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Graph Algorithms

LEDA offers a wide variety of graph algorithms. Starting in the third section of this chapter
we discuss depth-first and breadth-first search, algorithmsto compute graph decomposi-
tions, and algorithms for shortest paths, matchings in bipartite and general graphs, maxi-
mum flows, and minimum cuts. For each class of algorithms we first discuss their func-
tionality and then discuss implementations. In many cases we also derive a checker of
correctness.

The first two sections of this chapter are orthogonal to the other sections of the chapter.
They deal with general considerations for algorithms on weighted graphs. In Section 7.1 we
discuss the use of template functions for such algorithms and in Section 7.2 we discuss the
requirements on the underlying arithmetic. Both sections can be skipped on first reading.

7.1 Templates for Network Algorithms

Many graph algorithms operate on graphs whose nodes or edgeshave an associated weight
from some number type. For example, the single-source shortest-path algorithm operates
on an edge-weighted graph and computes for each node its distance from the source. The
algorithm works for any linearly ordered number type. It is natural to formulate it as a
template function.

template <
lass NT>

bool DIJKSTRA T(
onst graph& G, node s, 
onst edge array<NT>& 
,

node array<NT>& dist, node array<edge>& pred);

2



7.1 Templates for Network Algorithms 3

The template parameterNT can be instantiated with any number type1. The most frequent
instantiations are with the built-in number typesint anddoubleand the LEDA number types
integerandreal. It is desirable that:

• the most frequent instantiations are pre-compiled, as thisreduces the compilation time
of application programs and allows us to distribute object code instead of source code
to all those users, who do not need instantiations with othernumber types, and that

• the pre-instantiated versions can be used side by side with the template version.

We describe our mechanism to achieve these goals. We use the shortest-path algorithm as
our running example. We write three files: dijkstra.h, dijkstra.t, and dijkstra.c, which are
contained in the directories LEDAROOT/incl/LEDA, LEDAROOT/incl/LEDA/templates,
and LEDAROOT/src, respectively.

The file dijkstra.h contains the prototypes of all functions. We distinguish the template
version and the pre-instantiated versions of a function by the suffix T in the function name.
Thus

〈dijkstra.h〉�
#ifndef DIJKSTRA_H

#define DIJKSTRA_H

#in
lude <LEDA/graph.h>

template <
lass NT>

void DIJKSTRA_T(
onst graph& G, node s, 
onst edge_array<NT>& 
,

node_array<NT>& dist, node_array<edge>& pred);

/* next 
ome the pre-instantiated versions */

void DIJKSTRA(
onst graph& G, node s, 
onst edge_array<int>& 
,

node_array<int>& dist, node_array<edge>& pred);

// and, similarly, for double, ...

#endif

The file dijkstra.t contains the definition of the template function.

〈dijkstra.t〉�
#in
lude <LEDA/dijkstra.h>

template <
lass NT>

void DIJKSTRA_T(
onst graph& G, node s, 
onst edge_array<NT>& 
,

node_array<NT>& dist, node_array<edge>& pred)

{

/* implementation of DIJKSTRA_T */

}

1 The number type must, of course, satisfy certain syntactic and semantic requirements, e.g., there must be a linear
ordering defined on it and addition must be monotone.
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The file dijkstra.c contains the implementations of the instantiations in terms of the tem-
plate function.

〈 dijkstra.c〉�
#in
lude <LEDA/templates/dijkstra.t>

void DIJKSTRA(
onst graph& G, node s, 
onst edge_array<int>& 
,

node_array<int>& dist, node_array<edge>& pred)

{

DIJKSTRA_T(G,s,
,dist,pred);

}

// and, similarly, for double ...

Observe the include statement. As mentioned already, all files containing definitions of tem-
plate functions are collected in the subdirectorytemplatesof the LEDA include directory.

The file dijkstra.c is pre-compiled into the object filedijkstra.o, which is included in
one of the object libraries of the LEDA system.

We next discuss how to use the pre-instantiated and the template versions of the shortest-
path algorithm.

In order to use one of the pre-instantiated versions, one includes dijkstra.h into the appli-
cation program, for example,

〈foo.c〉�
#in
lude <LEDA/dijkstra.h>

// define G, s, 
, dist, pred with number type int

DIJKSTRA(G,s,
,dist,pred);

In order to use the template version, one includes templates/dijkstra.t into the application
program, as, for example, in

〈foo.c〉+�
#in
lude <LEDA/templates/dijkstra.t>

// define G, s, 
, dist, pred for any number type NT

DIJKSTRA_T(G,s,
,dist,pred);

// define G, s, 
, dist, pred for number type int

// and use template version

DIJKSTRA_T(G,s,
,dist,pred);

// use pre-instantiated version

DIJKSTRA(G,s,
,dist,pred);

Observe that there is no problem to use one of the pre-instantiated versions and the template
version side by side in an application program such as foo.c.

We nevertheless recommend a different strategy.We suggest that the t-files are not in-
cluded directly into application programs, as t-files may contain the definitions of auxiliary
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functions which might clobber the name space of the application program. We rather rec-
ommend to define intermediate files as shown next.

In order to instantiate DIJKSTRAT for a particular number type, say the LEDA number
typereal, we recommend defining files

〈real dijkstra.h〉�
#in
lude <LEDA/real.h>

void DIJKSTRA(
onst graph& G, node s, 
onst edge_array<real>& 
,

node_array<real>& dist, node_array<edge>& pred)

and

〈real dijkstra.c〉�
#in
lude "real_dijkstra.h"

#in
lude <LEDA/templates/dijkstra.t>

void DIJKSTRA(
onst graph& G, node s, 
onst edge_array<real>& 
,

node_array<real>& dist, node_array<edge>& pred)

{

DIJKSTRA_T(G,s,
,dist,pred);

}

to include the former in application programs, to pre-compile the latter, and to add the
object file realdijkstra.o to the set of objects for the linker. The alternative strategy has the
advantage of introducing no extraneous names into application programs.

We summarize: functions whose name ends withT are function templates. In order to
use them one must include a file LEDA/templates/X.t. The pre-instantiated functions have
the same name except for theT. In order to use them one needs to include a file LEDA/X.h.

7.2 Algorithms on Weighted Graphs and Arithmetic Demand

Many algorithms of this chapter operate on weighted graphs and work for any number type
NT. The algorithms use additions, subtractions, comparisons, and in rare cases multiplica-
tion and division. The correctness proofs of the algorithmsrely on the laws of arithmetic
and hence the algorithms are only correct if the implementation of the number type obeys
the laws of arithmetic.

The two most commonly used number types areint anddouble. Unfortunately, both
types do not guarantee that the basic arithmetic operationsobey their mathematical laws.
For example,int-arithmetic may overflow and wrap around2 anddouble-arithmetic incurs
rounding error, see Chapter 4. It is therefore not at all obvious that an instantiation of a
network algorithm with typesint or doublewill work correctly. Sections 4.1 and 7.10.5
contain examples of what can go wrong.

2 Execute
out << MAXINT + MAXINT;
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We use the following two-step approach to guarantee correctness.

Step 1: We analyze the arithmetic demand of our algorithms. We stateclearly which oper-
ations must be supported by the number type (that’s easy to do, since a simple inspection of
the code suffices) and we prove theorems of the following form: if all input weights are in-
tegers whose absolute value is bounded byB, then all numbers handled by the algorithm are
integers whose absolute value is bounded byf · B. We call such an algorithmf -bounded.
For example, we will show that the maximum weight bipartite matching algorithm is 3-
bounded and that the maximum weight assignment algorithm is4n-bounded, wheren is the
number of nodes of the bipartite graph.

Step 2 for type int: In the instantiation of a network algorithm for typeint, we check that
all input weightsw satisfy f · w ≤ MAXINT. If not, we write an appropriate message to
diagnostic output. If yes, step 1 guarantees correctness ofthe computation.

We give an example. We mentioned already that the maximum weight bipartite matching
algorithm is 3-bounded. The instantiation is therefore as follows:

〈instantiation for ints〉�
list<edge> MAX_WEIGHT_BIPARTITE_MATCHING(graph& G,


onst edge_array<int>& 
, node_array<int>& pot)

{ int W = MAXINT/3;


he
k_weights(G,
,-W,W,"MWBM<int>");

return MAX_WEIGHT_BIPARTITE_MATCHING_T(G,
,pot);

}

where

〈scaleweights.h〉+�
inline bool 
he
k_weights(
onst graph& G, 
onst edge_array<int>& 
,

int lb, int ub, string inf)

{ edge e;

bool all_edges_ok = true;

forall_edges(e,G)

if ( 
[e℄ < lb || 
[e℄ > ub ) all_edges_ok = false;

if ( !all_edges_ok ) 
err << inf << ": danger of overflow.\n";

return all_edges_ok;

}

There is a similar function for node arrays.

Step 2 for type double: The problem withdouble-arithmetic is round-off error. Round-off
errors invalidate the correctness and termination proof and hence a “naive” instantiation of a
network algorithm with the number typedoublemay run forever, terminate with a run-time
error, terminate with an incorrect result, or terminate with the correct result.

It would be nice if we could guarantee that no rounding occursduring a computation, as
this will guarantee termination and the absence of run-timeerrors. It does not guarantee by
itself that the result produced has any relationship to the correct result. We come back to
this point below.
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We can avoid rounding by scaling the input weights appropriately. We replace any input
weightw by sign(w)·⌊|w|·S⌋/S, where thescaling parameter S= 2s is a suitable power of
two. We use thesamescaling parameter for all input weights. This has the effectthat, after
scaling, all input weights are of the formw′ · 2−s, wherew′ is an integer. Hence floating
point arithmetic will incur no rounding error as long as all intermediate results are of the
form z · 2−s, wherez is an integer that fits into the mantissa of a floating point number. It
remains to chooses.

Let C be the maximum absolute value of any input weight. Since the division by 2s

effects only the exponent of a floating point number, we may aswell assume that every
input weightw is replaced bysign(w)⌊|w| · S⌋. This will turn all inputs into integers and
hence step 1 guarantees that the absolute value of all intermediate results is bounded by
f · ⌊C · S⌋ in the case of anf -bounded algorithm. If we chooses such that all intermediate
results can be represented exactly as a double precision floating point number then the
computation will incur no rounding error. This is the case if

f · ⌊C · S⌋ < 253,

since double precision floating point arithmetic can represent all integers in the range [−(253−
1) .. 253− 1]. Observe that double precision floating point arithmeticuses a 52-bit mantissa
and that a floating point number with mantissam1m2 . . . m52 and exponent 52 represents
the integer

(1 +
∑

1≤i≤52

mi 2−i ) · 252.

The inequalityf · ⌊C · S⌋ < 253 is certainly satisfied if

f · C · S< 253

or

s < 53− log( f · C).

We summarize:

Lemma 1 Consider an f -bounded algorithm, let C be the maximum absolute value of
any input weight, and let S be a power of two such that f· C · S < 253. If every input
weightw is replaced by sign(w)⌊|w| · S⌋, then the algorithm will incur no rounding error
in a computation with doubles and hence computes the correctresult for the scaled inputs
weights.

What is the relationship between the result for the scaled input weights and the result
for the original input weights? We can make no general claim. However, there are many
situations where one can claim that the result for the scaledinputs is a good approximation
for the result on the unscaled inputs. For all but one networkproblem considered in this
chapter, namely min-cost flow, the objective value is a sum ofinput weights; for example,
the cost of a shortest path is a sum of edge weights, the cost ofa matching is a sum of
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edge weights, and the maximum flow in a network is the minimum capacity of a cut and
hence a sum of edge weights. Assume that the objective value is the sum of at mostL
weights. For any set of at mostL weights the sum of the scaled weights and the sum of
the unscaled weights differs by at mostL/S, since for any individual weight the difference
is at most 1/S. If S is chosen as the largest power of two such thatS < 253/( f · C), then
S≥ 252/( f · C) and hence the maximum absolute error in the objective function is at most
L · f · C · 2−52. We summarize in:

Lemma 2 Under the hypothesis of the preceding lemma and the additional assumption that
the algorithm computes an objective value, which is the sum of at most L input weights, the
maximum absolute error in the objective function is at most L· f · C · 2−52.

Let us give an example. Consider the maximum weighted matching algorithm for bi-
partite graphs. This algorithm is 3-bounded and the value ofa matching is the sum of at
mostn edges, wheren is the number of nodes of the graph. The maximum absolute error is
therefore at most 3· C · 2−52.

Observe that Lemma 2 bounds the absolute error in the objective function, but not the
relative error. We can make no general claims about the relative error. It must be studied
individually for each algorithm.

In order to computes and to scale the input weights, we use the functionsfrexp, ldexp,
andfloor from the math-library. Letx = f · C.

double frexp(double x, int* exp);

returns a doubley such thaty is a double with magnitude in the interval [1/2, 1) or 0, andx
equalsy times 2 raised to the powerexp(more precisely,∗exp). If x is 0, both parts of the
result are 0.

Thus, ifx is non-zero, then log|x| = exp− ǫ where 0< ǫ ≤ 1 and hence

53− log( f · C) = 53− exp+ ǫ.

We therefore chooses as

s = 53− exp.

If C = 0 and hencex = 0, the choice ofs is arbitrary. We will sets to 53 in this case. The
following procedures implement the computation ofs andS. We also compute 1/S, as it
will be convenient to have it around.

〈scaleweights.h〉+�
#in
lude <math.h>

inline int 
ompute_s(double f, double C)

{

int exp;

double x = frexp(f*C,&exp);

return 53 - exp;

}
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inline double 
ompute_S(double f, double C, double& one_over_S)

{

int exp;

double x = frexp(f*C,&exp);

one_over_S = ldexp(1,exp - 53);

return ldexp(1,53 - exp);

}

where

double ldexp(double x, int exp);

computes the quantityx · 2exp.

How can we computew′ = sign(w) · ⌊|w| · S⌋/S? We use

double floor(double x);

which computes the largest integral value not greater thanx.

〈scaleweights.h〉+�
inline double s
ale_weight(double w, double S, double one_over_S)

{

if ( w == 0 ) return 0;

int sign_w = +1;

if ( w < 0 ) { sign_w = -1; w = -w; }

return sign_w * floor(w * S) * one_over_S;

}

Let us see scaling at work. We use again the weighted matchingalgorithm for bipartite
graphs. The instantiation for number typedoubleis as follows.

〈instantiation for double〉�
list<edge> MAX_WEIGHT_BIPARTITE_MATCHING(graph& G,


onst edge_array<double>& 
, node_array<double>& pot)

{ edge_array<double> 
1(G);

s
ale_weights(G,
,
1,3.0,"MWBM<double>");

return MAX_WEIGHT_BIPARTITE_MATCHING_T(G,
1,pot);

}

where

〈scaleweights.h〉+�
inline bool s
ale_weights(
onst graph& G, 
onst edge_array<double>& 
,

edge_array<double>& 
1, double f)

{ edge e;

double C = 0;

forall_edges(e,G) C = leda_max(C,fabs(
[e℄));

double one_over_S;

double S = 
ompute_S(f,C,one_over_S);

bool no_s
aling = true;



10 Graph Algorithms

forall_edges(e,G)

{ 
1[e℄ = s
ale_weight(
[e℄,S,one_over_S);

if ( 
[e℄ != 
1[e℄ ) no_s
aling = false;

}

return no_s
aling;

}

inline bool s
ale_weights(
onst graph& G, 
onst edge_array<double>& 
,

edge_array<double>& 
1, double f, string inf)

{ bool no_s
aling = s
ale_weights(G,
,
1,f);

if ( no_s
aling == false ) 
err << inf << ": s
aling was required";

return no_s
aling;

}

We also offer a function that replaces a weight vector by its scaled version.

〈scaleweights.h〉+�
inline bool s
ale_weights(
onst graph& G, edge_array<double>& 
,

double f)

{ edge_array<double> 
0 = 
;

return s
ale_weights(G,
0,
,f);

}

There are also analogous functions for node arrays.

How does scaling interact with program checking? We showed in Lemmas 1 and 2 that
a computation with doubles computes the exact result for thescaled weights and that the
result for the scaled weights is frequently a good approximation of the result for the unscaled
weights. We should not expect them to be equal. It is therefore nonsense to check whether
a double computation produced the correct result for the unscaled weights if scaling took
place.

For example, in the program

list<edge> M = MAX WEIGHT BIPARTITE MATCHING(G,
,pot);

CHECK MWBM(G,
,M,pot);

the call of CHECKMWBM may fail. Indeed, it is very likely to fail if scaling took place
in the computation of the maximum weight matching.

We recommend the following strategy of using program checking together with a com-
putation with doubles.The scaling should be done on the level of the user program. To this
end, each network algorithm comes with a function that replaces all input weights by their
scaled versions.

For example, in<mwbmatching.h> we also define a function

bool MWBM SCALE WEIGHTS(
onst graph& G, edge array<double>& 
)

{

return s
ale weights(G,
,3.0);

}

that replaces the cost vectorc by a scaled version. One may then write
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MWBM SCALE WEIGHTS(G,
);

list<edge> M = MAX WEIGHT BIPARTITE MATCHING(G,
,pot);

CHECK MWBM(G,
,M,pot);

and checking will work.

The remainder of this section may be skipped. It is worthwhile to study in more detail
what it means to replacew by w′ = sign(w) · ⌊|w| · S⌋/S. Clearly, if w = 0 thenw′ = 0.
So assumew 6= 0. By symmetry, it suffices to study the casew > 0.

Lemma 3 Let 0 < w = x · 2e with 1/2 ≤ |x| < 1, e integral, and letw1w2 . . . w52 be the
mantissa of the floating point representation ofw. Let s be an integer, let S= 2s, and let
w′ = ⌊w · S⌋/S. If e+ s ≤ 0 thenw′ = 0. If e + s > 0 thenw′ is obtained fromw by
replacing the mantissa byw1 . . . we+s−10 . . .0.

Proof We havew = x · 2e with 1/2 ≤ |x| < 1. If e + s ≤ 0 thenw′ = 0. So assume
e+ s > 0. We have 2· x = 1 +

∑

1≤i≤52wi 2−i and hence

⌊w · S⌋ = ⌊x · 2e+s⌋ = ⌊2 · x · 2e+s−1⌋
= ⌊(1 +

∑

1≤i≤52

wi 2−i ) · 2e+s−1⌋ ≤ (1 +
∑

1≤i≤e+s−1

wi 2−i ) · 2e+s−1

= (1 +
∑

1≤i≤e+s−1

wi 2−i )/(2 · 2e · 2s)

and hence

w′ = ⌊w · S⌋/S = (1 +
∑

1≤i≤e+s−1

wi 2−i )/(2 · 2e),

i.e.,w′ has the same exponent asw and mantissaw1 . . . we+s−10 . . .0.

Let us consider two special cases.

If all input weights are integers, then the scaling will not change any input as long as
f · C < 253. This is as forints, but withMAXINT replaced by 253 − 1.

For the second case we assume that all input weights are less than one. We may assume
w.l.o.g. that 1/2 ≤ C < 1. Thens = 53− k wherek = ⌊log f ⌋ + 1 ork = ⌊log f ⌋. If w is
any input weight andw has binary representation

0.ww1w2 . . .

thenw′ has binary representation

0.w1w2 . . .w53−k000. . . ,

i.e., the binary representation is truncated after the(53− k)-th bit. In this way the scaled
weights leavek bits of the mantissa unused. The unused bits can be used to compute
intermediate results without rounding error.
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7.3 Depth-First Search and Breadth-First Search

Depth-first search and breadth-first search are two powerfulmethods to explore a graph in a
systematic way. Both methods start at some nodev of a directed graphG and visit all nodes
that can be reached fromv. They differ in the order in which they visit the nodes.

Depth-first search always explores edges out of the node mostrecently reached by the
search. When it has exhausted all edges out of a node it backtracks to the node from which
the node was reached.

Depth-first search is most easily formulated as a recursive proceduredfsthat takes a node
v as an argument (and additional arguments depending on the application of depth-first
search). A calldfs(v, . . .) first labelsv as reached and then makes recursive calls for all
nodesw such that(v, w) is an edge out ofv and nodew is not yet reached. A depth-
first search on a graphG induces two numberings of the vertices ofG, one in the order in
which the nodes are reached by the search and one in the order in which the calls todfs
are completed. The two numbers associated with a node are usually called itsdepth-first
search numberand itscompletion number. Depth-first search can also be used to partition
the edges ofG into so-calledtree, forward, backward, andcrossedges.

In the program below we use node arraysdfsnumandcompnumto record the two number-
ings and we use a listT to collect tree edges. The sets of forward, backward, and cross edges
are determined implicitly, as we will discuss later. We define two procedures, a recursive
proceduredfs(v, dfsnum, compnum, T) and a masterDFSNUM(G, dfsnum, compnum). A
call dfs(v, . . .) visits and numbers all vertices reachable fromv that were not reached previ-
ously. We maintain the invariant thatdfsnum[v] = −1 iff v was not visited yet. The master
procedureDFSNUM initializes the variables and then iterates over all nodes.For every
nodev that was not reached yet it callsdfs(v, . . .). The calldfs(v, . . .) setsdfsnum[v] to the
current value ofdfsnumcounter, and then iterates over all edges out ofv. Each edge(v, w)

to an unreached nodew is added toT and leads to a recursive calldfs(w, . . .). When the
edges out ofv are exhaustedcompnum[v] is set to the current value ofcompnumcounter.

〈dfs〉+�
stati
 int dfsnum_
ounter;

stati
 int 
ompnum_
ounter;

stati
 void dfs(node v, node_array<int>& dfsnum, node_array<int>& 
ompnum,

list<edge>& T )

{ dfsnum[v℄ = ++dfsnum_
ounter;

edge e;

forall_adj_edges(e,v)

{ node w = target(e);

if (dfsnum[w℄ == -1)

{ T.append(e);

dfs(w,dfsnum,
ompnum,T);

}

}


ompnum[v℄ = ++
ompnum_
ounter;

}
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list<edge> DFS_NUM(
onst graph& G, node_array<int>& dfsnum,

node_array<int>& 
ompnum)

{

list<edge> T;

dfsnum_
ounter = 
ompnum_
ounter = 0;

dfsnum.init(G,-1); // de
lares all nodes unrea
hed

node v;

forall_nodes(v,G)

if (dfsnum[v℄ == -1) dfs(v,dfsnum,
ompnum,T);

return T;

}

Figure 7.1 shows the result of a run ofDFSNUM. A call DFSNUM(G, . . .) partitions the
edges ofG into four classes in a natural way; the four classes are also shown in Figure 7.1.
An edgee = (v, w) is called atree edgeif dfs(w, . . .) is called when the edgee is scanned
in dfs(v, . . .); we useT to denote the set of tree edges. The treeT is the call tree of
proceduredfs. An edgee = (v, w) is called aforward edgeif it is parallel to a path of tree
edges, but is not a tree edge, i.e.,v

+
−→
T

w ande /∈ T ; it is called abackward edge(or back

edge) if it is anti-parallel to a path of tree edges, i.e.,w
∗

−→
T

v; and it is called across edgein

all other cases. The two numberings of the vertices can be used to classify the edges3. An
edge(v, w) is a :

• tree or forward edge iffdfsnum[v] < dfsnum[w] andcompnum[v] > compnum[w],

• backward edge iffdfsnum[v] ≥ dfsnum[w] andcompnum[v] ≤ compnum[w],

• cross edge iffdfsnum[v] > dfsnum[w] andcompnum[v] > compnum[w].

Let us see why this is true. We only give an intuitive argumentand refer the reader to
[Meh84, IV.5] and [CLR90, chapter 23] for more detailed discussions.

If two callsC andD of dfsare nested within one another, sayD is nested withinC, then
C starts beforeD and ends afterD, i.e., the dfs-number of the node corresponding toC is
smaller than the dfs-number of the node corresponding toD and the completion-number of
the node corresponding toC is larger than the completion number of the node corresponding
to D. This explains the characterization of tree, forward, and backward edges.

If two calls C and D are not nested within one another and, sayC starts afterD, then
C starts after the completion ofD and hence the dfs-number of the node corresponding
to C is larger than the dfs-number of the node corresponding toD and the same holds for
completion-numbers. This fact together with the observation that a cross edge always runs
from a node reached later to a node reached earlier explains the characterization of cross
edges.

Depth-first search considers every edge of the graphG exactly once and hence runs in
linear timeO(n + m), wheren = |V | andm = |E|.
3 There is no standard convention concerning self-loops. We classify self-loops as back edges.
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1 : 5

2 : 4

3 : 1 4 : 2 5 : 3

Figure 7.1 Depth-first search: The search started at the bottom-most node. For each node the
dfs- and the completion-number are shown inside the node. Tree edges are shown as thick solid
edges, forward edges are shown as thin solid edges, backwardedges are shown as dashed edges,
and cross edges are shown a dotted edges. It is customary to draw dfs-trees such that tree edges
are directed upwards and cross edges are directed from rightto left. Observe how dfs-numbers
increase along every tree path and how completion-numbers decrease. Also observe that cross
edges go from nodes with higher dfs- and completion-number to nodes with lower dfs- and
completion-number. You may generate your own figures by calling the xlman-demo gwdfs.

Why should one be interested in the classification of the edges into tree, forward, back-
ward, and cross edges? Here is one reason. A depth-first search on an acyclic graph does
not find any backward edges. Thuscompnum[v] > compnum[w] for any edge(v, w), i.e.,
all edges go from higher to lower completion numbers. In other words, compnumis a
topological numbering of the graph.

We turn to breadth-first search. It explores the edges in the order in which their source
vertex is reached. It uses a queueQ to store the vertices in the order in which they are
reached and always explores edges out of the first node of the queue. When all edges out
of the first node are scanned, the first node is popped from the queue and exploration from
the new first node is started. BFS can be used to label the vertices with their distance from
a particular nodes, i.e., to compute anodearray<int> dist such thatdist[w] = d iff there
is a path froms to w of lengthd andd is the smallest integer with this property.

〈bfs〉�
void BFS(
onst graph& G, node s, node_array<int>& dist)

{ queue<node> Q;

node v,w;
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forall_nodes(w,G) dist[w℄ = -1;

dist[s℄ = 0;

Q.append(s);

while (!Q.empty())

{ v = Q.pop();

forall_adj_nodes(w,v)

if (dist[w℄ < 0)

{ Q.append(w);

dist[w℄ = dist[v℄ + 1;

}

}

}

The correctness of BFS is easy to establish. Clearly, ifdist[w] = d then there is a path of
lengthd from s to w. On the other hand, ifs = v0, v1, . . . , vl = w is a path froms to w of
lengthl thendist[vi ] ≤ i for all i , 1 ≤ i ≤ l .

Exercises for 7.3
1 Why can there be no edge(v, w) in a depth-first search withdfsnum[v] < dfsnum[w]

andcompnum[v] < compnum[w]?
2 Write a procedure based on depth-first search that tests a graph for acyclicity. If the

graph is acyclic it should also compute a so-called topological numbering of the vertices
of G, i.e., a labeling of the nodes ofG such that for all edges ofG the label of the source
node is smaller than the label of the target node.

3 Use the program LEDAROOT/demo/xlman/gwdfs.c as the basis of a program that il-
lustrates BFS.

7.4 Reachability and Components

We start with an overview of the algorithms that compute reachability information and sim-
ple structural information of directed and undirected graphs: transitive closure, connected
and biconnected components, and strongly connected components. Then we discuss the de-
tails of the strongly connected components algorithm, and finally we describe an animation
of this algorithm.

7.4.1 Functionality
We deal with basic problems concerning reachability in directed and undirected graphs. We
first consider directed graphs and later turn to undirected graphs.

Let G = (V, E) be a directed graph and letv andw be two vertices ofG. Recall that
w is reachablefrom v if there is a path inG from v to w, i.e., if eitherv = w or there
is a sequencee1, . . . , ek of edges ofG with k ≥ 1, v = source(e1), w = target(ek), and
target(ei ) = source(ei+1) for all i , 1 ≤ i < k.
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Figure 7.2 A graph with five strongly connected components. The five components are induced
by the node setsC0 = {8}, C1 = {5}, C2 = {1, 3, 4, 6, 7}, C3 = {0}, andC4 = {1}. The
xlman-demo gwsccanim illustrates strongly connected components.

The graphG∗ = (V, E∗) whereE∗ = {(v, w); w is reachable fromv} is called there-
flexive transitive closureof G. The procedure

graph TRANSITIVE CLOSURE(
onst graph& G);

computesG∗ from G in time O(n2 + mred · n) wheren = |V | andmred is the number of
edges in a transitive reduction ofG. A transitive reductionof G is a minimal (with respect
to set inclusion of edges) subgraph ofG with the same transitive closure asG. In an acyclic
graph,mred is the number of edges(v, w) of G such that there is no path of length two or
more fromv to w in G. For random graphs in theGn,p-model and arbitrary value ofp,
E(mred) = O(n) and hence the expected running time of the transitive closure algorithm is
O(n2), see [Meh84, IV.3].

A directed graphG is calledstrongly connectedif from any node ofG there is a path
to any other node ofG. A strongly connected component(scc) of a graphG is a maximal
strongly connected subgraph. Figure 7.2 shows a graph with five strongly connected com-
ponents. Shrinking the strongly connected components of a graph to single nodes gives rise
to an acyclic graphGs = (Vs, Es) with

Vs = {C; C is an scc ofG}



7.4 Reachability and Components 17
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C2

Figure 7.3 The graph obtained by shrinking the sccs of the graph in Figure 7.2 to single nodes.
The given numbering of the sccs will be obtained if a first depth-first search is started in node 0
(it will only reach 0) and a second depth-first search is started in node 2.

and

Es = {(C, D); C, D ∈ Vs and there exists(v, w) ∈ E with v ∈ C andw ∈ D}

Figure 7.3 shows the shrunken graph obtained from the graph of Figure 7.2.
The procedure

int STRONG COMPONENTS(
onst graph& G, node array<int>& 
omp num)

returns the number of strongly connected components ofG and computes anodearray<int>
compnumwith the following properties4:

• For all nodesv of G: 0 ≤ compnum[v] < number of sccs ofG.

• compnum[v] = compnum[w] iff the verticesv andw belong to the same strongly
connected component.

• If (v, w) is an edge ofG thencompnum[v] ≥ compnum[w].

In other words, the arraycompnumencodes the strongly connected components ofG and
moreover induces a topological ordering of the shrunken graph. The scc demo illustrates
the strongly connected components algorithm. The demo allows one to construct a graph
interactively. After every edit step the strongly connected components are recomputed and
highlighted by a color and numbering code. ProcedureSTRONGCOMPONENTSruns in

4 Observe thatcompnumstands for component number andcompnumstands for completion number.
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linear timeO(n + m), wheren = |V | andm = |E|; its implementation is given in the next
section.

The transitive closure algorithm uses the strongly connected components algorithm as a
subroutine: it first computes the sccs, then the shrunken graph, then the transitive closure of
the shrunken graph, and finally the transitive closure of thefull graph. We give the simple
procedure for computing the shrunken graphSGcorresponding to a graphG. We first call
the strong components algorithm forG and giveSGone vertex for each scc ofG. We then
iterate over the edges ofG and add an edge toSGfor each edge(v, w) of G wherev andw

belong to distinct sccs. Finally, we remove parallel edges by callingMakeSimple(SG).

〈shrunkengraph〉�
graph SHRUNKEN_GRAPH(
onst graph& G)

{ node_array<int> 
omp_num(G);

int N = STRONG_COMPONENTS(G, 
omp_num);

graph SG;

array<node> V(N);

for (int i = 0; i < N; i++) V[i℄ = SG.new_node();

edge e;

forall_edges(e,G)

{ node v = G.sour
e(e); node w = G.target(e);

if (
omp_num[v℄ > 
omp_num[w℄ )

SG.new_edge(V[
omp_num[v℄℄,V[
omp_num[w℄℄);

}

Make_Simple(SG);

return SG;

}

We turn to undirected graphs. The data typeugraphrepresents undirected graphs. Alter-
natively, directed graphs may be interpreted as undirectedgraphs, see Section 6.7. In the
early versions of LEDA we usedugraphsas the argument of all graph algorithms that op-
erate on undirected graphs. We now prefer to usegraphsand to let the algorithms interpret
them as undirected graphs. In the discussion of the algorithms we talk about undirected
graphs, of course.

Let G = (V, E) be an undirected graph. It is calledconnectedif for any two verticesv
andw there is a path fromv to w in G, i.e., eitherv = w or there is a sequencev1, . . . , vk

of vertices such thatv = v1, w = vk, and{vi , vi+1} is an edge ofG for all i , 1 ≤ i < k. A
component ofG is a maximal connected subgraph ofG. The procedure

int COMPONENTS(
onst graph& G, node array<int>& 
omp num)

computes the number of connected components, sayN, of G and an arraycompnumsuch
that 0 ≤ compnum[v] < N for all verticesv andcompnum[v] = compnum[w] iff the
verticesv andw belong to the same connected component ofG. It runs in linear time
O(n + m).

A connected undirected graphG = (V, E) is calledbiconnectedif G − v is connected



7.4 Reachability and Components 19
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Figure 7.4 A graph with four bccs. The bccs are indicated by ovals. They have edge sets
{{ f, c}}, {{e, g}},{{a, b}, {b, c}, {a, c}}, and{{b, d}, {b, e}, {e, d}}, respectively. The articulation
points are the nodesb, c, ande.

for everyv ∈ V . Here

G − v = (V − v, {e; e ∈ E andv /∈ e})

is the graph obtained by removing the vertexv and all edges incident tov from G. For
graphs with at least three nodes the following alternative definition is useful:G is bicon-
nected if for any distinct verticesv andw there are two vertex-disjoint paths connectingv

andw. A biconnected component(bcc) is a maximal biconnected subgraph. A vertexa is
called anarticulation pointof G if G − a is not connected. Figure 7.4 shows a graph with
four biconnected components.

Let G be an undirected graph and letG1 = (V1, E1), . . . , Gm = (Vm, Em) be the bi-
connected components ofG. We claim thatE = E1 ∪ . . . ∪ Em and |Vi ∩ Vj | ≤ 1 and
Ei ∩ E j = ∅ for i 6= j . To see this, note first that for each edge{v, w} ∈ E the graph con-
sisting of verticesv andw and the single edge{v, w} is biconnected, and hence contained
in one of the biconnected components ofG. It remains to show that any two distinct bccs
share at most one vertex (this also implies that they can share no edge). Assume otherwise,
i.e., we have distinct bccsGi andG j and a pair{v, w} of nodes belonging to both. SinceGi

andG j are maximal biconnected subgraphs, the subgraphG′ = (Vi ∪ Vj , Ei ∪ E j ) is not
biconnected and hence has an articulation point, saya. Let x andy be vertices in different
components ofG′ − a. Sincea is neither an articulation point inGi nor in G j , the graphs
Gi − a andG j − a are connected and hencex andy cannot both be vertices in the same
graphGi or G j . We may assume w.l.o.g. thatx ∈ Vi andy ∈ Vj . Sincea cannot be equal
to bothv andw we may assumev 6= a. SinceGi − a andG j − a are connected, a path
exists fromx to v in Gi − a and fromy to v in G j − a. Hence a path exists fromx to y in
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G′ − a and we have reached a contradiction. We conclude that the bccs of a graph partition
the edges.

The procedure

int BICONNECTED COMPONENTS(
onst graph& G, edge array<int>& 
omp num)

returns the number of bccs of the undirected version ofG and computes an edge array
compnumsuch thatcompnum[e] = compnum[ f ] iff the edgese and f belong to the same
biconnected component ofG. The running time isO(n + m).

We give more details. Letc be the number of biconnected components and letc′ be the
number of biconnected components containing at least one edge;c−c′ is the number of iso-
lated nodes inG, i.e., the number of nodesv that are not connected to a node different from
v. The function returnsc and labels each edge ofG (which is not a self-loop) by an integer
in [0 .. c′ − 1]. Two edges receive the same label iff they belong to the same biconnected
component. The edge labels are returned incompnum. Be aware that self-loops receive no
label since self-loops are ignored when interpreting a graph as an undirected graph.

The nodes of a biconnected graph can be numbered in a special way which is useful for
many algorithms on biconnected graphs. Imagine the following physical experiment.G is
a biconnected graph ands and t are any two nodes ofG that are connected by an edge.
We replace all edges ofG by rubber bands and then pulls and t apart. SinceG has no
articulation point, this will exert force on every node ofG and order the nodes ofG along
the line froms to t . We number the nodes from 1 ton starting withs and proceeding
towardst . Every nodev of G, except fors andt , will have a smaller numbered and a higher
numbered neighbor. Such a numbering is called anst-numberingof G. The function

void ST NUMBERING(graph& G, node array<int>& stnum, list<node>& stlist)

numbers the nodes ofG with the integers 1 ton (the number of any nodev is returned
in stnum[v] and the ordered list of nodes is returned instlist) such that every nodev with
1 < stnum[v] < n is connected to a node with smaller number and to a node with higher
number, and such that the nodes with numbers 1 andn are connected by an edge. The
running time isO(n + m). We will see an application of st-numbering in Section 8.7.

7.4.2 Strongly Connected Components: An Implementation
We give a program to compute the strongly connected components of a directed graph. An
animation of this program is available as the xlman-demo gwsccanim. The algorithm is
an extension of depth-first search and was first described in [CM96]; alternative algorithms
are described in [Tar72] and [Sha81].

Consider a depth-first search onG and useGc = (Vc, Ec) to denote the subgraph already
explored, i.e.,Vc is the set of nodesv for which dfs(v, . . .) has been called andEc consists
of all edgese which have been explored in one of the calls ofdfs. The algorithm maintains
the strongly connected components ofGc. In order to derive the algorithm we first introduce
some notation and then state some properties ofGc.

We call a vertexv ∈ V completedif the calldfs(v, . . .) has been completed,unreachedif
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Figure 7.5 A snapshot of depth-first search on the graph of Figure 7.2 andthe shrunken graph
corresponding to it.
A first dfs was started at nodea and a second dfs was started at nodeb. The upper part shows the
snapshot of dfs; it is assumed that the search has just reached nodeh and is starting to explore
the edges out ofh. The edge(h, i ) and the nodei have not been seen yet and the depth-first
search numbers of the nodes are indicated. The nodeh is the current node. Completed nodes are
shown shaded.
The shrunken graph is shown in the lower part of the figure. Thecomponents{a} and{e} are
permanent and all other components are tentative. The permanent components are shown
shaded. The tentative components form a pathP in the shrunken graph andh belongs to the last
component ofP. The roots of the tentative components are the verticesb, c, f , andh. They lie
on a common tree path of the depth-first search tree ofG.

the calldfs(v, . . .) has not been started yet, andactiveotherwise, i.e., if the call has already
been started but not yet completed. All active nodes lie on a single path inG and this path
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corresponds to the recursion stack of depth-first search. Wecall the last node of this path
thecurrent node. We call an scc ofGc permanentif all its vertices are completed and we
call it tentativeif this is not the case. Theroot of an scc is the node in the scc with the
smallest depth-first search number. Figure 7.5 illustratesthese concepts. In this example
the shrunken graph ofGc exhibits considerable structure:

(1) There is no edge(v, w) ∈ E with v belonging to a permanent scc andw not belonging
to a permanent scc. In particular, all vertices reachable from a vertex in a permanent
scc are completed.

