Embeddings, and Kuratowski Subgraphs 49

Having constructed the st-numbering we call PLANEMBED to compute a planar em-
bedding ofB. We restore the st-numbers as they are destroyed by the planar embedding
program, and we delete the auxiliary nodetopB from B andst listB.

〈compute bush form B for Bk〉�
GRAPH<node,edge> B;

list<node> st_listB;

node_array<node> v_in_B(G,nil);

forall(v,st_list)

{ if (st_num[v℄ > k) break;

node vB = v_in_B[v℄ = B.new_node(v);

st_listB.append(vB);

}

node top_B = B.new_node();

forall_nodes(v,G)

{ if (st_num[v℄ > k) ontinue;

forall_adj_edges(e,v)

{ node w = G.target(e);

if (st_num[w℄ < st_num[v℄) ontinue;

edge r = G.reversal(e);

node wB;

if (st_num[w℄ > k)

{ wB = B.new_node(w);

st_listB.append(wB);

B.set_reversal(B.new_edge(wB,top_B),B.new_edge(top_B,wB));

}

else

wB = v_in_B[w℄;

edge e1 = B.new_edge(v_in_B[v℄,wB,e);

edge r1 = B.new_edge(wB,v_in_B[v℄,r);

B.set_reversal(e1,r1);

}

}

node sB = v_in_B[s℄; node tB;

forall_adj_edges(e,sB)

if (B[B.target(e)℄ == t) tB = B.target(e);

B.set_reversal(B.new_edge(sB,top_B),B.new_edge(top_B,sB));

st_listB.append(top_B);

node_array<int> st_numB(B);

int stn = 1;

forall(v,st_listB) st_numB[v℄ = stn++;

PLAN_EMBED(B,st_numB,st_listB); // destroys st-numbers

stn = 1;

forall(v,st_listB) st_numB[v℄ = stn++;

B.del_node(top_B); st_listB.Pop(); // remove top_B

Obstructing Articulation Points: We search for an obstructing articulation point and, if
successful, extract a Kuratowski subgraph.

50 Embedded Graphs

〈obstructing articulation point〉�
array<node> z(3);

array<node> spe(3);

A successful search for an obstructing articulation point will store the obstructing articula-
tion point inv, and fori , 0 ≤ i < 3, will store a large leaf in thei -th mixed component with
respect tov in z[i] and a leaf labeledk + 1 in spec[i].

The search (successful or not) will also compute some auxiliary information for internal
use and for later use in the search for obstructing biconnected components.

We define an enum that we use to distinguish between leafs labeledk + 1 and large leafs,
and we define two functions so that node arrays can be used as type parameters.

〈auxiliary functions〉+�
enum { K_PLUS_1 = 0, OTHERS = 1};

ostream& operator<<(ostream& o, onst node_array<node>&) { return o; }

istream& operator>>(istream& i, node_array<node>&) { return i; }

We give the declarations of the auxiliary informations and explain them below.

〈obstructing articulation point〉+�
list<node> dfs_list;

node_array<edge> tree_edge(B,nil);

node_array<int> dfs_num(B,-1);

int dfs_ount = 0;

DFS(B,sB,dfs_list,dfs_num,dfs_ount,tree_edge);

edge_array<int> omp_num(B);

int num_omps = BICONNECTED_COMPONENTS(B,omp_num);

node_array<edge> up_tree_edge(G,nil);

array<node_array<node> > leaf(2);

leaf[K_PLUS_1℄ = leaf[OTHERS℄ = node_array<node>(B,nil);

array<node_array<node> > leaf_in_upper_part(2);

leaf_in_upper_part[K_PLUS_1℄ =

leaf_in_upper_part[OTHERS℄ = node_array<node>(B,nil);

node_array<int> num_mixed_non_root_omps(B,0);

node_array<node> spe_leaf_in_root_omp(B,nil);

array<node_array<node> > hild(1,2); // want indies one and two

hild[1℄ = hild[2℄ = node_array<node>(B,nil);

The auxiliary information is as follows: letTs be a depth-first search tree ofB rooted ats.

treeedge[v] is the tree edge intov in Ts for v 6= s and isnil for v = s, dfsnum[v] is the
dfs-number ofv, anddfslist is the list of nodes ofB in increasing order of dfs-number. All
quantities just mentioned are computed by a call of the auxiliary function DFS, see below.

numcompsis the number of biconnected components, andcompnum[e] is the number of
the biconnected component containinge for any edgee of B. Both values are computed by

8.7 Planarity Testing, Planar Embeddings, and Kuratowski Subgraphs 51

calling the biconnected components function. We callcompnum[e] the component number
of e.

uptreeedge[v] is for any nodev of G with stnum[v] > k andv 6= t an edge from a higher
numbered node. It isnil for all other nodes ofG. The up-tree edges define a treeTt rooted
at t on the nodes labeledk + 1 and larger.

leaf[K PLUS1][v] is a leaf labeledk + 1 in the subtree ofTs rooted atv (nil if no such leaf
exists).

leaf[OTHERS][v] is a large leaf in the subtree ofTs rooted atv (nil if no such leaf exists).

The next four pieces of information are only defined for articulation points. Theupper
part with respect to an articulation pointis the union of the non-root components with
respect to the articulation point.

leaf in upperpart[K PLUS1][v] is a leaf labeledk + 1 in the upper part ofv (nil if there is
no such leaf).

leaf in upperpart[OTHERS][v] is a large leaf in the upper part ofv (nil if there is no such
leaf).

child[1][v] is a child ofv in Ts that lies in a mixed non-root component with respect tov

(nil if there is no such child).

child[2][v] is a child ofv in Ts that lies in a second mixed non-root component with respect
to v (nil if there is no such child).

We next discuss how the auxiliary information is computed. The quantities related to depth-
first search are computed by a variant of depth-first search.

〈auxiliary functions〉+�
void DFS(onst graph& G, node v,

list<node>& dfs_list, node_array<int>& dfs_num,

int& dfs_ount, node_array<edge>& tree_edge)

{ dfs_list.append(v);

dfs_num[v℄ = dfs_ount++;

edge e;

forall_adj_edges(e,v)

{ node w = G.target(e);

if (dfs_num[w℄ == -1)

{ tree_edge[w℄ = e;

DFS(G,w,dfs_list,dfs_num,dfs_ount,tree_edge);

}

}

}

The up-tree is easily computed. We simply select for each node labeled larger thank an
edge going to a node with higher st-number and then put the reversal of the edge into the
tree.

52 Embedded Graphs

k + 1

b

a

v

s

Figure 8.30 The root component ofv consists of the nodess, v, a, andb. Tree edges are drawn
in bold. The tree edge(v, a) belongs to the same biconnected component as the tree edge into v,
but the tree edge(v, k + 1) does not. The tree edge(v, k + 1) belongs to a non-root component
with respect tov.

〈obstructing articulation point〉+�
forall_nodes(v,G)

{ if (st_num[v℄ <= k) ontinue;

edge e;

forall_adj_edges(e,v)

{ node w = G.target(e);

if (st_num[w℄ > st_num[v℄)

{ up_tree_edge[v℄ = G.reversal(e); break; }

}

}

All other auxiliary information is computed by scans overTs. We start with some simple
observations, see Figure 8.30. We have, for any nodev, the following:

• The tree edge intov belongs to the root component with respect tov.

• A tree edge out ofv belongs to the root component with respect tov iff it belongs to
the same biconnected component as the tree edge intov iff it has the same component
number as the tree edge intov.

• A tree edge out ofv belongs to a non-root component with respect tov iff its
component number is different from the component number of the tree edge intov or
if v is equal to (the copy of)s in B.

• The non-root components with respect tov are in one-to-one correspondence to the
tree edges out ofv.

The node labelsleaf[K PLUS1] and leaf[OTHERS] are computed by a leaf to root scan
of Ts.

8.7 Planarity Testing, Planar Embeddings, and Kuratowski Subgraphs 53

〈obstructing articulation point〉+�
forall_nodes(v,B)

{ if (st_numB[v℄ <= k) ontinue;

if (st_num[B[v℄℄ == k + 1)

leaf[K_PLUS_1℄[v℄ = v;

else

leaf[OTHERS℄[v℄ = v;

}

forall_rev(v,dfs_list) // down the tree

{ if (v == sB) ontinue;

node pv = B.soure(tree_edge[v℄);

assign(leaf[K_PLUS_1℄[pv℄,leaf[K_PLUS_1℄[v℄);

assign(leaf[OTHERS℄[pv℄, leaf[OTHERS℄[v℄);

}

where we used the following conditional assignment function assignto propagate informa-
tion.

〈auxiliary functions〉+�
void assign(node& x, onst node& y) { if (x == nil) x = y; }

We next compute for each articulation pointv the number of mixed non-root components
with respect tov andleaf in upperpart[][v].

A nodev identifies a non-root component of its parentpv if either pv is equal tosBand
sBhas more than one child or if the tree edges intov andpvbelong to different biconnected
components. Actually,sBalways has at least two children, one is a copy oft and the other
contains a copy ofk + 1 in its subtree. Note thatk + 1 6= t since the planarity test cannot
fail when nodet is to be added.

The non-root component ofpv identified byv is mixed if it contains a leaf labeledk + 1
as well as a large leaf.

We are propagating information from the leaves to the root and hence know the number
of mixed non-root components ofv whenv is reached. If a nodev has three mixed non-root
components we extract a Kuratowski subgraph.

〈obstructing articulation point〉+�
forall_rev(v,dfs_list) // down the tree

{ if (num_mixed_non_root_omps[v℄ >= 3)

{ 〈v has three mixed non-root components〉 }

if (v == sB) ontinue;

node pv = B.soure(tree_edge[v℄);

if (pv == sB || omp_num[tree_edge[v℄℄ != omp_num[tree_edge[pv℄℄)

{ if (leaf[K_PLUS_1℄[v℄ && leaf[OTHERS℄[v℄)

num_mixed_non_root_omps[pv℄++;

assign(leaf_in_upper_part[K_PLUS_1℄[pv℄,leaf[K_PLUS_1℄[v℄);

assign(leaf_in_upper_part[OTHERS℄[pv℄,leaf[OTHERS℄[v℄);

}

}

54 Embedded Graphs

Assume thatv has three mixed non-root components. We iterate over all children ofv
and search for three children that define mixed non-root components. Whenever such a
child is found we copy its two leaves toy[i] andspec[i] for i = 0, 1, and 2.

〈v has three mixed non-root components〉�
urrent_ase = "three mixed non-root omponents";

int i = 0;

forall_adj_edges(e,v)

{ node w = B.target(e);

if (w == sB || v != B.soure(tree_edge[w℄)) ontinue;

if (leaf[K_PLUS_1℄[w℄ && leaf[OTHERS℄[w℄)

{ z[i℄ = leaf[OTHERS℄[w℄; spe[i℄ = leaf[K_PLUS_1℄[w℄;

i++;

if (i == 3) break;

}

}

〈obstructing articulation point: extract Kuratowski graph〉

The actual extraction of the Kuratowski subgraph will be discussed below.

If no articulation point has three mixed non-root components, we need to check whether
there is an articulation point with two mixed non-root components and a mixed root com-
ponent. It is slightly tricky to determine whether root components are mixed. We observe
first that nodes and hence nodet is contained in any root component. Thus there is always
a large leaf in the root component. In fact, it is the nodetB.

We want to compute for each nodev a leaf labeledk + 1 in its root component (if any).
Consider any pathp in Ts from v to a leaf labeledk + 1. The leaf belongs to the root
component ofv iff the target of the first edge ofp belongs to the root component ofv.
This is the case if the first edge ofp is the tree edge intov or is a tree edge out ofv
which belongs to the same biconnected component as the tree edge intov. We compute
specleaf in root compby considering the two kinds of paths separately.

For the second kind of path we propagate information down thetree. We pass information
about a leaf along a tree edge(v, w) if this edge belongs to the root component ofv, i.e., if
it has the same component number as the tree edge intov.

〈obstructing articulation point〉+�
forall_rev(v,dfs_list) // down the tree

{ if (v == sB) ontinue;

node pv = B.soure(tree_edge[v℄);

if (pv != sB && omp_num[tree_edge[v℄℄ == omp_num[tree_edge[pv℄℄)

assign(spe_leaf_in_root_omp[pv℄,leaf[K_PLUS_1℄[v℄);

}

For the first kind of path we compute for every nodev, specleaf via treeedge[v], a leaf
labeledk + 1 in the root component ofv that is reachable through the tree edge intov (nil
if there is no such leaf). A leaf labeledk + 1 in the root component is then either a leaf that
was already computed above or the leaf that can be reached viathe tree edge intov.

8.7 Planarity Testing, Planar Embeddings, and Kuratowski Subgraphs 55

specleaf via treeedgeis computed from the root towards the leaves ofTs. Let v be any
node and consider the time when we processv. Let c be any child ofv. A leaf in the root
component ofc that is reachable through the tree edge intoc is either reachable through the
tree edge intov or through a sibling ofc.

If v has a leaf labeledk + 1 that is reachable through the tree edge intov we simply pass
this leaf to all children ofv.

So assume thatv has no leaf labeledk + 1 that is reachable through the tree edge into
v. We try to determine two childrenc1 andc2 of v that have a leaf labeledk + 1 in their
subtree. If there is none, then no child ofv can reach a leaf labeledk + 1 through one of its
siblings, if there is exactly one child, then all siblings ofthis child can reach a leaf labeled
k + 1 through it, and if there are two children, then all childrenof v can reach a leaf labeled
k + 1 through a sibling.

When a nodev is encountered that has two mixed non-root components and a mixed
root component we have found an obstructing articulation point and proceed to extract a
Kuratowski subgraph.

〈obstructing articulation point〉+�
node_array<node> spe_leaf_via_tree_edge(B,nil);

forall(v,dfs_list) // up the tree

{ assign(spe_leaf_in_root_omp[v℄,spe_leaf_via_tree_edge[v℄);

if (num_mixed_non_root_omps[v℄ == 2 && spe_leaf_in_root_omp[v℄)

{ 〈v has two mixed non-root and a mixed root component〉 }

if (spe_leaf_via_tree_edge[v℄ != nil)

{ forall_adj_edges(e,v)

{ node = B.target(e);

if (== sB || v != B.soure(tree_edge[℄)) ontinue;

spe_leaf_via_tree_edge[℄ = spe_leaf_via_tree_edge[v℄;

}

}

else

{ forall_adj_edges(e,v)

{ node = B.target(e);

if (== sB || v != B.soure(tree_edge[℄)) ontinue;

if (leaf[K_PLUS_1℄[℄)

{ if (hild[1℄[v℄ == nil)

hild[1℄[v℄ = ;

else

hild[2℄[v℄ = ;

}

}

if (hild[1℄[v℄)

{ forall_adj_edges(e,v)

{ node = B.target(e);

if (== sB || v != B.soure(tree_edge[℄)) ontinue;

if (!= hild[1℄[v℄)

spe_leaf_via_tree_edge[℄ = leaf[K_PLUS_1℄[hild[1℄[v℄℄;

else

if (hild[2℄[v℄)

56 Embedded Graphs

spe_leaf_via_tree_edge[℄ = leaf[K_PLUS_1℄[hild[2℄[v℄℄;

}

}

}

}

Assume thatv has two mixed non-root and a mixed root component. A leaf labeled k + 1
in the root component ofv is given byspecleaf in root comp[v] and a large leaf is given by
tB. For the other components we find the leaf labeledk + 1 and the large leaf as in the case
of three mixed non-root components.

〈v has two mixed non-root and a mixed root component〉�
urrent_ase = "two mixed non-root and a mixed root omponent";

z[0℄ = tB;

spe[0℄ = spe_leaf_in_root_omp[v℄;

int i = 1;

forall_adj_edges(e,v)

{ node w = B.target(e);

if (w == sB || v != B.soure(tree_edge[w℄)) ontinue;

if (v != sB && omp_num[e℄ == omp_num[tree_edge[v℄℄) ontinue;

if (leaf[K_PLUS_1℄[w℄ && leaf[OTHERS℄[w℄)

{ z[i℄ = leaf[OTHERS℄[w℄; spe[i℄ = leaf[K_PLUS_1℄[w℄;

i++;

if (i == 3) break;

}

}

〈obstructing articulation point: extract Kuratowski graph〉

Obstructing Articulation Point: Extraction of Kuratowski Graph: The nodev is an
obstructing articulation point. For everyi , 0 ≤ i < 3, we have a large leaf in thei -th
component inz[i] and a leaf labeledk + 1 in spec[i].

We reroot the depth-first search tree atv and then extract the Kuratowski subgraph as
described in the proof of Lemma 9.

〈obstructing articulation point: extract Kuratowski graph〉�
// reroot the DFS-tree at v

dfs_list.lear();

dfs_num.init(B,-1);

tree_edge.init(B,nil);

int dfs_ount = 0;

DFS(B,v,dfs_list,dfs_num,dfs_ount,tree_edge);

list<edge> join_edges;

for (i = 0; i < 3; i++)

{ join(z[i℄,spe[i℄,v,tree_edge,B,join_edges);

translate_to_G(join_edges,B); K.on(join_edges);

}

join(B[z[0℄℄,B[z[1℄℄,B[z[2℄℄,up_tree_edge,G,join_edges);

8.7 Planarity Testing, Planar Embeddings, and Kuratowski Subgraphs 57

K.on(join_edges);

hek_before_return(G,K,st_num,leaf,tree_edge,dfs_num,k,

B,st_numB,sB,urrent_ase);

return;

The functioncheckbeforereturncallsCHECKKURATOWSKI(G, K) to check whetherK
is a Kuratowski subgraph. If not, it opens twoGraphWinsand displays the edges inK in
one of them and the bush formB in the other. We do not give details here. This visual
debugging aid proved very valuable during the development phase of the algorithm.

The Join Function: Let T be a tree and leta, b, andc be the three nodes to be joined in
T . For each nodev the tree edge intov is stored intreeedge[v].

We trace the paths to the root from all three nodes and count, for each node ofT , the
number of paths containing it. Letr be the highest node which is reachable from all three
nodes. The subtree joining the three nodes is the union of thepaths from the three nodes to
r . This union is not necessarily a disjoint union. We want to output each edge in the subtree
only once and therefore mark nodes as we trace the paths. Whena node is marked, its tree
edge is added to the setL of edges comprising the subtree. The function returnsr .

〈auxiliary functions〉+�
node join(node a, node b, node , onst node_array<edge>& tree_edge,

graph& B, list<edge>& L)

{ L.lear();

node_array<int> num_des(B,0);

array<node> A(3); A[0℄ = a; A[1℄ = b; A[2℄ = ;

int i;

for (i = 0; i < 3; i++)

{ node v = A[i℄;

num_des[v℄++;

while (tree_edge[v℄ != nil)

{ v = B.soure(tree_edge[v℄);

num_des[v℄++;

}

}

node r;

for (i = 0; i < 3; i++)

{ node v = A[i℄;

while (num_des[v℄ < 3)

{ L.append(tree_edge[v℄);

num_des[v℄ = 3;

v = B.soure(tree_edge[v℄);

}

if (i == 0) r = v;

}

return r;

}

void translate_to_G(list<edge>& L, onst GRAPH<node,edge>& B)

58 Embedded Graphs

{ list_item it;

forall_items(it,L) L[it℄ = B[L[it℄℄;

}

The functiontranslatetakes a listL of edges ofB and replaces each edge by its counterpart
in G.

Obstructing Biconnected Component: We come to obstructing biconnected components.
We describe the search for an obstructing biconnected component and the extraction of a
Kuratowski subgraph once an obstructing component has beenfound.

We exploit the fact thatB is a plane map in our search for obstructing biconnected com-
ponents. Consider any nodev and the cyclic listA(v) of edges out ofv. If v is not an
articulation point then all edges inA(v) belong to the same biconnected component. Ifv

is an articulation point thenA(v) decomposes into blocks, one for each biconnected com-
ponent containingv. This follows from the fact that the boundary cycles of all biconnected
component are part of the boundary of the outer face in every bush form.