(2) The tentative sccs form a pathP in the shrunken graph and the current node is
contained in the last scc of this path.

(3) If C andC′ are distinct tentative sccs withC precedingC′ on P then all vertices inC
have smaller dfs-number than all vertices inC′.

(4) LetC be a tentative scc ofGc and letr be its root. Then all vertices inC and all nodes
in all successors ofC on P are tree descendants ofr in the depth-first search tree, i.e.,
the name root is justified.

We will show below that all four properties hold true generally and not only for our
running example. The four properties will be invariants of the algorithm to be developed.
The first invariant implies that the permanent sccs ofGc are actually sccs ofG, i.e., it is
justified to call them permanent. This observation is so important that it deserves to be
stated as a lemma.

Lemma 4 A permanent scc of Gc is an scc of G.

Proof Let v be a vertex in a permanent scc ofGc and letw be a node ofG such thatv and
w belong to the same scc ofG. Thus there is a cycleC in G passing throughv andw. If v

andw do not belong to the same scc ofGc, one of the edges ofC does not belong toGc.
The source node of this edge cannot be completed and hence does not lie in a permanent
component. Sincev lies in a permanent component, there must be an edge(x, y) onC such
that x lies in a permanent component, buty does not. This is a contradiction to our first
invariant.

Invariants (2) to (4) suggest a simple method to represent the tentative sccs ofGc. We
simply keep a sequenceunfinishedof all vertices in tentative sccs in increasing order of
dfs-number and a sequencerootsof all roots of tentative sccs. In our exampleunfinished
is b, c, d, f , g, h, androots is b, c, f , h. For both sequences the data typestack<node> is
appropriate.

We can now start to write code. As already mentioned the program is an extension
of depth-first search and has the same global structure. As inSection 7.3 we define two
procedures:STRONGCOMPONENTSis the main procedure andSCCDFS is an auxiliary
procedure. Both procedures make use of the stacksunfinishedandrootsand the node arrays
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dfsnumandcompnum: dfsnum[v] is the dfs-number ofv for all reached nodes and is−1
for all unreached nodes;compnum[v] is the number of the scc containingv for all nodes
belonging to permanent sccs and is−1 for all other nodes. The variablesdfscountand
compcountkeep track of the used dfs-numbers and component numbers, respectively.

STRONGCOMPONENTSdefines and initializes all variables and then iterates overall
nodes ofG. It calls SCCDFS(v, . . .) for each unreached nodev. A call SCCDFS(v, . . .)

assigns the next dfs-number tov and makesv a tentative scc of its own. It then explores all
edges out ofv. Finally, it returns from the call.

〈SCC〉�
void SCC_DFS(node v, 
onst graph& G, node_array<int>& dfsnum,

node_array<int>& 
omp_num, sta
k<node>& unfinished,

sta
k<node>& roots, int& dfs
ount, int& 
omp_
ount)

{ dfsnum[v℄ = dfs
ount++;

〈make v a tentative scc of its own〉
node w;

forall_adj_nodes(w,v){ 〈explore edge (v,w)〉 }

〈return from the call for node v〉
}

int STRONG_COMPONENTS(
onst graph& G, node_array<int>& 
omp_num)

{ sta
k<node> unfinished;

sta
k<node> roots;

node_array<int> dfsnum(G, - 1);

node v;

forall_nodes(v,G) 
omp_num[v℄ = - 1;

int dfs
ount = 0;

int 
omp_
ount = 0;

forall_nodes(v,G)

if (dfsnum[v℄ == -1)

SCC_DFS(v,G,dfsnum,
omp_num,unfinished,roots,dfs
ount,
omp_
ount);

return 
omp_
ount;

}

A call SCCDFS(v, . . .) makesv a tentative scc of its own sinceGc contains no edges out
of v yet. This amounts to addingv to the top ofunfinishedandroots. Thus

〈make v a tentative scc of its own〉�
unfinished.push(v);

roots.push(v);

It is easy to check that all invariants are maintained.
We come to the exploration of an edgee = (v, w). If e is a tree edge (this is the case iff

dfsnum[w] = −1) we simply initiate a recursive call. Ife is a non-tree edge andw belongs
to a permanent scc (this will be the case ifdfsnum[w] ≥ 0 andcompnum[w] ≥ 0), then,
by Lemma 4, no action is required to maintain the invariants.If e is a non-tree edge andw
belongs to a tentative scc (this will be the case ifdfsnum[w] ≥ 0 andcompnum[w] = −1)
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v
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collapse components

Figure 7.6 The path of tentative sccs and the effect of exploring an edge(v, w), wherew

belongs to a tentative scc. All tentative sccs on the path from the tentative scc containingw to
the tentative scc containingv are collapsed into a single scc.

then some final segment of the path of tentative sccs collapses to a single scc (cf. Figure 7.6).
Thus

〈explore edge (v,w)〉�
if (dfsnum[w℄ == - 1)

SCC_DFS(w,G,dfsnum,
omp_num,unfinished,roots,dfs
ount,
omp_
ount);

else if (
omp_num[w℄ == - 1) { 〈merge sccs〉 }

We give the details of merging sccs. Assume thatw belongs to a tentative scc with rootr .
Thenr is the topmost root inroots with dfsnum[r ] ≤ dfsnum[w] (by invariant (3)). Any
root r ′ abover ceases to be a root sincev −→ w

∗−→ r
∗−→ r ′ ∗−→ v. Note thatw

∗−→ r
sincew andr belong to the same scc, andr

∗−→ r ′ ∗−→ v since the shrunken graph of
tentative sccs is a path. Thus

〈merge sccs〉�
while (dfsnum[roots.top()℄ > dfsnum[w℄) roots.pop();

What do we have to do when we return from a call, say for nodev? The completion ofv
completes an scc ifv is a root (by invariant (4)) andv is a root iff v = roots.top( ) (since
the call for the topmost root is completed before the call of any other root contained inroots,
again by invariant (4)). Ifv is a root the scc ofv consists of all nodes inunfinishedwhose
dfsnumis at least as large asv’s dfsnum(by invariant (3)). We simply pop these nodes from
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unfinishedand define theircompnum. Lemma 4 tells us that this scc is also an scc of the
final graph.

〈return from the call for node v〉�
if (v == roots.top())

{ do

{ w = unfinished.pop();


omp_num[w℄ = 
omp_
ount;

} while ( w != v);


omp_
ount++;

roots.pop();

}

Invariants (2), (3), and (4) are clearly maintained. For invariant (1) this can be seen as
follows. LetC be the scc with rootv. ThenC is the last scc of the pathP of tentative sccs
and hence all other tentative sccs are predecessors ofC on P. Thus there can be no edge
in Ec from a vertex inC to a vertex in any other tentative scc. Since all nodes inC are
completed, all edges(x, y) ∈ E with x ∈ C are also edges inEc and invariant (1) holds.

7.4.3 Strongly Connected Components: An Animation
We describe an animation of the algorithm of the preceding section. The animation is
available as the xlman-demo gwsccanim . The animation consists of two parts. In the
first part the user can interactively construct a directed graphG; after every edit operation
of the user the strongly connected components ofG are recomputed and shown in number
and color code, i.e., nodes belonging to the same scc are shown in the same color and with
the same integer label. In the second part the execution of our scc-algorithm on the graph
constructed in the first section is animated. Figure 7.7 shows a screen-shot. The overall
structure of the program is as follows:

〈gw scc anim.c〉�
#in
lude <LEDA/graph_alg.h>

#in
lude <LEDA/graphwin.h>

〈display functions for part one〉
〈display functions for part two〉
〈help panels〉
int main(){

GraphWin gw("SCC Animation Demo");

gw.display(); // open display

gw.set_dire
ted(true);

int h_menu = gw.get_menu("Help");

gw_add_simple_
all(gw,about_s

_anim1, "About SCC: phase 1",h_menu);

gw_add_simple_
all(gw,about_s

_anim2, "About SCC: phase 2",h_menu);

gw_add_simple_
all(gw,about_s

_anim_basi
s, "About SCC: basi
s",h_menu);

gw_add_simple_
all(gw,about_s

_anim_data_stru
tures,

"About SCC: data stru
tures",h_menu);

〈part one of demo〉
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Figure 7.7 A screen-shot of the second part of gwsccanim. Explored nodes are labeled with
their depth-first search number and nodes in permanent sccs are labeled with their depth-first
search number and the number of the scc containing them. Explored edges are drawn solid and
unexplored edges are drawn dashed. The nodes in permanent sccs are shown in the left half of
the window and the other nodes are shown in the right half of the screen. The node with
depth-first number 2 is the currently active node and there are two tentative components, one
consisting of node 0 and the other one consisting of nodes 1, 2, and 3. There is one unreached
node. The stacksunfinishedandrootsare indicated at the bottom of the screen-shot. The text at
the top of the window explains the actions of the algorithm.

〈part two of demo〉
return 0;

}

The animation is based on the data typeGraphWin; this data type is a combination of graphs
and windows and is discussed in Chapter??. Most of the current section can be appreciated
without knowledge of GraphWins, as we explain the used features of GraphWin as we go
along. However, the explanations of GraphWin will be kept short and hence readers without
knowledge of GraphWin will miss some of the fine points. We hope that all readers will
enjoy the demo so much that they will also study GraphWin.

In mainwe first define aGraphWin gwand then informgw that we are dealing with di-
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rected graphs. We then set up the help menu.GraphWinhas already a predefined help menu.
We get its number and add three buttons to it. The corresponding functionsaboutsccanim1,
. . . are defined in the program chunk〈help panels〉. We do not show it as the help buttons
of gw sccanim should give sufficient information. Having set up the help buttons we start
part one of the demo. It makes use of the display functions defined in the corresponding
chunk. The same holds true for the second part of the demo.

We come to the first part of the demo. Thanks to the powerfulGraphWindata type it is
extremely simple to write. AGraphWinalways has an associated graph and moreover it
maintains information about how to display the constituents of this graph: for example, for
a node it maintains the position of the node, the color of the node, and the shape of the node
(circle, square, rectangle, or ellipse), and for an edge it maintains the style of the edge (solid
or dashed or dotted) and the color and the width of the edge. The display information can
be modified.

In displaysccwe first get the current graphG from gw and then compute the strongly
connected components ofG. We then set for each nodev of G the color ofv to the compo-
nent number ofv modulo 16 (as we rely only on the availability of 16 differentcolors) and
we set the so-called user label5 of v to the component number ofv. We also informgw that
we want the user label to be displayed with each node.

We wantdisplayscc to be called whenever the graph associated withgw is modified.
This is easy to achieve. It is possible to associate functions with aGraphWin(so-called
handlers) that are called whenever a node or edge is added or deleted. For example,
gw.setdeledgehandler(displayscc) informsgw that the functiondisplaysccis to be called
whenever an edge is deleted. The handlers for the addition ofa node or edge are syn-
tactically required to have a second argument which is a nodeor edge, respectively. We
therefore need to wrapdisplaysccaccordingly before defining the new edge and the new
node handler.

After having set the handlers we open the display, show the help information for phase
one, and putgw into edit mode. The callgw.edit( ) is terminated by a click on the done-
button ofgw.

〈display functions for part one〉�
void display_s

(GraphWin& gw)

{ graph& G = gw.get_graph();

node_array<int> 
omp_num(G);

int N = STRONG_COMPONENTS(G,
omp_num);

node v;

forall_nodes(v,G)

{ gw.set_
olor(v,
omp_num[v℄%16);

gw.set_user_label(v,string("%d",
omp_num[v℄));

gw.set_label_type(v,user_label);

}

}

void new_edge_handler(GraphWin& gw, edge) { display_s

(gw); }

5 In GraphWineach node has a number of predefined labels; one of them is called the user label.
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void new_node_handler(GraphWin& gw, node) { display_s

(gw); }

〈part one of demo〉�
gw.set_init_graph_handler(display_s

);

gw.set_del_edge_handler(display_s

);

gw.set_del_node_handler(display_s

);

gw.set_new_node_handler(new_node_handler);

gw.set_new_edge_handler(new_edge_handler);

about_s

_anim1(gw); // inform user about phase 1

gw.message("\\blue Constru
t or load a graph and press done.");

wait(1.75);

gw.message("");

gw.edit(); // enter edit mode

We come to part two of the demo. The goal of part two is to animate the strongly con-
nected components algorithm of the preceding section. The idea behind the animation is as
follows. We use a split design for the main window. The right half of the window shows all
tentative components ofGc and all unexplored nodes and the left half of the screen shows
all permanent components. Also, unreached nodes are shown as white empty circles and
unexplored edges are shown dashed. The code below sets up theinitial configuration of this
design and also displays some textual information for the user (which we do not show here
to save space).

We first get the coordinates of the window boundaries and thenmove the contents of
gw to the right half of the screen. We then create the initial drawing of the demo. For
each nodev we set the color to white, state that the node is to be drawn as acircle of radius
smallwidth(smallwidth is defined in program chunk〈display functions for part two〉), state
that the displayed information is the user label, set the user label to the empty string, and
compute the position to whichv is moved once it belongs to a permanent component. We
also set the style of all edges to dashed. We then call theSTRONGCOMPONENTSfunction
of the preceding section; of course, this function needs to be augmented by display actions
and therefore needs additional arguments, namely,gwandpermpos.

〈part two of demo〉�
gw.disable_
alls(); // disable buttons

about_s

_anim2(gw);

graph& G = gw.get_graph();

window& W = gw.get_window();

node_array<point> perm_pos(G);

double xmin = gw.get_xmin() + W.pix_to_real(20);

// 
oordinate of left boundary plus 20 pixels

double xmax = gw.get_xmax() - W.pix_to_real(20);

double ymin = gw.get_ymin() + W.pix_to_real(30);

double ymax = gw.get_ymax() - W.pix_to_real(20);

double dx = xmax - xmin;

double dy = ymax - ymin;
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gw.pla
e_into_box(xmin+dx/2,ymin,xmax,ymax-dy/5);

// move everything to right half of s
reen

gw.set_flush(false); // 
hanges are a

umulated

node v;

forall_nodes(v,G)

{ gw.set_
olor(v,white);

gw.set_label(v,user_label); gw.set_user_label(v,"");

gw.set_shape(v,
ir
le_node);

gw.set_node_width(small_width);

double x
oord = gw.get_position(v).x
oord();

double y
oord = gw.get_position(v).y
oord();

perm_pos[v℄ = point(x
oord-dx/2,y
oord);

}

edge e;

forall_edges(e,G) gw.set_style(e,dashed_edge);

gw.redraw(); // all 
hanges are performed now

gw.set_flush(true);

〈more information about part two〉
node_array<int> 
omp_num(G);

STRONG_COMPONENTS(G,
omp_num,gw,perm_pos);

gw.message("\\bf Wasn\'t this a ni
e demo ?");

wait(1);

gw.message("");

gw.fill_window();

gw.enable_
alls(); // enable buttons

gw.edit();

We come to the display functions used for part two. We displaynodes in two sizes: roots and
nodes in permanent components are shown as large rectanglesand all other nodes are shown
as small circles. All nodes in the same strongly connected components are colored with the
same color. For permanent components we use the color corresponding to the component
number and for tentative components we use the height of the root of the component in the
roots-stack. In order to keep the colors for permanent and tentative components separate (or
at least approximately so) we add an integercolor shift to all colors of tentative components.

The demo can be run in either of two modes. In step mode the nextaction is triggered
by a click on the done-button and in continuous mode the animation is run to completion
without user interaction. The choice of mode is controlled by the variablestepand the
proceduremessagewhich we use to write messagesmsginto gw. If step is true,msg is
displayed until the done-button is pressed. Ifstepis true and the exit button is pressed,step
is set to false and the demo runs to completion (sincemessagehas no effect whenstepis
false).

We define a windowstatewin (in addition to the window associated withgw) and use it
to display state information. The state information is generated by the functionstateinfo.



30 Graph Algorithms

It draws the stacks6 unfinishedand roots as sequences of rectangles intostatewin. Each
rectangle is labeled with the dfs-number of the node it represents. The stacksunfinished
and roots are displayed in a way that equal elements are aligned (recall that roots is a
subsequence ofunfinished).

〈display functions for part two〉�
stati
 int small_width = 20;

stati
 int large_width = 36;

stati
 int 
olor_shift = 5;

stati
 bool step = true;

void message(GraphWin& gw, string msg)

{ msg += "\\5 \\blue press done \\bla
k";

if (step && !gw.wait(msg)) step = false;

}

stati
 window state_win(320,60,"State Of The Algorithm");

stati
 void state_redraw(window* wp) { wp->flush_buffer(); }

stati
 
olor text_
olor(
olor 
ol)

{ if (
ol==bla
k || 
ol==red || 
ol==blue || 
ol==violet ||


ol==brown || 
ol==pink || 
ol==blue2 || 
ol==grey3)

return white;

else

return bla
k;

}

void state_info(GraphWin& gw, 
onst list<node>& unfinished,


onst list<node>& roots,


onst node_array<int>& dfsnum,

node 
ur_v)

{

if (!state_win.is_open())

{ state_win.set_bg_
olor(grey1);

state_win.set_redraw(state_redraw);

state_win.display(-gw.get_window().xpos()+8,0);

state_win.init(0,320,0);

state_win.start_buffering();

}

state_win.
lear();

double th = state_win.text_height("H");

double x0 = state_win.text_width("Unfinished") + 2*th;

double y1 = state_win.ymax() - 1.75*th;

double y2 = state_win.ymax() - 3.20*th;

double d = 18;

state_win.draw_text(5,y1+(d+th)/2,"Unfinished");

state_win.draw_text(5,y2+(d+th)/2,"Roots");

list_item r_it = roots.first();

double x = x0;

6 In contrast to the preceding section we realize both stacks as lists, the reason being that we need to iterate over all
elements in both stacks and that stacks do not support iteration over their elements (they probably should).
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list_item u_it;

forall_items(u_it, unfinished)

{ node v = unfinished[u_it℄;


olor 
ol = gw.get_
olor(v);

int dn = dfsnum[v℄;

state_win.draw_box(x,y1,x+d,y1+d,
ol);

state_win.draw_re
tangle(x,y1-1,x+d,y1+d,bla
k);

state_win.draw_
text(x+d/2,y1+d/2,string("%d",dn),text_
olor(
ol));

if ( v == roots[r_it℄ )

{ state_win.draw_box(x,y2,x+d,y2+d,
ol);

state_win.draw_re
tangle(x,y2-1,x+d,y2+d,bla
k);

state_win.draw_
text(x+d/2,y2+d/2,string("%d",dn),

text_
olor(
ol));

r_it = roots.su

(r_it);

}

else

state_win.draw_box(x+1,y2,x+d,y2+d,white);

x += d;

}

state_win.draw_re
tangle(x0,y1-1,x,y1+d,bla
k);

state_win.draw_re
tangle(x0,y2-1,x,y2+d,bla
k);

state_win.flush_buffer();

}

The functionsSTRONGCOMPONENTSandSCCDFS have the same overall structure
as in the preceding section, but are augmented by display actions. At the beginning of a
call SCCDFS(v, . . .) we callgw.select(v) to highlightv and at the end of the call we call
gw.deselect(v) to unhighlightv. In theforall adj edgesloopwe color the edge explored red
and make it solid.

〈display functions for part two〉+�
void SCC_DFS(node v, 
onst graph& G, node_array<int>& dfsnum,

node_array<int>& 
omp_num, list<node>& unfinished,

list<node>& roots, int& dfs
ount, int& 
omp_
ount,

GraphWin& gw, 
onst node_array<point>& perm_pos)

{ gw.sele
t(v);

〈new node v was reached〉
node w; edge e;

forall_adj_edges(e,v)

{ w = G.target(e);

gw.set_style(e,solid_edge);

gw.set_
olor(e,red);

string msg = "I am exploring the red edge.\\3 ";

if (dfsnum[w℄ == - 1) { 〈tree edge and recursive call〉 }

else if (
omp_num[w℄ == - 1)

{ 〈non-tree edge into tentative component〉 }

else

{ 〈non-tree edge into permanent component〉 }

}



32 Graph Algorithms

if (v == roots.head()) { 〈v is a root〉 }

gw.desele
t(v);

}

In STRONGCOMPONENTSwe inform the user about every new call ofSCCDFSexcept
for the first.

〈display functions for part two〉+�
int STRONG_COMPONENTS(
onst graph& G, node_array<int>& 
omp_num,

GraphWin& gw, 
onst node_array<point>& perm_pos)

{ list<node> unfinished;

list<node> roots;

node_array<int> dfsnum(G,-1);

node v;

forall_nodes(v,G) 
omp_num[v℄ = -1;

int dfs
ount = 0;

int 
omp_
ount = 0;

forall_nodes(v,G)

if (dfsnum[v℄ == -1)

{ SCC_DFS(v,G,dfsnum,
omp_num,unfinished,roots,dfs
ount,


omp_
ount,gw,perm_pos);

message(gw,"This was a return from an outermost 
all\\3

I am looking for an unrea
hed node and \\n\

(if su

essful) start a new sear
h from it.");

}

return 
omp_
ount;

}

When a new node is reached it is given a dfs-number and is pushed on unfinishedand
roots. The new node forms a tentative strongly connected component of its own. We set
the color ofv to the size of theroots-stack (shifted bycolor shift so as to avoid too much
overlap with the colors used for permanent components), we set the user label ofv to its dfs-
number, and we set the shape and width ofv to a large rectangular shape (so as to indicate
thatv is a root). We build up a string to explain our actions, hand itto messageto display
it, and callstateinfo to update the state information.

〈new node v was reached〉�
dfsnum[v℄ = dfs
ount++;

unfinished.push(v);

roots.push(v);

gw.set_
olor(v,(
olor_shift + roots.size())%16);

gw.set_user_label(v,string("%d",dfsnum[v℄));

gw.set_shape(v,re
tangle_node);

gw.set_width(v,large_width);

string msg;

msg += "A new node has been rea
hed.\\3 ";

msg += "It got the dfs-number ";

msg += string("%d ",dfsnum[v℄);

msg += "and it is the new 
urrent node.\\3 ";
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msg += "It is the root of a new tentative 
omponent.";

state_info(gw,unfinished,roots,dfsnum,v);

message(gw,msg);

A tree edgee = (v, w) leads to a recursive call. We inform the reader about this fact
by textual output, we unhighlightv as it ceases to be a current node, and we emphasize the
edgee (by increasing its width and setting its color to blue); in this way the tree path to the
current node is always shown as a path of thick blue edges. Then we make the recursive
call. After the return from the recursive call, we de-emphasizeeand highlightv (again), and
we inform the reader that we just returned from a recursive call and thatv became active
again.

〈tree edge and recursive call〉�
msg += "It's a tree edge and I am making a re
ursive 
all.";

message(gw,msg);

state_info(gw,unfinished,roots,dfsnum,v);

gw.desele
t(v);

gw.set_
olor(e,blue);

gw.set_width(e,2);

SCC_DFS(w,G,dfsnum,
omp_num,unfinished,roots,dfs
ount,


omp_
ount,gw, perm_pos);

gw.set_width(e,1);

gw.set_
olor(e,bla
k);

gw.sele
t(v);

state_info(gw,unfinished,roots,dfsnum,0);

message(gw,"I returned from a re
ursive 
all. The node with \

number " + string("%d ",dfsnum[v℄) + " got rea
tivated");

A non-tree edgee = (v, w) into a tentative component may close a cycle involving
several tentative components. These components are mergedinto one. More precisely, all
components whose root has a dfs-number larger thandfsnum[w] cease to exist. We inform
the user about this fact by textual output and then start popping roots. Whenever a node is
popped fromroots its shape and width are changed to a small circle. We put await(0.25)
statement into the loop that pops fromrootsso that different roots are visibly popped one
after the other. Once all roots are popped we recolor the nodes in the newly formed scc and
give state information. Finally, we change the color ofe back to black.

〈non-tree edge into tentative component〉�
msg += "It's a non-tree edge into a tentative 
omponent. This edge may \

merge several 
omponents into one.\\n More pre
isely: all \


omponents whose root is larger than " + string("%d ",dfsnum[w℄);

msg += "
ease to exist and are merged into the 
omponent \


ontaining the node with dfs-number " + string("%d. ",dfsnum[w℄);

msg += "Algorithmi
ally, this amounts to removing all roots \

larger than " + string("%d ",dfsnum[w℄);

msg += "from the sta
k of roots. I do so one by one. Removal of a node \
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from the sta
k of roots turns its shape from re
tangular \

to 
ir
ular.";

message(gw,msg);

state_info(gw,unfinished,roots,dfsnum,v);

while (dfsnum[roots.head()℄ > dfsnum[w℄)

{ node z = roots.pop();

gw.set_shape(z,
ir
le_node);

gw.set_width(z,small_width);

state_info(gw,unfinished,roots,dfsnum,v);

wait(0.25);

}

node u;

forall(u,unfinished)

if (dfsnum[u℄ >= dfsnum[roots.head()℄ )

gw.set_
olor(u,(
olor_shift + roots.size())%16);

state_info(gw,unfinished,roots,dfsnum,0);

message(gw,string("Now all roots are removed and the newly formed \


omponent has been re
olored. The 
urrent \

node is still: %d.", dfsnum[v℄));

gw.set_
olor(e,bla
k);

A non-tree edgee into a permanent component requires no action. We inform theuser
and change the color ofe back to black.

〈non-tree edge into permanent component〉�
msg += "It's a non-tree edge into a permanent 
omponent. I do nothing.";

message(gw,msg);

state_info(gw,unfinished,roots,dfsnum,v);

gw.set_
olor(e,bla
k);

When a callSCCDFS(v, . . .) for a rootv is completed a permanent component has been
found. We inform the reader accordingly. All nodes in the permanent component are moved
to the left half of the window (by setting their position as given bypermpos, the shape and
width is changed to a large rectangular shape, the user labelis set to a pair consisting of
dfs-number and component number, and the color is set to the color corresponding to the
component number.

〈v is a root〉�
string msg = "Node " + string("%d",dfsnum[v℄) + " has been \


ompleted. It is a root and hen
e we have identified \

a permanent 
omponent. \\3 \

The permanent 
omponent 
onsists of all nodes in \

unfinished whose dfs-number is at least as large as "

+ string("%d",dfsnum[v℄) + ". \\3 \

I move all nodes in the 
omponent to the left and \

indi
ate their dfs-number and their 
omponent number.";

state_info(gw,unfinished,roots,dfsnum,0);
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message(gw,msg);

do { w = unfinished.pop();

if (v == w) roots.pop();


omp_num[w℄ = 
omp_
ount;

gw.set_shape(w,re
tangle_node);

gw.set_width(w,large_width);

gw.set_
olor(w,
omp_
ount%16);

gw.set_user_label(w,string("%d | %d", dfsnum[w℄,
omp_num[w℄));

state_info(gw,unfinished,roots,dfsnum,0);

gw.set_position(w,perm_pos[w℄);

} while ( w != v);


omp_
ount++;

Enjoy the animation.

Exercises for 7.4
1 Modify the algorithm for the computation of strongly connected components to compute

biconnected components of undirected graphs. Hint: Define the root of a biconnected
component as the node in the component with the second largest dfs-number. Then
proceed as for strongly connected components.

2 Part one of the animation of strongly connected componentsis unsatisfactory as color
changes are not “local”. It would be desirable to have the following behavior: after
the addition or deletion of a node or edge only the colors of those nodes change whose
containing strongly connected component has changed. Modify the animation to achieve
this behavior.

3 Animate the biconnected components algorithm of the first item.
4 Extend the first part of the animation of strongly connectedcomponents so that the

shrunken graph is also visualized. A reasonable approach seems to represent each vertex
of the shrunken graph by the convex hull of the vertices of thecorresponding strongly
connected component.

5 Define the shrunken graph of an undirected graph with respect to its biconnected com-
ponents as follows. There is a vertex for each biconnected component and for each
articulation point. A vertex standing for a component is connected to a vertex represent-
ing an articulation point if the articulation point is contained in the component. Show
that the shrunken graph is a tree and give a program that computes it.

7.5 Shortest Paths

We introduce the shortest-path problem and describe the functionality of our various shortest-
path programs. We discuss a checker for the single-source shortest-path problem and de-
rive a generic shortest-path algorithm. We give algorithmsand their implementations for
acyclic networks, for the single-source problem with arbitrary edge costs, for the single-
source single-sink problem, for the all-pairs problem, andfor the minimum cost to profit
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Figure 7.8 The node labels indicateµ(s, .). The graph on the left contains a negative cycle and
also a node that is not reachable froms. Therefore there are node labels equal to±∞. The graph
on the right contains no negative cycle and all nodes are reachable froms. Therefore all node
labels are finite.

ratio cycle problem; an algorithm for the single-source problem with non-negative edge
costs was already given in Section 6.6. We also give experimental results about the running
times of the various implementations.

7.5.1 Functionality
Let G = (V, E) be a directed graph and letc : E −→ IR be acostfunction on the edges
of G. We will also saylength instead of cost. We extend the cost function topathsin the
natural way: the cost (or length) of a path is the sum of the costs of its constituent edges,
i.e., if p = [e1, e2, . . . , ek ] is a path thenc(p) =

∑

1≤i≤k c(ei ). We will abuse notation
and writec(u, v) instead ofc(e) for e = (u, v). For every vertexv ∈ G the trivial path
consisting of no edge is a path fromv to v; its cost is zero. Acycleis a non-trivial path from
v to v for some nodev. A negative cycleis a cycle whose cost is negative.

For two verticesv andw we useµ(v, w) to denote the minimal cost of a path fromv to
w, i.e.,

µ(v, w) = inf {c(p) ; p is a path fromv to w} .

The infimum of the empty set is defined as+∞, i.e.,µ(v, w) = +∞ if w is not reachable
from v. Figure 7.8 illustrates this definition. The set of paths from v to w is in general an
infinite set and hence it is not clear whetherµ(v, w) is actually achieved by a path fromv
to w. The following lemma gives information about the existenceof shortest paths.

Lemma 5

(a) If w is not reachable fromv thenµ(v, w) = +∞.
(b) If there is a path fromv to w containing a negative cycle thenµ(v, w) = −∞.
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(c) If w is reachable fromv and there is no path fromv to w passing through a negative
cycle then−∞ < µ(v, w) < +∞ andµ(v, w) is the length of a simple path fromv to
w.

(d) If µ(v, w) = −∞ then there is a path fromv to w containing a negative cycle.

Proof Part (a) is true by definition.
For part (b), we observe that if there is a path fromv to w containing a negative cycle

then by going around the cycle sufficiently often a path fromv to w whose cost is below
any prescribed number is obtained. Thusµ(v, w) = −∞.

For part (c) consider any pathp from v to w. If p contains a cycle letp′ be obtained
by removing a cycle fromp. Sincep contains no negative cycle we havec(p′) ≤ c(p).
Continuing in this way we obtain a simple path fromv to w whose cost is at most the cost
of p. Thus

µ(v, w) = inf {c(p) ; p is a simple path fromv to w} .

The number of simple paths fromv tow is finite and henceµ(v, w) = c(p) for some simple
pathp.

We turn to part (d). Ifµ(v, w) = −∞ thenw is reachable fromv. If there is no path
from v to w containing a negative cycle thenµ(v, w) > −∞ by part (c).

We distinguish between thesingle-source single-sink shortest-path problem, thesingle-
source shortest-path problem, and theall-pairs shortest-path problem. The first problem
asks for the computation ofµ(s, t) for two specified nodess andt and will be discussed in
Section 7.5.6. The second problem asks to computeµ(s, v) for a specified nodes and all
v and the third problem asks to computeµ(s, v) for all nodess andv. The single-source
problem is the basis for the solutions to the other two problems and hence we discuss it first.

In our discussion of the single-source problem we uses to denote the source and we
write µ(v) instead ofµ(s, v). The following characterization of the functionµ is extremely
useful for the correctness proofs of shortest-path algorithms7.

Lemma 6

(a) We have

µ(s) = min(0, min{µ(u) + c(e) ; e = (u, s) ∈ E})

and

µ(v) = min {µ(u) + c(e) ; e = (u, v) ∈ E}

for v 6= s.
(b) If d is a function from V to IR∪ {−∞, +∞} with

• d(v) ≥ µ(v) for all v ∈ V ,

7 In this characterization and for the remainder of the section we use the following definitions for the arithmetic
and order onIR ∪ {−∞, +∞}: −∞ < x < +∞, +∞ + x = +∞, and−∞ + x = −∞ for all x ∈ IR.
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• d(s) ≤ 0, and

• d(v) ≤ d(u) + c(u, v) for all e = (u, v) ∈ E

then d(v) = µ(v) for all v ∈ V .

Proof For part (a) we consider only the casev 6= s and leave the casev = s to the reader.
Any path p from s to v consists of a path froms to some nodeu plus an edge fromu to v.
Thus

µ(v) = inf {c(p) ; p is a path froms to v}
= min

u
inf
{

c(p′) + c(e) ; p′ is a path froms to u ande = (u, v) ∈ E
}

= min {µ(u) + c(e) ; e = (u, v) ∈ E} .

For part (b) we assume for the sake of a contradiction thatd(v) > µ(v) for somev. Then
µ(v) < +∞. We distinguish cases.

If µ(v) > −∞, let [s = v0, v1, . . . , vk = v ] be a shortest path froms to v. We have
µ(s) = 0 = d(s), µ(vi ) = µ(vi−1) + c(vi−1, vi ) for i > 0, andµ(v) < d(v). Thus, there
is a leasti > 0 with µ(vi ) < d(vi ) and hence

d(vi ) > µ(vi ) = µ(vi−1) + c(vi , vi−1) = d(vi−1) + c(vi , vi−1),

a contradiction.
If µ(v) = −∞, let [s = v0, v1, . . . , vi , . . . , v j , . . . , vk = v ] be a path froms to v

containing a negative cycle. Such a path exists by Lemma 5. Assume that the subpath from
vi to v j is a negative cycle. Ifd(v) > µ(v) thend(v) > −∞ and henced(vl ) > −∞ for
all l , 0 ≤ l ≤ k. Thus,

d(vi ) = d(v j ) sincevi = v j

≤ d(v j −1) + c(v j −1, v j )

≤ d(v j −2) + c(v j −2, v j −1) + c(v j −1, v j )
...

≤ d(vi ) +
∑ j −1

l=i c(vl , vl+1),

and hence
∑ j −1

l=i c(vl , vl+1) ≥ 0, a contradiction to the fact that the subpath fromvi to v j is
a negative cycle.

We split the set of vertices ofG into three sets:

V− = {v ∈ V ; µ(v) = −∞} ,

V f = {v ∈ V ; − ∞ < µ(v) < +∞} , and

V+ = {v ∈ V ; µ(v) = +∞} .

The vertexs belongs toV f if there is no negative cycle passing throughs and it belongs to
V− otherwise; in the latter caseV f is empty. The setV+ consists of all vertices that are not
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s

negative
cycle

V f V+

V−

Figure 7.9 A solution to a single-source problem: It consists of a shortest-path tree onV f , a
collection of negative cycles plus trees emanating from them onV−, a setV+ of isolated nodes,
and the valuesµ(v) for v ∈ V f .

reachable froms. A shortest-path treewith respect tos is a tree defined onV f such that
for anyv ∈ V f the tree path froms to v is a shortest path froms to v.

We next define the output convention for the single-source shortest-path problem. What
do we want to know? Certainly,µ(v) for all nodesv. However, knowingµ(v) is usually
not enough. Ifv ∈ V f , it is useful to know a shortest path froms to v and if v ∈ V−, it
is useful to know the negative cycle that “puts”v into V−. Our algorithms therefore also
produce a shortest-path tree onV f and a collection of negative cycles plus trees emanating
from them onV−, see Figure 7.9. The exact definition is as follows8:

The solution to a single-source shortest-path problem(G, s, c) is a pair (dist, pred),
wheredist is anodearray<NT> andpred is anodearray<edge>. Let

P = {pred[v] ; v ∈ V andpred[v] 6= nil} .

The pair must have the following properties:

• s ∈ V f iff pred[s] = nil ands ∈ V− iff pred[s] 6= nil.

• Forv 6= s: v ∈ V+ iff pred[v] = nil andv ∈ V f ∪ V− iff pred[v] 6= nil.

8 We further comment on our output convention after its definition.



40 Graph Algorithms

0

−
−

−−

−

−2+

+ +

3

−2

−3

−1

2

1

3
−2

−24

−3

Figure 7.10 The output of a single-source shortest-path problem. The source nodes is shown
bigger than all other nodes. Itsdist-label is zero. Edge costs are indicated. For every nodev with
pred[v] 6= nil the edgepred[v] is shown in bold. For the nodes inV f thedist-value is shown
inside the node. For nodesv ∈ V+ ∪ V− the set containingv is indicated by a+ or −. V+

consists of all nodesv 6= s with pred[v] = nil, V f consists of all nodes that are reachable froms
by a P-path, andV− consists of all nodes that lie on aP-cycle or are reachable from aP-cycle
by theP-path. All P-cycles have negative cost. You may generate your own figureswith the
xlman-demo gwshortestpath.

• v ∈ V f if v is reachable froms by a P-path9 ands ∈ V f . P restricted toV f forms a
shortest-path tree anddist[v] = µ(v) for v ∈ V f .

• All P-cycles have negative cost andv ∈ V− iff v lies on aP-cycle or is reachable
from a P-cycle by aP-path.

Figure 7.10 shows an example. Observe that our output convention leaves the value of
dist[v] unspecified forv ∈ V+ ∪ V−. We have made this choice because most number
types have no representation for+∞ and−∞. In theabsence of negative cyclesour output
convention simplifies to the following:

• Forv 6= s: v ∈ V f iff pred[v] 6= nil andv ∈ V+ otherwise.

• pred[s] = nil.

• P is a shortest-path tree onV f anddist[v] = µ(v) for v ∈ V f .