Blocks that consist of at least two edges indicate the boundary cycle of a biconnected
component. We find such blocks as follows. We iterate over alledges f out of v. If the
cyclic predecessor off in A(v) belongs to a different biconnected component and the cyclic
successor belongs to the same biconnected component, thenf belongs to the boundary cy-
cle of a non-trivial biconnected component, i.e., a biconnected component which is not just
a single uedge. We maintain an edge arraytreatedcomponentto record which biconnected
components have already been treated.

If the component havingf in its boundary cycle has not been treated yet, we determine
its boundary cycle incycleedgesand then determine whether one of the cases (1) or (2) of
Lemma 11 applies.

In our search for biconnected components we iterate over thenodes ofTs from the root
to the leaf. This has the advantage that we hit every biconnected component at its lowest
node.

Let H be a biconnected component with attachment cycle [y0, y1, . . . , yk], wherey0 is
the lowest numbered node in the biconnected component. We need to know whether the
component ofB opposite toH at y0 is mixed, i.e., contains a leaf labeledk + 1. We
compute such a leaf inspecleaf in oppositepart. For all i different from zero, the part of
B opposite toH at yi is simply the upper part ofB with respect toyi . We have collected
information about upper parts already.

If the search for an obstructing biconnected component is unsuccessful, we give debug-
ging information. After all, there must be either an obstructing articulation point or an
obstructing biconnected component.

〈obstructing biconnected component〉�
array<bool> treated_omponent(num_omps);

edge f;

forall(v,dfs_list) // upwards

8.7 Planarity Testing, Planar Embeddings, and Kuratowski Subgraphs 59

u

v

y0

erev

e

f

wH

Figure 8.31 Scanning the boundary of a biconnected componentH . We scan the boundary in
clockwise direction. At each node, the reversal of a boundary edge is turned clockwise (i.e.,
throughH) until the next boundary edge is reached. Two stopping criteria apply to the turning
process: we stop if the cyclic adjacency successor does not belong toH or if all edges incident to
the boundary node have been considered.
The edgeerev is a boundary edge intou. We turn its reversale clockwise until the next boundary
edge is reached. At nodev the first stopping criterion applies and at a node which has noincident
edge outsideH the second stopping criterion applies.

{ forall_adj_edges(f,v)

{ edge e1 = B.yli_adj_su(f);

edge e_pred = B.yli_adj_pred(f);

if (omp_num[e1℄ != omp_num[f℄ ||

omp_num[f℄ == omp_num[e_pred℄) ontinue;

if (treated_omponent[omp_num[f℄℄) ontinue;

list<edge> yle_edges;

treated_omponent[omp_num[f℄℄ = true;

〈determine boundary cycle of component with lowest node y0 = v〉
node spe_leaf_in_opposite_part = nil;

〈compute leaf labeled k+1 in part opposite to y0〉
〈obstructing cycle with four alternating attachments〉
if (spe_leaf_in_opposite_part)

{ 〈obstructing cycle with three mixed attachments〉 }

}

}

〈unreachable point: give debugging information〉

The boundary cycle of a biconnected componentH is easily traced. We start with an edge
f that emanates fromv, the lowest node in the component, and that lies on the boundary
cycle of the component. The unbounded face is to the right off , see Figure 8.31. We will
trace the boundary cycle in clockwise direction, i.e., keeping the unbounded face to our left,
and store it incycleedges.

Assume thate is an edge such that its reversal belongs to the boundary cycle. Initially, e

60 Embedded Graphs

is equal to f . We show how to find the successor edge oferev in the boundary cycle. Let
e1 be the cyclic adjacency successor ofe. We advancee1 until the successor ofe1 belongs
to a different biconnected component or the successor ofe1 is equal toe. The former case
happens for nodesv that are attachment nodes ofH and the latter case happens for nodes
that lie on the boundary cycle ofH but are not attachment nodes ofH . Edgee1 is the
successor oferev on the cycle. We proceed in this way until the cycle is completely traced.

〈determine boundary cycle of component with lowest node y0 = v〉�
edge e0 = f;

node y0 = v;

edge e = f; // e1 was set to B.yli_adj_su(f) above

do { while (omp_num[B.yli_adj_su(e1)℄ == omp_num[e℄ &&

B.yli_adj_su(e1) != e)

{ e1 = B.yli_adj_su(e1); }

yle_edges.append(e1);

e = B.reversal(e1);

e1 = B.yli_adj_su(e);

} while (e != e0);

We next show how to compute a leaf labeledk + 1 in the part ofB opposite toH at y0 in
constant time. Constant time is needed sincey0 can be the lowest numbered node of many
biconnected components.

The part ofB opposite toH at y0 consists of the root component ofy0 and all non-root
components with respect toy0 that do not containH . We have computed above two children
of y0 (if they exist) that define mixed non-root components. A leaflabeledk + 1 can be
found in either the root component or in one of the mixed children that does not containH .
A non-root component does not containH if the tree edge into the child does not belong to
H .

〈compute leaf labeled k+1 in part opposite to y0〉�
spe_leaf_in_opposite_part = spe_leaf_in_root_omp[v℄;

for (int i = 1; i <= 2; i++)

{ node = hild[i℄[v℄;

if (spe_leaf_in_opposite_part == nil

&& && omp_num[tree_edge[℄℄ != omp_num[e0℄)

spe_leaf_in_opposite_part = leaf[K_PLUS_1℄[℄;

}

Obstructing Cycle with Four Alternating Attachments: We search for a cycle with four
alternating attachments. By Lemma 11 there are two ways sucha cycle may occur: The
component opposite toy0 contributes either a large leaf or a leaf labeledk+1. We therefore
perform two searches. In the first search we sety0typeto OTHERS and letC0 contribute
a large leaf and in the second search we sety0type to K PLUS 1 and letC0 contribute a
leaf labeledk + 1. The second search is only performed whenspecleaf in oppositepart is
defined.

8.7 Planarity Testing, Planar Embeddings, and Kuratowski Subgraphs 61

For an attachmentyi different fromy0 the part opposite toH at yi is equal to the upper
part of B with respect toyi .

We store the four attachments iny[0] to y[3] and we store the selected leaf in thei -th
component inz[i].

〈obstructing cycle with four alternating attachments〉�
list<int> kinds;

kinds.append(OTHERS); kinds.append(K_PLUS_1);

int y0_type;

forall(y0_type, kinds)

{ array<node> y(4);

y[0℄ = y0; y[1℄ = y[2℄ = y[3℄ = nil;

array<node> z(4);

if (y0_type == OTHERS)

{ z[0℄ = tB;

urrent_ase = "yle with 4 attahments; y_0 onnets to t";

}

else

{ z[0℄ = spe_leaf_in_opposite_part;

urrent_ase = "yle with 4 attahments; y_0 onnets to k + 1";

if (!spe_leaf_in_opposite_part) break;

}

list_item it0 = yle_edges.first();

list_item it = yle_edges.yli_su(it0);

int i = 1;

while (it != it0)

{ node v = B.soure(yle_edges[it℄);

int kind = (i == 2 ? y0_type : 1 - y0_type);

if (leaf_in_upper_part[kind℄[v℄)

{ y[i℄ = v;

z[i℄ = leaf_in_upper_part[kind℄[v℄;

i++;

}

if (i == 4)

{ 〈build the Kuratowski graph〉
return;

}

it = yle_edges.yli_su(it);

}

}

Assume that we have found an obstructing cycle with four alternating attachments. We have
the four attachments iny[0] to y[3] and the selected leaf in thei -th component inz[i]. Also
y0typetells us the type of the componentC0.

In the upper tree we need to take the subtree spanned by the twolarge leaves and node
k + 1.

62 Embedded Graphs

〈build the Kuratowski graph〉�
translate_to_G(yle_edges,B); K.on(yle_edges);

list<edge> join_edges;

int i;

for (i = 0; i < 4; i++)

{ join(y[i℄,z[i℄,z[i℄,tree_edge,B,join_edges);

translate_to_G(join_edges,B); K.on(join_edges);

}

// subtree of T_t spanned by k+1 and two large leaves.

if (y0_type == OTHERS) i = 0; else i = 3;

join(B[z[i℄℄,B[z[1℄℄,B[z[2℄℄,up_tree_edge,G,join_edges);

K.on(join_edges);

hek_before_return(G,K,st_num,leaf,tree_edge,dfs_num,k,

B,st_numB,sB,urrent_ase);

Obstructing Biconnected Component with Three Mixed Opposing Parts: For case (2)
we need that the component opposite toy0 is mixed and that there areya, yb such thatCa

andCb are mixed.

〈obstructing cycle with three mixed attachments〉�
array<node> y(3);

array<node> spe_leaf_opposing(3);

array<node> other_leaf_opposing(3);

y[0℄ = y0;

spe_leaf_opposing[0℄ = spe_leaf_in_opposite_part;

other_leaf_opposing[0℄ = tB;

int i = 1;

list_item it0 = yle_edges.first();

list_item it = yle_edges.yli_su(it0);

while (it != it0)

{ node v = B.soure(yle_edges[it℄);

if (leaf_in_upper_part[OTHERS℄[v℄ && leaf_in_upper_part[K_PLUS_1℄[v℄)

{ y[i℄ = v;

spe_leaf_opposing[i℄ = leaf_in_upper_part[K_PLUS_1℄[v℄;

other_leaf_opposing[i℄ = leaf_in_upper_part[OTHERS℄[v℄;

i++;

}

if (i == 3)

{ 〈obstructing cycle with three mixed attachments: extract Kuratowski〉
return;

}

it = yle_edges.yli_su(it);

}

It remains to extract the Kuratowski subgraph. We proceed asdescribed in the proof of
Lemma 9. We collect all edges shown in Figure 8.27 inK . K is not a Kuratowski graph
yet, but is guaranteed to contain one.

8.7 Planarity Testing, Planar Embeddings, and Kuratowski Subgraphs 63

〈obstructing cycle with three mixed attachments: extract Kuratowski〉�
urrent_ase = "obstruting yle with three mixed attahments";

translate_to_G(yle_edges,B); K.on(yle_edges);

list<edge> join_edges;

for(int j = 0; j <= 2; j++)

{ join(spe_leaf_opposing[j℄, other_leaf_opposing[j℄, y[j℄,

tree_edge,B,join_edges);

translate_to_G(join_edges,B); K.on(join_edges);

}

node r = join(B[other_leaf_opposing[1℄℄, B[other_leaf_opposing[2℄℄,

B[spe_leaf_opposing[0℄℄, up_tree_edge,G,join_edges);

K.on(join_edges);

join(r,r,t,up_tree_edge,G,join_edges);

K.on(join_edges);

{ 〈thin out K〉 }

hek_before_return(G,K,st_num,leaf,tree_edge,dfs_num,k,

B,st_numB,sB,urrent_ase);

Thinning Out: K is now an appropriate set of edges inG. It might still be too big. We
want to thin it out so that only aK3,3 or a K5 remains. This is easy to do. We construct
an auxiliary graphAG, which has a node for each node ofG that has degree three or more
in K and which has an edge for each path inK connecting two such nodes and having
only intermediate nodes of degree two. We associate with every edge ofAG the path inG
represented by it.

AG is a small graph; in fact, it has at most twelve nodes. We call the quadratic version of
the Kuratowski algorithm to find a Kuratowski subgraph ofAGand then translate is back to
G.

〈thin out K〉�
node v; edge e;

edge_array<bool> in_K(G,false);

node_array<int> deg_in_K(G,0);

forall(e,K)

{ in_K[e℄ = true;

deg_in_K[G.soure(e)℄++; deg_in_K[G.target(e)℄++;

}

GRAPH<node,list<edge> > AG;

node_array<node> link(G,nil);

forall_nodes(v,G)

if (deg_in_K[v℄ > 2) link[v℄ = AG.new_node(v);

forall_nodes(v,G)

{ if (!link[v℄) ontinue;

edge e;

forall_inout_edges(e,v)

{ if (in_K[e℄)

64 Embedded Graphs

{ // trae path starting with e

list<edge> path;

edge f = e; node w = v;

while (true)

{ in_K[f℄ = false; path.append(f);

w = G.opposite(w,f);

if (link[w℄) break;

// observe that w has degree two and hene ...

forall_inout_edges(f,w)

if (in_K[f℄) break;

}

edge e_new = AG.new_edge(link[v℄,link[w℄);

AG[e_new℄.on(path); // O(1) assignment

}

}

}

list<edge> el;

KURATOWSKI_SIMPLE(AG,el);

K.lear();

forall(e,el) K.on(AG[e℄);

There is a small optimization in the program above which we want to mention. Instead of

edge e new = AG.new edge(link[v℄,link[w℄);

AG[e new℄.on(path); // O(1) assignment

we could have written more elegantly

AG.new edge(link[v℄,link[w℄,path);

The second version calls the copy constructor to construct acopy ofpathas the edge infor-
mation of the new edge ofAG, the first version concatenatespath to the edge information
of the new edge (which is initialized to the default value of lists, i.e., the empty list, by the
new edge operation). Concatenation is a constant time operation. Concatenation empties
path and this is all right. We have now completed the implementation of the linear time
Kuratowski graph finder for biconnected graphs.

Arbitrary Graphs: We extend the algorithm to arbitrary graphsG. We first call the em-
bedding algorithm to find out ifG is planar. If it is, we are done.

So assume thatG is non-planar. Then one of the biconnected components ofG is non-
planar. The idea is to search for a non-planar biconnected component ofG and to call the
algorithm of the preceding section for the biconnected component.

We give more details. A callBICONNECTEDCOMPONENTS(G, compnum) returns
the numbernumc of biconnected components ofG and computes for each edge ofG the
index of the biconnected component containinge.

We iterate over all edges ofG and construct for everyc, 0 ≤ c < numc, the setE[c] of
edges in the component and the setV [c] of nodes of the component. We determine the set
V[c] as the set of endpoints of edges inE[c] and hence this set may contain duplicates.

8.7 Planarity Testing, Planar Embeddings, and Kuratowski Subgraphs 65

When the edge and node sets of all biconnected components aredetermined, we iterate
over all components. For eachc, 0 ≤ c < numc, we construct a copy of the component
in H . The nodes and edges ofH know their counterparts inG. SinceV [c] may contain
duplicates, we maintain a node arraylink, in which we store for each nodev in G, whether
a copy ofv has already been constructed inH . We resetlink when the construction ofH is
completed. In this way the extraction of a biconnected component has cost proportional to
the size of the component.

When the extraction of a component is completed, we test it for planarity. We break from
the loop once a non-planar biconnected component is found.

If G is biconnected we take a short cut and makeH a copy ofG.
The identification of Kuratowski graphs is simplified ifH is a map without self-loops

and parallel edges. We therefore remove self-loops (or do not put them intoH in the first
place) and parallel edges, and we turnH into a map by adding edges. Every added edge
is made to point to the same edge inG as its reversal. We then callKuratowskito find a
Kuratowski subgraphK of H . We turnK into a Kuratowski subgraph ofG by replacing
every edge by its counterpart inG.

〈Kuratowski graphs in arbitrary graphs〉�
bool BL_PLANAR(graph& G, list<edge>& K, bool embed)

{

if (BL_PLANAR(G, embed)) return true;

edge_array<int> omp_num(G);

int num_ = BICONNECTED_COMPONENTS(G,omp_num);

GRAPH<node,edge> H;

edge e;

if (num_ == 1)

{ CopyGraph(H,G);

Delete_Loops(H);

}

else

{ node_array<node> link(G,nil);

array<list<edge> > E(num_);

array<list<node> > V(num_);

forall_edges(e,G)

{ node v = soure(e); node w = target(e);

if (v == w) ontinue;

int = omp_num[e℄; E[℄.append(e);

V[℄.append(v); V[℄.append(w);

}

int ; node v;

for(= 0; < num_; ++)

{ H.lear();

forall(v,V[℄) if (link[v℄ == nil) link[v℄ = H.new_node(v);

forall(e,E[℄)

{ node v = soure(e); node w = target(e);

H.new_edge(link[v℄,link[w℄,e);

}

66 Embedded Graphs

forall(v,V[℄) link[v℄ = nil;

if (!BL_PLANAR(H,false)) break;

}

}

K.lear();

// H is a bionneted non-planar graph; we turn it into map

Make_Simple(H);

list<edge> R;

H.make_map(R);

forall(e,R) H[e℄ = H[H.reverse(e)℄;

// auxiliary edges inherit original edge from their reversal

Kuratowski(H,K);

list_item it;

forall_items(it,K) K[it℄ = H[K[it℄℄;

return false;

}

8.7.4 Running Times
Table 8.1 shows the running times of the functions discussedin this section. We used five
kinds of graphs:

• Random planar maps withn nodes andm = 2n uedges (P).

• Random planar maps withn nodes andm = 2n uedges plus aK3,3 on six randomly
chosen nodes (P +K3,3).

• Random planar maps withn nodes andm = 2n uedges plus aK5 on five randomly
chosen nodes (P +K5).

• Maximal planar maps withn nodes (MP).

• Maximal planar maps onn nodes plus one additional edge between two random nodes
that are not connected inG (MP + e).

We constructed the graphs using the generators discussed inSection 8.9 and then permuted
the adjacency lists, so as to hide the graph structure.

We ran the following algorithms:

• BL PLANAR(G), the Booth–Lueker planarity test (T) that gives a yes-no answer, but
does not justify its answer.

• BL PLANAR(G, K , true), the Booth–Lueker planarity test that justifies its answers(T
+ J). If G is planar, it turnsG into a planar map, and ifG is non-planar, it exhibits a
Kuratowski subgraph ofG.

8.7 Planarity Testing, Planar Embeddings, and Kuratowski Subgraphs 67

Graph Gen BLPLANAR Check HTPLANAR

T T + J T T + J

P 0.76 1.59 1.82 0.23 2.6 4.18

1.72 3.27 3.71 0.47 5.41 8.87

3.47 6.67 7.43 0.95 11.38 19.22

P + K3,3 0.97 1.1 5.66 0.17 2.54 –

1.74 2.4 12.65 0.34 5.16 –

3.56 5.47 20.01 0.69 11.02 –

P + K5 1 0.98 5.72 0.16 2.61 –

1.75 1.81 12.91 0.34 5.35 –

3.58 3.26 22.06 0.67 10.86 –

MP 0.87 2.28 2.41 0.33 3.88 6.24

1.5 4.59 4.84 0.66 7.81 12.98

3.05 9.23 9.66 1.34 16.06 26.84

MP + e 0.87 1.26 5.47 0.23 1.05 –

1.49 2.19 9.61 0.49 2.1 –

3.06 5.87 23.81 0.96 4.28 –

Table 8.1 The running times of functions related to planarity: The column labeled Gen contains
the time needed to generate the input graph. All other columns are as described in the text. We
usedn = 2i · 5000 fori = 0, 1, and 2. This table was generated with the program planarity time
in the demo directory.

• The check whether the algorithm in the previous item worked correctly, i.e., the check
Genus(G) == 0, if G is planar, andCHECKKURATOWSKI(G, K), if G is
non-planar.

• HT PLANAR(G), the Hopcroft–Tarjan planarity test (T) that gives a yes-noanswer,
but does not justify its answer.

• HT PLANAR(G, K , true), the Hopcroft–Tarjan planarity test that justifies its answers
(T + J). This algorithm was only run when the previous item declaredG planar. The
extraction of the Kuratowski subgraph would have taken hours, since there is no
efficient Kuratowski finder implemented for the Hopcroft–Tarjan planarity test.

68 Embedded Graphs

Exercises for 8.7
1 Show that the number of distinct permutations in which the virtual leaves ofBk can

appear on the horizon is

2C · P,

whereC is the number of biconnected components ofBk with three or more attachments
and P =

∏
pv! where the product is over all articulation points ofBk and pv is the

number of non-root components ofBk with respect tov.
2 Improve the running time of the simple search for Kuratowski subgraphs toO(n2). Make

sure that your algorithm works in the presence of parallel edges and self-loops.
3 Let G be a graph, lete = (a, b) be an edge ofG, and letG′ be obtained fromG by

contraction ofe. Show that ifG′ contains a Kuratowski subgraph thenG does.
4 We have shown in Lemma 9 that the existence of an obstructionin Bk guarantees the

existence of the Kuratowski subgraph ofG. Show that it guarantees thatBk+1 has no
bush form.