Our output convention for the single-source shortest-pathproblem is non-standard. Most
papers on the shortest-path problem do not define precisely how negative cycles are reported
and this was also true for early versions of LEDA. We have defined our output convention
such that:

• the return value of a single-source algorithm consists of a pair (dist, pred), as is
customary for single-source algorithms. We played with theidea to add an output

9 A P-path is a path all of whose edges belong toP and aP-cycle is a cycle all of whose edges belong toP.
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parameter, which indicates for every node its membership tothe setsV+, V f , andV−.
We decided against it, because we wanted to stick with the traditional interface of
shortest-path algorithms,

• it can be checked in linear time whether a pair(dist, pred) is a solution to the
shortest-path problem(G, s, c), see Section 7.5.2,

• shortest-path algorithms can satisfy it with little additional effort.

We turn to algorithms. All algorithms are function templates that work for an arbitrary num-
ber typeNT. We use the convention that names of function templates for graph algorithms
end with T. In order to use the templates one must include LEDA/templates/shortestpath.t.
LEDA also contains pre-compiled instantiations for the number typesint anddouble. The
function names for the instantiated versions arewithout the suffix T. In order to use the
instantiated versions one must include LEDA/graphalg.h. Section 7.1 discusses the rela-
tionship between templates and instantiated versions in more detail.

Acyclic Graphs:

void ACYCLIC SHORTEST PATH T(
onst graph& G, node s,


onst edge array<NT>& 
,

node array<NT>& dist,

node array<edge>& pred)

solves the problem in timeO(n + m) for acyclic graphs, see Section 7.5.4. As always, we
usen to denote the number of nodes ofG andm to denote the number of edges ofG.

Non-Negative Edge Costs:

void DIJKSTRA T(
onst graph& G, node s, 
onst edge array<NT>& 
,

node array<NT>& dist, node array<edge>& pred)

solves the problem in timeO(m + n logn) if all edge costs are non-negative. We have
discussed this function already in Section 6.6. If all edge costs are equal to one then breadth-
first search, see Section 7.3, solves the problem in linear time.

General Edge Costs:

bool BELLMAN FORD T(
onst graph& G, node s, 
onst edge array<NT>& 
,

node array<NT>& dist, node array<edge>& pred)

solves the problem in timeO(n · m) for arbitrary edge costs. It returns false ifµ(v) = −∞
for some vertexv. Otherwise, it returnstrue.

We also have a procedure

bool SHORTEST PATH T(
onst graph& G, node s, 
onst edge array<NT>& 
,

node array<NT>& dist, node array<edge>& pred)
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that tests whether one of the two special cases applies and, if so, applies the efficient proce-
dure applicable to the special case. If none of the special cases applies,BELLMANFORDT
is called. The implementation ofSHORTESTPATHT is simple.

〈SP.t〉�
template <
lass NT>

bool SHORTEST_PATH_T(
onst graph& G, node s, 
onst edge_array<NT>& 
,

node_array<NT>& dist, node_array<edge>& pred )

{ if ( Is_A
y
li
(G) )

{ ACYCLIC_SHORTEST_PATH_T(G,s,
,dist,pred);

return true;

}

bool non_negative = true;

edge e;

forall_edges(e,G) if (
[e℄ < 0) non_negative = false;

if (non_negative) { DIJKSTRA_T(G,s,
,dist,pred);

return true;

}

return BELLMAN_FORD_T(G,s,
,dist,pred);

}

The Single-Sink Problem: The single-source single-sink shortest-path problem asksfor
the computation of a shortest path from a specified nodes, the source, to a specified nodet ,
the sink.

NT DIJKSTRA T(
onst graph& G, node s, node t,


onst edge array<NT>& 
, node array<edge>& pred)

computes a shortest path froms to t and returns its length. The cost of all edges must be
non-negative. The return value is unspecified if there is no path froms to t . The array
predallows one to trace a shortest path froms to t in reverse order, i.e.,pred[t ] is the last
edge on the path. If there is no path froms to t or if s = t thenpred[t ] = nil. The worst
case running time isO(m + n logn), but frequently much better. The implementation is
discussed in Section 7.5.6.

The All-Pairs Problem: The all-pairs shortest-path problem asks for the computation of
the complete distance functionµ.

bool ALL PAIRS SHORTEST PATHS T(graph& G, edge array<NT> 
,

node matrix<NT> DIST)

returnstrue if G has no negative cycle and returnsfalseotherwise. In the latter case all
values returned inDIST are unspecified. In the former case we have for allv andw: if
µ(v, w) < ∞ thenDIST(v, w) = µ(v, w) and if µ(v, w) = ∞, the value ofDIST(v, w)

is unspecified. The procedure runs in timeO(nm+ n2 logn).
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Our output convention for the all-pairs problem is somewhatunsatisfactory. It is dictated
by the fact that many number types have no representation of+∞. An alternative solution
is to also return a node matrixPREDof edges in analogy to the single-source problem.

7.5.2 A Checker for Single-Source Shortest-Path Algorithms
We develop a programCHECKSPT(G, s, c, dist, pred) that checks whether(dist, pred) is
a correct solution to the shortest-path problem(G, s, c). If not, the program aborts (with
the error message “assertion failed”) and if so, the programreturns anodearray<int> label
with label[v] < 0 if v ∈ V−, label[v] = 0 if v ∈ V f , andlabel[v] > 0 if v ∈ V+.

Let P = {pred[v] ; pred[v] 6= nil } be the set of edges defined by thepred-array and
define

U+ = {v ; v 6= s andpred[v] = nil } ,

U f = ∅, if pred[s] 6= nil,

U f = {v ; v is reachable froms by a P-path} , if pred[s] = nil,

U− = {v ; v lies on aP-cycle or is reachable from aP-cycle by aP-path} .

We perform the following checks:

(1) v ∈ U+ iff v is not reachable froms in G.
(2) All P-cycles have negative cost.
(3) There is no edge(v, w) ∈ E with v ∈ U− andw ∈ U f .
(4) For alle = (v, w) ∈ E: if v ∈ U f andw ∈ U f thendist[v] + c[e] ≥ dist[w].
(5) For all v ∈ U f : if v = s thendist[v] = 0 and if v 6= s thendist[v] = dist[u] +

c[pred[v]] whereu is the source ofpred[v].

Lemma 7 If (dist, pred) satisfies the five conditions above then it is a solution to the
shortest-path problem(G, s, c).

Proof Observe first thatv ∈ V+ iff v is not reachable froms. Thus (1) implies that
U+ = V+ and henceU f ∪ U− = V f ∪ V−. We next show thatU− ⊆ V−. Consider
anyv ∈ U−. By definition ofU− there is aP-cycle, call itC, from whichv is reachable.
Moreover, the cost ofC is negative by (2) and there is a node onC that is reachable froms
by (1). Thusµ(s, v) = −∞ and hencev ∈ V−. ThusU− ⊆ V− and thereforeU f ⊇ V f .
Assume for the sake of a contradiction that the latter inclusion is proper and letv ∈ U f \V f

be arbitrary. Thenv ∈ V− and hence there is a pathp from s to v containing a negative
cycle, sayC. By (3) there is no edge(x, y) with x ∈ U− andy ∈ U f . We conclude that all
vertices onp belong toU f . This implies that (4) holds for all edges ofC. Let e0, e1, . . . ,
ek−1 with ei = (vi , vi+1) be the edges ofC. Thenv0 = vk. We have

dist[v0] + c(C) = dist[v0] +
∑

0≤i<k

c[ei ]
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≥ dist[v1] +
∑

1≤i<k

c[ei ] ≥ . . . ≥ dist[vk]

= dist[v0]

by repeated application of (4). Thusc(C) ≥ 0, a contradiction. We have now shown that
U+ = V+, U f = V f , andU− = V−. We still need to show thatP restricted toV f is
a shortest-path tree. Consider anyv ∈ V f . Condition (5) implies thatdist[v] is the length
of the P-path froms to v and (4) implies that the length of any path froms to v is at least
dist[v]. Thus P is a shortest-path tree.

We come to the implementation. We start with condition (1). We use depth-first search to
determine all nodes reachable froms and we check whether for all nodesv different from
s: pred[v] = nil iff v is not reachable froms. We give all nodes that are not reachable from
s the labelPLUS; PLUSis an element of an enumeration type that we use to classify nodes.
All nodes start with the labelUNKNOWN. The other members of the enumeration type will
be explained below.

〈condition one〉�
enum{ NEG_CYCLE = -2, ATT_TO_CYCLE = -1, FINITE = 0, PLUS = 1,

CYCLE = 2, ON_CUR_PATH = 3, UNKNOWN = 4 };

node_array<int> label(G,UNKNOWN);

node_array<bool> rea
hable(G,false);

DFS(G,s,rea
hable);

node v;

forall_nodes(v,G)

{ if (v != s)

{ assert( (pred[v℄ == nil) == (rea
hable[v℄ == false));

if (rea
hable[v℄ == false) label[v℄ = PLUS;

}

}

Next we compute the setsU f andU−. Consider any nodev 6∈ U+. Tracing the path
[v, source(pred[v]), source(pred[source(pred[v])]), . . .] until either a node is encountered
twice or until the path cannot be extended further (it must end in s in the latter case because
s is the only node outsideU+ which may have no incomingP-edge) allows us to classify
all nodes on the path. In the former casev and all nodes on the path belong toU− and in the
latter case all of them belong toU f . For the sequel it is useful to have a finer classification
of the nodes inU− into nodes lying on aP-cycle (labelCYCLE) and nodes attached to a
cycle by aP-path (labelATTTOCYCLE) and so we will compute the finer classification.

Of course, we do not want to trace the same path several times.We therefore stop trac-
ing a path once a node is reached whose label is known (more precisely, is different from
UNKNOWN). As we trace a path all nodes on the path are put onto a stackSand are given
the labelON CURPATH.

We initialize the classification step by givings the labelFINITE if its pred-value isnil.
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〈classification of nodes〉�
if (pred[s℄ == nil) label[s℄ = FINITE;

forall_nodes(v,G)

{ if ( label[v℄ == UNKNOWN )

{ sta
k<node> S;

node w = v;

while ( label[w℄ == UNKNOWN )

{ label[w℄ = ON_CUR_PATH;

S.push(w);

w = G.sour
e(pred[w℄);

}

〈label all nodes on current path〉
}

}

When a nodew is encountered whose label is different fromUNKNOWNwe distinguish
cases: ifw is labeledFINITE, i.e., v ∈ U f , then all nodes on the path belong toU f , and
if w is labeledCYCLEor ATTTOCYCLE, i.e.,v ∈ U−, then all nodes on the path (except
for w) are attached to a cycle but do not lie on a cycle themselves, and if w belongs to the
current path then the situation is as shown in Figure 7.11. This leads to the following code.

w v

Figure 7.11 A cycle and a path emanating from it. The search started inv andw is the first node
encountered twice.

〈label all nodes on current path〉�
int t = label[w℄;

if ( t == ON_CUR_PATH )

{ node z;

do { z = S.pop();

label[z℄ = CYCLE;

}

while ( z != w );

while ( !S.empty() ) label[S.pop()℄ = ATT_TO_CYCLE;

}

else // t is CYCLE, ATT_TO_CYCLE, or FINITE

{ if ( t == CYCLE ) t = ATT_TO_CYCLE;

while ( !S.empty() ) label[S.pop()℄ = t;

}

We next check that allP-cycles have negative cost. Given our classification of nodes
this is fairly simple. For every cycle node we trace the cyclecontaining it and compute its
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cost. We assert that the cost is negative. If so, we promote all nodes on the cycle to label
NEGCYCLE; this guarantees that every cycle is traced only once.

〈condition two〉�

forall_nodes(v,G)

{ if ( label[v℄ == CYCLE )

{ node w = v;

NT 
y
le_length = 0;

do

{ 
y
le_length += 
[pred[w℄℄;

label[w℄ = NEG_CYCLE;

w = G.sour
e(pred[w℄);

} while (w != v);

assert(
y
le_length < 0);

}

}

Conditions (3), (4), and (5) are trivial to check.

〈conditions three, four, and five〉�
if ( label[s℄ == FINITE ) assert(dist[s℄ == 0);

edge e;

forall_edges(e,G)

{ node v = G.sour
e(e);

node w = G.target(e);

if ( label[w℄ == FINITE )

{ assert( label[v℄ == FINITE || label[v℄ == PLUS);

if ( label[v℄ == FINITE )

{ assert( dist[v℄ + 
[e℄ >= dist[w℄ );

if ( e == pred[w℄ ) assert( dist[v℄ + 
[e℄ == dist[w℄ );

}

}

}

Putting it all together we obtain:

〈checksp.t〉+�
template <
lass NT>

node_array<int> CHECK_SP_T(
onst graph& G, node s,


onst edge_array<NT>& 
,


onst node_array<NT>& dist,


onst node_array<edge>& pred)

{ 〈condition one〉
〈classification of nodes〉
〈condition two〉
〈conditions three, four, and five〉
return label;

}
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7.5.3 A Generic Single-Source Shortest-Path Algorithm
We derive a generic shortest-path algorithm. All our implementations for the single-source
problem will be instances of the generic algorithm and the correctness proofs and running
time claims of our implementations will be consequences of the lemmas derived in this
section.

In Lemma 6 we gave a characterization of shortest-path distances.
Let d : V −→ IR ∪ {−∞, ∞} be a function with

(1) d(v) ≥ µ(v) for all v ∈ V
(2) d(s) ≤ 0
(3) d(v) ≤ d(u) + c(u, v) for all e = (u, v) ∈ E

Thend(v) = µ(v) for all v ∈ V .
The generic algorithm maintains a functiond satisfying (1) and (2) and aims at establish-

ing (3). We calld(v) thetentative distance labelof v.

d(s) = 0; d(v) = ∞ for v 6= s;
π(v) = nil for all v ∈ V ;
while there is an edgee = (u, v) ∈ E with d(v) > d(u) + c(e)
f d(v) = d(u) + c(e);

π(v) = e;
g

We will refer to the body of the while-loop asrelaxing10 edge e. Besides the tentative
distance labels the generic algorithm maintains for each nodev the edgeπ(v) that defined
d(v).

It is easy to see that (1) and (2) are invariants of the algorithm. We only have to observe
thatd(v) never increases (and henced(s) ≤ 0 always) and thatd(v) < +∞ implies that
d(v) is the length of some path froms to v (and henced(v) ≥ µ(v) always). When the
algorithm terminates we also have (3). Thus,d(v) = µ(v) for all v ∈ V when the algorithm
terminates. A lot more can be said about the generic algorithm.

Lemma 8 The following is true at any time during the execution of the generic algorithm11.
Let

P = {e ; e= π(v) ∈ E for somev ∈ V } .

(a) d(s) = 0 iff π(s) = nil and d(v) < ∞ iff π(v) 6= nil for v 6= s.
(b) If π(v) = e = (u, v) then d(v) ≥ d(u) + c(e).
(c) If π(v) 6= nil then v either lies on a P-cycle, or is reachable from a P-cycle by a

P-path, or is reachable from s by a P-path. Ifπ(s) 6= nil then s lies on a P-cycle.

10 Think of e = (u, v) as a rubber band that wants to keepv within distancec(e) of u. If d(v) > d(u) + c(e) the
rubber band is under tension. Settingd(v) to d(u) + c(e) relaxes it.

11 Observe the similarity of items (a), (d), (e), (f), and (g) with the four bullets in the definition of our output
convention.
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(d) P-cycles have negative cost.
(e) If v lies on a P-cycle or is reachable from a P-cycle thenµ(v) = −∞.
(f) If v ∈ V f and d(v) = µ(v) then there is a P-path from s tov and this path has cost

µ(v).
(g) If d(v) = µ(v) for all v ∈ V f then P defines a shortest-path tree on Vf .

Proof (a) We start withd(s) = 0, d(v) = ∞ for all v with v 6= s, andπ(v) = nil for all v.
Whend(v) is decreased,π(v) is set, and whenπ(v) is set,d(v) is decreased.

(b) Consider the moment of time whenπ(v) was set most recently. At this moment
we hadd(v) = d(u) + c(u, v), d(v) has not changed since then, andd(u) can only have
decreased.

(c) Consider any nodeu, u 6= s, with (u, v) ∈ P for somev. Thenπ(v) = (u, v) and
henced(v) < ∞ by part (a). Thend(u) + c(u, v) ≤ d(v) by part (b) and henced(u) < ∞.
Thus,π(u) 6= nil by part (a). We conclude that any nodeu, u 6= s, with an outgoingP-edge
has also an incomingP-edge. Thuss is the only node which may have outgoingP-edges
but no incomingP-edge.

(d) Let [e0, . . . , ek−1] with ei = (vi , vi+1) andv0 = vk be aP-cycle. We may assume
w.l.o.g. thatπ(vk) = ek−1 is the edge in the cycle that was added toP last. Just prior to the
addition ofek−1 we have

d(vi+1) ≥ d(vi ) + c(ei ) for all i , 0 ≤ i ≤ k − 2

by part (b) and

d(vk) > d(vk−1) + c(ek−1).

Summation yields
∑

0≤i<k

d(vi+1) >
∑

0≤i<k

(d(vi ) + c(ei ))

and hence (sincevk = v0 and thusd(vk) = d(v0))
∑

0≤i<k

c(ei ) < 0.

(e) Any nodev with π(v) 6= nil hasd(v) < ∞ and is hence reachable froms in G. Any
P-cycle has negative cost. Thusµ(v) = −∞ for any nodev lying on a P-cycle or being
reachable from aP-cycle.

(f) AssumeV f 6= ∅ and consider any nodev ∈ V f with d(v) = µ(v). Forv = s there
is nothing to show. Forv 6= s, d(v) = µ(v) < ∞ impliesπ(v) 6= nil. From (c) and (e) we
conclude thatv is reachable froms by a P-path p = [e0, . . . , ek−1] with ei = (vi , vi+1),
v0 = s, andvk = v. From (b) we conclude

d(vi+1) ≥ d(vi ) + c(ei ) for i , 0 ≤ i < k

and hence

d(vk) ≥ d(v0) + c(p) = c(p),
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where the last equality follows fromv0 = s ∈ V f and henced(s) = µ(s) = 0 by (1) and
(2). Thus,c(p) ≤ d(v) = µ(v) and we must have equality since no path froms to v can be
shorter thanµ(v).

(g) This follows immediately from part (f).

There are two major problems with the generic algorithm:

• In the presence of negative cycles it will never terminate (since thed-values are always
the length of some path and hence cannot reach−∞).

• Even in the absence of negative cycles the running time can beexponential, see
[Meh84, page40] for an example.

We address the second problem in the remainder of this section and deal with the first
problem in Section 7.5.7. When we decrease the distance label d(v) of a nodev in the
generic algorithm this may create additional violations of(3), namely for the edges out of
v. This suggests maintaining a setU of nodes with

U ⊇ {u ; d(u) < ∞ and∃(u, v) ∈ E with d(u) + c(u, v) < d(v)}

and to rewrite the algorithm12 as:

d(s) = 0; d(v) = ∞ for v 6= s;
U = {s};
while U 6= ∅
f selectu ∈ U and remove it;

forall edgese = (u, v)

f if d(u) + c(e) < d(v)

f addv to U ;
d(v) = d(u) + c(e);
π(v) = e;

g

g

g

We are left with the decision of which nodeu to select fromU . There is always an
optimal choice.

Lemma 9 (Existence of optimal choice)

(a) As long as d(v) > µ(v) for somev ∈ V f : for anyv ∈ V f with d(v) > µ(v) there is a
u ∈ U with d(u) = µ(u) and lying on a shortest path from s tov.

(b) When a node u is removed from U with d(u) = µ(u) then it is never added to U again.

12 We reuse the name generic shortest-path algorithm for the modified version of the algorithm.
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Proof (a) Let [s = v0, v1, . . . , vk = v ] be a shortest path froms to v. Thenµ(s) =
0 = d(s) andd(vk) > µ(vk). Let i be minimal such thatd(vi ) > µ(vi ). Then i > 0,
d(vi−1) = µ(vi−1) and

d(vi ) > µ(vi ) = µ(vi−1) + c(vi−1, vi ) = d(vi−1) + c(vi−1, vi ).

Thus,vi−1 ∈ U .
(b) We haved(u) ≥ µ(u) always. Also, whenu is added toU thend(u) is decreased.

Thus, if a nodeu is removed fromU with d(u) = µ(u) it will never be added toU at a later
time.

There are two important special cases of the single-source problem where the existence
claim of an optimal choice can be made algorithmic. Both cases deal with graphs where the
structure of the graphs excludes negative cycles: graphs with non-negative edge costs and
acyclic graphs.

Lemma 10 (Algorithmic optimal choice)

(a) If c(e) ≥ 0 for all e ∈ E then d(u) = µ(u) for the node u∈ U with minimal d(u).
(b) If G is acyclic and u0, u1, . . . , un−1 is a topological order of the nodes of G, i.e., if

(ui , u j ) ∈ E then i < j , then d(u) = µ(u) for the node u= ui ∈ U with i minimal.

Proof Assumed(u) > µ(u) for the node chosen in either part (a) or (b). By the preceding
lemma there is a nodez ∈ U lying on a shortest path froms to u with d(z) = µ(z). We
now distinguish cases.

In part (a) we haveµ(z) ≤ µ(u) since all edge costs are assumed to be non-negative.
Thus,d(z) < d(u), contradicting the choice ofu.

In part (b) we havez = u j for some j < i , contradicting the choice ofu.

Part (a) of the lemma above is the basis of Dijkstra’s algorithm, see Section 6.6, and part
(b) is the basis of a linear time algorithm for acyclic graphs, which we will discuss in the
next section.

In our shortest-path programs we use anodearray<NT> dist to represent the function
d and anodearray<edge> pred for the functionπ . Since most number types have no
representation of+∞ we will not be able to maintain equality betweend anddist. We
exploit the fact that the equivalence

d(v) = +∞ iff v 6= s andπ(v) = nil

holds in the generic algorithm and use it for the representation of +∞. We maintain the
following relationship between(d, π) and(dist, pred): for all nodesv:

• pred[v] = π(v) and

• dist[v] = d(v), if d(v) < ∞, anddist[v] arbitrary, if d(v) = +∞.

With this representation a comparisond < d(v) with d ∈ IR can be realized as:
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(pred[v℄ == nil && v != s) || d < dist[v℄

We remark that the alternative

(v != s && pred[v℄ == nil) || d < dist[v℄

is less efficient. All but one nodev is different froms and hence the testv != s evaluates
to true most of the time; thus the testpred[v℄ == nil will also be performed most of the
time in the second line. In the first line, the testpred[v℄ == nil evaluates to true only
when the first edge intov is considered (sinced(v) < +∞ afterwards) and hence evaluates
to false in the majority of the cases (at least if the average indegree is larger than two). Thus
the testv != s will not be made in the majority of the cases.

The general rule is that in a conjunction of tests one should start with the test that evalu-
ates to false most often and that in a disjunction of tests oneshould start with the test that
evaluates to true most often. Please, do not use this rule blindly since interchanging the
order of tests may change the semantics (since C++ evaluates a test from left to right and
terminates the evaluation once the value of the test is known). In the example above, it
would be unwise (why?) to change the expression into

d < dist[v℄ || (pred[v℄ == nil && v != s)

7.5.4 Acyclic Graphs
We show how topological sorting can be used to solve the single-source shortest-path prob-
lem in acyclic graphs in linear timeO(n + m). Let G be an acyclic graph and assume that
v1, v2, . . . , vn is an ordering of the nodes such that(vi , v j ) ∈ E implies i ≤ j . Such an
ordering is easy to compute.

〈acyclic graphs: establish topological order〉�
node_array<int> top_ord(G);

TOPSORT(G,top_ord); // top_ord is now a topologi
al ordering of G

int n = G.number_of_nodes();

array<node> v(1,n);

node w;

forall_nodes(w,G) v[top_ord[w℄℄ = w; // top_ord[v[i℄℄ == i for all i

The call TOPSORT(. . . ) numbers the nodes ofG with the integers 1 ton such that all edges
go from lower numbered to higher numbered nodes. In the forall node-loop we store the
node with numberi in v[i ].

It is now easy to implement the generic single-source algorithm. Let k = topord[s].
Nodesvi with i < k are not reachable froms. We step through the nodes in the order
vk, vk+1, . . . and maintain the setU implicitly. Assume we have reached nodei . ThenU
consists of all nodesv j with j ≥ i anddist(v j ) < +∞. For j > k the latter condition
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is equivalent topred[v j ] 6= nil. If v[i ] is equal tos or has a defined predecessor edge we
propagatedist[v[i ]] over all edges out ofv[i ] and proceed to the next node.

〈acyclic sp.t〉+�
template <
lass NT>

void ACYCLIC_SHORTEST_PATH_T(
onst graph& G, node s,


onst edge_array<NT>& 
,

node_array<NT>& dist,

node_array<edge>& pred)

{

〈acyclic graphs: establish topological order〉
forall_nodes(w,G) pred[w℄ = nil;

dist[s℄ = 0;

for(int i = top_ord[s℄; i <= n; i++)

{ node u = v[i℄;

if ( pred[u℄ == nil && u != s ) 
ontinue;

edge e;

NT du = dist[u℄;

forall_adj_edges(e,u)

{ node w = G.target(e);

if ( pred[w℄ == nil || du + 
[e℄ < dist[w℄)

{ pred[w℄ = e;

dist[w℄ = du + 
[e℄;

}

}

}

}

The correctness follows immediately from the remarks preceding the program and Lemma 10.
The running time isO(n + m) since each node and each edge is considered at most once.

7.5.5 Non-Negative Edge Costs
Dijkstra’s algorithm for the shortest-path problem with non-negative edge costs was already
treated in Section 6.6.

7.5.6 The Single-Source Single-Sink Problem
The single-source single-sink shortest-path problem is probably the most natural shortest-
path problem. The goal is to find a shortest path from a given source nodes to a given sink
nodet .

We describe the so-calledbidirectional search algorithm(an alternative approach is dis-
cussed in the exercises). The algorithm assumes that edge costs are non-negative. The
worst case running time of the algorithm isO(m + m logn); the observed running time is
frequently much better.

The bidirectional search algorithm runs two instances of Dijkstra’s algorithm (see Sec-
tion 6.6) concurrently, one to find shortest-path distancesfrom s and one to find shortest-
path distances tot . The first instance is simply Dijkstra’s algorithm and the second instance
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Figure 7.12 Termination of the bidirectional shortest-path algorithm: In our implementation we
alternately add nodes toKs andKt . In the example we adds to Ks, t to Kt , u to Ks, v to Kt , w

to Ks, w to Kt , andv to Ks. The algorithm terminates whenv is added toKs. It does not
terminate whenw is added toKt , althoughw ∈ Ks ∩ Kt at this point of time. Observe that
dt (v) = 1 after addingt to Kt andds(v) = 2 after addingu to Ks. ThusD = 3 after addingu to
Ks and hencew does not realizeD when it is added toKs ∩ Kt .

is a symmetric version of Dijkstra’s algorithm, where the search starts att and shortest-path
distances are propagated across the edgesinto a node instead of the edges out of a node.

We useds(v) to denote the tentative distance froms to v anddt(v) to denote the tentative
distance fromv to t . Initially, ds(s) = dt(t) = 0, ds(v) = ∞ for v 6= s, anddt(v) = ∞ for
v 6= t . The algorithm maintains

D = min
v

(ds(v) + dt(v))

which is the shortest known length of a path froms to t .
Let Ks and Kt be the set of nodes that were removed from the priority queue in the

shortest-path calculations froms andt , respectively. We know from Section 7.5.3 that

ds(v) = µ(s, v) for v ∈ Ks

ds(v) = min{µ(s, u) + c(u, v); u ∈ Ks} for v 6∈ Ks

dt(v) = µ(v, t) for v ∈ Kt

dt(v) = min{c(v, u) + µ(u, t); u ∈ Kt } for v 6∈ Kt

The bidirectional algorithm terminates whenD is realized by a node inKs ∩ Kt or when
both queues become empty. In the former caseD is the shortest-path distance froms to
t , and in the latter case there is no path froms to t . Figure 7.12 illustrates the termination
condition.

Theorem 1 The bidirectional search algorithm is correct.

Proof If there is no path froms to t then there is never a node inKs ∩ Kt and hence the
algorithm terminates when both queues become empty. Thus the algorithm is correct if
there is no path froms to t .
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So let us assume that there is a path froms to t . Let p = [s = v0, v1, . . . , vk−1, vk = t ]
be a shortest path froms to t .

We argue first that the event thatD is realized by a node inKs ∩ Kt will occur. This is
easy to see. Observe first that all nodes onp are reachable froms as well ast . When a node
vh on p is added toKs ∩ Kt , we have

µ(s, t) ≤ D ≤ ds(vh) + dt(vh) = µ(s, vh) + µ(vh, t) = µ(s, t),

and hence the event thatD is realized by a node inKs ∩ Kt will occur at the latest when a
node onp is added toKs ∩ Kt .

It remains to show thatD = c(p) when the event actually occurs. Assume otherwise,
i.e.,c(p) < D when the algorithm terminates. Then there is no node ofp in Ks ∩ Kt at the
time of termination.

Consider the time of termination, letw ∈ Ks ∩ Kt be the node withD = ds(w) + dt(w),
let i be minimal withvi+1 6∈ Ks, and let j be maximal withv j −1 6∈ Kt . Both indices exist
sincev0 = s is the first node to be added toKs andvk = t is the first node to be added to
Kt . We havei < j by our assumption that no node ofp is added toKs ∩ Kt and hence
ds(w) ≤ ds(vi+1), sincew ∈ Ks andv j −1 6∈ Ks, anddt (w) ≤ dt(v j −1), sincew ∈ Kt and
v j −1 6∈ Kt . If i + 1 ≤ j − 1, we have

c(p) ≥ µ(s, vi+1) + µ(v j −1, t) = ds(vi+1) + dt(v j −1) ≥ ds(w) + dt(w) = D,

and if i + 1 = j , we have withv = vi+1 = v j

c(p) = µ(s, v) + µ(v, t) = ds(v) + dt(v) ≥ D.

We turn to the implementation. We distinguish the two versions of Dijkstra’s algorithm
by indices 0 and 1 and provide two copies of the required data structures in arrays with
index set{0, 1}.

〈single sink: data structures〉�
array<node> terminal(2);

terminal[0℄ = s; terminal[1℄ = t;

array<node_pq<NT>* > PQ(2);

PQ[0℄ = new node_pq<NT>(G);

PQ[1℄ = new node_pq<NT>(G);

PQ[0℄->insert(terminal[0℄,0);

PQ[1℄->insert(terminal[1℄,0);

array<node_array<NT> > dist(2);

dist[0℄ = dist[1℄ = node_array<NT>(G);

dist[0℄[s℄ = dist[1℄[t℄ = 0;

array<node_array<edge> > Pred(2);

Pred[0℄ = Pred[1℄ = node_array<edge>(G,nil);

bool D_equals_infinity = (s != t? true : false);

NT D = 0;
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We store the tentative distancesds(v) anddt(v) in dist[0][v] anddist[1][v], respectively, we
usePQ[0] andPQ[1] as the priority queue in the search froms andt , respectively, we use
Pred[0][v] to record the edge intov that definesds(v), and we usePred[1][v] to record the
edge out ofv that definesdt (v).

We initialize D to infinity if s 6= t , and to zero otherwise. Since we cannot assume that
the number typeNT provides the value+∞ we use a boolean flag to indicate this special
value.

A remark is in order about the declarations above. We declared dist as an array of node
arrays andPQas an array of pointers to priority queues. Why did we make this distinction?
In order to declare anarray<T> for some typeT , T must provide a default constructor, a
copy constructor, and some other operations, e.g., the input and output operators≪ and≫,
see Section 2.8. Node arrays provide all required functionsexcept for the input and output
operators and those are easily defined in the current file, since the missing functions are non-
member functions of node arrays. The situation is differentfor node priority queues; they
define only a few of the required functions and, in particular, a member function is missing.
We cannot add the member function in this file. Moreover, in the case ofdist it is more
important to have an array of node arrays instead of an array of pointers to node arrays, since
having an array of pointers to node arrays would force us to write either(*dist[i℄)[v]
or dist[i℄->operator[℄(v) instead ofdist[i℄[v].

〈dijkstra single sink.t〉�
template <
lass T>

ostream& operator<<(ostream& o,
onst node_array<T>&) { return o; }

template <
lass T>

istream& operator>>(istream& i,node_array<T>&) { return i; }

The structure of the single-source single-sink program is as described above. We run
both instances of Dijkstra’s algorithm concurrently, and terminate when either both queues
become empty or when we encounter a nodeu ∈ Ks ∩ Kt with D = ds(u) + dt(u). In
the former case there is no path froms to t . According to our output convention for the
single-source single-sink problem this fact is recorded byhavingpred[t ] = nil in the return
values.

〈dijkstra single sink.t〉+�
template<
lass NT>

NT DIJKSTRA_T(
onst graph& G, node s, node t,


onst edge_array<NT>& 
ost, node_array<edge>& pred)

{

〈single sink: data structures〉
while ( !PQ[0℄->empty() || !PQ[1℄->empty() )

{ for (int i = 0; i < 2; i++)

{ if ( PQ[i℄->empty() ) 
ontinue;

node u = PQ[i℄->del_min();

〈return if u is in Ks and Kt and D = ds(u) + d t(u)〉
〈relax edges out of u, if i = 0, or into u, if i = 1〉
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}

}

pred[t℄ = nil; // no path from s to t

return D;

}

The relaxation of edges is copied from Section 6.6 with two small modifications.
In the search for shortest paths froms we iterate over the edges out ofu, and in the search

for shortest paths tot we iterate over the edges intou.
Whenever the dist-value of a node is improved we check whether this leads to an im-

provement ofD.

〈relax edges out of u, if i = 0, or into u, if i = 1〉�
for ( edge e = (i == 0? G.first_adj_edge(u): G.first_in_edge(u));

e != nil;

e = (i == 0? G.adj_su

(e): G.in_su

(e)) )

{ node v = (i == 0? G.target(e) : G.sour
e(e) );

NT 
 = dist[i℄[u℄ + 
ost[e℄;

if ( Pred[i℄[v℄ == nil && v != terminal[i℄ )

PQ[i℄->insert(v,
); // first path to v

else if (
 < dist[i℄[v℄) PQ[i℄->de
rease_p(v,
); // better path

else 
ontinue;

dist[i℄[v℄ = 
;

Pred[i℄[v℄ = e;

if ( ( v == terminal[1-i℄ || Pred[1-i℄[v℄ != nil )

// dist[1-i℄[v℄ is defined iff true

&& ( D_equals_infinity || dist[0℄[v℄ + dist[1℄[v℄ < D ))

{ D_equals_infinity = false;

D = dist[0℄[v℄ + dist[1℄[v℄;

}

}

How can we check whetheru ∈ Ks ∩ Kt? Assume w.l.o.g. thati = 0. Thenu ∈ Ks since
we have just removed it fromPQ[0]. Also, we haveu ∈ Kt if u has been inPQ[1], but is
not there anymore.u has been or still is inPQ[1] if either u = t or Pred[1][u] is defined,
andu is not inPQ[1] if PQ[1] → member(u) returns false.

If u ∈ Ks ∩ Kt andD = ds(u) + dt(u) we terminate the computation, record the path in
the predecessor array, and returnD as the length of the shortest path froms to t . In order to
record the path in thepred-array we trace the two “half paths” fromu to s and fromu to t ,
respectively. When tracing the latter path we observe thatPred[1] stores out-edges and not
in-edges.

〈return if u is in Ks and Kt and D = ds(u) + d t(u)〉�
if ( (u == terminal[1-i℄ || Pred[1-i℄[u℄ != nil) &&

!PQ[1-i℄->member(u) && dist[0℄[u℄ + dist[1℄[u℄ == D )

{ // have found shortest path from s to t.

// tra
e path from u to s

node z = u;
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n m Single-sink Dijkstra

10000 500000 0.118 0.736

Table 7.1 A comparison of the running time of the single-sink algorithm with the running time
of the standard version of Dijkstra’s algorithm. The standard version computes the distance from
the source to all other vertices and then extracts the distance value of the sink.

while ( z != s ) z = G.sour
e(pred[z℄ = Pred[0℄[z℄);

// tra
e path from u to t

z = u;

edge e;

while ( (e = Pred[1℄[z℄ ) != nil) { pred[z = G.target(e)℄ = e; }

return D;

}

Table 7.1 compares the running times of the single-source single-sink algorithm pre-
sented in this section and the standard version of Dijkstra’s algorithm.

7.5.7 General Networks: The Bellman–Ford Algorithm
We derive and implement a single-source shortest-path algorithm for arbitrary edge costs.
The algorithm is due to Bellman [Bel58] and Ford. We will refer to the algorithm as the
basic Bellman–Ford algorithm13. In Section 7.5.3 we studied a generic shortest-path algo-
rithm. Let us recall what we know:

• The algorithm maintains a setU containing all nodesu for which there is an edge
(u, v) with d(u) + c(u, v) < d(v). U may also contain other nodes.

• In each iteration the algorithm selects some node inU and relaxes all edges out of it.

• As long asd(v) > µ(v) for somev ∈ V f , there is a nodeu ∈ U with d(u) = µ(u)

(Lemma 9). We use the phrase that not all finite distance values are determined to
mean thatd(v) > µ(v) for somev ∈ V f .

• When a nodeu is removed fromU with d(u) = µ(u) it will never be added toU again
at a later stage.

• Let P = {e ; e = π(v) ∈ E for somev ∈ V }. All P-cycles are negative and if
d(v) = µ(v) for all v ∈ V f thenP defines a shortest-path tree onV f .

What is a good strategy for selecting fromU? We know thatU contains a perfect choice
(at least as long as not all finite distance values are determined), but we do not know which
node inU is the perfect choice. In order to play it safe we should therefore not discriminate
against any node inU . A way to achieve fairness is to organize the computation in phases.

13 We will study a refined version in the next section.



58 Graph Algorithms

Let Ui be the setU at the beginning of phasei , i ≥ 0; U0 is equal to{s}. In phasei we
remove all vertices inUi from U . Newly added vertices are inserted intoUi+1. In this way
we guarantee that at least one finite distance value is determined in each phase (if there is
one that is still to be determined) and hence all finite distance values are determined after at
mostn phases.

In the program below we realize the setU by a queueQ. During phasei all nodes inUi

are at the front of the queue and all nodes inUi+1 are at the rear of the queue. We separateUi

andUi+1 by the markernil. We count the number of phases inphasecount. Whenever the
marker appears at the front ofQ we incrementphasecount. In order to avoid putting nodes
several times intoQ we keep anodearray<bool> in Q with in Q[v] = true iff v ∈ Q.

We terminate the algorithm whenQ becomes empty or when phasen is reached. In the
former case we haved(v) = µ(v) for all v and in the latter case we haved(v) = µ(v) for
all v ∈ V+ ∪ V f . We will deal with the nodes inV− in a postprocessing step.

〈bellmanford basic.t〉�
#in
lude <LEDA/graph_alg.h>

#in
lude <LEDA/b_queue.h>

〈BF: helper〉
template <
lass NT>

bool BELLMAN_FORD_B_T(
onst graph& G, node s, 
onst edge_array<NT>& 
,

node_array<NT>& dist, node_array<edge>& pred )

{ int n = G.number_of_nodes();

int phase_
ount = 0;

b_queue<node> Q(n+1);

node_array<bool> in_Q(G,false);

node u,v;

edge e;

forall_nodes(v,G) pred[v℄ = nil;

dist[s℄ = 0;

Q.append(s); in_Q[s℄ = true;

Q.append((node) nil); // end marker

while( phase_
ount < n )

{ u = Q.pop();

if ( u == nil)

{ phase_
ount++;

if ( Q.empty() ) return true;

Q.append((node) nil);


ontinue;

}

else in_Q[u℄ = false;

NT du = dist[u℄;

forall_adj_edges(e,u)

{ v = G.opposite(u,e); // makes it also work for ugraphs

NT d = du + 
[e℄;

if ( (pred[v℄ == nil && v != s) || d < dist[v℄ )

{ dist[v℄ = d; pred[v℄ = e;

if ( !in_Q[v℄ ) { Q.append(v); in_Q[v℄ = true; }
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Figure 7.13 The situation at the beginning of phasen = |V | = 5. Note thatv belongs toV−,
that P contains a negative cycle from whichv is reachable inG, but thatv is not reachable from
this cycle by aP-path. Running the algorithm for another 10000 phases will establish the output
convention; the quantity 10000 reflects the fact that traversing the cycle 10000 times creates a
path of cost−10000.

}

}

}

〈BF: postprocessing〉
return false;

}

We turn to the postprocessing step required whenU is non-empty aftern phases. Fig-
ure 7.13 shows that our output convention is not automatically satisfied. As the figure shows
there may be nodes inV− that are not reachable yet from aP-cycle by aP-path.

How can we establish our output convention that all nodes inV− are reachable from a
P-cycle by aP-path? We could run the algorithm for more phases until a pathcontaining
a negative cycle has been discovered for all nodes inV−. This may take very long as Fig-
ure 7.13 shows. We need a better method. In the following lemma we show that Figure 7.14
describes the situation at the beginning of phasen. The argument is with respect to the
generic algorithm with the selection rule of the Bellman–Ford algorithm.

For an integerk, k ≥ 0, let

µk(v) = min {c(p) ; p is a path froms to v consisting of at mostk edges} .

Lemma 11 After n phases:

(a) d(v) ≤ µn(v) and ifv ∈ U then d(v) < µn−1(v).
(b) s ∈ V f iff π(s) = nil.
(c) Every u∈ U lies either on a P-cycle or on a P-path emanating from a P-cycle.
(d) Everyv ∈ V− is reachable in G from a u∈ U.
(e) If π(s) 6= nil then the output convention is already satisfied.



60 Graph Algorithms

��
��
��
��

reachable
in G

V−

V f

s

Figure 7.14 The situation at the beginning of phasen: Some nodes inV− are still reachable
from s by a P-path and some are already contained in aP-cycle or lie on aP-path emanating
from a P-cycle.All nodes inU (nodes inU are shown as solid circles) belong to the latter
category by part (d) of Lemma 11. All nodes inV− are reachable inG from a node inU by part(
e) of Lemma 11.

Proof (a) Let p = [s = v0, v1, . . . , vk = v ] be any path starting ins. Thend(vi ) ≤
∑

0< j ≤i c(v j −1, v j ) at the beginning of phasei and henced(v) ≤ µn−1(v) at the beginning
of phasen − 1 andd(v) ≤ µn(v) at the beginning of phasen. If v is added toU in phase
n − 1, d(v) is decreased and henced(v) < µn−1(v) at the beginning of phasen.

(b) If s ∈ V f thend(s) = 0 and henceπ(s) = nil. If s /∈ V f then there is a negative
cycle passing throughs and henceµn(s) < 0. Thus,d(s) < 0 and henceπ(s) 6= nil.

(c) If π(s) 6= nil part (c) follows from Lemma 8, part (c). So assumes ∈ V f and assume
that there is au ∈ U that is reachable froms by a P-path, sayp. Thend(u) ≥ c(p) ≥
µn−1(u), a contradiction to part (a).

(d) Letv ∈ V− be arbitrary. Sinceµ(v) = −∞ there must be a pathp from s to v with
c(p) < d(v). Let pi be the path consisting of the firsti edges ofp and letvi be the target
node ofpi . Let k be minimal such thatc(pk) < d(vk). Thenk > 0 sincec(p0) = 0 and
d(v0) = d(s) ≤ 0 and hencec(pk−1) ≥ d(vk−1). Thus,

d(vk) > c(pk) = c(pk−1) + c(vk−1, vk) ≥ d(vk−1) + c(vk−1, vk)

and hencevk−1 ∈ U .
(e) If π(s) 6= nil then part (c) of Lemma 8 tells us that every node reachable from s lies

either on aP-cycle or aP-path emanating from aP-cycle.

Parts (a), (d), and (e) of the lemma above are the key for the postprocessing step. If
π(s) 6= nil we are done. So assumeπ(s) = nil, i.e., V f 6= ∅, and letR be the set of nodes
that are reachable froms by a P-path. ThenR ⊇ V f but this inclusion may be proper,
see Figure 7.14. All nodes inR that are reachable from a nodeu ∈ U belong toV− and
hence theirπ -values have to be changed. We can do so by performing a depth-first search



7.5 Shortest Paths 61

from each nodeu ∈ U . Whenever a node inR is reached we change itsπ -value to the edge
which led to the node. In this way we connect all nodes inR ∩ V− to the nodes inU and
hence, by part (c), make them reachable fromP-cycles byP-paths.

How can we determine the nodes inR? We simply perform a depth-first search froms
on the subgraph defined byP. This can be done by hiding all edges not inP, performing
a depth-first search, and restoring (= unhiding) all edges inP. In the program below the
nodes inR are labeled true in the node arrayin R.

In the program chunk below the cast((graph∗) &G) turnsG from a const-object to a
non-const-object. The cast is required sincehideedgeand restoreall edgesmodify the
graph and the cast is safe sincerestoreall edgesrestores the original situation.

〈BF: postprocessing〉�
if (pred[s℄ != nil) return false;

node_array<bool> in_R(G,false);

forall_edges(e,G)

if (e != pred[G.target(e)℄) ((graph*) &G)->hide_edge(e);

DFS(G,s,in_R); // sets in_R[v℄ = true for v in R

((graph*) &G)->restore_all_edges();

node_array<bool> rea
hed_from_node_in_U(G,false);

forall_nodes(v,G)

if (in_Q[v℄ && !rea
hed_from_node_in_U[v℄)

Update_pred(G,v,in_R,rea
hed_from_node_in_U,pred);

where

〈BF: helper〉�
inline void Update_pred(
onst graph& G, node v,


onst node_array<bool>& in_R,

node_array<bool>& rea
hed_from_node_in_U,

node_array<edge>& pred)

{ rea
hed_from_node_in_U[v℄ = true;

edge e;

forall_adj_edges(e,v)

{ node w = G.target(e);

if ( !rea
hed_from_node_in_U[w℄ )

{ if ( in_R[w℄ ) pred[w℄ = e;

Update_pred(G,w,in_R,rea
hed_from_node_in_U,pred);

}

}

}

The running time of the Bellman–Ford algorithm isO(nm). This can be seen as follows.
There are at mostn phases and the running time of each phase is proportional to the sum of
the outdegrees of the nodes removed fromQ in the phase. This implies that the cost of any
one phase isO(m) and the bound follows.
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A somewhat tighter analysis is as follows. LetD be the maximal number of edges on
any shortest path. We haveD < n if V− is empty andD = ∞ otherwise. ThenQ is empty
after phaseD and hence the running time isO(min(D, n) · m).

For many graphsD is much smaller thann. Examples are complete graphs with edge
costs chosen uniformly at random from [0.. 1]. In this caseD = O(log2 n) with high
probability [CFMP97]; the expected running time is therefore O(n2 log2 n) for complete
graphs with random edge costs. More generally, it is an experimental fact that the Bellman–
Ford algorithm is efficient for almost any kind of random graph.

However, there are also graphs where the worst case running time is actually achieved.
We give one example in the next section and one now.

A first example are graphs with negative cycles. IfV− is non-empty then the algorithm
always usesn phases and a high running time results. We will show in the next but one
section how negative cycles can frequently be recognized earlier.

7.5.8 A Difficult Graph
The goal of this section is to construct a graph with non-negative edge costs that forces the
algorithm of the preceding section into its worst case running time.

The running time analysis given above tells us that a runningtime of �(nm) results if
a fixed fraction of the nodes is removed and added to the queue in each iteration. The
Bellman–Ford algorithm uses a breadth-first scanning strategy, i.e., essentially explores
paths in the order of their number of edges. Thus if we ensure that paths consisting of
more edges have smaller cost we will ensure that every node isadded to the queue many
times.

We will define the graph in two steps. In the first step we will allow edges of negative cost
and in the second step we will remove them. Figure 7.15 shows our worst case example.
The graph has nodes 0, . . . ,L − 1, L, . . . , L + K − 2 whereL = 2l is a power of two. We
will fix K andL later.

On nodesL − 1 to L + K − 2 we have the complete graph in which all edge costs are
zero. This makes(K − 1)2 edges. On the firstL nodes we have the edge(0, L − 1), the
edges(L − L/2 j , L − L/2 j +1) and(L − L/2 j +1, L − 1) for all j , 0 ≤ j < l − 1, and the
L edges(i , i + 1) for all i , 0 ≤ i < L − 1. This makes for no more than 2L edges.

We claim that for anyr , 1 ≤ r < L, there is exactly one path from node 0 to nodeL − 1
consisting ofr edges. This is certainly true forr = 1. So assume thatr > 1. We construct
the path as follows. Ifr > L/2 we useL/2 edges to go from 0 toL/2 and ifr ≤ L/2 we
use one edge. In either case we are left with the task of constructing a path fromL/2 to
L − 1 consisting ofr ′ edges, where 1≤ r ′ < L/2. This path is constructed by applying the
argument recursively.

How do we assign edge costs to the edges(i , j ) with 0 ≤ i < j < L? We want an
assignment which favors paths with more edges. This suggests assigning cost−1 to every
edge as this makes sure that the cost of a path consisting ofk edges is equal to−k. Thus
paths with more edges are shorter than paths with fewer edges. We said at the beginning
that we will construct a graph with non-negative edge costs and now we have set the cost
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Figure 7.15 The graph generated byBF GEN for L = 8 andK = 4. TheK nodes labeled
L − 1 to L + K − 2 form a complete directed graph in which all edge costs are zero. The edges
in this clique are not shown.

of some edges to−1. This is easily corrected. We set the cost of edge(i , j ) to j − i − 1.
Then all edges have non-negative cost and the cost of a path from 0 toL − 1 consisting of
k edges has costL − 1 − k. Thus we are again favoring paths with more edges over paths
with fewer edges.

The total number of edges in our graph is certainly less than 2L + K 2 and the number of
nodes isL + K − 1. With K = ⌊

√
m/2⌋ andL the largest power of two no larger thann/2,

we get a graph with at mostn+ m/2 edges andn/2+
√

m/2 nodes. This is less thanm and
n, respectively, ifm ≥ 2n andm ≤ n2/2.

The following procedureBF GEN realizes the construction just outlined. For the edge
costs there is the choice between non-negative and arbitrary edge costs. Ifm ≥ 2n and
m ≤ n2/2 then the constructed graph has at mostn nodes and at mostm edges.

〈 BF GEN.c〉�
#in
lude <LEDA/array.h>

#in
lude <LEDA/graph_alg.h>

void BF_GEN(GRAPH<int,int>& G, int n, int m,

bool non_negative)

{ G.
lear();

int K = 1; while ( (K+1)*(K+1) <= m/2 ) K++;

int l = 0; int L = 1;

while ( 2*L <= n/2 ) {l++; L = 2*L; }

array<node> V(n);

int i, j;

for (i = 0; i < n; i++) V[i℄ = G.new_node(i);

for (i = L - 1; i < L - 1 + K; i++)

for (j = L - 1; j < L - 1 + K; j++)

if ( j != i ) G.new_edge(V[i℄, V[j℄, 0);

for (i = 0; i < L - 1; i++) G.new_edge(V[i℄, V[i+1℄, 0);

G.new_edge(V[0℄,V[L-1℄,(non_negative? L-1-1 :-1));

int powj = 1;

for (j = 0; j < l-1; j++)

{ int x = L - L/powj;
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int y = L - L/(2*powj);

G.new_edge(V[x℄,V[y℄, (non_negative? y-x-1 : -1));

G.new_edge(V[y℄,V[L-1℄,(non_negative? L-1-y-1 : -1));

powj *= 2;

}

}

How does our algorithm of the previous section do on the graphs generated byBF GEN?
There will beL phases and in each phase theK nodesL − 1, . . . , L + K − 2 will be
removed from the queue and henceK 2 edges will be scanned in each phase. SinceL ≥ n/4
andK 2 ≥ m/4 the running time is�(nm).

Table 7.2 shows the running times of the basic and the refined version of the Bellman–
Ford algorithm (the refined version is the subject of the nextsection), the time for checking
the output, and, if applicable, the running time of Dijkstra’s algorithm. We observe that
the basic version beats the refined version for random inputsand that both of them are al-
most competitive with Dijkstra’s algorithm for random inputs with non-negative edge costs.
The situation changes completely for graphs with negative cycles and graphs generated by
BF GEN.

For random graphs with negative cycles the running time of the basic version explodes
because it always executesn phases on such graphs. The refined version behaves much
better.

For graphs generated byBF GEN the basic version shows the claimed�(nm) behavior.
Doublingn (more than) quadruples the running time; the fact that the running time more
than quadruples is due to cache effects. Again, the refined version behaves much better.
Its running time seems to less than triple ifn is doubled. We will explain this effect at the
end of Section 7.5.9. Dijkstra’s algorithm performs much better than either version of the
Bellman–Ford algorithm.

In all cases the time needed to verify the computation is no larger than the time required
to compute the result.

There are more shortest-path algorithms than the ones treated in this book, see [AMO93],
and some of them have an edge over the algorithms in LEDA in certain situations. The
papers [CG96, CGR94, MCN91] contain extensive experimental comparisons of various
shortest-path algorithms. The algorithms that we have selected for LEDA are the asymptot-
ically most efficient and also exhibit excellent actual running times.

7.5.9 A Refined Bellman–Ford Algorithm
We describe a variant of the Bellman–Ford algorithm due to Tarjan [Tar81]. The worst case
running time of the variant is alsoO(nm). However, the algorithm is frequently much faster
than the basic Bellman–Ford algorithm, as Table 7.2 shows, and the algorithm is never much
slower. It is available asBELLMANFORDT14.
14 This is clearly a misnomer. However, we want to keep the nameBELLMANFORDT for our currently best

implementation for the single-source problem with arbitrary edge costs.
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Instance BF Basic BellmanFord Dijkstra Checking

n, n = 10000 0.3 0.57 0.22 0.31

n, n = 20000 0.69 1.36 0.57 0.69

n, n = 40000 1.98 3.59 1.47 1.69

c, n = 10000 0.3 0.63 — 0.3

c, n = 20000 0.81 1.63 — 0.7

c, n = 40000 2.02 3.72 — 1.68

r, n = 2000 20.2 0.08 — 0.03

r, n = 4000 73.15 0.17 — 0.08

r, n = 8000 462.5 0.54 — 0.18

g, n = 4000 7.52 0.42 0.01001 0.04999

g, n = 8000 30.66 1.17 0.04004 0.07996

g, n = 16000 131.5 3.24 0.07001 0.19

Table 7.2 Running times of different shortest-path algorithms. We used four different kinds of
graphs. Random graphs (generated byrandomgraph(G, n, m)) with random non-negative edge
costs in [0.. 1000], random graphs with arbitrary edge costs but no negative cycles (we chose for
each nodev a random node potentialpot[v] ∈ [0 .. 1000] and for each edgee = (v, w) a random
costc[e] ∈ [0 .. 1000] and then set the cost ofe to pot[v] + c[e] − pot[w]; this generates arbitrary
edge costs but no negative cycles as the potentials cancel along any cycle, see Section 7.5.10.),
random graphs with random edge costs in [−100.. 1000], and graphs generated byBF GEN. In
the table above the four types of graphs are indicated by the labels n, c, r, and g, respectively. For
each type we generated graphs with three different values ofn andm = 8n. Observe that the
graphs in the top half of the table are much larger than the graphs in the lower half of the table.
The columnBF Basicstands for the basic version of the Bellman–Ford algorithm.You may
generate your own version of this table by calling shortestpath time in the demo-directory.

The variant maintains the shortest-path tree15 not only implicitly in the form of thepred-
array but also explicitly. We useT to denote the shortest-path tree. The algorithm usesT
to overcome two weaknesses of the basic Bellman–Ford algorithm. Consider the scanning
of an edgee = (v, w) and assume that it reducesdist[w] to dist[v] + c[e]. In the basic
algorithm the only action is to addw to Q (if it is not already there). In the variant we do
more:

• The fact that a shorter path tow has been discovered implies that shorter paths exist
for all nodes inTw (= the subtree ofT rooted atw). Thus there is no need to propagate
the current distance labels of these nodes any further (as smaller distance labels will be

15 We ignore the possibility of a negative cycle for the moment.
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Figure 7.16 The pre-order traversal of the tree shown yields the sequencea, b, c, e, f , h, i , g, d.

propagated sometime in the future) and hence all nodes inTw can be removed fromQ
andT . Upon removal ofTw from Q andT , w is added toQ and made a child ofv in
T . This modification introduces a distance related componentinto the otherwise
purely breadth-first scanning strategy of the Bellman–Fordalgorithm.

• If w is an ancestor ofv or, equivalently,v is a descendant ofw then a negative cycle
has been detected and all nodes reachable fromv can be added toV−. This
modification replaces the indirect way of recognizing negative cycles used in the basic
algorithm (“more thann phases”) by a direct method.

We come to the details. We useT to denote the current shortest-path tree. It is rooted at
s and ifw is a child ofv in T thenpred[w] = (v, w). Conversely, ifpred[w] 6= nil thenw

was already added toT at least once; it may or may not belong toT currently. The treeT
is represented by its list of vertices in pre-order traversal, see Figure 7.16, i.e., a single node
tree is represented by that node and a tree with rootr and subtreesT1, . . . , Tk is represented
by r , followed by the list forT1, . . . , followed by the list forTk. We use alist<node> T to
represent the shortest-path tree, anodearray<int> t degreeto store the degree of each node,
and anodearray<list item> posin T to store the position of each node in the listT . For
nodesv /∈ T we havet degree[v] = 0 andposin T[v] = nil and for nodesv ∈ T we have
T [posin T[v]] = v.

The queueQ is also realized as a list of nodes. Every node knows its position in Q .
We use anodearray<list item> posin Q for that purpose. If a nodev belongs toQ then
posin Q[v] is its position inQ and if a nodev does not belong toQ thenposin Q[v] = nil.

We usew item= posin T[w] to denote the item corresponding to nodew in T . We define
a proceduredeletesubtree(w item, . . .) that deletes all nodes in the subtreeTw from T and
Q and returns the item followingTw in T . In Figure 7.16 a calldeletesubtree(f item, . . .)

would delete the subtreeTf and return the item corresponding tog.
If w has no children (t degree[w] = 0), we simply deletew from T and maybe also from

Q. If w has children, the idea is to remove the subtrees of the children by recursive calls.
The first child is easy to find; it is the node immediately afterw in the list T . The second
child (if the degree ofw is more than one) is the first node after the sublist representing
the first subtree ofTw. This is precisely the node returned by the first recursive call of
deletesubtreeand hence a simple loop removes all subtrees ofTw.
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The proceduredeletesubtreeusesQ, T , posin Q, posin T andt degree. We make them
parameters. We will initialize them below.

〈BF: auxiliary functions〉�
inline list_item BF_delete_subtree(list_item w_item, list<node>& Q,

list<node>& T, node_array<int>& t_degree,

node_array<list_item>& pos_in_Q,

node_array<list_item>& pos_in_T)

{ list_item 
hild = T.su

(w_item);

node w = T[w_item℄;

while (t_degree[w℄ > 0)

{ t_degree[w℄--;


hild = BF_delete_subtree(
hild,Q,T,t_degree,pos_in_Q,pos_in_T);

}

pos_in_T[w℄ = nil;

T.del_item(w_item);

if ( pos_in_Q[w℄ )

{ Q.del_item(pos_in_Q[w℄);

pos_in_Q[w℄ = nil;

}

return 
hild;

}

As in the basic algorithm we operate in phases. For the zerothphase we initializeQ and
T with s.

〈BF: initialize T, Q, dist, and pred〉�
node_array<list_item> pos_in_Q(G,nil);

node_array<int> t_degree(G,0);

node_array<list_item> pos_in_T(G,nil);

node v;

forall_nodes(v,G) pred[v℄ = nil;

dist[s℄ = 0;

list<node> Q; pos_in_Q[s℄ = Q.append(s);

list<node> T; pos_in_T[s℄ = T.append(s);

During thek-th phase,k ≥ 0, we maintain the following invariants. They refine the
invariants of the basic algorithm. We useµk(v) to denote the length of a shortest path from
s to v consisting of at mostk edges.

(1) For every nodev, dist[v] is the cost of some path froms to v, and ifv belongs toT then
dist[v] is the cost of the tree path froms to v andpred[v] is the tree edge ending inv.

(2) If v has been inT at least once, but is not inT now, thenµ(v) < dist[v], i.e, its current
distance label is not its true distance label.

(3) Only leaves ofT belong toQ, and these leaves have depthk or k + 1 in T . The nodes
of depthk precede the nodes of depthk + 1 in Q.

(4) The algorithm maintains anodearray<bool> in Vmsuch that the following items hold
for every nodev:
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(a) in Vm[v] = true impliesv ∈ V−.
(b) If every path definingµk(v) contains a negative cycle thenin Vm[v] = true.
(c) If in Vm[v] = trueandw is reachable fromv in G thenin Vm[w] = true.

(5) If v is a node inT \ Q thendist[v] + c[e] ≥ dist[w] for all edgese = (v, w) with
in Vm[w] = false, i.e., if v is in T but not in Q then its outgoing edges are relaxed.
Observe thatin Vm[w] = true impliesµ(w) = −∞ and hence may be interpreted as
“dist[w] = −∞”.

(6) For every nodev with in Vm[v] = false, dist(v) ≤ µk(v).

Phasek ends whenQ contains no node of depthk anymore16 and the algorithm terminates
whenQ is empty.

Let v be the first node inQ and letk be its depth inT . The goal is to removev from
Q without violating the invariants. We explain the required actions first and then give the
code. We suggest that the code is read in parallel to the explanation.

We scan all edgese = (v, w) out ofv. If in Vm[w] = true then there is nothing to do (by
invariants (5) and (6)). So assume otherwise. We comparedist[v] +c[e] anddist[w]. There
are two cases to consider.

If dist[w] ≤ dist[v] +c[e] then there is nothing to do, i.e, all invariants hold already. This
is obvious if we have inequality orw ∈ T . So assume that we have equality andw does
not belong toT . Don’t we have to addw to T? No! Observe thatdist[w] = dist[v] + c[e]
impliesdist[w] < ∞. Thusw has been inT at least once, and hence (2) impliesµ(w) <

dist[w]. Thus the invariants also hold in this case.
If dist[v] + c[e] < dist[w] then µ(z) < dist[z] for all nodesz in Tw. Thus, we may

removew and all its descendants fromT andQ, setdist[w] to dist[v] + c[e] andpred[w]
to e.

If v was not inTw and hencev is still in T at this point we makew a child ofv and add
w to Q. This maintains all invariants. In order to makew a child ofv, we simply insert it
immediately afterv into the listT and increment the degree ofv.

If v belonged toTw then we discovered a negative cycle consisting of the tree path from
w to v followed by the edgee. We move all nodes reachable fromv in G to V−.

〈bellmanford.t〉�
#in
lude <assert.h>

〈BF: auxiliary functions〉
template <
lass NT>

bool BELLMAN_FORD_T(
onst graph& G, node s,


onst edge_array<NT> & 
,

node_array<NT> & dist,

node_array<edge>& pred)

{ 〈BF: initialize T, Q, dist, and pred〉
node_array<bool> in_Vm(G,false); // for V_minus

bool no_negative_
y
le = true;

16 The algorithm does not keep track of node depths and phase numbers; we only use them in the correctness proof.
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while (!Q.empty())

{ // sele
t a node v from Q

node v = Q.pop(); pos_in_Q[v℄ = nil;

edge e;

forall_adj_edges(e,v)

{ node w = G.target(e);

if ( in_Vm[w℄ ) 
ontinue;

NT d = dist[v℄ + 
[e℄;

if ( ( pred[w℄ == nil && w != s ) || d < dist[w℄)

{ dist[w℄ = d;

// remove the subtree rooted at w from T and Q

// if w has a parent, de
rease its degree

if (pos_in_T[w℄)

{ BF_delete_subtree(pos_in_T[w℄,Q,T,t_degree,

pos_in_Q,pos_in_T);

if (pred[w℄ != nil) t_degree[G.sour
e(pred[w℄)℄--;

}

pred[w℄ = e;

if (pos_in_T[v℄ == nil) // v belonged to T_w

{ no_negative_
y
le = false;

〈move v and all nodes reachable from it to Vm〉
}

else

{ // make w a 
hild of v and add w to Q

pos_in_T[w℄ = T.insert(w,pos_in_T[v℄,after);

t_degree[v℄++;

pos_in_Q[w℄ = Q.append(w);

}

}

}

}

#ifndef LEDA_CHECKING_OFF

CHECK_SP_T(G,s,
,dist,pred);

#endif

return no_negative_
y
le;

}

We still need to complete the case that a negative cycle is detected. Whenv belonged to
Tw we discovered a negative cycle. After settingpred[w] = e = (v, w) this negative cycle
is already recorded in thepred-array. What remains is to add all nodes that are reachable
from v to V− and to set theirpred-values accordingly. We want to do so without destroying
the negative cycle just found.

This is readily achieved. We first setin Vm to true for all nodes on the cycle and then
in a second pass over the cycle calladdto Vm(G, z, . . .) for all nodesz of the cycle. In
addto Vm(G, z, . . .) we scan all edges out ofz. For each edgee = (z, w), wherew does
not belong toV− yet, we remove all nodes inTw from T and Q, we addw to V−, set
pred[w] to e, and make a recursive call.
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〈move v and all nodes reachable from it to Vm〉�
node z = v;

do

{ in_Vm[z℄ = true;

z = G.sour
e(pred[z℄);

} while (z != v);

do

{ BF_add_to_Vm(G,z,in_Vm,pred,Q,T,t_degree,pos_in_Q,pos_in_T);

z = G.sour
e(pred[z℄);

} while (z != v);

where

〈BF: auxiliary functions〉+�
inline void BF_add_to_Vm(
onst graph& G, node z,

node_array<bool>& in_Vm,

node_array<edge>& pred,

list<node>& Q, list<node>& T,

node_array<int>& t_degree,

node_array<list_item>& pos_in_Q,

node_array<list_item>& pos_in_T)

{ edge e;

forall_adj_edges(e,z)

{ node w = G.target(e);

if ( !in_Vm[w℄ )

{ if (pos_in_T[w℄)

{ BF_delete_subtree(pos_in_T[w℄,Q,T,t_degree,

pos_in_Q,pos_in_T);

if (pred[w℄ != nil) t_degree[G.sour
e(pred[w℄)℄--;

}

pred[w℄ = e;

in_Vm[w℄ = true;

BF_add_to_Vm(G,w,in_Vm,pred,

Q,T,t_degree,pos_in_Q,pos_in_T);

}

}

}

This completes the description of the algorithm. We still have to complete the correctness
proof and establish theO(nm) running time.

Lemma 12 The refined Bellman–Ford algorithm solves the single-source shortest-path
problem in time O(nm).

Proof The nodes inV+ are never reached and hence are treated correctly.
Next consider the nodes inV−. Invariant (4) tells us thatin Vm is set to true only for

nodes inV−. We need to show thatin Vm is set to true for all nodes inV− at some point
during the execution. Letv ∈ V− be arbitrary. If every path definingµn(v) contains a
negative cycle or ifv is reachable from such a node thenin V[v] is set to true by invariant
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(4). We need to show that this is indeed the case. Ifv ∈ V− then there must be an integer
N > n and a path [v0 = s, v1, . . . , vN = v ] from s to v such that this path is shorter than
any path froms to v with less thanN edges. The prefix consisting of the firsti edges of this
path is a path tovi that is shorter than any path tovi with less thani edges. In particular,
µn(vn) < µn−1(vn) and hence any path tovn definingµn(vn) contains a negative cycle.

Finally, consider a node inV f and assume thatµ(v) = µk(v). Thendist[v] = µ(v)

after phasek, the tree path froms to v has costµ(v), and the tree path is recorded in the
pred-array by invariants (1), (2), and (6).

The two preceding paragraphs establish that there are at most n + 1 phases. Since each
node is removed fromQ at most once in each phase the running time isO(nm).

Table 7.2 shows the running times of the refined Bellman–Fordalgorithm on the graphs
generated byBF GEN. The running time seems to triple ifn is doubled. This can be
explained as follows. At the beginning of each phase the nodes L to L − K − 2 are children
of nodeL − 1 in the shortest-path tree and the nodesL − 1 to L − K − 2 (and some nodes
smaller thanL−1) are inQ. In the basic algorithm all nodesL−1 to L−K −2 are removed
from the queue and their outgoing edges are scanned. This results in �(m) edge scans per
phase. In the refined algorithm the discovery of a better pathto nodeL −1 causes the nodes
L to L − K − 2 to be removed fromQ andT without(!!) scanning their edges. When the
edges out of nodeL − 1 are scanned they are again added toQ andT . In this way only the
edges out of nodeL − 1 are scanned in each phase. Thus only2(K ) = 2(

√
m) edges are

scanned in each phase and the total running time is therefore2(n
√

m). In particular, for
m = 8n as in Table 7.2, the running time grows liken3/2 and hence about triples whenn is
doubled17.

7.5.10 The All-Pairs Problem
The all-pairs shortest-path problem is the task to computeµ(v, w) for all pairs of nodes
v andw. This could be solved by solving the single-source problem with respect to each
v. We describe a better method based on so-callednode potentials; the improved method
applies wheneverG has no negative cycles. We will see further uses of the node potential
method in the section on matchings.

A node potential assigns a numberpot(v) to each vertexv. Thetransformedor reduced
edge costs̄c with respect to a potential functionpot are defined by

c̄(e) = pot(v) + c(e) − pot(w)

for each edgee = (v, w) ∈ E. Consider a pathp = [e0, . . . , ek−1] and letei = (vi , vi+1).
Then

c̄(p) =
∑

0≤i<k

c̄(ei ) =
∑

0≤i<k

(pot(vi ) + c(ei ) − pot(vi+1))

17 The authors initially assumed that the running time of the refined algorithm would also grow likenm on the
BF GEN-examples and were surprised to learn from the experiments that this is not the case. It took us some time
to understand why not.
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= pot(v0) +
∑

0≤i<k

c(ei ) − pot(vk) = pot(v0) + c(p) − pot(vk),

i.e., the cost ofp with respect toc̄ is the cost ofp with respect toc plus the potential
difference between the source and the target of the path. This difference is independent(!!)
of the particular pathp and only depends on the endpoints of the path. Thus for any two
pathsp andq with the same source and the same target,c̄(p) ≤ c̄(q) iff c(p) ≤ c(q), i.e.,
the relative order of path costs is not changed by the transformation.

Assume now thatG has no negative cycles and that all nodes ofG are reachable from
some nodes. We claim thatpot(v) = µ(s, v) is a node potential such that all reduced
costs with respect to it are non-negative. This is easily seen. Observe first thatµ(s, v)

is finite for all v if G has no negative cycles and all nodes are reachable froms. The
reduced costs are therefore well defined. Observe next that for any edgee = (v, w) we
haveµ(s, v) + c(e) ≥ µ(s, w) and hence

c̄(e) = µ(s, v) + c(e) − µ(s, w) ≥ 0.

The observations above suggest the following strategy to solve the all-pairs problem. We
first solve the single-source problem with respect to some nodes from which all nodes of
G are reachable. IfG has a negative cycle, we stop. Otherwise we use the distancesfrom s
to transform the edge costs into non-negative ones and solvethe single-source problem for
each nodev of G. Finally, we translate the computed distances back to the original edge
costs, i.e., for each pair(v, w) we set

dist(v, w) = dist1(v, w) + pot(w) − pot(v),

wheredist anddist1denote the distances with respect to the original and the transformed
distance function.

How do we chooses? We add a new vertexs to G and add edges(s, v) of length 0 for all
vertices ofG. Observe that this does not create any additional cycles; inparticular, it does
not create any negative cycles. We use the distancesµ(s, v) as our potential function.

〈all pairs.t〉�
#in
lude <LEDA/graph_alg.h>

template <
lass NT>

bool ALL_PAIRS_SHORTEST_PATHS_T(graph&G, 
onst edge_array<NT>& 
,

node_matrix<NT>& DIST)

{ edge e;

node v,w;

node s = G.new_node();

forall_nodes(v,G) if ( v != s ) G.new_edge(s,v);

edge_array<NT> 
1(G);

forall_edges(e,G) 
1[e℄ = (G.sour
e(e) == s? 0 : 
[e℄);

node_array<NT> dist1(G);

node_array<edge> pred(G);

if (!BELLMAN_FORD_T(G,s,
1,dist1,pred)) return false;

G.del_node(s);
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forall_edges(e,G)


1[e℄ = dist1[G.sour
e(e)℄ + 
[e℄ - dist1[G.target(e)℄;

// (G,
1) is a non-negative network; for every node v

// 
ompute row DIST[v℄ of the distan
e matrix DIST

// by a 
all of DIJKSTRA_T(G,v,
1,DIST[v℄)

forall_nodes(v,G) DIJKSTRA_T(G,v,
1,DIST[v℄,pred);

// 
orre
t the entries of DIST

forall_nodes(v,G)

{ NT dv = dist1[v℄;

forall_nodes(w,G) DIST(v,w) += (dist1[w℄ - dv);

}

return true;

}

7.5.11 Minimum Cost to Profit Ratio Cycles
We consider a graphG with two weight functions defined on its edges: a functionp that
assigns a profit to each edge and a functionc that assigns a cost to each edge. For a cycleC
we use

p(C) =
∑

e∈C

p(e), c(C) =
∑

e∈C

c(e), λ(C) = c(C)/p(C)

to denote the profit, the cost, and cost to profit ratio of the cycle, respectively. Our goal is
to find a cycle that minimizes the cost to profit ratio18. We useλ∗ andC∗ to denote the
minimum ratio and a cycle realizing it, respectively, i.e.,

λ∗ = λ(C∗) = min {λ(C) ; C is a cycle} .

Figure 7.17 shows an example. We will define a function

rational MINIMUM RATIO CYCLE(graph& G,


onst edge array<int>& 
,


onst edge array<int>& p,

list<edge>& C opt);

that returns the ratio and the list of edges (inC opt) of a minimum cost to profit ratio cycle.
The program returns zero if there is no cycle inG; also the empty list is returned inC opt in
this case. The procedure runs in timeO(nmlog(n·C · P)) whereC andP are the maximum
cost and profit of any edge, respectively. Observe that edge costs and profits are assumed to
be integral. We assume that there are no cycles of cost zero orless with respect to eitherc
or p.

Lawler [Law66] has shown thatλ∗ andC∗ can be found by binary search and repeated
shortest-path calculations.

Let λ be a real parameter and consider the cost functioncλ defined by

cλ(e) = c(e) − λ · p(e)

18 For some readers it may seem more natural to maximize the ratio p(C)/c(C). However, maximizingp(C)/c(C)
is the same as minimizingc(C)/p(C) if the cost and profit of all cycles are positive.
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Figure 7.17 An example of a minimum cost to profit ratio cycle. Edge labelsare of the form
“cost/profix”. The optimal cycle is shown in bold. It has cost12 and profit 17. This figure was
generated with the xlman-demo gwminimum ratio cycle. The program minimumratio cycle in
LEDAROOT/demo/book/Graph illustrates the execution ofMINIMUM RATIOCYCLE.

for all edgese. We can compareλ with the unknownλ∗ by solving a shortest-path problem
with cost functioncλ.

If λ > λ∗ then

cλ(C
∗) = c(C∗) − λ · p(C∗) = (λ(C∗) − λ) · p(C∗) < 0,

i.e., there is a negative cycle.
If λ ≤ λ∗ andC is any cycle then

cλ(C) = c(C) − λ · p(C) = (λ(C) − λ) · p(C) ≥ (λ∗ − λ) · p(C) ≥ 0,

i.e., there is no negative cycle.
We capture this argument in the following procedure. It takes a rationallambdaand

returns true iflambdais greater thanλ∗. The implementation is simple. It assumes thats is
a node from which all other nodes ofG are reachable. We set up the cost functioncλ and
then test for a negative cycle. It is important that all nodesare reachable froms (otherwise,
a negative cycle could hide in a part of the graph that is unreachable froms).

We have performed one optimization. The costscλ(e) for e ∈ E are rational numbers, all
with the same denominator. We therefore multiply all costs with their common denominator
and work in integers.

〈minimum ratio cycle: compare〉�
bool greater_than_lambda_star(
onst graph& G, node s,


onst edge_array<int>& 
,


onst edge_array<int>& p,

rational lambda)
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{ edge_array<integer> 
ost(G);

edge e;

integer num = lambda.numerator();

integer denom = lambda.denominator();

forall_edges(e,G) 
ost[e℄ = denom*
[e℄ - num*p[e℄;

node_array<integer> dist(G);

node_array<edge> pred(G);

return !BELLMAN_FORD_T(G,s,
ost,dist,pred);

}

We next show how to use the compare function above in a binary search forλ∗. Let Pmax

andCmax be the maximum profit and cost of any edge, respectively. Then

p(C) ∈ [1 .. n · Pmax] and c(C) ∈ [1 .. n · Cmax].

Thusλ(C) is a rational number whose denominator is in the former rangeand whose nu-
merator is in the latter range. IfC1 andC2 are cycles withλ(C1) = a/b 6= c/d = λ(C2)

then

|λ(C1) − λ(C2)| = |a/b − c/d| = |ad − cb|/(bd) ≥ 1/(bd) ≥ 1/(n · Pmax)
2.