8.8 Manipulating Maps and Constructing Triangulated Maps

In the chapter on graphs we saw functions that allow us to add new nodes and edges to a
graphG. In particular,

edge G.new edge(node v, node w)

adds a new edge(v, w) to G and returns it. The edge is appended tooutedges(v) and to
eitherin edges(w) (if G is directed) oroutedges(w) (if G is undirected).

In this chapter the cyclic ordering of the adjacency lists plays a crucial role and hence
we need much finer control over the positions where edges are inserted into adjacency lists.
The following function gives full control:

edge G.new edge(edge e1, edge e2,

int d1 = LEDA::after, int d2 = LEDA::after)

adds a new edgex = (v, w) to G, wherev = source(e1) andw = target(e2), and returns
the new edge. The new edge is inserted before or after edgee1into outedges(v) as directed
by d1. If G is directed, it is also inserted before or after edgee2into in edges(w) as directed
by d2. If G is undirected, it is also inserted before or after edgee2 into outedges(w) as
directed byd2. The constantsLEDA::after andLEDA::beforeare predefined constants.

If control about the position of insertion is needed at only one endpoint of the edge (or if
the new edge is the first edge incident to a node) the functions

edge G.new edge(edge e, node w, int dir = LEDA::after)

edge G.new edge(node v, edge e, int dir = LEDA::after)

should be used. The former function adds a new edgex = (source(e), w) to G. x is
inserted before or after edgee into outedges(source(e)) as directed bydir and appended to

8.8 Manipulating Maps and Constructing Triangulated Maps 69

in edges(w) (if G is directed) oroutedges(w) (if G is undirected). The operation returns
the new edgex. If G is undirected we must havesource(e) 6= w. The latter function is
symmetric to the former.

Related to thenewedgefunction is themoveedgefunction. The call

G.move edge(edge e, node v, node w)

requires thate is an edge ofG. It makesv the source ofe andw the target ofe. For all
versions of thenewedgefunction mentioned above, there is a corresponding versionof the
moveedgefunction, which takes the edge to be moved as an additional argument. The effect
of moveedge(e, v, w) is similar, but distinct to the combined effect ofdeledge(e) followed
by newedge(v, w). The effect is similar ase ceases to make the connection between its
old source and target and as there is now an edge fromv to w. The effect is distinct, as
moveedgemoves an already existing edge (which may for example have associated entries
in edge arrays) andnewedgecreates a new edge.

For maps it is frequently convenient to add an edge and its reversal in a single operation.

edge M.new map edge(edge e1, edge e2)

inserts a new edgee = (source(e1), source(e2)) aftere1into the adjacency list ofsource(e1)
and the reversal toe aftere2 into the adjacency list ofsource(e2).
The following function splits a uedge in a mapM.

edge M.split map edge(edge e)

splits edgee = (v, w) and its reversalr = (w, v) into edges(v, u), (u, w), (w, u), and
(u, v), whereu is a new node. It returns the edge(u, w).

We give an application of the functions above. We show how totriangulate a map. Let
M be a map. The task is to add edges toM such that:

• the genus is not increased, in particular, a plane map stays plane, and

• every face cycle of the resulting map consists of at most three edges.

Both items are easy to achieve. As long asM is not connected we take any two nodesv

andw in distinct components and join them by a uedge. This increases the number of edges
by two, decreases the number of components by one, and eitherdecreases the number of
isolated nodes by two and increases the number of face cyclesby one, or decreases the
number of isolated nodes by one and leaves the number of face cycles unchanged, or leaves
the number of isolated nodes unchanged and decreases the number of face cycles by one.
In either case the genus is unchanged.

So assume thatM is connected. As long as there is a face cycle consisting of four or
more edges, we consider any such face cycleC and two nodesv andw on C that are not
neighbors onC, say

C = [. . . , e2, v, e4, . . . , e3, w, e1, . . .].

We splitC by adding edges(v, w) and(w, v). The edge(v, w) is added aftere4 to the list
of out-edges ofv and the edge(w, v) is added aftere1 to the list of out-edges ofw; this is

70 Embedded Graphs

the reverse of the operation illustrated in Figure 8.11. Adding the two edges increases the
number of face cycles by one; thus the genus is not changed.

We use the triangulation routine as a subroutine in our straight line drawing routine for
planar graphs. The straight line drawing routine assumes that its input is a triangulated
graph without parallel edges. We therefore have to make surethat the triangulation routine
does not introduce parallel edges. Unfortunately, when face cycles are split independently,
parallel edges may be introduced. We want to avoid this.

• If the genus ofM is zero then no new edge is parallel to another edge of the graph
(new or old).

Christian Uhrig and Torben Hagerup suggested a triangulation algorithm that achieves
all three items above. Their algorithm runs in linear timeO(n + m). The algorithm steps
through the nodes ofM. For each nodev, it triangulates all faces incident onv. For each
nodev, this consists of the following:

First, the neighbors ofv are marked. During the processing ofv, a node will be marked
exactly if it is a neighbor ofv.

Then the faces incident onv are processed in any order. A face with boundary [v =
x1, x2, . . . , xn] is triangulated as follows: ifn ≤ 3, nothing is done. Otherwise,

(1) if x3 is not marked, a uedge{x1, x3} is added,x3 is marked, and the same strategy is
applied to the face with boundary [x1, x3, x4, ..., xn].

(2) if x3 is marked, a uedge{x2, x4} is added, and the same strategy is applied to the face
with boundary [x1, x2, x4, x5, ..., xn].

When all faces incident tov are triangulated, all neighbors ofv are unmarked.
The algorithm just described clearly triangulates all facecycles. We need to show that it

does not introduce parallel edges.
During the processing of a nodev, the marks on neighbors ofv clearly prevent the addi-

tion of a parallel edge with endpointv. After the processing ofv, such an edge is not added
because all faces incident onv have been triangulated. This takes care of the edges added
in (1).

Whenever a uedge{x2, x4} is added in step (2), the presence of a uedge{x1, x3} implies
that x2 andx4 are incident on exactly one common face, namely the face currently being
processed, see Figure 8.32. Hence another edge{x2, x4} will never be added.

The linear running time can be seen as follows. The time to process a nodev is propor-
tional to the degree ofv plus the number of edges added during the processing ofv. The
total running time is therefore proportional toO(n + m′) wherem′ is the number of edges
in the final graph. The number of uedges in the final graph is at most 3n by Lemma 3.

The following program implements the algorithm. We first addedges to make the graph
connected, then make sure that all reversal informations are properly set, and finally add
edges to triangulate the graph.

8.8 Manipulating Maps and Constructing Triangulated Maps 71

x4

x3

x2

v = x1

Figure 8.32 x1, x2, x3, andx4 are consecutive nodes on a face and the uedge{x1, x3} exists.
Then{x2, x4} cannot exist.

〈triangulate.c〉�
list<edge> graph::triangulate_map()

{ node v;

edge x, e, e1, e2, e3;

list<edge> L;

〈add edges to make the graph connected〉
if (!make_map())

error_handler(1,"TRIANGULATE_PLANAR_MAP: graph is not a map.");

node_array<int> marked(*this,0);

forall_nodes(v,*this)

{ list<edge> El = adj_edges(v);

// mark all neighbors of v

forall(e1,El) marked[target(e1)℄ = 1;

〈process faces incident to v〉
//unmark all neighbors of v

node w;

forall_adj_nodes(w,v) marked[w℄ = 0;

} // end of stepping through nodes

return L;

}

The two sub-steps are both fairly easy to implement. For the first sub-step we call
COMPONENTs to determine the number of connected componentsand to label each node
with its component number. If there is more than one component, we create an array
still disconnectedwith index set [0.. c − 1], wherec is the number of connected com-
ponents. For each component except the one which containss, the first node ofG, we state
that the component still needs to be connected with the component containings. We then
iterate over all nodes. Whenever we encounter a nodev whose component still needs to

72 Embedded Graphs

be connected withs, we add the uedge{v, s}, and record that the component ofv is now
connected with the component ofs.

〈add edges to make the graph connected〉�
node_array<int> omp(*this);

int = COMPONENTS(*this, omp);

if (> 1)

{ node s = first_node();

array<bool> still_disonneted();

for (int i = 0; i < ; i++)

still_disonneted[i℄ = (i == omp[s℄ ? false : true);

forall_nodes(v,(*this))

{ if (still_disonneted[omp[v℄℄)

{ set_reversal(e1 = new_edge(s,v), e2 = new_edge(v,s));

L.append(e1); L.append(e2);

still_disonneted[omp[v℄℄ = false;

}

}

}

The faces incident to a nodev are processed as described above. We store three consec-
utive edges of the face ine1, e2, ande3, respectively. If either of the three edges ends inv,
the face cycle has length at most three and we are done.

So assume otherwise and letw be the endpoint ofe2.
If w is not marked, we markw and add the uedge{v, w} inside the current face, i.e., we

add the edge(w, v) after e3 to A(w) and we add the edge(v, w) after e1 to A(v). Also
(v, w) becomes the newe1, e2becomese3, ande3becomes the face cycle successor ofe2.

If w is marked, we add the uedge{source(e2), target(e3)} inside the current face, i.e.,
after edgee2atsource(e2) and after the face cycle successor ofe3at target(e3).