Let δ = 1/(n · Pmax)
2. We now have all the ingredients for a binary search. We start with

the half-open interval [λmin .. λmax) = [0 .. 1 + n · Cmax) (it is convenient to maintain the
invariantλmin ≤ λ∗ < λmax) and then repeatedly compareλ = (λmin + λmax)/2 with λ∗.
If λ > λ∗ we setλmax to λ and if λ ≤ λ∗ we setλmin to λ. In this way we maintain the
invariantλmin ≤ λ∗ < λmax. We continue untilλmax−λmin ≤ δ. Thenλmin ≤ λ∗ < λmin+δ

and hence there is no cycleC with λ∗ < λ(C) < λmax. We will use this observation below
to extractC∗ andλ∗.

The following procedure summarizes the discussion. We firstadd a new nodes and edges
(s, v) for all v ∈ V to our graph (this makes all nodes reachable froms) and then perform
the binary search. Whenever a midpoint is computed in the binary search we normalize
its representation, i.e., cancel out common factors of numerator and denominator. This is
important to keep the representations of the rationals small.

〈 minimumratio cycle.c〉�
#in
lude <LEDA/templates/shortest_path.t>

#in
lude <LEDA/rational.h>

〈minimum ratio cycle: compare〉
rational MINIMUM_RATIO_CYCLE(graph& G,


onst edge_array<int>& 
,


onst edge_array<int>& p,

list<edge>& C_opt)

{ node v; edge e;

〈additional variables for demos〉 // for minimum ratio 
y
le demo

C_opt.
lear();

if ( Is_A
y
li
(G) ) return rational(0);

node s = G.new_node();
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forall_nodes(v,G) if (v != s) G.new_edge(s,v);

edge_array<int> 
1(G);

edge_array<int> p1(G);

int Cmax = 0; int Pmax = 0;

forall_edges(e,G)

{ if (G.sour
e(e) == s) { 
1[e℄ = p1[e℄ = 0; }

else

{ 
1[e℄ = 
[e℄; p1[e℄ = p[e℄;

Cmax = Max(Cmax,
[e℄);

Pmax = Max(Pmax,p[e℄);

}

}

int n = G.number_of_nodes();

〈minimum ratio cycle: check precondition〉
integer int_n(n);

integer int_Pmax(Pmax);

rational lambda_min(integer(0));

rational lambda_max(int_n * integer(Cmax) + integer(1));

rational delta(1,int_n * int_n * int_Pmax * int_Pmax);

while (lambda_max - lambda_min > delta)

{ rational lambda = (lambda_max + lambda_min)/2;

lambda.normalize(); // important

〈report progress in demos〉
if ( greater_than_lambda_star(G,s,
1,p1,lambda) )

lambda_max = lambda;

else

lambda_min = lambda;

}

rational lambda_opt;

{ 〈minimum ratio cycle: determine lambdaopt and Copt〉 }

G.del_node(s);

return lambda_opt;

}

When the binary search terminates we have

λmax − λmin ≤ δ and λmin ≤ λ∗ < λmax

and hence there can be no cycleC with λ∗ < λ(C) < λmax. Letλ = λmax. Sinceλ∗ < λmax,
there is a negative cycle with respect tocλ. Let C be any negative cycle with respect tocλ.
Thenλ(C) < λ = λmax and henceλ(C) = λ∗. We conclude that any negative cycle with
respect tocλ is an optimal cycle.

A negative cycle with respect tocλ is easy to find. We set up the cost functioncλ and run
BELLMAN FORD T. We then run CHECKSPT on the output. It labels all nodes lying
on a negative cycle by−2. We pick any such node and trace the cycle containing it.
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〈minimum ratio cycle: determine lambdaopt and Copt〉�
edge_array<integer> 
ost(G);

node v; edge e;

integer num = lambda_max.numerator();

integer denom = lambda_max.denominator();

forall_edges(e,G) 
ost[e℄ = denom*
1[e℄ - num*p1[e℄;

node_array<integer> dist(G);

node_array<edge> pred(G);

BELLMAN_FORD_T(G,s,
ost,dist,pred);

node_array<int> label = CHECK_SP_T(G,s,
ost,dist,pred);

forall_nodes(v,G) if (label[v℄ == -2) break;

int P = 0; int C = 0;

node z = v;

do { P += p[pred[z℄℄; C += 
[pred[z℄℄;

C_opt.append(pred[z℄);

z = G.sour
e(pred[z℄);

} while ( z != v);

lambda_opt = rational(C)/rational(P);

We still need to show how to check the preconditionp(C) > 0 andc(C) > 0 for
all cyclesC. We discuss the latter condition. Consider the cost function cλ defined by
c′(e) = c(e) − 1/n for all edgese. Clearly, if there is no negative cycle with respect to
c′ then there is no cycle of length zero or less with respect toc. Conversely, ifc(C) > 0
and hencec(C) ≥ 1 for all C thenc′(C) = c(C) − |C|/n ≥ 1 − n/n ≥ 0 and there is no
negative cycle with respect toc′.

We can therefore misuse our comparison function to check theprecondition.

〈minimum ratio cycle: check precondition〉�
edge_array<int> unit_
ost(G,1);

rational one_over_n(integer(1),integer(n));

if (greater_than_lambda_star(G,s,
1,unit_
ost,one_over_n))

error_handler(1,"
y
le of 
ost zero or less wrt 
");

if (greater_than_lambda_star(G,s,p1,unit_
ost,one_over_n))

error_handler(1,"
y
le of 
ost zero or less wrt p");

The running time of the algorithm isO(nmlog(n · Pmax · Cmax)). This can be seen as
follows. The binary search starts with an interval of lengthnCmax + 1 and ends with an
interval of length 1/(n · Pmax)

2. The length of the interval is halved in each iteration and
hence the number of iterations isO(log(n · Pmax · Cmax)). Each iteration takes timeO(nm).

The technique used in our program for the minimum ratio cycleproblem is calledpara-
metric search. Parametric search is applicable in the following situation:

• One searches for the threshold valueλ∗ of a monotone predicateP(λ) of one real
argumentλ. A predicateP is monotone if

λ1 < λ2 andP(λ1) imply P(λ2),
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and the threshold value ofP is

λ∗ = inf {λ ; P(λ)} .

In the problem of this sectionP(λ) holds if there is a negative cycle with respect to the
cost functioncλ.

• There is a decision procedure forP(λ).

• There is a master procedure that drives the search forλ∗. We used binary search as the
master procedure in this section.

We refer the reader to [Meg83] and [AST94] for further applications of parametric search.
Parametric search has high demands on the underlying arithmetic. You can get an impres-

sion of the arithmetic demand of the minimum ratio cycle procedure by calling the program
minimum ratio cycle in LEDAROOT/demo/book/Graph. The paper [SSS97] discusses an
application of the number classreal to parametric search.

Exercises for 7.5
1 (Single-pair shortest-path problem) Lets andt be distinct nodes in a directed graph with

non-negative edge costs. The goal is to compute a shortest path from s to t . Assume
that there is heuristic information available which gives,for any nodev, a lower bound
lb(v) for the length of a shortest path fromv to t . Modify Dijkstra’s algorithm such that
dist(v) + lb(v) is used as the priority of nodev.

2 Show that the conditiond(v) ≥ µ(v) for all v in part (b) of Lemma 6 is essential, i.e.,
the claim does not hold without it.

3 Investigate the following shortest-path algorithm. Split the input graphG into G− con-
sisting of all edges of negative cost andG≥0 consisting of all edges of non-negative cost.
What can you say whenG− is not acyclic? IfG− is acyclic then run alternately the
acyclic shortest-path algorithm onG− and Dijkstra’s algorithm onG≥0. In each case the
distance labels output by the preceding run must be taken as the initial distance labels
for the next run. Modify the programs accordingly.

4 Consider the following version of the Bellman–Ford algorithm. It iterates over all edges
on the graphn times. Whenever an edgee = (v, w) is considered,d(w) is set to the
minimum ofd(w) andd(v) + c(e).

dist[s℄ = 0;

forall nodes(v,G) pred[v℄ = nil;

for(int i = 0; i < n; i++)

forall edges(e,G)

{ node v = G.sour
e(e);

node w = G.target(e);

if ( v != s && pred[v℄ == nil) 
ontinue;

// dist[v℄ is finite

d = dist[v℄ + 
ost[e℄;

if ( pred[w℄ == nil && v != s || d < dist[w℄ )

{ dist[w℄ = d; pred[w℄ = e; }

}
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Show that the algorithm computes all finite distances correctly (Hint: show thatd(v) is
bounded above by the length of a shortest path consisting of at mostk edges after thek-
th iteration.). Modify the algorithm so that it satisfies ouroutput convention. Implement
the algorithm and compare its running time to the implementations of the Bellman–Ford
algorithm given in the text. What is best case running time ofthe algorithm?

5 In all our algorithms we implemented the testc < d(w) in a somewhat clumsy way due
to the fact thatd(w) may be+∞ and that most number types have no representation
for +∞. Show thatnC whereC is the largest cost of any edge can be taken as an
approximation of+∞. Modify the algorithms accordingly and time them in comparison
to the algorithms in the text.

6 Our algorithm for determining minimum ratio cycles uses binary search. It starts with
an interval of lengthnCmax + 1 and stops as soon as the length of the interval becomes
1/(n Pmax)

2 or less. Thus there are log(n3P2
maxCmax) iterations and hence the algorithm

handles rational numbers with denominator as large asn3P2
maxCmax. This is unnecessar-

ily large since theλ(C) are rational numbers whose denominator is bounded byn Pmax.
Explore the possibility that the values ofλ are restricted to rational numbers whose de-
nominator is bounded byn Pmax. This requires us to write a function that “rounds” a
rational number to the closest rational number whose denominator is bounded by some
prescribed integer. Inspect the functionsmallrational nearof classrational to see how
such a function can be realized.

7 Define a number classNT star. The definition is with respect to a fixed graphG with
integral weight functionsc andp. Letλ∗ be the minimum cost to profit ratio of a cycle in
G. Each number of this class is represented by a pair of integers. Addition is component-
wise and there is no multiplication. Zero has both its components equal to zero. A
pair (a, b) is less than (equal to, larger than) a pair(c, d) if a + λ∗b < (=, >)c +
λ∗d. Implement the compare function as follows. Letλ = (c − a)/(b − d) and use
the comparison betweenλ andλ∗ (realized by a shortest-path computation as in the
text). The number type maintains an interval [λmin .. λmax] containingλ∗. Whenever a
comparison is performed this interval is updated. Use the number type in a shortest-path
computation on the graphG. What will the final interval be?

7.6 Bipartite Cardinality Matching

We start with the problem definition and the functionality ofthe bipartite matching algo-
rithms. We describe a checker and then lay the foundations ofmatching algorithms. In
the bulk of the section we discuss the implementations of several matching algorithms and
derive some general implementation principles. We close with an experimental comparison
of our implementations.
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Figure 7.18 A graph and a maximum matching: The bold edges form a matchingof cardinality
three. The filled nodes form a node cover of cardinality three; a node cover is a set of nodes
containing at least one endpoint of every edge. The node cover proves the optimality of the
matching. This figure was generated with the xlman-demo gwmcb matching.

7.6.1 Concepts and Functionality
Let G = (V, E) be a graph. Amatching Mis a subset of the edges no two of which share
an endpoint, see Figure 7.18. The cardinality|M | of a matchingM is the number of edges
in M.

A nodev is calledmatchedwith respect to a matchingM if there is an edge inM incident
to v and it is calledfreeor unmatchedotherwise. An edgee ∈ M is called amatchingedge.
A matching is calledperfectif all nodes ofG are matched. For a matched nodev the unique
nodew connected tov by a matching edge is called themateof v.

In this section we assume thatG is bipartite, i.e., that there is a partitionV = A ∪̇ B
of the nodes ofG such that every edge ofG has one endpoint inA and one endpoint inB.
Matchings in general graphs are the topic of Section 7.7. Theprocedure

bool Is Bipartite(
onst graph& G, list<node>& A, list<node>& B)

tests whetherG is bipartite and if so computes an appropriate partition of the nodes in lists
A andB. It runs in timeO(n + m).

The procedure
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list<edge> MAX CARD BIPARTITE MATCHING(graph& G);

returns a maximum cardinality matching; the graphG must be bipartite. The worst case and
average case running time of the algorithm areO(

√
n·m) andO(m logn), respectively. The

variant

list<edge> MAX CARD BIPARTITE MATCHING(graph& G, node array<bool>& NC);

returns in addition a proof of optimality in the form of a nodecoverNC.

A node coveris a setU of nodes such that for every edge(v, w) of G at least one of the
endpoints is inU .

Lemma 13 Let M be a matching and let U be a node cover. Then|M | ≤ |U |.
If |M | = |U | then M is a maximum cardinality matching and U is a minimum cardinality
node cover.

Proof SinceU is a node cover, each edgee ∈ M has at least one endpoint inU . We assign
an endpoint inU to each edge inM; for an edge inM having both endpoints inU the choice
of the endpoint is arbitrary. Each node is assigned at most once since every nodev has at
most one edge inM incident to it. Hence,|M | ≤ |U |.

If |M | = |U | then M is a maximum cardinality matching, since no matching can have
cardinality larger than|U |, andU is a minimum cardinality node cover, since no node cover
can have cardinality smaller than|M |.

We will later show that in bipartite graphs there is always a node cover and a matching
of the same cardinality. Lemma 13 is the basis for a checker for maximum cardinality
matchings in bipartite graphs. The checker takes a setM of edges and a setNC of nodes,
and checks thatM is a matching,NC is a node cover, and that the cardinality ofM is equal
to the cardinality ofNC.

〈 mcbmatching〉�
stati
 bool False(string s)

{ 
err << "CHECK_MCB: " + s +"\n"; return false; }

bool CHECK_MCB(
onst graph& G,
onst list<edge>& M,


onst node_array<bool>& NC)

{ node v; edge e;

// 
he
k that M is a mat
hing

node_array<int> deg_in_M(G,0);

forall(e,M)

{ deg_in_M[G.sour
e(e)℄++;

deg_in_M[G.target(e)℄++;

}

forall_nodes(v,G)

if ( deg_in_M[v℄ > 1 ) return False("M is not a mat
hing");

// 
he
k size(M) = size(NC)

int K = 0;

forall_nodes(v,G) if (NC[v℄) K++;
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if ( K != M.size() ) return False("M is smaller than node 
over");

// 
he
k that NC is a node 
over

forall_edges(e,G)

if ( ! (NC[G.sour
e(e)℄ || NC[G.target(e)℄) )

return False("NC is not a node 
over");

return true;

}

7.6.2 Concepts for Maximum Matching Algorithms
We introduce the concepts of alternating and augmenting paths that are crucial for all match-
ing algorithms. A large part of the section applies not only to bipartite graphs but to all
graphs. We will clearly state when we restrict attention to bipartite graphs.

A simple pathp = [e0, e1, . . . , ek−1] from v to w in G is called analternatingpath with
respect to a matchingM if:

• the edges inp are alternately inM and not inM,

• exactly one ofe0 andek−1 is a matching edge ifv = w,

• eithere0 is a matching edge orv is free and eitherek−1 is a matching edge orw is free
if v 6= w.

Figure 7.19 shows examples. The importance of alternating paths stems from:

Lemma 14 If p is an alternating path with respect to M then M′ = M ⊕ p = (M \ p) ∪
(p \ M) is also a matching.

Proof Consider any nodez. We need to show that at most one edge ofM ′ is incident toz.
This is obvious ifz does not lie onp or if z is not an endpoint ofp or if p is a cycle. So
assume thatz is an endpoint ofp and p is not a cycle, sayz = v 6= w. Sincep is simple,
it contains only one edge incident tov, namelye0. Moreover, ife0 6∈ M thenv is free with
respect toM. Thus at most one edge ofM ′ is incident tov.

If p is alternating with respect toM thenM ⊕ p has cardinality one larger thanM if both
endpoints ofp are free, has the same cardinality asM if exactly one endpoint is free, and
has cardinality one smaller thanM if no endpoint is free.

An alternating pathp is calledaugmentingif both endpoints ofp are free. For an aug-
menting path the cardinality of the matchingM ⊕ p is one larger than the cardinality ofM.
If M does not have maximum cardinality then there is always an augmenting path, as the
next lemma shows; ifM is “far” from optimality there are many augmenting paths (even
short ones).

Lemma 15 Let M and M′ be matchings in a graph G. We have the following:

• M ⊕ M ′ consists of alternating paths and alternating cycles.
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Figure 7.19 Alternating paths: The edges of a matchingM are shown in bold. The paths
p1 = [a, y, b, v ], p2 = [u, b, v ], and p3 = [u, b, v, c] are alternating with respect toM , but the
path p4 = [a, y, b] is not. AugmentingM by p1 decreases the size of the matching (as both
endpoints ofp1 are matched), augmenting byp2 leaves the size of the matching unchanged (as
exactly one of the endpoints ofp2 is matched), and augmentation byp3 increases the size of the
matching by one (as both endpoints ofp3 are free). The right half of the figure shows the
matching obtained by augmenting byp3.

• If |M | < |M ′| then there is at least one augmenting path in G with respect toM.

• Let d = |M ′| − |M |. Then there is at least one augmenting path of length at most n/d
and there are at least d/2 augmenting paths of length at most2n/d.

Proof Consider the graph with edge setM ⊕ M ′. In this graph each node has degree zero,
one, or two, and hence the graph consists of paths, cycles, and isolated nodes. SinceM and
M ′ are matchings, the edges ofM andM ′ alternate on every path and cycle.

An alternating cycle contains the same number of edges ofM andM ′. Thus, if |M | <

|M ′|, then there must be at least one path inM ⊕ M ′ which contains more edges ofM ′ than
of M. Such a path contains one more edge ofM ′ than ofM and hence the first and the last
edge of the path belong toM ′. Thus the path is augmenting with respect toM.

The argument in the previous paragraph actually shows that there must bed paths in
M ⊕ M ′ which contain more edges ofM ′ than ofM. Thus there ared augmenting paths
with respect toM. The paths are node-disjoint and hence contain at mostn edges in total.
Thus their average length is at mostn/d and there are at leastd/2 paths whose length is at
most 2n/d.

It is worthwhile looking at a numerical example. Assume thatM is empty and thatG
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allows for a perfect matching. TakingM ′ as a perfect matching we haved = n/2 and hence
there are at leastn/4 augmenting paths of length at most 2.

Corollary 2 Let M be a matching in a graph G. M is a maximum cardinality matching in
G iff there is no augmenting path in G with respect to M.

Proof Clearly, if there is an augmenting pathp with respect toM thenM is not a maximum
cardinality matching.

Assume conversely, thatM is not a maximum cardinality matching. Then there is a
matchingM ′ such that|M | < |M ′|. Lemma 15 implies the existence of an augmenting path
with respect toM.

Corollary 2 immediately suggests an algorithm for finding maximum matchings.

M = some matching;
while there is an augmenting pathp with respect toM
f augmentM by p; g

In the remainder of this section we concentrate on bipartitegraphs. In a bipartite graph
G = (A ∪̇ B, E) there is a particularly simple method for finding augmentingpaths. We
direct all free edges fromA to B and all matching edges fromB to A. The existence of an
augmenting path is then tantamount to the existence of a pathfrom a free node inA to a
free node inB. Also, augmentation by a pathp is trivial. One simply reverses the direction
of all edges on the path. Observe that this correctly recordsthat the endpoints ofp are now
matched and thatM was replaced byM ⊕ p, see Figure 7.20.We will use this “directed”
view in all our implementations of bipartite matching algorithms.

Before we turn to implementations we make the observation that it suffices to search for
augmenting paths only from vertices inA and from each vertex only once, i.e., the algorithm
above can be modified to:

M = some matching;
forall nodesv in A
f if there is an augmenting pathp with respect toM starting inv

f augmentM by p; g
g

We prove that the modified algorithm is correct. We observe first that the set of nodes in
A that are matched inM ⊕ p are exactly the nodes that are matched inM plus the source
node ofp.

Let M0 be the initial matching, letA0 be the nodes inA that are matched inM0 and let
v1, v2, . . . , vk be the vertices inA \ A0 in the order in which they are considered. For all
i , i ≥ 1, let Mi be equal toMi−1 if there is no augmenting pathpi with respect toMi−1
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Figure 7.20 The edges of a matchingM are shown in bold. Matching edges are directed from
right to left and non-matching edges are directed from left to right. The pathp = [c, v, b, u] is
an augmenting path with respect toM . AugmentingM by p yields the matchingM ⊕ p shown
in the right half of the figure.

starting invi and let it beMi−1 ⊕ pi otherwise. LetAi = A0 ∪ {v1, . . . , vi } and letGi be
the subgraph spanned byVi = Ai ∪̇ B.

Lemma 16 For all i : M i is a maximum cardinality matching in Gi .

Proof The claim is certainly true fori = 0 as all nodes inA0 are matched. So consider
i ≥ 1 and assume that the claim is true forMi−1. Let ki be the maximum cardinality of a
matching in the subgraph spanned byVi . If ki = ki−1 then the claim clearly holds fori . So
assume thatki > ki−1 and letM∗ be an optimal matching inGi . Thenvi must be matched
in M∗ (otherwise there would be a matching of cardinalityki in Gi−1, a contradiction to the
optimality of Mi−1) and henceMi−1 ⊕ M∗ contains a pathp starting invi . The path starts
with an edge inM∗ and is alternating with respect toMi−1; we consider the maximal length
path of this form. Ifp also ends with an edge inM∗ then p is augmenting with respect to
Mi−1 and hence the cardinality ofMi is one larger than the cardinality ofMi−1. ThusMi is
optimal. If p ends with an edge inMi−1 thenM∗ ⊕ p has the same cardinality asM∗ and
does not matchvi . Thus there is a matching of cardinalityki in Gi−1, a contradiction to the
optimality of Mi−1.
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7.6.3 Translating between the Directed and the Undirected View
We stated in the previous section that augmenting paths in bipartite graphs are particularly
easy to find if one adopts a directed view: all matching edges are directed fromB to A,
all non-matching edges are directed fromA to B, and augmentation by a pathp means
to reverse all its edges. We take this directed view in all ourimplementations of bipartite
matching algorithms. However, we do not want to impose this directed view on the users of
matching algorithm. For them an “undirected” view is more appropriate. In this section we
discuss how to translate between the two views.

We postulate the following common interface for all our implementations:

• The node set is partitioned into disjoint setsA andB (given as lists of nodes).

• All edges are directed fromA to B.

• The implementations are allowed to modify the graph in two ways: they may reorder
adjacency lists and they may change the orientation of edgesduring execution. At
termination, all edges must again19 be directed fromA to B. However, the ordering of
the adjacency lists may be arbitrary.

In this section we show how to prepare this input format and how to restore the original
graph.

We determine a bipartitionV = A ∪̇ B of V by calling Is Bipartite(G, A, B). This call
will return true iff G is bipartite and computeA andB if G is bipartite. We then orient all
edges fromA to B. Having oriented all edges fromA to B we compute a maximum match-
ing by calling one of our matching algorithms. After returning from the matching algorithm
we restore the original orientation of all edges and the original order of all adjacency lists.

We give more details. We deal with the edge orientations first. We collect all edges
out of nodes inB in a list edgesoutof B and reverse the orientation of all of them (op-
erationrevedge). After return from the matching algorithm we again reverseall edges in
edgesoutof B and thus restore their original orientation.

We come to the orderings of the adjacency lists. We number alledges according to their
original order and usesortedgesto restore the original order.

Among our implementations of matching algorithms the algorithm by Alt, Blum, Mehlhorn,
and Paul seems to be the best, see Section 7.6.7 for an experimental comparison of all im-
plementations. We therefore use it as our default implementation.

〈 mcbmatching〉+�
list<edge> MAX_CARD_BIPARTITE_MATCHING(graph& G, node_array<bool>& NC)

{ list<node> A,B;

node v; edge e;

if ( !Is_Bipartite(G,A,B) )

error_handler(1,"MAX_CARD_BIPARTITE_MATCHING: G is not bipartite");

edge_array<int> edge_number(G); int i = 0;

forall_nodes(v,G)

19 We would not make this requirement anymore if we could start from scratch.
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forall_adj_edges(e,v) edge_number[e℄ = i++;

list<edge> edges_out_of_B;

forall(v,B)

{ list<edge> outedges = G.adj_edges(v);

edges_out_of_B.
on
(outedges);

}

forall(e,edges_out_of_B) G.rev_edge(e);

list<edge> result = MAX_CARD_BIPARTITE_MATCHING_ABMP(G,A,B,NC);

forall(e,edges_out_of_B) G.rev_edge(e);

G.sort_edges(edge_number);

#ifndef LEDA_CHECKING_OFF

CHECK_MCB(G,result,NC);

#endif

return result;

}

7.6.4 The Ford and Fulkerson Algorithm
In this sectionG = (V, E) is a bipartite graph withV = A ∪̇ B. All edges have one
endpoint inA and one endpoint inB and all edges are directed fromA to B. Our goal is
to compute a matching of maximum cardinality. We are allowedto reorder adjacency lists
and to reorient edges but we must at the end again orient all edges fromA to B.

We will give several implementations of the Ford and Fulkerson algorithm [FF63] already
derived in Section 7.6.2.

M = some matching;
forall nodesv in A
f if there is an augmenting pathp with respect toM starting inv

f augmentM by p; g
g

The implementations differ:

• in the strategy used to search for augmenting paths (we will study depth-first and
breadth-first search),

• in the choice of the initial matching (we will either use the empty matching or the
matching produced by the so-called greedy heuristic),

• in the data structures used.

All implementations have a worst case running time ofO(nm). They have different best
case behaviors and different average case behaviors and they behave drastically differently
in practice.
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A First Implementation: We implement the algorithm above and call the resulting pro-
cedure MAXCARD BIPARTITE MATCHING FFB; FFB stands for basic version of the
Ford and Fulkerson algorithm. It starts by declaring all nodes as free and then iterates
over all nodes inA. For each nodev in A it tries to find an augmenting path starting
in v by calling find augpathbydfs(G, f, free, reached) for the edgesf out of v. A call
findaugpathbydfs(G, f, . . .) returns true if there is an augmenting path starting withf
and returns false otherwise. In the former case it also augments the current matching by
the path (by reversing all its edges) and labels the endpointin B of the path as non-free. In
either case it labels all visited nodes (by settingreached[w] to true for each visited nodew).
If an augmenting path starting with a particular edgef is found,v is made non-free and the
next node inA is considered.

When all nodes inA have been considered the result list is prepared, all edges are directed
from A to B (as this is required by our interface convention), and a nodecover is computed.

〈 FFB matching〉�
〈FFB: dfs〉
list<edge> MAX_CARD_BIPARTITE_MATCHING_FFB(graph& G,


onst list<node>& A, 
onst list<node>& B,

node_array<bool>& NC)

{ node v; edge e;

node_array<bool> free(G,true);

// 
he
k that all edges are dire
ted from A to B

forall(v,B) assert(G.outdeg(v) == 0);

forall(v,A)

{ edge f;

node_array<bool> rea
hed(G,false);

forall_adj_edges(f,v)

{ if (find_aug_path_by_dfs(G,f,free,rea
hed))

{ free[v℄ = false;

break;

}

}

}

〈MCB: prepare result and node cover and restore orientations〉
}

We give the details offind augpathbydfs(G, f, free, reached). It is a variant of depth-first
search; later in the section we will also consider breadth-first search. In a general call,f is
some edge and the recursion stack contains a pathp starting at a free node inA and ending
in f . In the procedure we distinguish cases according to whetherthe target node off is
free or not.

If the target nodew of f is free, we have found an augmenting path. We labelw as
non-free and then reverse all edges inp. This can be done by unwinding the recursion stack
and reversing all edges contained in it. More precisely, we reversef and return true. The
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enclosing call receives true and knows that an augmenting path has been found. It reverses
its argument and returns true. In this way all edges on the path are reversed.

If w is not free, we try to extend the path. Lete = (w, z) be any edge out ofw. If z was
already reached then there is no need to exploree as we know already that no free node in
B can be reached fromz. If z was not reached yet we make a recursive call fore.

〈FFB: dfs〉�
stati
 bool find_aug_path_by_dfs(graph& G, edge f,

node_array<bool>& free, node_array<bool>& rea
hed)

{ node w = G.target(f);

rea
hed[w℄ = true;

if (free[w℄)

{ free[w℄ = false;

G.rev_edge(f);

return true;

}

edge e;

forall_adj_edges(e,w)

{ node z = G.target(e);

if ( rea
hed[z℄ ) 
ontinue;

if ( find_aug_path_by_dfs(G,e,free,rea
hed) )

{ G.rev_edge(f);

return true;

}

}

return false;

}

We complete the description of our first matching algorithm by discussing how to produce
the matching, the node cover, and how to orient all edges fromA to B. The matchingM
consists of all edges that are directed fromB to A. Their directions need to be reversed.

How can we find a node coverNC? We claim that the following rule determines a node
cover. For each matched edge we select the endpoint inB, if this endpoint can be reached
from a free node inA, and the endpoint inA otherwise, see Figure 7.21.

Clearly, each matching edge is incident to a node inNC. We now consider a non-
matching edgee = (v, w) with v ∈ A andw ∈ B. If v is free thenw must be matched (by
optimality of M), andw was selected according to the rule above. Ifv is matched and was
not selected then there must be a matching edgef = (v, w′) with w′ selected. This means
thatw′ can be reached from a free node inA. Extend this path byf ande to see thatw is
selected according to the rule above.

〈MCB: prepare result and node cover and restore orientations〉�
list<edge> result;

forall(v,B)

forall_adj_edges(e,v) result.append(e);

forall_nodes(v,G) NC[v℄ = false;

node_array<bool> rea
hable(G,false);
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Figure 7.21 The edges of a matchingM are shown in bold. Matching edges are directed from
right to left and non-matching edges are directed from left to right. The edgee0 is the only
matching edge whose endpoint inB is reachable from a free node inA. The node cover is shown
as large solid circles.

forall(v,A)

if (free[v℄) DFS(G,v,rea
hable);

forall(e,result)

if ( rea
hable[G.sour
e(e)℄ )

NC[G.sour
e(e)℄ = true;

else

NC[G.target(e)℄ = true;

forall(e,result) G.rev_edge(e);

return result;

What is the time complexity of our implementation? The worstcase complexity is
O(nm) since we search at mostn times for an augmenting path and since each search
takes timeO(m) in the worst case. On many graphs the running time is smaller.However,
the running time of the implementation above is never betterthan�(n2). This is due to
very poor algorithmicswhich lets each search for an augmenting path take time�(n). The
culprit is the innocent looking statement

node array<bool> rea
hed(G,false);
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which consumes2(n) time and is executed in each of then phases. We will next describe
two improvements. None of them improves the worst case running time, but both of them
improve the running time dramatically for many inputs.

Improving the Best Case: We show how to improve the best case from�(n2) to O(m).
We will see that the optimization has a dramatic effect on theobserved running time of our
implementation.

Consider the first search for an augmenting path when the current matching is still empty.
At this point any edge is an augmenting path and hence the firstcall of findaugpathbydfs
returns with success immediately. However, in the implementation above the search will
take time�(n) since the initialization of thenodearray<bool> reachedtakes linear time.
We aim for a design where the cost for reinitializingreachedis proportional to the number
of nodes that were actually reached in the previous search and not proportional to the total
number of nodes. We call this the principle of

paying only for what we actually touched
and not

for what we could have conceivably touched.

We describe three ways to realize the principle.
The first method uses astack<node> reachedstack in addition to the boolean array

reached. Wheneverreached[w] is set to true for a nodew we also pushw ontoreachedstack
and after a successful augmentation we usereachedstackto resetreachedto false for all
nodes on the stack. In this way reinitialization takes time proportional to the number of
elements reached. We obtain the following code. Infind augpathbydfswe write

rea
hed[w℄ = true; rea
hed sta
k.push(w);

and in the body of MAXCARD BIPARTITE MATCHING FFB we write

node array<bool> rea
hed(G,false);

sta
k<node> rea
hed sta
k;

forall(v,A)

{ edge f;

forall adj edges(f,v)

{ if (find aug path by dfs(G,f,free,rea
hed))

{ free[v℄ = false;

while ( !rea
hed sta
k.empty() )

rea
hed[rea
hed sta
k.pop()℄ = false;

break;

}

}

}

The second method uses the data typenodeslist. This data type offers the functions
member, push, pop, andemptyand hence combines the functionality of a boolean array
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with a stack. We leave it to the reader to rewrite the algorithm so that anodeslist is used
instead ofreachedandreachedstack.

The third method uses a counternumberof augmentationsand anodearray<int> mark
instead ofreached. The counter is increased whenever an augmentation occurs20 and the
marknumberof augmentationsis assigned to all nodes reached in the current search for an
augmenting path. The test whether a nodew has already been reached in the current search
amounts tomark[w] == numberof augmentations. We obtain the following code. In this
code we have also made provisions for our second improvementin form of the program
chunk〈MCB: greedy heuristic〉.

〈 FF DFS matching〉�
〈FF: dfs〉
list<edge> MAX_CARD_BIPARTITE_MATCHING_FF_DFS(graph& G,


onst list<node>& A, 
onst list<node>& B,

node_array<bool>& NC)

{ node v; edge e;

node_array<bool> free(G,true);

node_array<int> mark(G,-1);

// 
he
k that all edges are dire
ted from A to B

forall(v,B) assert(G.outdeg(v) == 0);

〈MCB: greedy heuristic〉
number_of_augmentations = 0;

forall(v,A)

{ if ( !free[v℄ ) 
ontinue;

edge f;

forall_adj_edges(f,v)

{ if (find_aug_path_by_dfs(G,f,free,mark))

{ free[v℄ = false;

number_of_augmentations++ ;

break;

}

}

}

〈MCB: prepare result and node cover and restore orientations〉
}

where

〈FF: dfs〉�
stati
 int number_of_augmentations;

stati
 bool find_aug_path_by_dfs(graph& G, edge f,

node_array<bool>& free, node_array<int>& mark)

{ node w = G.target(f);

mark[w℄ = number_of_augmentations;

if (free[w℄)

{ free[w℄ = false;

20 There are 232 numbers of typeint and hence this counter will never overflow.
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G.rev_edge(f);

return true;

}

edge e;

forall_adj_edges(e,w)

{ node z = G.target(e);

if ( mark[z℄ == number_of_augmentations ) 
ontinue;

if ( find_aug_path_by_dfs(G,e,free,mark))

{ G.rev_edge(f);

return true;

}

}

return false;

}

The third method has an interesting side effect (which we didnot intend). Suppose that
we searched for an augmenting path froma and did not succeed. Then all nodes reached by
this search are marked (and stay marked) and hence the searchfrom the next free node inA
will not explore them. In this way the worst case time betweensuccessive augmentations is
O(m).

Table 7.3 compares the running times of the implementationsFFB and FF in columns
FFB- and FF- on random bipartite graphs; the other columns will be explained in the next
section. Observe that FF is much faster than FFB. We concludethat the principle of

paying only for what we actually touched
and not

for what we could have conceivably touched

is worth being observed.

The Greedy Heuristic: We come to our second improvement. In our considerations at the
beginning of the section we started the matching algorithm with the line

M = some mat
hing;

So far, we have chosen the empty matching as out initial matching. We will now do some-
thing more clever and use the so-calledgreedy heuristicto find an initial matching. The
greedy heuristic considers all edges in turn and adds an edgeto the current matching if both
of its endpoints are free.

〈MCB: greedy heuristic〉�
forall_edges(e,G)

{ node v = G.sour
e(e);

node w = G.target(e);

if ( free[v℄ && free[w℄ )

{ free[v℄ = free[w℄ = false;

G.rev_edge(e);

}

}
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n m FFB- FFB+ FF- FF+ Check

1000 2000 1.17 0.32 0.04 0.03 0

1000 4000 1.26 0.3 0.11 0.08 0.01

1000 8000 1.2 0.18 0.08 0.1 0.01

2000 4000 4.57 1.22 0.09 0.07 0

2000 8000 5.04 1.2 0.27 0.25 0.01

2000 16000 4.67 0.57 0.21 0.25 0.01

4000 8000 18.32 4.51 0.29 0.18 0.009998

4000 16000 20.57 4.82 0.97 0.51 0.02

4000 32000 18.47 2.09 0.64 0.7 0.04

8000 16000 72.05 18.1 0.67 0.46 0.04001

8000 32000 82 19.82 2.79 1.47 0.04999

8000 64000 74.05 7.63 1.78 1.54 0.07999

Table 7.3 The running times of four versions of the basic bipartite matching algorithm. FFB and
FF refer to the two programs above, a minus sign indicates that no heuristic was used to find an
initial matching and a plus sign indicates that the greedy heuristic was used. The last column
shows the time required to check the results. The programs were run on random bipartite graphs
with n nodes on each side andm edges (generated byrandombigraph(G, n, n, m, A, B)). FFB
and FF use depth-first search to find augmenting paths. You mayperform your own experiments
by calling FFmatchingtime in the demo directory.

The greedy heuristic is frequently highly effective. We support this statement by analysis
and also by experimental evidence.

For the analysis we consider random graphs where|A| = |B| = n and each node inA
hasd incident edges for some integerd. The edges go to random destinations, e.g., for each
edge the endpoint inB is chosen uniformly at random from the nodes inB.

Let us consider the cased = 1 first. We consider the nodes inA one by one. When the
nodev is considered and its incident edge ise = (v, w) we adde to the matching ifw is
free and we discarde if w is already matched. This shows that every node inB which has
degree at least one will be matched by the greedy heuristic. The probability that a node
w in B has degree zero is(1 − 1/n)n ≈ e−1 ≈ 0.37 since the probability that the edge
starting in any particular node inA does not end inw is (n − 1)/n = 1 − 1/n and hence
the probability that none of then edges starting in a node inA ends inw is (1 − 1/n)n.
Thus about(1 − e−1)n ≈ 0.63n nodes will be matched by the greedy heuristic in the case
d = 1. Of course, even more nodes will be matched on average for larger d. We give a
plausibility argument of what to expect; the remainder of this paragraph is not rigorous.
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Considerd = 2. Aboute−1n nodes inA will not be matched by only considering the first
edge incident to any node. For these nodes the second incident edge will be considered and
hence a total number of aboutn+n/e edges will be considered. The probability that a node
in B stays unmatched reduces to(1 − 1/n)n+n/e ≈ e−(1+1/e) ≈ 0.25.

We turn to experiments. Table 7.4 shows the effect and the cost of the greedy heuristic.
We used the program below. The effect of the heuristic is as predicted by our analysis, i.e,
for m = n about 63% of the nodes are matched by the heuristic and form = 2n about 75%
of the nodes are matched by the heuristic. The running time ofthe heuristic is insignificant.
Even for the graphs withm = 10n the running time of the heuristic is less than 10 times
the time required to initialize the node arrayfree and the time to check that all edges are
directed fromA to B.

〈mcb: effect of heuristic〉�
double MCB_EFFECT_OF_HEURISTIC(graph& G,


onst list<node>& A, 
onst list<node>& B)

{ node v; edge e;

node_array<bool> free(G,true);

forall(v,B) assert(G.outdeg(v) == 0);

if (use_heuristi
 == 0) return 0;

〈MCB: greedy heuristic〉
int n = 0;

forall(v,A) if (!free[v℄) n++;

return double(n)/A.size();

}

Table 7.3 shows the running time of four variants of our basicalgorithm. The table indi-
cates that both refinements have a tremendous impact on running time at least for random
graphs. The greedy heuristic finds a large initial matching and hence saves many searches
for augmenting paths and the refined implementation of the set of reached nodes keeps the
cost of searching for augmenting paths low. Observe that therunning time of both versions
of FFB is quadratic inn. FFB+ (that is, FFB with greedy heuristic) has a smaller con-
stant in then2 term in the running time since the expensive search for augmenting paths is
only started from those nodes inA that are left free by the greedy heuristic. Also FFB+
runs faster for denser graphs since the matching found by thegreedy heuristic is larger for
denser graphs. FF is always much better than FFB and the time to check the output of our
algorithms is negligible compared to the running times of the algorithms.

We summarize the findings of this section:

• The use of a heuristic to find a good initial solution can speedup graph algorithms
tremendously.We recommend exploring the use of a heuristic always.The value of a
heuristic is usually the highest for the least sophisticated algorithm.

• If graph exploration, e.g., a depth-first or a breadth-first search or a shortest-path
computation, is used as a subroutine in a graph algorithm, the initialization of the data
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n m No heuristic Greedy heuristic

% time % time

10000 10000 0 0.02 0.632 0.07

10000 20000 0 0.03 0.764 0.08

10000 30000 0 0.02 0.823 0.1

10000 40000 0 0.02 0.858 0.11

10000 50000 0 0.03 0.881 0.11

10000 60000 0 0.03 0.9 0.12

10000 70000 0 0.02 0.912 0.13

10000 80000 0 0.03 0.927 0.14

10000 90000 0 0.02 0.931 0.14

10000 100000 0 0.03 0.937 0.14

Table 7.4 Percentage of nodes matched by the greedy heuristic and costof the greedy heuristic.
The experiments were performed on random bigraphs withn nodes on each side andm edges
(generated byrandombigraph(G, n, n, m, A, B)). You can perform your own experiments by
calling mcbeffect of heuristic in the demo directory.

structures should be performed outside the subroutine. Only those parts of the data
structure which are actually touched inside the subroutineshould be reinitialized.

Breadth-First versus Depth-First Search: In the previous section we used depth-first
search for finding augmenting paths. In this section we will investigate the use of breadth-
first search. We will see that breadth-first search is more effective than depth-first search in
finding augmenting paths.

Before we give the code we briefly argue that this should be thecase. Assume thata is a
free node inA, that the shortest augmenting path starting ina consists ofk edges, and that
the outdegree of all nodes inA is bounded byd. When breadth-first search froma is used in
a search for an augmenting path then only nodes in distance atmostk+1 froma are visited
in the search. The number of such nodes is bounded byd(k+1)/2. Observe that we have
fan-out only at the nodes inA since nodes inB have at most outgoing edge. Actually, the
stronger boundd(d − 1)(k+1)/2−1 holds since each of the nodes inA reachable froma must
have one matching edge incident to it and hence there are onlyd − 1 outgoing edges left.
For example ford = 3 andk = 9 the number of nodes visited is bounded by 3· 24 = 48.

How will depth-first search do? Well, it might explore a largefraction of the graph in the
worst case. Even, if there is an augmenting path of length one, it might explore the entire
graph.
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We turn to the implementation of breadth-first search. Leta be any free node inA.
We start a breadth-first search froma. We maintain a queueQ that contains all nodes
in A reached by the search from which we have not yet explored the outgoing edges.
Initially, Q contains onlya. A node (in A or B) has been reached by the search iff
mark[v] == numberof augmentationsand for a reached nodev, pred[v] contains the edge
through whichv was reached. When the procedure finds an augmenting path it augments
the path and returns true, otherwise it returns false.

The procedure starts by puttinga into the queue and markinga. As long as the queue is
not empty, the first node is removed fromQ. Call the nodev; v is a node inA. We explore
all edges out ofv. Let e = (v, w) be any such edge. Ifw has been reached before, we do
nothing. Otherwise we setpred[w] to e and markw. If w is free, we augment by the path
from a to w and returntrue. The path can be found by tracing edges as given bypred. If w

is not free, letf = (w, x) be the matching edge incident tow; note that f is the only edge
out ofw. We setpred[x] to f , markx, and appendx to Q.

〈FF: bfs〉�
#in
lude <LEDA/queue.h>

stati
 bool find_aug_path_by_bfs(graph& G, node a,

node_array<bool>& free, node_array<edge>& pred,

node_array<int>& mark)

{ queue<node> Q;

Q.append(a); mark[a℄ = number_of_augmentations;

edge e;

while ( !Q.empty() )

{ node v = Q.pop(); // v is a node in A

forall_adj_edges(e,v)

{ node w = G.target(e); // w is a node in B

if (mark[w℄ == number_of_augmentations) 
ontinue;

// w has not been rea
hed before in this sear
h

pred[w℄ = e; mark[w℄ = number_of_augmentations;

if (free[w℄)

{ // augment path from a to w

free[w℄ = free[a℄ = false;

while ( w != a)

{ e = pred[w℄;

w = G.sour
e(e);

G.rev_edge(e);

}

return true;

}

// w is not free

edge f = G.first_adj_edge(w);

node x = G.target(f);

pred[x℄ = f; mark[x℄ = number_of_augmentations;

Q.append(x);

}
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}

return false;

}

The matching algorithm is as we already know it. We use eitherbreadth-first or depth-
first search for finding augmenting paths. The choice is made by the variableusebfs. In
both methods we declare all nodes unreached (by increasingnumberof augmentations)
whenever an augmenting path has been found.

〈 FF matching〉�
〈FF: dfs〉
〈FF: bfs〉
list<edge> MAX_CARD_BIPARTITE_MATCHING_FF(graph& G,


onst list<node>& A, 
onst list<node>& B,

node_array<bool>& NC,

bool use_heuristi
, bool use_bfs)

{ node v; edge e;

node_array<bool> free(G,true);

node_array<int> mark(G,-1);

node_array<edge> pred(G);

number_of_augmentations = 0;

// 
he
k that all edges are dire
ted from A to B

forall(v,B) assert(G.outdeg(v) == 0);

if (use_heuristi
) 〈MCB: greedy heuristic〉
forall(v,A)

{ if ( !free[v℄ ) 
ontinue;

if (use_bfs)

{ if (find_aug_path_by_bfs(G,v,free,pred,mark) )

number_of_augmentations++ ;

}

else

{ edge f;

forall_adj_edges(f,v)

{ if (find_aug_path_by_dfs(G,f,free,mark))

{ free[v℄ = false;

number_of_augmentations++ ;

break;

}

}

}

}

〈MCB: prepare result and node cover and restore orientations〉
}

Table 7.5 shows the running time of the procedure above on random bipartite graphs. The
table shows that breadth-first search is almost always superior to depth-first search (as we
already argued above). It also shows that breadth-first search is not helped at all by the
greedy heuristic. We explain this observation. The greedy heuristic considers augmenting
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n m k dfs- dfs+ bfs- bfs+

10000 15000 1 0.26 0.26 0.28 0.27

10000 15000 10 0.25 0.24 0.26 0.25

10000 15000 100 0.24 0.23 0.24 0.25

10000 15000 1000 0.24 0.23 0.24 0.25

10000 15000 10000 0.23 0.23 0.25 0.24

10000 25000 1 8.46 3.56 2.89 2.91

10000 25000 10 5.44 3.11 2.34 2.33

10000 25000 100 5.34 3.11 2.54 2.53

10000 25000 1000 2.04 2.19 1.92 1.92

10000 25000 10000 0.31 0.29 0.29 0.28

10000 35000 1 5.38 2.28 2.51 2.52

10000 35000 10 7.62 2.55 2.75 2.76

10000 35000 100 22.78 2.24 2.37 2.37

10000 35000 1000 17.91 2.21 2.09 2.09

10000 35000 10000 2.15 1.12 0.92 0.93

Table 7.5 Depth-first versus breadth-first search. The table shows therunning time of
MAX CARD BIPARTITE MATCHING FF. Either no heuristic (indicated by a minus sign) or
the greedy heuristic (indicated by a plus sign) is used to findan initial matching. To complete the
matching, a search for an augmenting path is started from each free node inA that was not
matched by the heuristic. Either breadth-first or depth-first search is used to find an augmenting
path. The programs were run on random bipartite group graphswith n nodes on each side andm
edges (generated byrandombigraph(G, n, n, m, A, B, k)). The nodes on either side are divided
into k groups and the nodes in thei -th group are connected to nodes in groupsi − 1 andi + 1 on
the other side. The generator is described in detail in Section 7.6.7. You may perform your own
experiments by calling mcbdfs vs bfs in the demo directory.

paths of length one. It finds an augmenting path of length one by inspecting all the edges
incident to a node. Breadth-first search does exactly the same when an augmenting path of
length one exists.

7.6.5 The Algorithm of Hopcroft and Karp
In this and the next section we give algorithms whose worst case running time isO(

√
nm).

The first such algorithm is due to Hopcroft and Karp [HK73]. They suggested organiz-
ing the execution into phases, restricting augmentation toshortest augmenting paths, and
augmenting a maximal number of node disjoint augmenting paths in each phase. Observe
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that Lemma 15 guarantees the existence of many short augmenting paths when the current
matching is still far from optimality.

The overall structure of the program is the same as for our previous algorithms. The
differences are that we maintain some additional data structures, in particular a list of the
free nodes inA, and that the search for augmenting paths is organized differently.

〈 HK matching〉�
〈HK: bfs〉
〈HK: dfs〉
list<edge> MAX_CARD_BIPARTITE_MATCHING_HK(graph& G,


onst list<node>& A, 
onst list<node>& B,

node_array<bool>& NC, bool use_heuristi
)

{ node v;

edge e;

node_array<bool> free(G,true);

//
he
k that all edges are dire
ted from A to B

forall(v,B) assert(G.outdeg(v) == 0);

if (use_heuristi
) { 〈MCB: greedy heuristic〉 }

node_list free_in_A;

forall(v,A) if (free[v℄) free_in_A.append(v);

〈HK: data structures〉
while ( 〈there is an augmenting path〉 )

{ 〈find a maximal set and augment〉 }

〈MCB: prepare result and node cover and restore orientations〉
}

We now give the details of how the Hopcroft and Karp algorithmsearches for augmenting
paths.

The length (= number of edges) of the shortest augmenting path can be found by breadth-
first search. The search starts from all free nodes inA. We give a variant of breadth-
first search which does a bit more. It constructs a so-calledlayered network. In a layered
network the nodes of a graph are partitioned intolayersaccording to their distance with
respect to the starting layer, i.e., a nodev belongs to layerk if there is a path from the
starting layer tov consisting ofk edges and there is no path with fewer edges. For any
edge in a layered network the distance of the target node is atmost one more than the
distance of the source node. Only edges that connect different layers can be contained
in shortest augmenting paths and hence we mark themuseful in the program below; the
mark is an integerphasenumberin which we count the number of phases executed21. The
construction of the layered network starts by putting all free nodes inA into the zeroth
layer, then proceeds by standard breadth-first search, and stops as soon as the first layer is
completed that contains free nodes inB. We achieve the latter goal by stopping to put nodes
into the queue as soon as the first free node inB has been removed from the queue.

21 Observe that we are reusing the marking technique introduced in section 7.6.4. Incrementingphasecounterwill
unmark all edges.
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The program returnstrue if there is an augmenting path and returnsfalseotherwise.

〈HK: data structures〉�
edge_array<int> useful(G,0);

node_array<int> dist(G);

node_array<int> rea
hed(G,0);

phase_number = 1;

and

〈HK: bfs〉�
#in
lude <LEDA/b_queue.h>

#in
lude <LEDA/node_list.h>

stati
 int phase_number;

stati
 bool bfs(graph& G, 
onst node_list& free_in_A,


onst node_array<bool>& free, edge_array<int>& useful,

node_array<int>& dist, node_array<int>& rea
hed)

{

list<node> Q;

node v,w;

edge e;

forall(v,free_in_A)

{ Q.append(v);

dist[v℄ = 0; rea
hed[v℄ = phase_number;

}

bool augmenting_path_found = false;

while (!Q.empty())

{ v = Q.pop();

int dv = dist[v℄;

forall_adj_edges(e,v)

{ w = target(e);

if (rea
hed[w℄ != phase_number )

{ dist[w℄ = dv + 1; rea
hed[w℄ = phase_number;

if (free[w℄) augmenting_path_found = true;

if (!augmenting_path_found) Q.append(w);

}

if (dist[w℄ == dv + 1) useful[e℄ = phase_number;

}

}

return augmenting_path_found;

}

With this procedure we can refine the test for the existence ofan augmenting path in the
main loop.

〈there is an augmenting path〉�
bfs(G,free_in_A,free,useful,dist,rea
hed)

The layered graph contains all augmenting paths of shortestlength. We determine a



102 Graph Algorithms

maximal setP of augmenting paths. Distinct paths inP will be node disjoint andP
is maximal in the sense that no augmenting path can be added toP without violating
the disjointness property. We findP by a variant of depth-first search. The procedure
findaugpath(G, f, free, pred, useful) attempts to find a path in the layered network starting
with the edgef , ending in a free vertex inB, and being node-disjoint from all previously
constructed paths. In the main loop we will call this procedure for all edges out of free
nodes inA. The call returns the last edge on the path if it succeeds and returnsnil other-
wise. It also records, for each node, the first edge through which the node was reached in a
nodearray<edge> pred.

The details offind augpath(G, f, . . .) are simple. Letw be the endpoint off . We set
pred[w] to f and then distinguish cases. Ifw is a free node (it is necessarily inB then), we
return f . If w is not a free node, we scan through all edgese = (w, z) out of w. If e does
not belong to the layered network or we have already tried to construct a path out ofz, we
ignoree. Otherwise, we recurse. The recursive call either returnsnil or a proper edge. In
the latter case we know that a new augmenting path has been found and forward the edge to
the enclosing call.

〈HK: dfs〉�
stati
 edge find_aug_path(graph& G, edge f, 
onst node_array<bool>& free,

node_array<edge>& pred, 
onst edge_array<int>& useful)

{ node w = G.target(f);

pred[w℄ = f;

if (free[w℄) return f;

edge e;

forall_adj_edges(e,w)

{ node z = G.target(e);

if ( pred[z℄ != nil || useful[e℄ != phase_number ) 
ontinue;

edge g = find_aug_path(G,e,free,pred,useful);

if ( g ) return g;

}

return nil;

}

In the main loop we callfind augpath for all edges out of free nodes inA that belong
to the layered network and where the target node of the edge has not been reached by a
previous search and collect the (terminal edges of the) paths found in a listEL. We then
augment all paths. Lete be an arbitrary edge inEL. We trace the path ending ineby means
of thepred-array and for each path reverse all edges on the path. We complete the phase by
incrementingphasenumber.

〈find a maximal set and augment〉�
node_array<edge> pred(G,nil);

list<edge> EL;

forall(v,free_in_A)

{ forall_adj_edges(e,v)

if (pred[G.target(e)℄ == nil && useful[e℄ == phase_number)
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{ edge f = find_aug_path(G,e,free,pred,useful);

if ( f ) { EL.append(f); break; }

}

}

while (!EL.empty())

{ edge e = EL.pop();

free[G.target(e)℄ = false;

node z;

while (e)

{ G.rev_edge(e);

z = G.target(e);

e = pred[z℄;

}

free[z℄ = false;

free_in_A.del(z);

}

// prepare for next phase

phase_number++;

We close our discussion of the Hopcroft–Karp matching algorithm with a word on run-
ning time. Each phase of the algorithm takes timeO(m) for the breadth-first and depth-first
search and the augmentation and hence the total running timeis O(Dm) whereD is the
number of phases. It can be shown (see for example [HK73] or [AMO93, section 8.2]
or [Meh84, IV.9.2]) that the number of phases isO(

√
n). On many graphs the number

of phases is much smaller. In particular, Motwani [Mot94] has shown that the number of
phases isO(logn) for random graphs.

7.6.6 The Algorithm of Alt, Blum, Mehlhorn, and Paul
We discuss a variant of the Hopcroft–Karp algorithm due to Alt, Blum, Mehlhorn, and Paul
[ABMP91]. It uses ideas first propagated for flow algorithms [AO89, GT88] to integrate
the breadth-first and depth-first search used in the Hopcroft–Karp algorithm. The resulting
algorithm is usually faster.

As above, we direct all edges in the current matching fromB to A and all other edges
from A to B. In this directed graph every path is an alternating path. For each nodev ∈ V
we maintain a distance labellayer[v]. Nodes inB will occupy even layers, and all free
nodes inB will be in layer zero. Nodes inA will occupy odd layers, and all free nodes in
A will be in two adjacent layersL and L + 2, for someL. Observe that this layering is
“opposite” to the layering used in the Hopcroft and Karp algorithm. Now free nodes inB
are in the bottom layer (= layer zero) and free nodes inA are in the two topmost layers (=
layersL andL +2). Initially, we put all nodes inB into layer zero, all nodes inA into layer
one, direct all edges fromA to B, and setL to one.

〈ABMP: initialization〉�
node_array<bool> free(G,true);

node_array<int> layer(G);

if (use_heuristi
) {〈MCB: greedy heuristic〉}



104 Graph Algorithms

list<node> free_in_A;

forall(v,B) layer[v℄ = 0;

forall(v,A)

{ layer[v℄ = 1;

if (free[v℄) free_in_A.append(v);

}

int L = 1;

In freein A we collect all free nodes inA. We maintain the invariant that the free nodes in
level L precede the free nodes in levelL + 2. In this wayL is always the layer of the first
node infreein A.

We maintain the “layered graph invariant” that no edge reaches downwards by two or
more layers, i.e.,

for all edgese = (v, w): layer[v] ≤ layer[w] + 1.

It follows thatlayer[v] is a lower bound on the length of an alternating path starting in v and
ending in a free node inB. Call an edgee = (v, w) eligible, if layer[v] = layer[w] + 1,
and letce(v) be a function which returns an eligible edge starting inv, if there is one, and
nil otherwise. We callce the current edge function. Its implementation will be discussed at
the end of the section.

We search for augmenting paths as follows: starting from a free nodev in layer L we
construct a pathp of eligible edges. Letw be the last node ofp. There are three cases to
distinguish:

Case 1 (breakthrough): w is a free node in layer zero:
Then p is an augmenting path with respect to the current matching. We augment the
current matching by reversing all edges ofp and terminate the search.

Case 2 (advance): w is not a free node in layer zero andce(w) exists:
We extendp by addingce(w).

Case 3 (retreat): w is not a free node in layer zero andce(w) = nil:
We increaselayer[w] by two and remove the last edge fromp. If there is no last edge in
p, i.e.,w is equal to the free nodev from which we started the search for an augment-
ing path, we terminate the search and addw to the end offreein A. Observe that this
maintains the invariant that the nodes on layerL precede the nodes on layerL + 2 in
freein A.

The following program chunk realizes this strategy. The edges of the path are stored in a
stackp of edges andw is the last node of the path. In the case of a breakthroughv andw

are declared matched and all edges ofp are reversed. In the case of an advance we push the
current edge ofw onto p and setw to the target node of the edge. In the case of a retreat we
increase the layer ofw by two and pop the last edge fromp and setw to the source node of
the edge popped. If there is no edge to be popped we terminate the search and addw to the
rear end offreein A.
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〈search for an augmenting path from v〉�
node w = v;

while (true)

{ if ( free[w℄ && layer[w℄ == 0 )

{ // breakthrough

free[w℄ = free[v℄ = false;

while ( !p.empty() )

{ e = p.pop();

〈breakthrough: current edge function〉
G.rev_edge(e);

}

break;

}

else

{ if ( (e = 
e(w,G,layer,
ur_edge)) )

{ // advan
e

p.push(e);

w = G.target(e);

}

else

{ // retreat

layer[w℄ += 2;

〈relabel: current edge function〉
if (p.empty())

{ free_in_A.append(w);

break;

}

w = G.sour
e(p.pop());

}

}

}

After a breakthrough or a retreat, which leaves us with an empty path, we start the next
search for an augmenting path. If there are no more free nodesin layerL, we increaseL by
two and repeat. In the program below this increase ofL is implicit; L is simply the layer
of the first node infreein A. In this way we proceed untilL exceedsLmaxwhereLmaxis
a parameter of the algorithm or until the number of free nodesis smaller thanδL whereδ

is a parameter (which we set rather arbitrarily to 50 in our implementation). The parameter
Lmaxcan either be set by the user or is set toγ

√
n whereγ is a parameter (which we

set rather arbitrarily to 0.1 in our implementation). OnceL exceedsLmaxor the number
of free nodes inA has fallen belowδL we determine the remaining augmenting paths by
breadth-first search as in the Ford and Fulkerson algorithm.

〈 ABMP matching〉�
stati
 int number_of_augmentations;

〈FF: bfs〉 // for the basi
 algorithm

edge 
e(
onst node v, 
onst graph& G,


onst node_array<int>& layer, node_array<edge>& 
ur_edge)

{ 〈implementation of current edge function〉 }
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list<edge> MAX_CARD_BIPARTITE_MATCHING_ABMP(graph& G,


onst list<node>& A, 
onst list<node>& B,

node_array<bool>& NC,

bool use_heuristi
, int Lmax)

{ node v; edge e;

//
he
k that all edges are dire
ted from A to B

forall(v,B) assert(G.outdeg(v) == 0);

〈ABMP: initialization〉
node_array<edge> 
ur_edge(G,nil); // 
urrent edge iterator

if (Lmax == -1) Lmax = (int)(0.1*sqrt(G.number_of_nodes()));

b_sta
k<edge> p(G.number_of_nodes());

while ( L <= Lmax && free_in_A.size() > 50 * L)

{ node v = free_in_A.pop();

L = layer[v℄;

〈search for an augmenting path from v〉
}

〈complete by basic algorithm〉
〈MCB: prepare result and node cover and restore orientations〉

}

where

〈complete by basic algorithm〉�
node_array<int> mark(G,-1);

node_array<edge> pred(G);

number_of_augmentations = 0;

forall(v,free_in_A)

{ if ( find_aug_path_by_bfs(G,v,free,pred,mark) )

number_of_augmentations++;

}

We establish correctness.

Lemma 17 At all times during the execution of the algorithm, the following invariants hold:

(I1) For all edges(v, w): layer[w] ≥ layer[v] − 1.
(I2) layer[v] is even iffv ∈ B.
(I3) Let p = [e0, e1, . . . , el−1] with ei = (vi , vi+1). Then p is a path in the current graph

with layer[vi ] = L − i for all i , 0 ≤ i < l, andv0 is a free node in A.
(I4) All free nodesv ∈ A are in layers L or L+ 2.
(I5) The set M of edges that are directed from B to A forms a matchingin G; furthermore

free[v] is true iffv is free with respect to M.

Proof We use induction on the number of executions of the loop. All invariants hold
initially. For the induction step we address the invariantsin turn.

Only relabeling a node or reversing the direction of an edge may invalidate (I1). When
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a nodev is relabeled there are no eligible edges out ofv and hencelayer[w] ≥ layer[v]
for all (v, w) ∈ E. Since nodes inA live on odd layers and nodes inB live on even layers
we even havelayer[w] > layer[v] for all (v, w) ∈ E. Hence increasinglayer[v] by two
preserves (I1) for all edges(v, w) ∈ E. For edges(w, v) ∈ E the invariant also stays true.
Reversing the edges of the pathp in the case of a breakthrough maintains (I1) as well, since
all edges inp are eligible. Altogether, we have shown that (I1) is maintained.

Since layer labels are always increased by two, (I2) remainstrue.
The pathp always starts at a free node inA in layer L and is only extended by eligible

edges.
When a node is relabeled, it must be on the pathp. Thus no free node in layerL + 2 can

be relabeled by (I3). WhenL is increased by two, there is no free nodev in layerL. Thus,
(I4) is preserved.

In the case of a breakthrough,p is an alternating path from a free nodew ∈ A to a free
nodev ∈ B by (I3) and the induction hypothesis, i.e., an augmenting path with respect to
the current matching. Thus (I5) is preserved in the case of a breakthrough.

The correctness of our algorithm is now established. Next weshow that it is a derivative of
the Hopcroft–Karp algorithm.

Lemma 18 The algorithm always increases the matching along a shortest augmenting path.

Proof Any augmenting pathp found has lengthL. (I4) and (I5) imply that all free nodes
in A are in layersL or L + 2, and those ofB are in layer zero. Now the claim follows from
(I1).

Lemma 19 Let M∗ be a matching of maximum cardinality in G and M the matching com-
puted by our algorithm when〈complete by basic algorithm〉 is reached. Then|M∗| −
|M | ≤ max(γ Lmax, n/Lmax). Furthermore,〈complete by basic algorithm〉 takes time
O(max(γ Lmax, n/Lmax) · m).

Proof When〈complete by basic algorithm〉 is reached then eitherL > Lmaxand there is
no augmenting path with respect to the current matchingM of length less thanLmaxor the
number of free nodes inA is smaller thanγ L which in turn is smaller thanγ Lmax. In the
latter case we have established the claimed bound on|M∗| − |M |. In the former case we
observe thatM∗ ⊕ M must contain|M∗|−|M | node-disjoint augmenting paths with respect
to M. The total length of these paths is at mostn and each path has length at leastLmax.
Thus(|M∗| − |M |) · Lmax≤ n.

In 〈complete by basic algorithm〉 we need timeO(m) for each node inA which is still
free. By the previous paragraph there are at most max(γ Lmax, n/Lmax) such nodes when
the chunk is reached.

The previous lemma suggests our choice ofLmax. In order to balance the contribution
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of the two choices we should setLmaxto 2(
√

n). Unfortunately, the theoretical analysis is
not strong enough to suggest the “correct” factor of proportionality.

Lemma 20 The total number of increases of layer labels and the total ofnumber of calls to
the eligible edge function ce is O(n · Lmax).

Proof (I4) implies that the maximum layer of a node during an execution of the algorithm
is Lmax+ 2. Thus any node is relabeled at most(Lmax+ 2)/2 times.

Each time the functioncereturns an eligible edge(v, w), we extend the current pathp by
this edge. Either it still belongs to the path whenp becomes augmenting for the next time,
or layer[w] is increased by two when(v, w) is deleted fromp. Thus the number of calls
to the functionce is bounded by the total number of increases of layer labels plus the total
length of all augmenting paths. Since the length of an augmenting path is at mostLmax,
because of (I4), and since there are at mostn of them, the bound follows from the bound
for the number of relabels.

Lemma 20 implies that the total time spent outside〈complete by basic algorithm〉 is
O(n · Lmax) plus the time spent in calls to the current edge function. We now show how
to implement the current edge function efficiently. We maintain for each nodev an edge
cur edge[v] out of v such that all edges precedingcur edge[v] in v’s adjacency list are not
eligible; whencur edge[v] is nil all edges inv’s adjacency list may be eligible. Recall that
an edge(v, w) is eligible if the layer ofw is one less than the layer ofv and that no edge goes
down more than one layer. Thus relabelingw cannot make(v, w) eligible and reversing an
edge in an augmentation cannot make the edge eligible (because all edges in the augmenting
path go from lower layers to higher layers after the augmentation). Only relabelingv can
make an edge out ofv eligible. With these observations it is easy to maintain theinvariant
that all edges precedingcur edge[v] in v’s adjacency list are not eligible:

Whenw is relabeled we setcur edge[w] to nil.
When we search for a current edge we start searching at the current value ofcur edge[v]

(at the first edge out ofv if the current value isnil) until an eligible edge is found.
When an edgee = (v, w) is reversed ande is the current value ofcur edge[v] we advance

cur edge[v] to the successor edge ofv.

〈relabel: current edge function〉�

ur_edge[w℄ = nil;

〈implementation of current edge function〉�
edge e = 
ur_edge[v℄;

if ( e == nil ) e = G.first_adj_edge(v);

while (e && layer[G.target(e)℄ != layer[v℄ - 1) e = G.adj_su

(e);


ur_edge[v℄ = e;

return e;
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〈breakthrough: current edge function〉�
if (e == 
ur_edge[G.sour
e(e)℄)


ur_edge[G.sour
e(e)℄ = G.adj_su

(e);

In this way the time spent in callsce(v) between relabelings ofv is O(number of calls+
outdeg(v)). Since each node is relabeled at mostLmaxtimes and since the total number of
calls toce is O(n · Lmax) we conclude that the total time spent in calls to the current edge
function isO(m · Lmax).

We summarize in:

Theorem 3 A maximum cardinality matching in a bipartite graph with n nodes and m edges
can be computed in time O(

√
nm).

Proof This follows from the discussion above and the choiceLmax= 2(
√

n).

7.6.7 An Experimental Comparison
We compare the algorithmsFF, HK, andABMPexperimentally on bipartite graphs of the
form shown in Figure 7.22. We call these graphsbipartite group graphs. They were sug-
gested by [CGM+97].

The following program generates bipartite group graphs with nanodes inA andnbnodes
in B. We divide both sides intok + 1 groups numbered 0 tok. For all i , 0 ≤ i ≤ k − 1, the
i -th group on sideX contains nodesi · Kx to (i + 1) · Kx− 1 whereKx = ⌊nx/k⌋. The final
group contains nodesk · Kx to n − 1; it is empty ifk dividesnx.

We generate the edges in two phases. In the first phase we generated = ⌊m/na⌋ edges
for each node in groups 0 tok − 1 of A. For a node in thei -group the destination of these
edges are random nodes in groupsi − 1 modk andi + 1 modk of B. In the second phase
we addm − d · k · Ka random edges.

〈randombigraph.c〉�
void random_bigraph(graph& G, int na, int nb, int m,

list<node>& A, list<node>& B, int k)

{ G.
lear();

if ( na < 0 || nb < 0 || m < 0 )

error_handler(1,"random_bigraph: one of na, nb, or m < 0");

node* AV = new node[na℄;

node* BV = new node[nb℄;

A.
lear();

B.
lear();

int a, b;

for(a = 0; a < na; a++) A.append(AV[a℄ = G.new_node());

for(b = 0; b < nb; b++) B.append(BV[b℄ = G.new_node());

if ( na == 0 || nb == 0 || m == 0 ) return;

if ( k < 1) error_handler(1,"random_bigraph: k < 1");

int d = m/na;

if (k > na) k = na; if (k > nb) k = nb;



110 Graph Algorithms

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

i

i − 1

i + 1

A B

Figure 7.22 A bipartite graph withn nodes on each side. On each side the nodes are divided into
k groups of sizen/k each (this assumes thatk dividesn). Each node inA has degreed = m/n
and the edges out of a node in groupi of A go to random nodes in groupsi + 1 andi − 1 of B.

int Ka = na/k; // group size in A

int Kb = nb/k; // group size in B

node v;

int i;

a = 0;

forall(v,A)

{ int l = a/Ka; // group of v

if ( l == k) break;

int base1 = (l == 0 ? (k-1)*Kb : (l-1)*Kb);

int base2 = (l == k-1 ? 0 : (l+1)*Kb);

for(i = 0; i < d; i++)

{ b = ( rand_int(0,1) == 0? base1 : base2 );

G.new_edge(v,BV[b + rand_int(0,Kb-1)℄);

}

a++;

}

int r = m - a*d;

while (r--) G.new_edge(AV[rand_int(0,na-1)℄, BV[rand_int(0,nb-1)℄);

delete[℄ AV;

delete[℄ BV;

}
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n m k FF- FF+ HK- HK+ AB- AB+ Check

4 8 1 4.99 4.38 5.63 5.24 3.46 3.4 0.28

4 8 100 3.45 2.47 3.83 3.54 2.45 2.45 0.24

4 8 10000 1.11 1.04 3.76 3.51 2.16 2.16 0.22

4 12 1 155.7 50.02 8.37 7.95 4.91 4.95 0.36

4 12 100 69.07 44.09 5.94 5.78 3.19 3.1 0.26

4 12 10000 1.36 1.28 7.79 7.21 2.34 2.33 0.2599

4 16 1 42.75 21.34 9.71 9.16 4.95 5.33 0.43

4 16 100 48.75 41.59 6.99 6.57 3.02 3.37 0.29

4 16 10000 1.56 1.43 12.5 12.15 2.17 2.2 0.27

8 16 1 11.98 11.34 11.79 11.16 8.96 8.95 0.63

8 16 100 8.15 6.76 8.79 8.33 6.28 6.13 0.45

8 16 10000 2.33 2.15 7.83 7.29 5.42 5.44 0.46

8 24 1 611.6 188.6 19.49 18.56 12.28 12.35 0.77

8 24 100 349.8 221.4 13.14 12.69 8.33 8.36 0.54

8 24 10000 5.38 4.67 15.47 14.53 6.25 6.29 0.51

8 32 1 153.3 60.37 20.89 19.6 15.26 15.34 0.9099

8 32 100 247.1 208.2 13.9 13.22 9.73 9.76 0.6001

8 32 10000 13.58 12.46 26.38 25.96 6.75 6.71 0.5601

Table 7.6 The running times of the bipartite matching algorithmsFF, HK, andABMPon
random bipartite group graphs withn · 104 nodes on each side,m · 104 edges andk groups
(generated byrandombigraph(G, n, n, m, A, B, k)). The plus sign indicates the use of the
greedy heuristic and the minus sign indicates that the algorithm started with the empty matching.
The last column shows the time required to check the results.FF uses breadth-first search. You
may perform your own experiments by calling mcbmatchingtime in the demo directory.

Table 7.6 shows the outcome of our experiments.FF does very badly for some of the
parameters and very well for others. It is always helped by the heuristic and frequently
helped considerably. It shows the highest fluctuations of running time.HK andABMPare
more stable andABMP is the fastest for most settings of the parameters.HK is always
helped by the heuristic. ForABMPthe effect of the heuristic is very small. If it is noticeable
at all, it is negative. We have therefore chosen ABMP with theheuristic turned off as our
default implementation. The time required for checking theresult is negligible in all cases.
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Exercises for 7.6
1 We described three methods to implement the principle of only paying for what is ac-

tually touched but gave the details of only two of them. Explore the third alternative.
Rewrite MAX BIPARTITE CARD MATCHING FFB such that it uses anodeslist in-
stead ofreachedandreachedstack.

2 In our implementations of matching algorithms we explicitly reverse the direction of
matching edges byrevedge. Explore the possibility of making the reversal only implic-
itly. Use anodearray<edge> matchingedgesuch thatmatchingedge[v] is nil if v is free
and is the matching edge incident tov otherwise.

3 Rewrite the ABMP-implementation such that it uses depth-first search instead of breadth-
first search in〈complete by basic algorithm〉. Compare the running times.

4 Develop a strategy for choosing the parameterLmaxin the ABMP-algorithm (the authors
have no good solution to this exercise).

5 Construct graphs where our maximum cardinality bipartitematching algorithms assume
their worst case running time. Please inform the authors about your solution (as they can
only partially solve this exercise).

7.7 Maximum Cardinality Matchings in General Graphs

A matching Min a graphG is a subset of the edges no two of which share an endpoint, see
Figure 7.23. The cardinality|M | of a matchingM is the number of edges inM.

A nodev is calledmatchedwith respect to a matchingM if there is an edge inM incident
to v and it is calledfreeor unmatchedotherwise. An edgee is called matching ife ∈ M.
A matching is calledperfectif all nodes ofG are matched and is calledmaximumif it has
maximum cardinality among all matchings.

The structure of this section is as follows. In Section 7.7.1we discuss the functionality
of our matching algorithms, in Section 7.7.2 we derive the so-called blossom shrinking
algorithm for maximum matchings, and in Section 7.7.3 we give an implementation of it.

7.7.1 Functionality
The function

list<edge> MAX CARD MATCHING(
onst graph& G, int heur = 0)

returns a maximum matching inG. The underlying algorithm is the so-called blossom
shrinking algorithm of Edmonds [Edm65b, Edm65a]. The worstcase running time of the
algorithm isO(nmα(m, n)) ([Gab76]), the actual running time is usually much better. Ta-
ble 7.7 contains some experimental data.

With heur= 1, the greedy heuristic is used to construct an initial matching which is then
extended to a maximum matching by the blossom shrinking algorithm. As Table 7.7 shows,
the influence of the greedy heuristic on the running time is small. It sometimes helps, it
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Figure 7.23 A maximum matching and a proof of optimality: The edges of thematching are
shown in bold. The node labels prove the optimality of the matching. Observe that every edge is
either incident to a node labeled 1 or connects two nodes thatare labeled 2 or connects two
nodes that are labeled 3. There are two nodes labeled 1, threenodes labeled 2, and three nodes
labeled 3. Thus no matching can have more than 2+ ⌊3/2⌋ + ⌊3/2⌋ = 4 edges. The matching
shown has four edges and is hence optimal. You may generate similar figures with the
xlman-demo gwmc matching.

sometimes harms, and it never causes a dramatic change. The cost of checking optimality
is negligible in all cases.

In the remainder of this section we discuss the check of optimality. A labeling l of the
nodes ofG with non-negative integers is said tocover G(or to be a cover forG) if every
edge ofG (which is not a self-loop) is either incident to a node labeled 1 or connects two
nodes labeled with the samei , for somei ≥ 2. Thecapacityof l is defined as

cap(l ) = n1 +
∑

i≥2

⌊ni /2⌋,

whereni is the number of nodes labeledi . Observe that there may be nodes that are labeled
zero. The capacity of a covering22 is an upper bound on the cardinality of any matching.

Lemma 21 If l covers G and M is any matching then|M | ≤ cap(l ).

Proof Sincel covers every edge ofG and hence every edge inM, each edge inM is either
incident to a node labeled one or connects two nodes labeledi for somei ≥ 2. There can
be at mostn1 edges of the former kind and at most⌊ni /2⌋ edges of the second kind for any
i , i ≥ 2. Thus|M | ≤ cap(l ).