〈process faces incident to v〉�
forall(e,El)

{

e1 = e;

e2 = fae_yle_su(e1);

e3 = fae_yle_su(e2);

if (target(e1) == v || target(e2) == v || target(e3) == v) ontinue;

while (target(e3) != v)

{ node w = target(e2);

if (!marked[w℄)

{ // we mark w and add the uedge {v,w}

marked[w℄ = 1;

L.append(x = new_edge(e3,v));

L.append(e1 = new_edge(e1,w));

set_reversal(x,e1);

e2 = e3;

e3 = fae_yle_su(e2);

}

else

8.9 Generating Plane Maps and Graphs 73

{ //add the uedge {soure(e2),target(e3)}

e3 = fae_yle_su(e3);

L.append(x = new_edge(e3,soure(e2)));

L.append(e2 = new_edge(e2,soure(e3)));

set_reversal(x,e2);

}

}//end of while

} //end of stepping through inident faes

8.9 Generating Plane Maps and Graphs

We discuss the generation of random plane maps and random plane graphs. We describe two
methods to generate plane maps, a combinatorial method and ageometric method. We warn
the reader that neither method generates plane maps according to the uniform distribution.

Combinatorial Constructions: The function

void maximal planar map(graph& G, int n);

generates a plane map withn nodes and 3n − 6 uedges, no self-loops and no parallel edges.
The number of edges is the maximal possible, see Lemma 3, and,if n ≥ 3, every face cycle
is a triangle.

We give the implementation. Ifn = 0 we return the empty graph, ifn = 1 we return the
graph consisting of a single isolated node, and ifn = 2 we return the graph consisting of
two nodes and a single uedge. So letn > 2 and assume, that we have already constructed a
maximal planar map withn−1 nodes. We select one of the existing edges, saye, at random
and put a new nodev into the face to the left ofe.

Let [e1, e2, e3] be the face cycle containinge (when the third node is inserted the face
cycle has length 2 instead of 3). For eachi we add the edge(source(ei), v) to A(source(ei))

afterei and we append the edge(v, source(ei)) to A(v).

〈generateplanar map.c〉�
void maximal_planar_map(graph& G, int n)

{

G.lear();

if (n <= 0) return;

node a = G.new_node();

n--;

if (n == 0) return;

node b = G.new_node();

n--;

edge* E = new edge[n == 0? 2 : 6*n℄;

E[0℄ = G.new_edge(a,b); E[1℄ = G.new_edge(b,a);

74 Embedded Graphs

G.set_reversal(E[0℄,E[1℄);

int m = 2;

while (n--)

{ edge e = E[rand_int(0,m-1)℄;

node v = G.new_node();

while (target(e) != v)

{ edge x = G.new_edge(v,soure(e));

edge y = G.new_edge(e,v,LEDA::after);

E[m++℄ = x; E[m++℄ = y;

G.set_reversal(x,y);

e = G.fae_yle_su(e);

}

}

delete[℄ E;

}

The function

void random planar map(graph& G, int n, int m);

generates a plane map withn nodes and min(m, 3n−6) uedges. It first generates a maximal
plane map and then deletes a random set of uedges until the desired number of edges is
obtained.

The functions

void maximal planar graph(graph& G, int n);

void random planar graph(graph& G, int n, int m);

first construct a plane map with the same parameters and then keep only one of the edges
comprising each uedge.

Geometric Constructions: Geometry is a rich source of planar graphs. A simple way
to generate a planar map is to choosen random points in the plane and to triangulate the
resulting point set. We will see how to triangulate a point set in Section 10.3. Alternatives
are to compute the Delaunay triangulation of a set of random points, see Section 10.4, or
to choose a random set of segments and to compute the arrangement of the segments, see
Section 10.7.

The functions

void triangulation map(graph& G, int n);

void triangulation map(graph& G, node array<double>& xoord,

node array<double>& yoord, int n);

void triangulation map(graph& G, list<node>& outer fae,

node array<double>& xoord,

node array<double>& yoord,

int n);

8.10 Faces as Objects 75

choosen random points in the unit square and setG to some triangulation.G will be a plane
map. The first function only returns the triangulation, the second function also returns the
point coordinates, and the third function also returns the list of vertices lying on the convex
hull (in clockwise order).

The function

void random planar map(graph& G, node array<double>& xoord,

node array<double>& yoord, int n, int m);

first constructs a triangulated planar map and then deletes all but m edges.
All functions above are also available withmapreplaced bygraph in the function name.

The modified functions keep only one edge of each uedge.

8.10 Faces as Objects

The face cycles of maps played an important role in the preceding sections. It is therefore
only natural to introduce them as a type of their own. For succinctness, we use the type
nameface.

8.10.1 Concepts
The operation

M.ompute faes()

computes the set of face cycles of the mapM; the function aborts ifM is not a map. After
this operation and till the next modification ofM by a newnode, newedge, delnode, or
deledgeoperation, the face cycles ofM are available in much the same way as the edges
and nodes ofM are available.

For example,

int M.number of faes();

list<fae> M.all faes();

return the number of faces and the list of all faces ofM, respectively. If f is a face, the
predecessor and successor face off in the list of all faces is returned byM.succface(f)

andM.predface(f), respectively, and the first and last face in the list of all faces is returned
by M.first face() andM.last face(), respectively. The four functions just mentioned return
nil if the requested object does not exist. The iteration statement

forall faes(f,M)

iterates over all face cycles ofM.
The function

fae M.fae of(edge e)

returns the face cycle ofM which contains the edgee and the functions

76 Embedded Graphs

list<edge> M.adj edges(fae f)

edge M.first fae edge(fae f)

int M.size(fae f)

return the list of all edges in the face cyclef , the first edge in this cycle, and the number of
edges in the face cycle, respectively. The iteration statement

forall fae edges(e,f)

iterates over all edgese in the face cyclef .
For a nodev, the function

list<fae> M.adj faes(node v)

returns the list of faces incident tov. More precisely, ifA(v) = [e0, e1, . . . , ek−1] is the list
of edges out ofv then the list [faceof(e0), . . . , faceof(ek−1)] is returned.

Similarly, for a facef , the function

list<node> M.adj nodes(fae f)

returns the list of all nodes ofM incident to f . More precisely, if f = [e0, e1, . . . , ek−1],
the list [source(e0), . . . , source(ek−1)] is returned.

There is a small number of update operations which do not destroy the list of faces of a
map. The operation

edge M.split fae(edge e1, edge e2)

inserts the edgee = (source(e1), source(e2)) and its reversal intoM and returnse. The
edgese1 and e2 must belong to the same face. This face cycle is split into twoby the
operation by insertinge aftere1 into the list of edges out ofsource(e1) and by insertingeR

aftere2 into the list of edges out ofsource(e2). The operation

fae M.join faes(edge e)

deletes the edgee and its reversal fromM and updates the list of faces accordingly. Letf
andg be the face cycles containinge andeR, respectively. Assume first thatf 6= g. If both
f andg consist of a single edge22 then the number of face cycles goes down by two andnil
is returned. If at least one off or g consists of more than one edge, thenf andg are joined
into a single face and this face is returned. When we coined the name for the operations we
assumed that the latter case would be the “normal” use of the operation. Assume next that
f = g. If f consists of exactly two edges, namelye andeR then the number of face cycles
goes down by one andnil is returned. If f consists of at least three edges and eithere or
eR is the face cycle successor of the other then the number of face cycles is unchanged and
f is returned. Finally, if neithere nor eR is the face cycle successor of the other, then the
number of faces goes up by one and one of the new faces is returned.

8.10 Faces as Objects 77

Figure 8.33 The dual of our mapM0. The dual has two nodes (shown as squares) and four
uedges (drawn dashed).

8.10.2 The Dual of a Map
The (combinatorial) dual of a mapM is another mapD, see Figure 8.33:

• D has one node for each face cycle ofM. More precisely, the nodes ofD and the face
cycles ofM are in one-to-one-correspondence. We used(f) to denote the node ofD
corresponding to the face cyclef of M.

• D has one edge for each edge ofM. Let e be any edge ofM, let f be the face cycle
containinge, and letg be the face cycle containingeR. ThenD contains the edge
d(e) = (d(f), d(g)).

• Let f = [e0, e1, . . . , ek−1] be a face cycle ofM. Then the cyclic adjacency list of the
noded(f) of D is equal to [d(e0), d(e1), . . . , d(ek−1)].

The following program computes the dualD of a mapM. We first compute the face
cycles ofM. We then put a node intoD for each face cycle ofM and record the corre-
spondence in afacearray<node>. We then iterate over all face cycles ofM and for each
face cycle over the edges comprising the face cycle. For eachedge we constructs its dual
and record the correspondence. Observe that the edges incident to any dual node are con-
structed in the order in which they are supposed to appear in the adjacency list of the dual
node. Finally, we establish the reversal information of alldual edges.

〈dual.c〉�
void graph::dual_map(graph& D) onst

{ D.lear();

graph& M = *((graph*)this); // ast away the onst

M.ompute_faes();

fae f; edge e;

fae_array<node> dual(M);

forall_faes(f,M) dual[f℄ = D.new_node();

22 This case occurs, for example, in a graph with one node and oneuedge.

78 Embedded Graphs

edge_array<edge> dual_edge(M);

forall_faes(f,M)

{ node df = dual[f℄;

forall_fae_edges(e,f)

{ fae g = M.fae_of(M.reversal(e));

dual_edge[e℄ = D.new_edge(df,dual[g℄);

}

}

forall_edges(e,M)

D.set_reversal(dual_edge[e℄,dual_edge[M.reversal(e)℄);

}

8.10.3 Faces of Planar Maps
There are two functions that deal with faces of planar maps. The function

void M.make planar map()

assumes thatM is a bidirected graph. It first callsM.makemap() to turn M into a map. It
then callsPLANAR(M, true) to turnM into a plane map. It finally callsM.computefaces()

to compute the face cycles ofM.
The function

list<edge> M.triangulate planar map()

calls M.triangulatemap() followed by M.computefaces() and returns the list of edges
added toM by the former call.

Exercise for 8.10
1 Is the dual of the dual of a mapM isomorphic toM? Give a counterexample. Under

which conditions does the claim hold? State and prove a lemma.

8.11 Embedded Graphs as Undirected Graphs

The reader may wonder about the use of directed graphs in thischapter. After all, in maps
we always combine a pair of directed edges into a uedge. We chose bidirected graphs to
represent maps mainly for two reasons.

Although maps are basically undirected graphs, the two orientations of an undirected
edge play a major role in the functions operating on maps. In particular, the face cycle
successor of an edge and the reversal of an edge are “directedconcepts” and hence would
require additional arguments if maps were realized by undirected graphs. For example, one
could distinguish the two orientations of an undirected edge by specifying a node to indicate
the source node of the oriented edge. This would, however, not work for self-loops.

The second reason is that maps are frequently constructed incrementally and that the two

8.12 Order from Geometry 79

orientations of an edge are constructed at different moments of time. We saw one example
already in the programdualmapthat constructs the dual of a map. Such constructions are
difficult to implement with a representation that can only represent maps. The problem is
that we arrive at a map at the end of the construction process but have no map during the
construction process.

Our choice of directed graphs to represent maps wastes space, since the two edges com-
prising a uedge are stored in two lists at each endpoint of theuedge. One list for each
endpoint would suffice for most functions presented in this chapter.

8.12 Order from Geometry

The following problem arises frequently. A graph is constructed by drawing it in aGraphWin
and the combinatorial structure of the graph is supposed to reflect the drawing, i.e., for ev-
ery nodev the cyclic order ofA(v) is supposed to agree with the counter-clockwise order
of the edges out ofv in the drawing.

Let us be more precise. For every edgee let d(e) be a vector (not necessarily, non-zero) in
the plane. We define an order on two-dimensional vectors. Fora non-zero vectord let α(d)

be the angle between the positivex-axis andd, i.e., the angle by which the positivex-axis
has to be turned in counter-clockwise direction until it aligns withd. A vectord1 precedes
a vectord2 if α(d1) < α(d2) and a vectord1 is equivalentto a vectord2 if α(d1) = α(d2).
The zero vector precedes all other vectors. The implementation of this order on vectors is
discussed in Chapter 8 on geometry kernels.

The functions

bool SORT EDGES(graph &G,

onst edge array<NT>& dx, onst edge array<NT>& dy)

bool SORT EDGES(graph &G,

onst node array<NT>& x, onst node array<NT>& y)

reorder all adjacency lists in non-decreasing order of the vectorsd(e), e ∈ E. For the first
function, the vector associated with an edgee is (dx[e], dy[e]), and for the second function,
the vector associated with an edgee = (v, w) is (x[w] − x[v], y[w] − y[v]).

The functions returntrue if G is a plane map after the reordering. When will this be the
case? Assume thatG is a map and that the vectorsd(e) come from a planar drawing ofG,
i.e.,d(e) is a vector tangent to the image ofe as it leaves its source. IfG has no self-loops
and no parallel edges23 thenG will be a plane map after the call ofSORTEDGES. In fact,
it will be a plane map for which the given drawing is an order-preserving embedding.

We next give an application of the function SORTEDGES to the task described in the

23 Observe that sorting edges by angle leaves the relative order of self-loops and the relative order of parallel edges
undefined.

80 Embedded Graphs

introductory paragraph. The goal is to deduce a plane map from a straight line drawing of
the map. Assume thatgw is a GraphWin with an associated graphG, i.e., defined by

〈gw sort edgesdemo〉�
graph G;

〈gw sort edgesdemo: auxiliary functions〉
int main()

{ GraphWin gw(G,"Plane Map from Geometry");

gw.set_init_graph_handler(init_handler);

gw.set_new_edge_handler(new_edge_handler);

gw.set_del_edge_handler(del_edge_handler);

gw.set_new_node_handler(new_node_handler);

gw.set_del_node_handler(del_node_handler);

gw.set_direted(true);

gw.display();

gw.edit();

return 0;

}

We define an auxiliary functionsort that queries for each nodev of G its position ingwand
then calls SORTEDGES. We callsort whenever an edge is added to the graph (and hence
the new edge handler is called) or if a new graph is read in bygw (and hence the init handler
is called). When an edge is added, we also add the reversal to make sure that we deal with
a map.

The effect of the call ofsort is to rearrange the adjacency lists according to the counter-
clockwise order in which the edges incident to any node appear in the drawing. We print
the graph at the end of sort in order to allow a visual comparision between the drawing and
the representation of the graph. The graph will be a plane mapas long as the drawing is a
planar embedding.

〈gw sort edgesdemo: auxiliary functions〉�
void sort(GraphWin& gw)

{

node_array<double> x(G), y(G);

node v;

forall_nodes(v,G)

{ point p = gw.get_position(v);

x[v℄ = p.xoord(); y[v℄ = p.yoord();

}

SORT_EDGES(G,x,y);

out << "\n\nThe adjaeny lists are:\n";

G.print();

}

void init_handler(GraphWin& gw)

{ list<edge> L;

G.make_map(L);

8.13 Miscellaneous Functions on Planar Graphs 81

sort(gw);

}

void new_edge_handler(GraphWin& gw, edge e)

{ G.set_reversal(e,gw.new_edge(G.target(e),G.soure(e)));

sort(gw);

}

bool del_edge_handler(GraphWin& gw, edge e)

{ gw.del_edge(G.reversal(e)); return true; }

void new_node_handler(GraphWin& gw,node) {}

void del_node_handler(GraphWin& gw) {}

We will see more functions that relate geometry and graphs inChapter 10 on geometric
algorithms.

Exercises for 8.12
1 Extend the gwdrawingdemo.c such that it can also cope with edges that contain bends.
2 Write a function that checks whether the geometric positions assigned to the nodes of

a map define a straight line embedding of the map. Hint: Read Section 10.7.2 on line
segment intersection before working on this exercise.

8.13 Miscellaneous Functions on Planar Graphs

There are many problems that are simpler for planar graphs than for arbitrary graphs. We
collect two in this section.

8.13.1 Five Coloring
Every planar graph can be four-colored, i.e., the nodes of the graph can be labeled with
the integers 1 to 4 such that any edge connects two nodes of distinct color. We have not
implemented a four coloring algorithm but only a five coloring algorithm.

The function

void FIVE COLOR(graph& G, node array<int>& C);

attempts to color the nodes ofG using five colors, more precisely, it computes for every
nodev a colorC[v] ∈ {1, . . . , 5}, such thatC[source(e)] 6= C[target(e)] for every edgee.
The function runs in linear time and is guaranteed to succeedif G is planar and contains no
self-loops and no parallel edges24.

We sketch how the algorithms works. In a planar graph there isalways a node with at
most five neighbors (Lemma 3). Letv be a node with at most five neighbors. Ifv has
less than five neighbors, we recursively five-color the graphG \ v and then use a color for
v which is not used by any of its neighbors. Ifv has degree 5, we have to work slightly

24 Self-loops are clearly an obstruction to colorability. Parallel edges are no “real” problem; it is just that our
algorithm is not able to handle them.

82 Embedded Graphs

harder. We observe that there must be two neighbors ofG which are not connected by an
edge (otherwise the neighbors ofv would form a complete graph on five nodes; this is,
however, impossible in a planar graph by Lemma 3). Letw andz be two neighbors ofv
that are not connected by an edge. We removev and mergew andz into a single node. This
can be done without destroying planarity as Figure 8.34 shows. When mergingw andz we
also delete any parallel edges which may result from the merging process. We five-color the
resulting graphG′ recursively. In order to obtain a coloring ofG we unmergew andz, give
w andz the color of the node that represented them both inG′, and givev a color which is
not used on its neighbors.

To obtain linear running time is slightly tricky and we leaveit for the exercises.

w

v

z

w

z

Figure 8.34 Merging the neighborsw andz of v.

8.13.2 Independent Sets of Small Degree
An independent set in a graphG is a setI of nodes no two of which are connected by an
edge. A five coloring of a graph yields an independent set of size at leastn/5, since at least
one of the colors is used on at leastn/5 of the nodes and since all edges have their endpoints
in different color classes. Sometimes, it is desirable to have an independent set all of whose
nodes have small degree.

The function

void INDEPENDENT SET(onst graph& G, list<node>& I)

computes an independent setI all of whose nodes have degree at most 9. IfG is planar
and has no parallel edges, it is guaranteed that|I | ≥ n/6. The algorithm is due to David
Kirkpatrick and Jack Snoeyink [KS97] and is extremely simple and elegant.

The algorithm starts by removing all nodes that have degree 10 or more. It then repeatedly
chooses a nodev of smallest degree, addsv to I , and removesv and its neighbors fromG.

We describe an implementation. We start by making an isomorphic copyH of G; H is

8.13 Miscellaneous Functions on Planar Graphs 83

of typeGRAPH<node, edge>, and each nodev of H stores inH [v] the node ofG to which
it corresponds. We saw the implementation ofCopyGraphin Section 6.1. We will work on
H .

We delete all self-loops fromH and turnH into a map. Recall that turning a graph into
a map pairs a maximum number of edges and adds reversals for the unpaired edges. After
turning H into a map, each edge is part of a uedge.

We then determine all nodes of degree at least 10 and delete all such nodes.
Next we collect all nodes ofH of degreei , 0 ≤ i ≤ 9 in a linear listLD[i]. In the course

of the algorithm the listsLD[i] may contain nodes that were already deleted fromH . We
need to be able to identify those nodes and therefore maintain an arraynodeof H.

The construction of the independent set can now begin. As long asH is not empty, we
select a nodev from the lowest indexed non-empty list. We continue the selection process
until we select a node that belongs to the currentH . We addH [v] to I (recall thatH [v] is
the node inG that corresponds tov), and we deletev and its neighbors fromH ; we do not
remove them from the listsLD though (this could be done by maintaining an arrayposin LD
that stores for each nodev the item inLD that containsv). We collect all neighbors ofv in
a listaffectednodesand add them to the listsLD according to their new degrees.