22 In bipartite graphs only the labels zero and one are needed. The nodes labeled one form a node cover in the sense
of Section 7.6.1.
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n m MCM MCM+ Check

10000 10000 0.287 0.223 0.024

20000 20000 0.905 0.717 0.074

40000 40000 2.178 1.758 0.184

80000 80000 4.857 3.934 0.413

10000 15000 1.049 1.03 0.027

20000 30000 3.799 3.862 0.102

40000 60000 11.45 11.9 0.262

80000 120000 30.51 33.57 0.583

10000 20000 1.247 1.304 0.04199

20000 40000 4.876 5.357 0.136

40000 80000 14.2 15.3 0.343

80000 160000 38.42 43.81 0.789

10000 25000 1.322 1.347 0.05099

20000 50000 4.761 4.782 0.169

40000 100000 13.95 14.22 0.422

80000 200000 35.2 37.3 0.959

Table 7.7 Running times of the general matching algorithm: The table shows the running time
of the maximum cardinality matching algorithm without (MCM) and with the greedy heuristic
(MCM+) and the time to check the result for random graphs withn nodes andm edges
(generated byrandomgraph(G, n, m)). In all cases the time for checking the result is negligible
compared to the time for computing the maximum matching. In each of the four blocks we used
n = 2i · 104 for i = 0, 1, 2, 3 and a fixed relationship betweenn andm (m/n = 1, 3/2, 2, 5/2).
The time to compute the maximum matching seems approximately to triple if n andm are
doubled. Each entry is the average of ten runs. Except on the very sparse instances (m ≈ n) it
does not pay to use the greedy heuristic.

We will see in the next section that there is always a coveringwhose capacity is equal to
the size of the maximum matching. The function

list<edge> MAX CARD MATCHING(
onst graph& G, node array<int>& OSC,

int heur = 0)

returns a maximum matchingM and a labelingOSC(OSCstands for odd set cover, a name
to be explained in the next section) with:

• OSCcoversG and
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• |M | = cap(OSC).

ThusOSCproves the optimality ofM. Figure 7.23 shows an example. The additional
running time for computing the proof of optimality is negligible.

The function

void CHECK MAX CARD MATCHING(
onst graph& G, 
onst list<edge>& M,


onst node array<int>& OSC)

checks whetherOSC is a node labeling that coversG and whose capacity is equal to the
cardinality ofM. The function aborts if this is not the case. It runs in lineartime.

The implementation of the checker is trivial. We determine for eachi the numberni of
nodes with labeli and then computeS= n1 +

∑

i≥2⌊ni /2⌋. We assert thatS is equal to the
size of the matching.

We also check whether all edges are covered by the node labeling. Every edge must
either be incident to a node labeled one or connect two nodes labeledi for somei ≥ 2.

〈MCM: checker〉�
stati
 bool False(string s)

{ 
err << "CHECK_MAX_CARD_MATCHING: " << s << "\n";

return false;

}

bool CHECK_MAX_CARD_MATCHING(
onst graph& G, 
onst list<edge>& M,


onst node_array<int>& OSC)

{ int n = Max(2,G.number_of_nodes());

int K = 1;

array<int> 
ount(n);

int i;

for (i = 0; i < n; i++) 
ount[i℄ = 0;

node v; edge e;

forall_nodes(v,G)

{ if ( OSC[v℄ < 0 || OSC[v℄ >= n )

return False("negative label or label larger than n - 1");


ount[OSC[v℄℄++;

if (OSC[v℄ > K) K = OSC[v℄;

}

int S = 
ount[1℄;

for (i = 2; i <= K; i++) S += 
ount[i℄/2;

if ( S != M.length() )

return False("OSC does not prove optimality");

forall_edges(e,G)

{ node v = G.sour
e(e); node w = G.target(e);

if ( v == w || OSC[v℄ == 1 || OSC[w℄ == 1 ||

( OSC[v℄ == OSC[w℄ && OSC[v℄ >= 2) ) 
ontinue;

return False("OSC is not a 
over");

}

return true;

}
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7.7.2 The Blossom Shrinking Algorithm
We derive theblossom shrinkingalgorithm of Edmonds [Edm65b, Edm65a] for maximum
cardinality matching in non-bipartite graphs. In its original form the running time of the
algorithm isO(n4). Gabow [Gab76] and Lawler [Law76] improved the running timeto
O(n3) and Gabow [Gab76] showed how to use the partition data structure of Section 5.5 to
obtain a running time ofO(nmα(m, n)). Tarjan [Tar83] gave a very readable presentation of
Edmond’s algorithm and Gabow’s improvement. Our presentation and our implementation
is based on [Law76] and [Tar83].

The algorithm follows the general paradigm for matching algorithms: repeated augmen-
tation by augmenting paths until a maximum matching is obtained. We assume familiarity
with the paradigm, which can, for example, be obtained by reading Section 7.6.2. The
natural way to search for an augmenting path starting in a node v is to grow a so-called
alternating treerooted atv.

The root of an alternating tree is a free node, the nodes on oddlevels are reached by odd
length alternating paths (and hence their incoming tree edge is a non-matching edge) and the
nodes on even levels are reached by even length alternating paths (and hence their incoming
tree edge is a matching edge). The root is even. All leaves in an alternating tree are even
and odd nodes have exactly one child (namely their mate). Figure 7.24 shows an alternating
tree. A node on an even level is called anevennode and a node on an odd level is called
anoddnode. In the implementation an even node is labeled EVEN, an odd node is labeled
ODD, and every node belonging to no alternating tree carriesthe label UNLABELED. This
suggests calling a nodelabeledif it belongs to some alternating tree and calling itunlabeled
otherwise.

We start the algorithm by making every free node the root of a trivial alternating tree
(consisting only of the free node itself) and by labeling allfree nodes even. We will maintain
the following invariants:

• For each free node there is an alternating tree rooted at the free node.

• All nodes belonging to one of the alternating trees are labeled EVEN or ODD. Nodes
on even levels are labeled EVEN and nodes on odd levels are labeled ODD.

• All nodes belonging to no alternating tree are unlabeled (= labeled UNLABELED).

• All unlabeled nodes are matched and if a node is unlabeled then its mate is also
unlabeled.

An alternating tree is extended by exploring an edge{v, w} incident to an even nodev. It
is a matter of implementation strategy which alternating tree is extended and which edge is
chosen to extend it. There are four cases to be distinguished: w may be unlabeled,w may
be odd,w may be even and in a different tree, andw may be even and in the same tree. The
first three cases occur also in the bipartite case.

Case 1, w is unlabeled: We makew the child ofv and the mate ofw the child ofw,
see Figure 7.25. In this way,w becomes an odd node, its mate becomes an even node, and
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O E O EE

v

Figure 7.24 An alternating tree: It is rooted at a free node, nodes on odd levels (= odd nodes)
are reached by odd length alternating paths, and nodes on even levels (= even nodes) are reached
by even length alternating paths.

E O E O E

v w mate(w)

Figure 7.25 Growing an alternating tree: Exploration of the edge(v, w) turnsw and its mate
into labeled nodes,w becomes an odd node, and its mate becomes an even node.

both nodes become labeled. Observe that the growth action maintains the invariant that a
matched node and its mate are either both labeled or both unlabeled.

Case 2, w is an odd node: We have discovered another odd length alternating path tow

and do nothing.

Case 3, w is an even node in a different tree: We have discovered an augmenting path
consisting of the edge{v, w} and the tree paths fromv andw to their respective roots, see
Figure 7.26. We augment the matching by the augmenting path and unlabel all nodes in
both trees. This makes all nodes in both trees matched (recall, that the root of an alternating
tree is the only node in the tree that is unmatched) and destroys both trees. Observe that the
remaining alternating trees, i.e., the ones whose roots arestill free, are not affected by the
augmentation. They are still augmenting trees with respectto the increased matching.

The three cases above also occur for bipartite graphs. The fourth and last case is new.

Case 4, w is an even node in the same tree as v: We have discovered a so-called
blossom, see Figure 7.27. Letb be the lowest common ancestor ofv andw, i.e.,v andw
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v w

Figure 7.26 Discovery of an augmenting path:v andw are even nodes in distinct trees. The
edge{v, w} and the tree paths fromv andw to their respective roots form an augmenting path.

w

b v

u

Figure 7.27 Discovery of a blossom:v andw are even nodes in the same tree. The nodeb is
their lowest common ancestor. The blossom consists of the edge{v, w} and the tree paths fromb
to v andw, respectively. Thestemof the blossom consists of the tree path tob. The nodeb is the
base of the blossom. The blossom consists of seven edges, three of which are matching. The
even length alternating path tou follows the tree path tov, uses the edge{v, w} and then
proceeds down the tree tou.

are both descendants ofb and there is no proper descendant ofb with the same property.
Since only even nodes can have more than one child,b is an even node. The blossom
consists of the edge{v, w} and the tree paths fromb to v andw, respectively. Thestemof
the blossom consists of the tree path tob andb is called thebaseof the blossom. The stem
is an even length alternating path ending in a matching edge;if the stem has length zero
thenb is free. The blossom is an odd length cycle of length 2k + 1 containingk matching
edges for somek, k ≥ 1. All nodes in the blossom (except for the base) are reachable by an
even and odd length alternating path from the root of the tree. For an even nodeu the even
length path is simply the tree path tou and for an odd nodeu, say lying on the tree path
from b to w, the even length path is the tree path tov followed by the edge{v, w}, followed
by the path down the tree fromw to u. For the odd length paths, the situation is reversed.

The action to take is toshrink the blossom. To shrink a blossom means to collapse all
nodes of the blossom into the base of the blossom. This removes all edges from the graph
which connect two nodes in the blossom and replaces any edge{u, z} whereu belongs to
the blossom andz does not belong to the blossom by the edge{b, z}, see Figure 7.28. The
nodeb is free after the shrinking iff it was free before the shrinking.

Lemma 22 Let G′ be obtained from G by shrinking a blossom with base b. If G′ contains
an augmenting path then so does G.
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w

b v

u

Figure 7.28 Shrinking a blossom: All nodes of the blossom are collapsed into the base of the
blossom. After the shrinking,b stands for all the nodes enclosed by the dashed line.

Proof SupposeG′ contains an augmenting pathp. If p avoidsb then p is an augmenting
path inG and we are done. So let us assume thatb lies on p. We breakp at b into two
piecesp1 and p2 and assume w.l.o.g thatp2 uses a non-matching edgee incident tob (in
G′). The pathp1 is either empty (ifb is free) or uses the matching edge incident tob.
The edgee = {b, z} in G′ is induced by an edge{u, z} in G whereu is some node of the
blossom. An augmenting path inG is obtained by first usingp1 then using the even length
alternating path fromb to u in the blossom, and then usingp2 (with its first edge replaced
by {u, z}).

We can now summarize the blossom shrinking algorithm. We grow alternating trees from
the free nodes. Whenever a blossom is encountered it is shrunk. Whenever an augmenting
path is discovered (this will in general happen after several shrinkings occurred), Lemma 22
is used to lift the augmenting path to the original graph. Thematching is augmented by the
augmenting path, the two trees involved are destroyed, all nodes in both trees are unlabeled,
and the search for augmenting paths continues. The algorithm terminates when no alternat-
ing tree can be extended anymore. At this point the matching is maximum. Of course, this
requires proof.

In order to show correctness we need the concept of anodd-set cover. It refines the notion
of a covering introduced in Section 7.7.1.

For a subsetN of an odd number of vertices ofG we define the set of edges covered by
N and the capacity ofN as follows. If|N| = 1 thenN covers all edges incident to the node
in N and the capacity ofN is equal to one. If|N| = 2k + 1 for somek ≥ 1 thenN covers
all edges which have both endpoints inN and the capacity ofN is k.

An odd-set cover23 OSCof G is a family {N1, . . . , Nr } of odd cardinality subsets ofV
such that each edge ofG is covered by at least one of the sets inOSC. The capacityc(OSC)
of OSCis the sum of the capacities of the sets inOSC.

Lemma 23 Let OSC be an odd-set cover in a graph G. Then the cardinality of any matching
in G is at most c(OSC).

Proof Let M be any matching and letebe any edge inM. Thenemust be covered by some

23 An odd-set cover gives rise to an integer labeling of the nodes as follows: nodes that are contained in no set of the
cover are labeled zero, nodes that are contained in a singleton set are labeled one, and nodes that are contained in
an odd set of cardinality larger than one are labeledi for somei > 1. Distinct i ’s are used for distinct sets.
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set inOSC. Moreover, the number of edges inM covered by any particular set inOSCis at
most the capacity of the set.

We are now ready for the correctness proof of the blossom shrinking algorithm. We will
show that if the blossom shrinking algorithm does not find an augmenting path with respect
to a matchingM then there is an odd-set cover whose capacity is equal to the size of M,
thus proving the optimality ofM.

Let G(0) = G be our graph and letM be a matching inG. Suppose that the blossom
shrinking algorithm does not discover an augmenting path. The blossom shrinking algo-
rithm constructs a sequenceG(0), G(1), G(2), . . . , G(h) of graphs where for alli , 0 < i ≤ h,
G(i ) is obtained fromG(i−1) by shrinking a blossom. Each nodev of everyG(i ) stands for a
set of nodes ofG. In G(0) every node represents itself, and a nodev in G(i ) either stands for
the same set as inG(i−1) or, if v is equal to the base node of the shrunken blossom, stands
for all nodes represented by the nodes ofG(i−1) collapsed into it.

Lemma 24 For every i and every nodev of G(i ):

• v stands for an odd set of nodes in G,

• if v is odd or unlabeled thenv stands for the singleton set consisting ofv itself,

• if v stands for a set B of2k + 1 nodes in G for some k≥ 1 then the number of edges in
M connecting nodes in B is equal to k.

Proof The claim is certainly true fori equal to zero. When a blossom is shrunk an odd
number of nodes is collapsed into a single node. By inductionhypothesis each collapsed
node represents an odd number of nodes ofG. The sum of an odd number of odd numbers
is odd.

The result of a shrinking operation is an even node. Thus odd and unlabeled nodes
represent only themselves.

Consider a shrinking operation that collapses 2r + 1 nodes into one. Out of these nodes,
r + 1 were even before the shrinking (namely the basev and every even node on the two
tree paths belonging to the blossom) andr were odd. Every odd node represents a single
node ofG and every even node stands for an odd set of nodes ofG. Suppose that thei -th
odd node represents a setBi of 2ki + 1 nodes inG.

After the shrinking operationv stands for ther odd nodes and the union of theBi ’s. Thus
B consists of

r +
∑

1≤i≤r+1

(2ki + 1) = 2(r +
∑

1≤i≤r+1

ki ) + 1

nodes and hencek = r +
∑

1≤i≤r+1 ki . The number of edges inM running between nodes
of Bi is ki , and the number of edges ofM belonging to the blossom isr . We conclude that
k edges ofM connect nodes inB.

Consider now the graphG(h). In G(h) we have an alternating tree rooted at each free node
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and the tree growing process has come to a halt. Thus there cannot be an edge connecting
two even nodes (because this would imply the existence of either an augmenting path or a
blossom) and there cannot be an edge connecting an even node to an unlabeled node (as
this would allow us to grow one of the alternating trees). Thus every edge either connects
two nodes contained in the same blossom, or is incident to an odd node, or connects two
unlabeled nodes. Every unlabeled node is matched to an unlabeled node (since a matched
node and its mate are either both unlabeled or both matched) and hence the number of
unlabeled nodes is even. We construct an odd-set coverOSCwhose capacity is equal toM.
OSCconsists of:

• all odd nodes (interpreted as singleton sets),

• for each even node that stands for a set of cardinality at least three: the set represented
by the node,

• no further set if there is no unlabeled node, a singleton set consisting of an arbitrary
unlabeled node if there are exactly two unlabeled nodes, anda singleton set consisting
of an arbitrary unlabeled node and a set consisting of the remaining unlabeled nodes if
there are more than two unlabeled nodes.

Lemma 25 The capacity of the odd-set cover OSC is equal to the cardinality of M.

Proof The number of edges inM that still exist inG(h), i.e., have not been shrunken into a
blossom in the course of the algorithm, is equal to the numberof odd nodes plus half of the
number of unlabeled nodes. For each even nodev of G(h), representing a setB of 2r + 1
nodes ofG, the number of edges inM connecting nodes inB is equal tor by Lemma 24.
This concludes the proof.

Theorem 4 The blossom shrinking algorithm is correct.

Proof The algorithm terminates when it does not find an augmenting path. When this
happens, there is, by Lemma 25, an odd-set cover whose capacity is equal to the size ofM.
ThusM is optimal.

7.7.3 The Implementation
The goal of this section is to implement the blossom shrinking algorithm. Our implemen-
tation refines the implementation described in [Tar83] and is similar to the implementation
given in [KP98]. The refinement does not change the worst caserunning time, but improves
the best case running time from�(n2) to O(m). The observed behavior on random graphs
with m = O(n) seems to be much better thanO(n2), see Table 7.7.

The overall structure of our implementation is given below.In the main loop we iterate
over all nodes ofG. Letv1, . . . ,vn be an arbitrary ordering of the nodes ofG. Whenv = vi

is considered, every free nodev j with j ≥ i is the root of a trivial alternating tree, and the
collection of alternating trees rooted at free nodesv j with j < i is stable. A collectionT
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of alternating trees is stable if every edge{u, w} incident to an even nodeu in T connects
u to an odd nodew in T . In other words, every edge{u, w} connecting a nodeu in T to a
node outsideT hasu odd, and every edge connecting two nodes contained inT has at least
one odd endpoint. It follows from our tree growing rules thatthe trees inT will not change
in the future.

Whenv = vi is considered andv is already matched we do nothing. Ifv is still un-
matched we grow the alternating treeT with rootv until either an augmenting path is found
or the growth comes to an end. We use anodelist Q to store all even nodes inT which
have unexplored incident edges. We organizeQ as a queue and hence grow the tree in
breadth-first manner.

The growth process comes to an end whenQ becomes empty. We claim thatT ∪ {T } is
stable whenQ becomes empty. Consider any edge{u, w} with u an even node inT . Then
w is odd, since otherwise the growth ofT would not have come to an end. Moreover,w

belongs to a tree inT ∪ {T }, since trees outsideT ∪ {T } are rooted at free nodesv j , j > i ,
and consist only of a root and roots are even. ThusT can be added to our stable collection
of alternating trees (this requires no action in the implementation) and the next free node
can be considered.

When an augmenting path is found by exploring an edge{u, w} with u an even node in
T andw an even node in a tree different fromT , w must be a free nodev j with j > i .
Observe, thatw cannot belong toT (sinceu andw are in distinct trees) and thatw cannot
belong to a tree inT (sinceT is stable). Thusw must belong to a tree rooted at somev j ,
j > i , and hence must be equal to somev j , j > i (since the trees rooted at these nodes are
trivial). When the matching is augmented by the augmenting path fromv to w, all nodes in
T ∪ w become matched and unlabeled. In order to be able to unlabel all nodes inT ∪ w in
time proportional to the size ofT we collect all nodes inT in a list of nodes (which we call
T). We also set the variablebreakthroughto truewhenever an augmenting path is found in
order to guarantee that we proceed to the next node in the mainloop.

〈 mc matching〉�
enum LABEL {ODD, EVEN, UNLABELED};

〈MCM: helpers〉
list<edge> MAX_CARD_MATCHING(
onst graph& G,

node_array<int>& OSC, int heur)

{

〈MCM: data structures〉
〈MCM: heuristics〉
node v; edge e;

forall_nodes(v,G)

{ if ( mate[v℄ != nil ) 
ontinue;

node_list Q; Q.append(v);

list<node> T; T.append(v);

bool breakthrough = false;

while (!breakthrough && !Q.empty()) // grow tree rooted at v

{
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node v = Q.pop();

〈explore edges out of the even node v〉
}

}

list<edge> M;

〈MCM: compute M〉
〈general checking: compute OSC〉
return M;

}

The Main Data Structures: We next discuss the main data structures used in the pro-
gram. We use anodearray<node> mateto keep track of the current matching and we use a
nodepartition baseto keep track of the blossoms.

〈MCM: data structures〉�
node_array<node> mate(G,nil);

node_partition base(G); // now base(v) = v for all nodes v

If two nodesv andw are matched thenmate[v] = w andmate[w] = v and if a nodev is
free thenmate[v] = nil. At the beginning, all nodes are free.

The node partition (see Section 6.8)baseestablishes the relationship between the current
graphG′ and the original graphG; recall that the current graph is obtained from the original
graph by a sequence of shrinkings of blossoms, that a node partition partitions the nodes
of a graph into disjoint sets called blocks, and that for a node v, base(v) is the canonical
representative of the block containingv. The relationship betweenG andG′ is as follows:

• For any nodev of G: if base(v) = v thenv is a node ofG′ and ifbase(v) 6= v thenv

was collapsed intobase(v). Thus{base(v) ; v ∈ V } is the set of nodes ofG′.

• An edge{v, w} represents the edge{base(v), base(w)} of G′.

Every node is labeled as either EVEN, ODD, or UNLABELED. A node is labeled UN-
LABELED if it does not belong to any alternating tree and it islabeled EVEN or ODD
otherwise. A node is labeled when it is added to an alternating tree. It retains its label when
it is collapsed into another node. At the beginning all nodesare free and hence the root of
an alternating tree. Thus all nodes are EVEN at the beginning. For an odd nodev we use
pred[v] to store its parent node in the alternating tree. The pred value is set when a node is
added to an alternating tree; it is not changed when the node is collapsed into another node.

〈MCM: data structures〉+�
node_array<int> label(G,EVEN);

node_array<node> pred(G,nil);

Figure 7.29 shows an example.
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Figure 7.29 Snapshot of the data structure: The node labels are indicated by the labels “E” and
“O”. All nodes enclosed by the dashed line form a blossom and hence a block of the partition
base. The canonical element of this block isb.

Exploring an Edge: Having defined most of the data structures we can give the details of
exploring edges. Assume thatv is an even node and lete = {v, w} be an edge incident to
v. Recall thate stands for the edge{base(v), base(w)} in the current graph.

We do nothing ife is a self-loop or ifbase(w) is ODD. If base(w) is UNLABELED (this
is equivalent tow being unlabeled) we grow the alternating tree containingv and ifbase(w)

is EVEN we have either discovered an augmenting path or a blossom.

〈explore edges out of the even node v〉�
forall_inout_edges(e,v)

{ node w = G.opposite(v,e);

if ( base(v) == base(w) || label[base(w)℄ == ODD )


ontinue; // do nothing

if ( label[w℄ == UNLABELED )

{ 〈grow tree〉 }

else // base(w) is EVEN

{ 〈augment or shrink blossom〉 }

}

Growing the Tree: Let us first give the details of growing a tree. We labelw as odd, make
v the parent ofw, label the mate ofw as even, add the mate ofw to Q, and addw and the
mate ofw to T .

〈grow tree〉�
label[w℄ = ODD; T.append(w);

pred[w℄ = v;

label[mate[w℄℄ = EVEN; T.append(mate[w℄);

Q.append(mate[w℄);

Discovery of a Blossom or an Augmenting Path: The nodebase(w) is even. We have ei-
ther found an augmenting path or a blossom. We have found an augmenting path ifbase(v)

andbase(w) belong to distinct trees and we have discovered a blossom if they belong to the
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same tree. We distinguish the two cases by tracing both tree paths in lock-step fashion until
we either encounter a node that lies on both paths or reach both roots24.

We discover a node lying on both paths as follows. We keep a counterstruewhich we
increment in every execution of〈augment or shrink blossom〉. Since there are at mostn
augmentations and at mostn shrinkings between two augmentations the maximal value of
the counter is bounded byn2. It would therefore be unsafe to use typeint for the counter,
but typedoubleis safe.

We use the counter as follows. As we trace the two tree paths wesetpath1[hv] to strue
for all even nodeshv on the first path andpath2[hw] to struefor all even nodeshw on the
second path. The two paths meet iffpath1[hw] or path2[hv] is equal tostruefor some even
hwon the second path or some evenhvon the first path. The first node for which this is true
is the base of the blossom. Recall that the base of a blossom isalways even.

The cost of tracing the paths is proportional to the size of the blossom found, if a blossom
is discovered, and is proportional to the length of the augmenting path found otherwise.
Also observe that we define the arrayspath1andpath2outside the loop that searches for
augmenting paths. Thus the cost for their initialization arises only once.

〈MCM: data structures〉+�
double strue = 0;

node_array<double> path1(G,0);

node_array<double> path2(G,0);

〈augment or shrink blossom〉�
node hv = base(v);

node hw = base(w);

strue++;

path1[hv℄ = path2[hw℄ = strue;

while ((path1[hw℄ != strue && path2[hv℄ != strue) &&

(mate[hv℄ != nil || mate[hw℄ != nil) )

{ if (mate[hv℄ != nil)

{ hv = base(pred[mate[hv℄℄);

path1[hv℄ = strue;

}

if (mate[hw℄ != nil)

{ hw = base(pred[mate[hw℄℄);

path2[hw℄ = strue;

}

}

if (path1[hw℄ == strue || path2[hv℄ == strue)

{ 〈shrink blossom〉 }

else

{ 〈augment path〉 }

24 An alternative strategy is as follows: we have found an augmenting path ifw is the root of a tree outsideT ∪ {T }.
We could, for each node, keep a bit to record this fact. The alternative simplifies the distinction between blossom
shrinking and augmentations. However, it does not simplifythe code overall, as all the information gathered in
the program chunk〈augment or shrink blossom〉 is needed in later steps of the algorithm.
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Figure 7.30 The bridge of a blossom: The edge{v, w} closes a blossom with baseb. For the
odd nodes on the tree path fromb to v we setsourcebridge to v andtargetbridge to w and for
the odd nodes on the tree path fromb to w we setsourcebridge to w andtargetbridge to v.

Shrinking a Blossom: Let us see how to shrink a blossom. The baseb of the blossom25 is
eitherhvor hw. It is hw if hwalso lies on the first path and it ishvotherwise. We shrink the
blossom by shrinking the two paths that form the blossom.

The call shrinkpath(b, v, w, . . .) collapses the path fromv to b into b and the call
shrinkpath(b, w, v, . . .) collapses the path fromw to b into b. Both calls also have the
other end of the edge that closes the blossom as an argument.

〈shrink blossom〉�
node b = (path1[hw℄ == strue) ? hw : hv; // Base

shrink_path(b,v,w,base,mate,pred,sour
e_bridge,target_bridge,Q);

shrink_path(b,w,v,base,mate,pred,sour
e_bridge,target_bridge,Q);

Before we can give the details of the procedureshrinkpathwe need to introduce two more
node labels. When an edge{v, w} closes a blossom, all odd nodes in the blossom also get
an even length alternating path to the root of their alternating tree. This path goes through
the edge that closes the blossom. We call this edge thebridge of the blossom. The odd
nodes on the tree path fromv to b use the bridge in the direction fromv to w and the odd
nodes on the tree path fromw to b use the bridge in the direction fromw to v. We use
the node arrayssourcebridgeandtargetbridgeto record for each odd node shrunken into a
blossom the source node and the target node of its bridge (nowviewed as a directed edge).

〈MCM: data structures〉+�
node_array<node> sour
e_bridge(G,nil);

node_array<node> target_bridge(G,nil);

The details of collapsing the tree path fromv to b into b are now simple. For each node
x on the path we performunionblocks(x, b) to union the blocks containingx andb, for
each odd node we setsourcebridge to v andtargetbridge to w, and we add all odd nodes
to Q (because the edges out of the odd nodes now emanate from the even nodeb), see
Figure 7.30.

25 With the alternative case distinction between blossom shrinking and augmentation we would have to computehv
andhwat this point.



7.7 Maximum Cardinality Matchings in General Graphs 127

There is one subtle point. After a union operation the canonical element of the newly
formed block is unspecified (it may be any element of the resulting block). It is impor-
tant, however, thatb stays the canonical element of the block containing it. We therefore
explicitly makeb the canonical element bybase.makerep(b).

〈MCM: helpers〉�
stati
 void shrink_path(node b, node v, node w,

node_partition& base, node_array<node>& mate,

node_array<node>& pred, node_array<node>& sour
e_bridge,

node_array<node>& target_bridge, node_list& Q)

{ node x = base(v);

while (x != b)

{

base.union_blo
ks(x,b);

x = mate[x℄;

base.union_blo
ks(x,b);

base.make_rep(b);

Q.append(x);

sour
e_bridge[x℄ = v; target_bridge[x℄ = w;

x = base(pred[x℄);

}

}

Augmentation: We treat the discovery of an augmenting path. The nodesv andw belong
to distinct alternating trees with rootshvandhw, respectively. In fact,w is a root itself. The
augmenting path consists of the edge{w, v} plus the even length alternating path fromv to
its roothv.

For a nodev let p(v) be the even length alternating path fromv to its root (if it exists).
The pathp(v) can be defined inductively as follows:

If v is a root thenp(v) is the trivial path consisting solely ofv.
If v is EVEN, p(v) goes through the mate ofv to the predecessor of the mate and then

follows p(pred[mate[v]] ).
If v is ODD, p(v) consists of the alternating path fromv to sourcebridge[v] concatenated

with p(targetbridge[v]).

Lemma 26 The above characterization of p(v) is correct.

Proof The claim is certainly true whenv is a root. So assume otherwise and consider the
time whenp(v) is discovered in the course of the algorithm. For an even nodethis is the
time whenv is labeled EVEN and for an odd node this is the case when it becomes part of
a blossom. In either case the characterization is correct.

How can we find the alternating path fromv to sourcebridge[v] when v is odd? The
problem is that thepred-pointers are directed towards the roots of alternating trees and hence
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Figure 7.31 Tracing augmenting paths: The node labels are indicated by the labels “E” and “O”.
The predecessor pointer of the odd nodes are shown. When the bridge{e, f } was explored we
setsourcebridge[d] to e, targetbridge[d] to f , sourcebridge[g] to f , andtargetbridge[g] to e,
and when the bridge{c, d} was explored we setsourcebridge[a] to c, targetbridge[a] to d,
sourcebridge[b] to d, andtargetbridge[b] to c.
The even length alternating path fromb to its rootr consists of the reversal of the path from
d = sourcebridge[b] to b followed by the even length alternating path fromc = targetbridge[b]
to r . The former path consists of the reversal of the alternatingpath frome = sourcebridge[d]
to d followed by the alternating path fromf = targetbridge[d] to b.

there is no direct way to walk fromv to sourcebridge[v]. We walk fromsourcebridge[v]
to v instead and then take the reversal of the resulting path. Thepath fromsourcebridge[v]
to v is the prefix ofp(sourcebridge[v]) ending inv, see Figure 7.31.

We cast this reasoning into a program by defining a procedurefindpath(P, x, y, . . .) that
takes two nodesx andy, such thaty lies onp(x) and such that the prefix ofp(x) ending iny
has even length (the program would be slightly less elegant without the second assumption),
and appends the prefix ofp(x) ending iny to the listP. Find pathdistinguishes three cases:

If x is equal toy then the path consists of the single nodex.
If x 6= y and x is EVEN the path consists ofx, mate[x], followed by the path from

pred[mate[x]] to y.
If x 6= y andx is ODD, letP1 andP2 be the paths fromtargetbridge[x] to y and from

sourcebridge[x] to mate[x], respectively. Then path consists ofx followed by the reversal
of P2 followed byP1.

〈MCM: helpers〉+�
stati
 void find_path(list<node>& P, node x, node y,

node_array<int>& label, node_array<node>& pred,

node_array<node>& mate,

node_array<node>& sour
e_bridge,

node_array<node>& target_bridge)

{ if ( x == y )

{

P.append(x);

return;

}

if ( label[x℄ == EVEN )

{

P.append(x);
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P.append(mate[x℄);

find_path(P,pred[mate[x℄℄,y,label,pred,mate,

sour
e_bridge,target_bridge);

return;

}

else // x is ODD

{

P.append(x);

list<node> P2;

find_path(P2,sour
e_bridge[x℄,mate[x℄,label,pred,mate,

sour
e_bridge,target_bridge);

P2.reverse_items();

P.
on
(P2);

find_path(P,target_bridge[x℄,y,label,pred,mate,

sour
e_bridge,target_bridge);

return;

}

}

Givenfindpath, it is trivial to construct the augmenting path. We construct the path from
v to hv in P and appendw to the front of the path. We augment the current matching by the
path by walking along the path and changingmateaccordingly.

It remains to prepare for the next search for an augmenting path. All nodes inT ∪ {w}
are now matched. We unlabel all nodes inT ∪ {w} and split the blocks ofbasecontaining
nodes ofT . No action is required for the other alternating trees.

Finally, we setbreakthroughto true and break from the forall-inout-edges loop. Setting
breakthroughto truemakes sure that we also leave the grow tree loop. The next action will
therefore be to grow an alternating tree from the next free node.

〈augment path〉�
list<node> P;

find_path(P,v,hv,label,pred,mate,sour
e_bridge,target_bridge);

P.push(w);

while(! P.empty())

{ node a = P.pop();

node b = P.pop();

mate[a℄ = b;

mate[b℄ = a;

}

T.append(w);

forall(v,T) label[v℄ = UNLABELED;

base.split(T);

breakthrough = true;

break;

Computing the Node Labeling OSC: We compute the node labelingOSCas described
in the paragraph preceding Lemma 25. We initializeOSC[v] to −1 for all nodesv. This
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will allow us to recognize nodes without a properOSC-label later. We then determine the
number of unlabeled nodes (= nodes labeledUNLABELEDand select an arbitrary unlabeled
node. If there are unlabeled nodes, the selected unlabeled node is labeled one and all other
unlabeled nodes are either labeled zero (if there are exactly two unlabeled nodes) or two (if
there are more than two unlabeled nodes). We then setK to the smallest unused label larger
than one.

Next we determine the number of sets of cardinality at least three and assign distinct
labels to their representatives. We do so by iterating over all nodes. Every nodev with
base(v) 6= v indicates a set of cardinality at least three. If its base is still unlabeled, we
label it.

Finally, we label all other nodes. Nodes belonging to a set ofcardinality at least two
inherit the label of the base, and nodes that belong to sets ofcardinality one (they satisfy
base(v) == v && OSC[base(v)℄ == -1) are labeled one iff they are ODD and are la-
beled zero if they are EVEN.

〈general checking: compute OSC〉�
forall_nodes(v,G) OSC[v℄ = -1;

int number_of_unlabeled = 0;

node arb_u_node;

forall_nodes(v,G)

if ( label[v℄ == UNLABELED )

{ number_of_unlabeled++;

arb_u_node = v;

}

if ( number_of_unlabeled > 0 )

{ OSC[arb_u_node℄ = 1;

int L = ( number_of_unlabeled == 2 ? 0 : 2 );

forall_nodes(v,G)

if ( label[v℄ == UNLABELED && v != arb_u_node ) OSC[v℄ = L;

}

int K = ( number_of_unlabeled <= 2 ? 2 : 3);

forall_nodes(v,G)

if ( base(v) != v && OSC[base(v)℄ == -1 ) OSC[base(v)℄ = K++;

forall_nodes(v,G)

{ if ( base(v) == v && OSC[v℄ == -1 )

{ if ( label[v℄ == EVEN ) OSC[v℄ = 0;

if ( label[v℄ == ODD ) OSC[v℄ = 1;

}

if ( base(v) != v ) OSC[v℄ = OSC[base(v)℄;

}

Computing the List of Matching Edges: The list M of matching edges is readily con-
structed. We iterate over all edges. Whenever an edge is encountered whose endpoints are
matched with each other, the edge is added to the matching. Wealso “unmate” the endpoints
in order to avoid adding parallel edges toM.
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〈MCM: compute M〉�
forall_edges(e,G)

{ node v = sour
e(e);

node w = target(e);

if ( v != w && mate[v℄ == w )

{ M.append(e);

mate[v℄ = v;

mate[w℄ = w;

}

}

Heuristics: If heur = 1, the greedy heuristic is used to compute an initial matching. We
iterate over all edges. If both endpoints of an edge are unmatched, we match the endpoints
and declare both endpoints unlabeled. Recall that matched nodes that do not belong to an
alternating tree are UNLABELED.

〈MCM: heuristics〉�
swit
h (heur) {


ase 0: break;


ase 1: { edge e;

forall_edges(e,G)

{ node v = G.sour
e(e); node w = G.target(e);

if ( v != w && mate[v℄ == nil && mate[w℄ == nil)

{ mate[v℄ = w; label[v℄ = UNLABELED;

mate[w℄ = v; label[w℄ = UNLABELED;

}

}

break;

}

}

Summary: We summarize and complete the running time analysis. The algorithm com-
putes a maximum matching in phases. In each phase an alternating treeT from a free node
is grown to find an augmenting path. If the search for an augmenting path is successful, the
matching is increased and all nodes in the alternating tree are unlabeled, and if the search is
unsuccessful, the tree will stay around and will never be looked at again.

The running time of a phase isO((nT + mT )α(nT , mT )), wherenT is the number of
nodes included intoT , mT is the number of edges having at least one endpoint inT , and
α(n, mT) is the cost ofmT operations on a node partition ofn nodes. This can be seen
as follows. In a phase zero or more blossoms are shrunken. Thesearch for a blossom (if
successful) has cost proportional to the size of the blossom, and shrinking a blossom of size
2k + 1 removes 2k nodes from the graph. Therefore the total size of all blossoms shrunk
in a phase isO(nT ). In each phase each edge is explored at most twice (once from each
endpoint). Each exploration of an edge and each removal of a node involves a constant
number of operations on the node partitionbase. We conclude that the total cost of a phase
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is O((nT + mT )α(n, mT )) = O((n + m)α(n, m)) = O(mα(n, m)), sincenT ≤ n ≤ m and
mT ≤ m.

There are at mostn phases and hence the total running time isO(nmα(n, m)) in the
worst case. One may hope thatnT is significantly smaller thann andmT is significantly
smaller thanm for many phases. The running times reported in Section 7.7.1show that the
hope is justified in the case of random graphs. There are no analytical results concerning
the average case behavior of general matching algorithms.

In an earlier implementation of the blossom shrinking algorithm we did not collect the
nodes of the alternating tree grown into a setT . Rather, we iterated over all nodes at the be-
ginning of a phase and labeled all free nodes EVEN and all matched nodes UNLABELED.
With this implementation the running time is�(n2). The implementation discussed in this
section is significantly faster. It is superior for two reasons. Firstly, the cost of a phase is
proportional to the size of the alternating tree grown in thephase and hence may be sublin-
ear, and secondly, an alternating tree that does not lead to abreakthrough is not destroyed,
but kept till the end of the execution.

Exercises for 7.7
1 Compare the running time of the general matching algorithmand the bipartite matching

algorithm on bipartite graphs.
2 Exhibit a family of graphs where the running time of our matching algorithm is�(nm).

Write a program to generate such graphs and provide it as an LEP.