〈 independentset〉�
void INDEPENDENT_SET(onst graph& G, list<node>& I)

{ I.lear();

GRAPH<node,edge> H;

CopyGraph(H,G);

node v; edge e;

list<edge> E = H.all_edges();

forall(e,E) { if (H.soure(e) == H.target(e)) H.del_edge(e); }

H.make_map(E); // E is a dummy argument

list<node> HD; // high degree nodes

forall_nodes(v,H) if (H.degree(v) >= 10) HD.append(v);

forall(v,HD) H.del_node(v);

array<list<node> > LD(10);

forall_nodes(v,H) LD[H.degree(v)℄.append(v);

node_array<bool> node_of_H(H,true);

while (H.number_of_nodes() > 0)

{ int i = 0;

while (i < 10)

{ if (LD[i℄.empty()) { i++; ontinue; }

v = LD[i℄.pop();

if (node_of_H[v℄) break;

}

I.append(H[v℄);

list<node> affeted_nodes;

forall_inout_edges(e,v)

{ node w = H.opposite(v,e);

edge f;

forall_inout_edges(f,w)

84 Embedded Graphs

affeted_nodes.append(H.opposite(w,f));

H.del_node(w); node_of_H[w℄ = false;

}

H.del_node(v); node_of_H[v℄ = false;

forall(v,affeted_nodes)

if (node_of_H[v℄) LD[H.degree(v)℄.append(v);

}

}

Exercises for 8.13
1 Extend the functionFIVE COLORINGso that it can handle parallel edges.
2 Implement the function FIVECOLORING. Try to achieve linear running time.
3 Modify the implementation of INDEPENDENTSET such that the listsLD contain only

nodes ofH and every node at most once.
4 A separator in a graphG is a setS of nodes ofG such that removal ofS decomposes

G into two or more subgraphs none of which has more than 2n/3 nodes. Planar graphs
have separators of sizeO(

√
n) and there are linear time algorithms to compute them, see

[LT77] or [Meh84, IV.10]. Implement the planar separator theorem and provide it as a
LEP.

Bibliography

[Bat] G. Di Battista. GD-Toolkit. Check the item
“friends” of the LEDA-web page for a pointer.

[BETT94] G. Di Battista, P. Eades, R. Tamassia,
and I. Tollis. Algorithms for drawing graphs:
An annotated bibliography.Computational
Geometry: Theory and Applications,
4(5):235–282, 1994.

[BL76] K.S. Booth and G.S. Lueker. Testing for the
Consecutive Ones Property, Interval Graphs,
and Graph Planarity UsingPQ-tree Algorithms.
Journal of Computer and System Sciences,
13:335–379, 1976.

[CNAO85] N. Chiba, T. Nishizeki, S. Abe, and
T. Ozawa. A linear algorithm for embedding
planar graphs using PQ-trees.Journal of
Computer and System Sciences, 30(1):54–76,
1985.

[DETT98] G. Di Battista, P. Eades, R. Tamassia,
and I.G. Tollis.Graph Drawing: Algorithms for
the Visualization of Graphs. Prentice-Hall,
1998.

[dFPP88] H. de Fraysseix, J. Pach, and R. Pollack.
Small sets supporting Fáry embeddings of
planar graphs. InProceedings of the 20th
Annual ACM Symposium on Theory of
Computing (STOC’88), pages 426–433, 1988.

[EM98] P. Eades and P. Mutzel. Graph drawing
algorithms. In M.J. Athallah, editor,Algorithms
and Theory of Computation Handbook. CRC
Press, 1998.

[Eul53] L. Euler. Demonstratio nonulaarum
insignium proprietatum, quibus solida hedris
planis inclusa sunt praedita.Novi Comm. Acad.

Sci. Petropol., 4:140–160, 1752/53.
[Eve79] S. Even.Graph Algorithms. Pitman, 1979.
[F4́8] I. Fáry. On straight line representations of

planar graphs.Acta. Sci. Math. (Szeged),
11:229–233, 1948.

[HMN96] C. Hundack, K. Mehlhorn, and S. Näher.
A Simple Linear Time Algorithm for
Identifying Kuratowski Subgraphs of
Non-Planar Graphs. see the chapter on
embedded graphs in the LEDAbook, 1996.

[HT74] J.E. Hopcroft and R.E. Tarjan. Efficient
planarity testing.Journal of the ACM,
21:549–568, 1974.

[JMN] M. Jünger, P. Mutzel, and S. Näher. The
AGD graph drawing library. Search the WEB
for AGD or one of the authors.

[Kar90] A. Karabeg. Classification and detection of
obstructions to planarity.Linear and
Multilinear Algebra, 26:15–38, 1990.

[KL93] D. Knuth and S. Levy.The CWEB System
of Structured Documentation, Version 3.0.
Addison-Wesley, 1993.

[KS97] D. Kirkpatrick and J. Snoeyink, 1997.
personal communication.

[Kur30] C. Kuratowski. Sur le problème the
courbes guaches en topologie.Fundamenta
Mathematicae, 15:271–283, 1930.

[LEC67] A. Lempel, S. Even, and I. Cederbaum.
An Algorithm for Planarity Testing of Graphs.
In P. Rosenstiehl, editor,Theory of Graphs,
International Symposium, Rome, pages
215–232, 1967.

[LT77] R. Lipton and R.E. Tarjan. A separator

85

86 Bibliography

theorem for planar graphs. InConference on
Theoretical Computer Science, Waterloo, pages
1–10, 1977.

[Meh84] K. Mehlhorn.Data Structures and
Algorithms 2: Graph Algorithms and
NP-Completeness. Springer, 1984.

[MM95] K. Mehlhorn and P. Mutzel. On the
embedding phase of the Hopcroft and Tarjan
planarity testing algorithm.Algorithmica,
16(2):233–242, 1995.

[MMN94] K. Mehlhorn, P. Mutzel, and S. Näher.
An implementation of the Hopcroft and Tarjan
planarity test and embedding algori thm, 1994.
available at the first authors WEB-page.

[NC88] T. Nishizeki and N. Chiba.Planar Graphs:
Theory and Algorithms. Annals of Discrete
Mathematics (32). North-Holland Mathematics
Studies, 1988.

[Poi93] H. Poincaré. Sur la généralisation d’un
theorem d’Euler relativ aux polyédres.Comptes
Rend. Acad. Sci. Paris, 117:144–145, 1893.

[Ram94] N. Ramsey. Literate programming
simplified. IEEE Software, 11:97–105, 1994.

[Whi73] A.T. White. Graphs, Groups, and
Surfaces. North Holland, 1973.

Index

adjacency list, 15

bidirected graph, 5–10
vs undirected graph, 79

BL PLANAR, 11, 33, 42, 65
Booth–Lueker planarity test, 30
boundary cycle, 20
bush form, 24

checkreversalinf, 7
Chiba et al. embedding algorithm, 33
cyclic adjacency list, 15

demo
programs

planarity, 12, 13
drawing of a graph, 3–5

without crossings,seeembedded graphs
dual of a map, 77

embedded graph (map), 2–84
forall, 76
basics, 10–15
bidirected, 5–10
boundary cycle, 20
construction

by drawing, 79–81
by embedding algorithm, 11
from graph, 9

definition of embeddded graph, 10
definition of map, 6
drawing, 3–5
dual of a map, 77
face (geometric concept), 20
face (programming concept), 75–78
face cycle (combinatorial concept), 17
generation of plane maps and graphs, 73–75
genus, 19
genus of plane map, 20–23

order-preserving embedding, 15–16
planar embedding, 10–15
planar map, 78
planarity, 10–15
planarity test, 24–33
plane map, 16, 20–23

number of edges, 22
undirected graph vs bidirected graph, 79
updates, 68–73

face (geometric concept), 20
face (programming concept), 75
face cycle (combinatorial concept), 17
FIVE COLOR, 81

Genus, 19
genus of a map, 19
genus of plane maps, 20
graph

forall, 76
adjacency list, 15
bidirected, 5–10
construction by drawing, 79
cyclic adjacency list, 15
drawing, 3–5
embedded graph, 10,seeembedded graph
face (programming concept), 75
face cycle (combinatorial concept), 17
five coloring, 81
generation of planar graphs, 73
independent sets, 83
index of a node or edge, 8
is bidirected, 5
is map, 6
iterating over uedges, 6
iteration, 76
makebidirected, 5
makemap, 6, 9
makeplanar map, 78

87

88 Index

map, 6,seeembedded graph
moving an edge, 69
order-preserving embedding, 15
planar, 11
planar embedding, 11
plane map, 15, 16
reversal information, 6
st-numbering, 24
straight line embedding, 11
triangulate map, 71
triangulate planar map, 78
uedge, 6
undirected edge, 6

graph algorithms
checking reversal information, 7
depth-first search

leftmost, 39
dual map, 78
five coloring, 81
generation of planar graphs and maps, 73
genus of a graph, 19
graph drawing, 4
independent sets, 83
Kuratowski subgraph, 42–68
making a map, 9
order from geometry, 79
planar embedding, 33–42
planarity test, 24–33
spring embedder, 4
straight line embedding, 12
triangulating a map, 71
triangulation of planar map, 78
turning a graph into a map, 9

graph drawing, 3
graph generators

planar graphs and maps, 73

HT PLANAR, 11

INDEPENDENTSET, 83
Is Planar, 11
Is PlaneMap, 16
iteration

for graphs, 76
over the uedges of a graph, 6

K5, 11
K3,3, 11
KURATOWSKI, 12
Kuratowski subgraph

algorithm, 42–68

definition, 11
running time, 67

KURATOWSKISIMPLE, 43

leftmost depth-first search, 39
Lempel–Even–Cederbaum planarity test, 24
LMDFS, 40

map (embedded graph),seeembedded graph
maximalplanar graph, 74
maximalplanar map, 73, 74

new edge operation, 68

order-preserving embedding, 15

PLAN EMBED, 33, 37
PLANAR, 11
planar embedding

algorithm, 11, 33–42
definition, 11
running time, 67

planar graph, 11
planarity and number of edges, 22
planarity test, 11, 24–33

running time, 67
plane map, 15, 16, 20–23
PLANTEST, 32
PQ-trees, 30
program checking

key experience, 14
planarity test, 14
reversal information, 7
testing, 15

random planar graphs and maps, 73
randomplanar graph, 74
randomplanar map, 74, 75
running time experiments

planarity, 67

SORTEDGES, 79
SPRINGEMBEDDING, 4
st-numbering of a graph, 24
straight line embedding, 11
STRAIGHTLINE EMBEDDING, 12

triangulation map, 75

undirected edge, 6
undirected graph vs bidirected graph, 79