7.8 Maximum Weight Bipartite Matching and the Assignment Problem

Throughout this sectionG = (A ∪̇ B, E) denotes a bipartite graph andc : E 7→ IR denotes
a cost functionon the edges ofG. We also sayweight instead of cost. Amatching Mis a
subset ofE such that no two edges inM share an endpoint. Thecost of a matching Mis
the sum of the cost of its edges, i.e.,

c(M) =
∑

e∈M

c(e).

A nodev is calledmatchedwith respect to a matchingM if there is an edge inM incident
to v and it is calledfreeor unmatchedotherwise. An edgee is calledmatchingif e ∈ M.
For a matched nodev the unique nodew connected tov by a matching edge is called the
mateof v. A matching is calledperfector anassignmentif all nodes ofG are matched.

A matching is called:

• amaximum weight matchingif its cost is at least as large as the cost of any other
matching,

• amaximum weight assignmentif it is a heaviest perfect matching,
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Figure 7.32 Maximum weight assignment and maximum weight matching. Thematching on the
left is a maximum weight perfect matching and the matching onthe right is a maximum weight
matching; the edges in the matchings are shown in bold in bothcases. A potential function that
proves the optimality of the matching is also given in both cases. The potential of each node and
the cost of each edge is shown. For every edge the cost of the edge is bounded by the sum of the
potentials of its endpoints. In an assignment every node is incident to exactly one edge of the
assignment and hence the total cost of the assignment is bounded by the total potential. In the
graph on the left the two quantities are equal and hence the assignment is optimal. In the graph
on the right the potential function has the additional property that all potentials are non-negative
and that all free nodes have potential zero. This implies (see Lemma 27) that the cost of any
matching is bounded by the total potential. The two quantities are equal in the graph on the right
and hence the matching is a maximum weight matching. The xlman-demo gwmwb matching
allows the reader to experiment with weighted matchings in bipartite graphs.

• aminimum weight assignmentif it is a lightest perfect matching,

• amaximum weight maximum cardinality matchingif it is a heaviest matching among
the matchings of maximum cardinality.

Figure 7.32 shows a a maximum weight assignment and a maximumweight matching.
Clearly, a maximum or minimum weight assignment exists if and only if G contains a
perfect matching.

In the next section we give the functionality of our algorithms and derive checkers of
optimality. Sections 7.8.2 and 7.8.3 discuss an algorithm for maximum weight matchings
and its implementation. In Sections 7.8.4 and 7.8.6 we modify our algorithms to compute
assignments and maximum weight matchings of maximum cardinality. Finally, in Sec-
tion 7.8.5 we show how to reduce the shortest path problem to the assignment problem.

7.8.1 Functionality
All functions in this section are function templates that work for an arbitrary number type
NT. We use the convention that names of function templates for graph algorithms end with
T. In order to use the templates one must include<LEDA/templates/mwbmatching.t>.
LEDA also contains pre-compiled instantiations for the number typesint anddouble. The
function names for the instantiated versions arewithout the suffix T. In order to use the
instantiated versions one must include<LEDA/graphalg.h>. Section 7.1 discusses the re-
lationship between templates and instantiated versions inmore detail.
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The function

list<edge> MAX WEIGHT BIPARTITE MATCHING T(graph& G,


onst edge array<NT>& 
, node array<NT>& pot)

returns a matching of maximal cost; the graphG is required to be bipartite. The worst case
running time of the algorithm isO(n · (m+n logn)), the average case running time is much
better. The function computes a proof of optimality in the form of the potential function
pot. We discuss potential functions later in the section.

If a bipartitionV = A ∪̇ B is known and all edges are directed fromA to B, the function

list<edge> MAX WEIGHT BIPARTITE MATCHING T(graph& G,


onst list<node>& A, 
onst list<node>& B,


onst edge array<NT>& 
, node array<NT>& pot)

can be used. IfA andB have different sizes then it is advisable thatA is the smaller set; in
general, this leads to smaller running time.

The functions

list<edge> MAX WEIGHT ASSIGNMENT T(graph& G,


onst edge array<NT>& 
, node array<NT>& pot);

list<edge> MIN WEIGHT ASSIGNMENT T(graph& G,


onst edge array<NT>& 
, node array<NT>& pot);

return a maximum and minimum weight assignment, respectively. Both functions require
that G is bipartite. If G does not contain a perfect matching the empty set of edges is
returned.

All functions above are also available in the form whereA andB are given as additional
arguments and also without the argumentpot.

The function

list<edge> MWMCB MATCHING T(graph& G,


onst list<node>& A, 
onst list<node>& B,


onst edge array<NT>& 
, node array<NT>& pot);

returns a maximum weight matching among the matchings of maximum cardinality. The
potential functionpot proves the optimality of the matching, see Section 7.8.6.

Potential Functions: We have mentioned the concept of apotential functionseveral times
already. It is time to define it. A functionπ : V 7→ IR is called a potential function. For an
edgee = (v, w) we call

c(e) = π(v) + π(w) − c(e)

the reduced costof e with respect toπ . An edge is calledtight iff its reduced cost is zero
and the tight subgraph consists of all tight edges. For a subsetU of the nodes we useπ(U )

to denote
∑

v∈U π(v). The following four properties of potential functions willplay a role:

(1) Non-negativity of reduced costs,c(e) ≥ 0 for all e ∈ E.
(2) Tightness of matched edges,c(e) = 0 for e ∈ M.
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(3) Non-negativity of node potentials,π(v) ≥ 0 for all v ∈ V .
(4) Tightness of free nodes,π(v) = 0 for all v that are free with respect toM.

The importance of potential functions stems from the following lemma.

Lemma 27 Let M be any matching, letπ be any potential function, and let F be the set of
nodes that are free with respect to M.

If all reduced costs are non-negative then c(M) ≤ π(V) − π(F). If, in addition, M is an
assignment or all node potentials are non-negative then c(M) ≤ π(V).

If all reduced costs are non-negative and all matched edges have reduced cost zero then
c(M) = π(V) − π(F). If, in addition, M is an assignment or all free nodes have potential
zero then c(M) = π(V).

Proof If all reduced costs are non-negative thenc(e) ≤ π(v) + π(w) for every edgee =
(v, w). Thus

c(M) =
∑

e∈M

c(e)

≤
∑

e=(v,w)∈M

π(v) + π(w)

=
∑

v∈V;v is matched

π(v) = π(V) − π(F),

where the next to last equality follows from the fact thatM is a matching and hence every
matched node contributes exactly once to the sum on the second line and no free node
contributes, and the last equality follows from the fact that the matched nodes are precisely
the nodes that are not free. This establishes the first claim.For the third claim we observe
that the inequality above becomes an equality if all matching edges have reduced cost zero.

The second and fourth claim follow from the first and third claim, respectively, and the
additional observation thatπ(F) ≥ 0 if node potentials are non-negative and thatπ(F) = 0
if M is an assignment or if the potential of all free nodes is zero.

We call a potential functionfeasibleif it satisfies (1),non-negativeif it satisfies (3),
and tight if it satisfies (1), (2), and (4). A tight non-negative potential function proves
the optimality of a maximum weight matching and a tight potential function proves the
optimality of a maximum weight assignment. Our algorithms return proofs of optimality in
the form of tight potential functions.

The optimality conditions (1) to (4) are the basis for checkers of optimality. The function
CHECK MWBM T takes a cost functionc, a list of edgesM, and a potential functionpot,
and checks thatM is a matching and that the properties (1) to (4) above are satisfied.

〈mwb matching.t〉+�
bool False(
onst string s)

{ 
err << "CHECK_MWBM_T: " << s << "\n" << flush; return false;}

template <
lass NT>
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bool CHECK_MWBM_T(
onst graph& G, 
onst edge_array<NT>& 
,


onst list<edge>& M, 
onst node_array<NT>& pot)

{ node v; edge e;

// M is a mat
hing

node_array<int> deg_in_M(G,0);

forall(e,M)

{ deg_in_M[G.sour
e(e)℄++;

deg_in_M[G.target(e)℄++;

}

forall_nodes(v,G)

if ( deg_in_M[v℄ > 1) return False("M is not a mat
hing");

// node potentials are non-negative

forall_nodes(v,G)

if ( pot[v℄ < 0) return False("negative node potential");;

// edges have non-negative redu
ed 
ost

forall_edges(e,G)

{ node v = G.sour
e(e); node w = G.target(e);

if ( 
[e℄ > pot[v℄ + pot[w℄)

return False("negative redu
ed 
ost");

}

// edges in M have redu
ed 
ost equal to zero

forall(e,M)

{ node v = G.sour
e(e); node w = G.target(e);

if ( 
[e℄ != pot[v℄ + pot[w℄ )

return False("non-tight mat
hing edge");

}

// free nodes have potential equal to zero

forall_nodes(v,G)

if ( deg_in_M[v℄ == 0 && pot[v℄ != 0 )

return False("free node with non-zero potential");

return true;

}

The analogous functions

bool CHECK MIN WEIGHT ASSIGNMENT T(G,
,M,pot);

bool CHECK MAX WEIGHT ASSIGNMENT T(G,
,M,pot);

check minimum and maximum weight assignments, respectively. We do not give their
implementations here. It is a good exercise to provide the implementations.

Potential Functions and Linear Programming Duality: We relate Lemma 27 to linear
programming duality. Readers unfamiliar with linear programming may skip this material,
although there is no harm in reading it anyway.

The maximum matching problem can be formulated as an integerprogram. We associate
a variablex(e) with every edgee, constrain it to the values 0 and 1, and consider the integer
program

max
∑

e∈E

c(e)x(e)
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subject to
∑

e;e is incident tov x(e) ≤ 1 for all v ∈ V
x(e) ∈ {0, 1} for all e ∈ E.

Let M be the set of edgese with x(e) = 1. The first constraint states that for each node
v at most one of the incident edges belongs toM, i.e., it guarantees thatM is a matching.
The objective function states that we are looking for a matching of maximal weight. It was
shown by Edmonds [Edm65b, Edm65a] that the integrality constraintsx(e) ∈ {0, 1} may
be replaced by the linear constraintsx(e) ≥ 0 without changing the problem26. Assume that
the integrality constraintx(e) ∈ {0, 1} has been replaced byx(e) ≥ 0. We now consider the
dual linear program. The dual has one variable for each node and one constraint for each
edge. We useπ(v) for the variable corresponding to nodev and obtain

min
∑

v∈V

π(v)

subject to

c(e) ≤ π(v) + π(w) for all e = (v, w) ∈ E
π(v) ≥ 0 for all v ∈ V.

Linear programming duality states that the objective valueof any feasible solution of the
primal problem (= a matching) is no larger than the objectivevalue of any feasible solution
of the dual problem (= a potential function satisfying (1) and (3)) and that the value of the
optimal solutions are equal. Complementary slackness implies in addition that the reduced
cost of an edge in the matching must be zero and that the node potential of a free node must
be zero. In fact, the proof of Lemma 27 is simply an adaption ofthe standard proofs of
weak linear programming duality and complementary slackness to matchings.

26 We sketch a proof of this fact. We first observe that the non-negativity constraintsx(e) ≥ 0 together with the
matching constraints

∑

e;e is incident tov x(e) ≤ 1 guarantee 0≤ x(e) ≤ 1. It therefore suffices to prove that the
linear program has an optimal integral solution. The optimal solution to the linear program is given by a basic
feasible solution, i.e., by the solution to a systemBx = 1 whereB is a square submatrix of the constraint matrix
and 1 is a vector of ones. Thusx = B−11. It therefore suffices to prove thatB−1 is integral. By Cramer’s rule,
each entry ofB−1 is the quotient of the determinant of a submatrix ofB and the determinant ofB. It therefore
suffices to prove that the determinant ofB is in {−1, 0, +1}. We prove more generally that the determinant of
any square submatrix of the constraint matrix has determinant −1, 0, or+1, i.e., that the constraint matrix is a
so-calledtotally unimodularmatrix. LetB be any square submatrix. We need to compute the determinant of B.
Each entry ofB is either zero or one, each column ofB corresponds to an edge ofG, each row ofB corresponds
to a node ofG, and each column contains at most two ones, one for each endpoint. As long asB contains a row
or column with at most one one, we expand the determinant along this row or column. Each such reduction step
reduces the dimension by one and yields a factor−1, 0, or+1. When no further reduction step applies, we have
either reduced the dimension to zero and are done or reached amatrix B in which every row and column contains
at least two ones. We will show thatB is singular. Since a column contains at most two ones, we conclude that
every column contains exactly two ones. SinceB is square and since every row contains at least two ones we
conclude that every row contains exactly two ones. In other words in the graph defined byB every node has
degree two and thus the graph consists of a set of cycles. Eachcycle has even length sinceG is bipartite (this is
where we use the fact thatG is bipartite). Letv1, v2, . . . , v2k be any one of the cycles and consider the following
linear combination formed by the rows corresponding to these nodes. Rows corresponding to nodes with odd
index are multiplied by+1 and rows corresponding to nodes with even index are multiplied by−1. This linear
combination yields the zero vector since, in each column corresponding to an edge of the cycle, one contribution
is +1 and the other contribution is−1; this argument relies on the fact that the cycle has even length. Altogether
we have now shown that the determinant ofB is either−1, 0, or+1.
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Arithmetic Demand: Special care should be taken when using the template functions with
a number typeNT that can incur rounding error, e.g., the typedouble. Section 7.2 contains
a general discussion of this issue. The template functions are only guaranteed to perform
correctly if all arithmetic performed is without rounding error. This is the case if all numer-
ical values in the input are integers (albeit stored as a number of typeNT) and if none of the
intermediate results exceeds the maximal integer representable by the number type (253− 1
in the case ofdoubles). All intermediate results are sums and differences of input values, in
particular, the algorithms do not use divisions and multiplications.

The algorithms have the following arithmetic demands. LetC be the maximal absolute
value of any edge cost. If all weights are integral then all intermediate values are bounded by
3C in the case of maximum weight matchings and by 4nC in the case of the other matching
algorithms. We will prove these bounds when we discuss the algorithms. For the sequel let
f = 3 in the case of the maximum weight matchings and letf = 4n in the other cases.

The pre-instantiations for number typeint issue a warning ifC is larger thanMAXINT/ f .
The pre-instantiations for number typedoublecompute the optimal matching for a mod-

ified weight functionc1, where for every edgee

c1[e] = sign(c[e])⌊|c[e]| · S⌋/S

andS is the largest power of two such that

S < 253/( f · C).

The weight of the optimal matching for the modified weight function and the weight of the
optimal matching for the original weight function differ byat mostn · f · C · 2−52.

The weight modification can also be performed explicitly andwe advise you to do so.
The functions

bool MWBM SCALE WEIGHTS(
onst graph& G, edge array<double>& 
);

bool MWA SCALE WEIGHTS( 
onst graph& G, edge array<double>& 
);

replacec[e] by c1[e] for every edgee, wherec1[e] was defined above andf = 3 for the
first function andf = 4n for the second function. The first scaling function is appropriate
for the maximum weight matching algorithm and the second function is appropriate for all
other matching algorithms. The functions returnfalseif the scaling changed some weight,
and returntrueotherwise.

7.8.2 Maximum Weight Bipartite Matching: An Algorithm
We describe an algorithm for maximum weight bipartite matching. The algorithm works
iteratively. It starts with the empty matching and the graphspanned byB and the empty
subset ofA and then adds the nodes inA one by one. After each addition of a node it
computes a new maximum weight matching and a new tight non-negative potential function.

Let a1, . . . , an be an enumeration of the elements inA, let Ai = {a1, . . . , ai }, let Gi be
the subgraph spanned byVi = Ai ∪̇ B, let Mi be a maximum weight matching inGi , and
let πi : Vi 7→ IR≥0 be a non-negative potential function that is tight with respect toMi . Our
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algorithm will constructMi andπi for i = 0, 1, . . . ,n. We assume that all matching edges
are directed fromB to A and all non-matching edges are directed fromA to B.

M0 andπ0 are trivial; M0 is the empty matching andπ0 assigns zero to all nodes inB.
Let us also constructM1 andπ1. Let e be the heaviest edge incident toa1. If e does not
exist or has negative weight thenM1 is empty andπ1 assigns zero to all nodes inV1. If ehas
non-negative weight thenM1 consists ofe andπ1 assignsc(e) to a1 and zero to all nodes in
B.

Assume now that we knowMi−1 andπi−1 for somei , i ≥ 1. We show how to construct
Mi andπi . An alternative interpretation of the construction will begiven at the end of the
section.

We start the construction ofMi and πi by extendingπi−1 to a feasible non-negative
potential functionπ i for Vi ; this can be done by settingπ i (ai ) to any value that makes the
reduced cost of all edges incident toai non-negative. LetM = Mi−1 andπ = π i and
observe thatM andπ satisfy the optimality conditions (1), (2), and (3), and that a = ai is
the only free node which violates (4). We now modifyπ (maintaining (1), (2), and (3), and
(4) for all free nodes different froma) until there is an alternating path of tight edges from
a either to a nodea′ in A having potential zero (a = a′ is possible) or to a free node inB.
We setMi = M ⊕ p andπi = π . This re-establishes all four optimality conditions.

The potential functionπ is modified in phases. In each phase (except the last) we de-
creaseπ(Vi ) and we leaveπ(Vi ) unchanged in the last phase.

We now describe a phase. In each phase we determine the setR of nodes that are reach-
able froma = ai by tight edges and then distinguish three cases.

R contains a node in A of potential zero: Let v be a node inA ∩ R with π(v) = 0 and
let p be a path of tight edges froma to v. We augmentM by p, see Figure 7.33, and
observe thatπ is tight with respect toM ⊕ p. It is conceivable thatv = a andp is a path
of length zero.

R contains a free node in B: Let w be a free node inB ∩ R and let p be a path of tight
edges froma to w. We augmentM by p, see Figure 7.34, and observe thatπ is tight
with respect toM ⊕ p.

Neither of the above: We define a valueδ = min(α, β). Let α be the minimal valueπ(v)

for any nodev ∈ R ∩ A and letβ be the minimal valuec(e) of any edgee leaving R.
Thenα > 0 sinceR contains no node inA with potential zero andβ > 0 since only
non-tight edges can leaveR, see Figure 7.35. We decrease the potential of all nodes in
R ∩ A by δ, we increase the potential of all nodes inR ∩ B by δ, and recomputeR. We
continue in this fashion until one of the first two cases occurs.

The correctness of the method follows from the following lemma.

Lemma 28 In the first two cases,π is tight with respect to M⊕ p. In the third case, the
update ofπ preserves feasibility and non-negativity. The total potential decreases byδ.
Moreover, all edges in M stay tight and ai is the only free node whose potential can be
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Figure 7.33 The edges of a matchingM are shown in bold. The potential of each node is shown
inside the node and the costc and the reduced costc of each edge is shown asc(e)/c(e). The
patha1, b0, a0 consists of tight edges and can be used for augmentation. Theresulting matching
has the same cardinality as the current matching.
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Figure 7.34 The edges of a matchingM are shown in bold. The potential of each node is shown
inside the node and the costc and the reduced costc of each edge is shown asc(e)/c(e). The
patha1, b0, a0, b1 consists of tight edges and can be used for augmentation. Theresulting
matching has cardinality one larger than the current matching.

positive after the potential update. After the update thereis either a node in R∩ A whose
potential is zero (ifδ = α) or R grows (ifδ = β).

Proof In cases 1 and 2 we augment along a path of tight edges. Hence any edge inM ⊕ p
is tight. Also, in case 1 we expose a node inA that has potential zero. Thusπ is tight with
respect toM ⊕ p.

We turn to the third case. We start with a feasible potential function in which all edges in
M are tight and in which all free nodes except forai have potential zero;ai may or may not
have potential zero. The setR contains one more node inA than inB since every node inR
excepta is matched and since for every matched edge either both endpoints or no endpoint
is in R. Thus a potential update decreases the total potential byδ.

Let e be any edge. We show that the reduced cost ofe stays non-negative. The reduced
cost ofe decreases only if one endpoint lies inR ∩ A and the other endpoint lies inB\R.
Thene is non-matching (since matching edges always have both or noendpoint inR) and
hence the reduced cost ofe before the potential update is at leastβ.

All edges inM stay tight since for any edge inM either both endpoints belong toR or
neither endpoint does.

No free node inB can get a positive potential since there is no free node inR ∩ B;
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Figure 7.35 R is the set of nodes reachable fromai by tight edges. The setsA ∩ R andB ∩ R
are indicated as large ovals. The number of nodes inA ∩ R is one larger than the number of
nodes inB ∩ R, since each node inA ∩ R\ ai is matched to a node inB ∩ R and vice versa.β is
the minimum reduced cost of any edge leavingR (any such edge has its source node inA since
all edges out ofB are inM and hence tight) andα is the minimum potential of any node in
A ∩ R, andδ = min(α, β). We reduce the potential of all nodes inA ∩ R by δ and increase the
potential of all nodes inB ∩ R by δ.

otherwise we would be in case 2. The potential of nodes inA does not increase and hence
ai can stay the only node with positive potential.

At this point we have arrived at a first version of our algorithm.

M = the empty matching;
pot(b) = 0 for all b in B;

forall a ∈ A
f set pot(a) to some value that makes the reduced cost of all edges incident to a

non-negative;

while (true)
f determine the setR of nodes reachable froma by tight edges.

if R contains a node inA with potential zero or a free node inB
f augment by a path of tight edges froma to this node;

break;
g

computeα, β, andδ and adjust the potentials;
g

g
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We leave it to the reader to implement the basic version of thealgorithm.
Let us take a closer look at the inner loop of this algorithm. It grows a setR until R

contains either a free node inB or a node inA with potential zero. LetRk be the setR in
thek-th iteration of the loop fork = 1, 2, . . . ,K + 1, letδk be the value ofδ determined in
thek-th iteration, let1k = δ1 + . . . + δk, and let1 = 1K be the sum of allδ’s. Then the
total change of potential of the nodes inRk \ Rk−1 is δk +δk+1+ . . . = 1− (δ1+ . . .+δk−1).

Also δk = βk < αk for k < K sinceδi = αi implies that case 1 occurs in the next
iteration and hencei = K . Finally, δK = αK implies thatRK+1 = RK . We relate the
growth of R to a shortest-path computation with sourceai .

Lemma 29 Letw be any node and letµ(w) be the shortest-path distance ofw from ai with
respect to the reduced costs defined byπ i . Thenw is added to R after a total potential
change ofµ(w).

Proof Let w be any node and consider a shortest pathp from ai to w. Let e1, e2, . . . be
the edges onp that are not tight initially in the order in which they occur on p. The source
node ofe1 belongs toR1. The reduced cost ofe1 is decreased byδ1 in the first phase, byδ2

in the second phase, and becomes zero at the end of some phase,say the(l − 1)-th, i.e., the
original reduced cost ofe1 was equal toδ1 + . . . + δl−1. In phasel the source node ofe2

belongs toR and the next potential updates reduce the cost ofe2 to zero. In this wayw is
added toR after a total potential change ofµ(w).

Lemma 30 Letπ = π i and for any nodew let µ(w) be the shortest-path distance ofw from
ai with respect to the reduced costs defined byπ . Let minA= min{µ(a) + π(a) ; a ∈ A}
and let minB= min{µ(b) ; b ∈ B and b is free}. Then1 = min(minA, minB) and the
total potential change for any nodev is equal tomax(0, 1 − µ(v)).

If 1 = minA, let z be the node that defines minA and if1 = minB, let z be the node that
defines minB (if minA= minB, define z by either half-sentence). In either case let p be a
path of lengthµ(z) from ai to z. Then all edges of p are tight after the change of potential.

Proof Consider an arbitrary nodea ∈ A. It is added toR when the total potential change
is equal toµ(a). Subsequent potential changes decreaseπ(a) and hence the total potential
change cannot be more thanµ(a) + π(a) (since node potentials always stay non-negative).

Consider a free nodeb ∈ B. It is added toR when the total potential change is equal to
µ(b). Thus the total potential change cannot be more thanµ(b).

We stop changing the potentials once a node inA ∩ R reaches potential zero or a free
node inB is added toR. Thus the total potential change1 is equal to min(minA, minB).

A nodev participates in potential changes after it has been added toR. Thus the total
change of potential ofv is equal to max(0, 1 − µ(v)).

Let p be as defined in the statement of the lemma and lete = (v, w) be any edge ofp.
Thenµ(v) + c(e) = µ(w) sincep is a shortest path. Alsoµ(v), µ(w) ≤ 1 sincep is a
shortest path to the node that defines1. We show thate is tight after the potential change.
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If e is matching and hencev ∈ B andw ∈ A andc(e) = 0, we haveµ(v) = µ(w). Thus
π(v) is increased by1 − µ(v) andπ(w) is decreased by the same amount. Thuse stays
tight.

If e is non-matching and hencev ∈ A andw ∈ B, we haveµ(v) + c(e) = µ(w). Thus
π(w) is increased by1 − µ(w) = 1 − µ(v) − c(e) andπ(v) is decreased by1 − µ(v).
The reduced cost ofe is therefore reduced byc(e) and hencee becomes tight.

Lemmas 29 and 30 allow us to refine our basic algorithm.

M = the empty matching;
pot(b) = 0 for all b in B;

forall a ∈ A
f set pot(a) to some value that makes the reduced cost of all edges incident to a

non-negative;

for any nodev let dist(v) be the shortest-path distance ofv from a and let

minA= min{dist(v) + pot(v) ; v ∈ A};
bestnodein A = a node inA that definesminA;

minB= min{dist(v) ; v ∈ B and free};
bestnodein B = a node inB that definesminB;

Delta = min(minA, minB);

forall v ∈ A: pot(v) = pot(v) − max(0, Delta− dist(v));
forall v ∈ B: pot(v) = pot(v) + max(0, Delta− dist(v));

augment by the alternating path of tight edges froma to bestnodein A, if Delta =
minA, and froma to bestnodein B, otherwise;

g

The description above suggests that it is necessary to compute dist[v] for all nodesv in
each execution of the inner loop. This is not true. It is only necessary to computeDeltaand
the node defining it and to computedist[v] for all nodesv with dist[v] < Delta. Given this
information all potentials can be updated correctly and theaugmentation can be made.

How can we computeDelta without computingdist[v] for all nodesv? We exploit the
fact that Dijkstra’s algorithm computes dist-values in increasing order. Letv0, v1, . . . with
v0 = a be the order in which the nodes are reached by the shortest-path computation. Then
dist[v0] ≤ dist[v1] ≤ . . . We observe:

(1) If

min{dist[vi ] + pot[vi ] ; i < k andvi ∈ A} ≤ dist[vk]

then somevi with i < k andvi ∈ A definesminA. This follows from the fact that all
node potentials are non-negative.

(2) minB is the dist-value of the first free node inB that is reached by the shortest-path
computation. If nov j with j < k is a free node inB thendist[vk] ≤ minB.
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(3) If

min{dist[vi ] + pot[vi ] ; i < k andvi ∈ A} ≤ dist[vk]

and nov j with j < k is a free node inB thenDelta = minA. This follows from (1) and
(2).

(4) If

min{dist[vi ] + pot[vi ] ; i < k andvi ∈ A} ≥ dist[vk]

andvk is a free node inB thenDelta = minB. This follows from (1) and (2).
(5) Let k be minimal such that either (3) or (4) holds. ThenDelta ≤ dist[v j ] for all j > k

and the potentials of all nodesv j with j > k are not changed.

We will use items (3) and (4) as the stopping criteria for the shortest-path computation in
our implementation. Item (5) implies that only nodes that are reached by the shortest-path
computation can be affected by the potential change.

7.8.3 Maximum Weight Bipartite Matching: An Implementation
After all this preparatory work we are ready for the implementation.

We start by declaring the data structures required by the algorithm, then use one of three
heuristics to initialize the potential function and the matching, then callaugment(a, . . .) for
each node inA that is left unmatched by the heuristic, and finally restore the graph and
prepare the list of edges comprising the matching.

The data structures used by the algorithm are two boolean arrays to keep track of the free
nodes and the nodes inA and the data structures needed for the shortest-path computations
(arrayspredanddist, and a node priority queuePQ).

We describe three heuristics. The simplest heuristic (called naive in the program below)
sets the potential of all nodes inB equal to zero, the potential of all nodes inA equal to
the maximal cost of all edges, and sets the matching to the empty matching. The other
heuristics are described later in the section.

〈mwb matching.t〉+�
〈mwb matching: helpers〉
stati
 int whi
h_heuristi
 = 2;

template <
lass NT>

list<edge> MAX_WEIGHT_BIPARTITE_MATCHING_T(graph& G,


onst list<node>& A, 
onst list<node>& B,


onst edge_array<NT>& 
, node_array<NT>& pot)

{ node a,b,v; edge e;

list<edge> result;

forall_nodes(v,G) pot[v℄ = 0;

if (G.number_of_edges() == 0 ) return result;

// 
he
k that all edges are dire
ted from A to B

forall(b,B) assert(G.outdeg(b) == 0);

node_array<bool> free(G,true);
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node_array<edge> pred(G,nil);

node_array<NT> dist(G,0);

node_pq<NT> PQ(G);

swit
h (whi
h_heuristi
)

{ 
ase 0: { // naive heuristi


NT C = 0;

forall_edges(e,G) if (
[e℄ > C) C = 
[e℄;

forall(a,A) pot[a℄ = C;

break;

}


ase 1: { // simple heuristi


〈simple heuristic〉
break;

}

default: { // refined heuristi


mwbm_heuristi
( G, A, 
, pot, free);

break;

}

}

forall(a,A)

if (free[a℄) augment(G,a,
,pot,free,pred,dist,PQ);

forall(b,B)

{ forall_out_edges(e,b) result.append(e); }

forall(e,result) G.rev_edge(e);

return result;

}

We give the details ofaugment(G, a, . . .). It is a variant of Dijkstra’s algorithm.

〈mwb matching: helpers〉�
〈procedure augmentpath to〉
template <
lass NT>

inline void augment(graph& G, node a, 
onst edge_array<NT>& 
,

node_array<NT>& pot, node_array<bool>& free,

node_array<edge>& pred, node_array<NT>& dist,

node_pq<NT>& PQ)

{ 〈augment: initialization〉
while ( true )

{ 〈select from PQ the node b with minimal distance db〉
〈distinguish three cases〉

}

〈augment: potential update and reinitialization〉
}

We compute shortest paths starting ina. The priority queuePQ contains nodes inB (we
will explain shortly why nodes inA are not put into the queue) together with their tentative
distance froma, minAcontains the minimum value of{µ(v) + π(v) ; v ∈ A} that we have
seen so far, andbestnodein A contains a node realizingminA. We use an arraydist to
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record distances and an arraypredto record predecessor edges in the shortest-path tree; this
is as in Section 7.5.

Initially, the distance ofa is zero,minA is equal to the potential ofa, bestnodein A is
equal toa, andPQ contains all neighbors ofa (recall that we store only nodes inB in the
priority queue).

We do not definePQ within augmentnor do we initializepredwithin augment. This is
absolutely vital for efficiency. We assume thatPQ is empty andpred[v] = nil for all v

whenaugmentis called. Withinaugmentwe collect, in stacksRAandRB, all nodesv (in A
andB, respectively) that are added toPQor for whichpred[v] is set. At the end ofaugment
we use these stacks to resetPQ andpred. In this way augmentations can have sublinear
running time.

〈augment: initialization〉�
dist[a℄ = 0;

node best_node_in_A = a;

NT minA = pot[a℄;

NT Delta;

sta
k<node> RA; RA.push(a);

sta
k<node> RB;

node a1 = a; edge e;

〈relax all edges out of a1〉

where

〈relax all edges out of a1〉�
forall_adj_edges(e,a1)

{ node b = G.target(e);

NT db = dist[a1℄ + (pot[a1℄ + pot[b℄ - 
[e℄);

if ( pred[b℄ == nil )

{ dist[b℄ = db; pred[b℄ = e; RB.push(b);

PQ.insert(b,db);

}

else

if ( db < dist[b℄ )

{ dist[b℄ = db; pred[b℄ = e;

PQ.de
rease_p(b,db);

}

}

For each edgee = (a1, b) we computedb asdist[a1] plus the reduced cost ofe. If b is
reached for the first time, we add it toPQ and toRB, and ifw has been reached before but
db is smaller than the current distance value ofb, we update the distance value accordingly.
We will reuse the program chunk above below and hence have formulated it for an arbitrary
nodea1 in A. In the main loop we remove the node with smallest distance from PQ. Let b
be this node and letdbbe its distance;b is a node inB.
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〈select from PQ the node b with minimal distance db〉�
node b;

NT db;

if (PQ.empty()) b = nil;

else { b = PQ.del_min(); db = dist[b℄; }

We distinguish three cases according to the discussion at the end of Section 7.8.2.
If b does not exist, i.e.,PQ is empty, ordb ≥ minA, we augment by a path to node

bestnodein A. Delta is equal tominA.
If b exists,db < minA, andb is free, we augment by a path tob. Delta is equal todb.
If b exists,db < minA, andb is matched, we continue the shortest-path computation.

〈distinguish three cases〉�
if ( b == nil || db >= minA )

{ Delta = minA;

〈augmentation by path to best node in A〉
}

else

{ if ( free[b℄ )

{ Delta = db;

〈augmentation by path to b〉
}

else

{ 〈continue shortest-path computation〉 }

}

Augmentation to the best node inA is done byaugmentpathto(bestnodein A, . . .), which
simply reverses the direction of all edges on the path froma to bestnodein A. The path
is given by thepred-array. We also declarea matched andbestnodein A unmatched. It is
important that we do the latter actions in this order, sincea may be the best node inA, in
which case we do not want to change the current matching.

〈augmentation by path to best node in A〉�
augment_path_to(G,best_node_in_A,pred);

free[a℄ = false; free[best_node_in_A℄ = true; // order is important

break;

where

〈procedure augmentpath to〉�
inline void augment_path_to(graph& G, node v,


onst node_array<edge>& pred)

{ edge e = pred[v℄;

while (e)

{ G.rev_edge(e);

e = pred[G.target(e)℄; // not sour
e (!!!)

}

}
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Augmentation by a path tob is equally simple. We augment and declarea andb matched.

〈augmentation by path to b〉�
augment_path_to(G,b,pred);

free[a℄ = free[b℄ = false;

break;

We come to the case where the shortest-path computation is tobe continued. Thenb is
matched. Lete be the matching edge incident tob and consider the matea1of b. The mate
has the same distance value asb and its predecessor edge ise.

If db+ pot[a1] is smaller thanminAwe updateminAandbestnodein A.
We also relax the edges out ofa1. This may put more nodes inB into PQ. Observe that

only nodes inB are put intoPQ.

〈continue shortest-path computation〉�
e = G.first_adj_edge(b);

node a1 = G.target(e);

pred[a1℄ = e; RA.push(a1);

dist[a1℄ = db;

if (db + pot[a1℄ < minA)

{ best_node_in_A = a1;

minA = db + pot[a1℄;

}

〈relax all edges out of a1〉

This completes the description of the main loop.
We break from the main loop as soon as an augmenting path has been found. At this point

RA∪ RB contains all nodes that have been reached in the shortest-path computation and
Deltacontains the value required for the potential updates. For each nodev in RA∪ RBwe
resetpred[v] to nil, removev from the priority queue (only nodes inB can be in the queue),
and update its potential. The potential change is max(0, Delta− dist[v]). It is a decrease
for the nodes inA and an increase for the nodes inB. For the nodes outsideRA∪ RB the
potential does not change (by item (5) of the discussion at the end of Section 7.8.2).

〈augment: potential update and reinitialization〉�
while (!RA.empty() )

{ node a = RA.pop();

pred[a℄ = nil;

NT pot_
hange = Delta - dist[a℄;

if (pot_
hange <= 0 ) 
ontinue;

pot[a℄ = pot[a℄ - pot_
hange;

}

while (!RB.empty() )

{ node b = RB.pop();

pred[b℄ = nil;

if (PQ.member(b)) PQ.del(b);

NT pot_
hange = Delta - dist[b℄;
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if (pot_
hange <= 0 ) 
ontinue;

pot[b℄ = pot[b℄ + pot_
hange;

}

We come to the heuristics.
The simple heuristic setspot[a] to the largest non-negative cost of any edge incident toa

for everya ∈ A. This will make the heaviest edge incident toa tight (since the potential of
all nodes inB is initially zero). The edge is added to the matching iff its endpoint inB is
free.

〈simple heuristic〉�
forall(a,A)

{ edge e_max = nil; NT C_max = 0;

forall_adj_edges(e,a)

if (
[e℄ > C_max) { e_max = e; C_max = 
[e℄; }

pot[a℄ = C_max;

if ( e_max != nil && free[b = G.target(e_max)℄ )

{ G.rev_edge(e_max);

free[a℄ = free[b℄ = false;

}

}

The refined heuristic augments along paths of length one and length three. When it is
called, the potential of all nodes inB is zero. It considers the nodes inA in turn. For each
nodea ∈ A it determines the two incident edges with largest non-negative reduced cost.
Call themebande2, respectively, and their reduced costsmaxandmax2, respectively. Ife2
does not exist, thenmax2= 0, and ifebdoes not exist, thenmax= 0.

We then distinguish cases. Ifebdoes not exist, we setpot[a] to zero. Ifebexists, letb be
the target ofeb. If b is free, we addebto the matching, recorde2as the second best edge of
a, and setpot[a] to max2andpot[b] to max- max2. This makeseb tight, and it makese2
tight if it leads to a free node inB. Finally, if b is not free we setpot[a] to maxand consider
the second best edge, saye, incident to the mate ofb. If e exists and the target ofe is free,
we use the path of length three for augmentation.

〈mwb matching: helpers〉+�
template <
lass NT>

void mwbm_heuristi
(graph& G, 
onst list<node>& A,


onst edge_array<NT>& 
, node_array<NT>& pot,

node_array<bool>& free)

{

node a, b; edge e, e2, eb;

node_array<edge> se
_edge(G,nil);

forall( a, A )

{ NT max2 = 0; NT max = 0; eb = e2 = nil;

// 
ompute edges with largest and se
ond largest sla
k

forall_adj_edges( e, a )

{ NT we = 
[e℄ - pot[target(e)℄;
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if ( we >= max2 )

{ if( we >= max )

{ max2 = max; e2 = eb;

max = we; eb = e;

}

else

{ max2 = we; e2 = e;

}

}

}

if( eb )

{ b = target(eb);

if( free[b℄ )

{ // mat
h eb and 
hange pot[℄ to make sla
k of e2 zero

se
_edge[a℄ = e2;

pot[a℄ = max2;

pot[b℄ = max-max2;

G.rev_edge(eb);

free[a℄ = free[b℄ = false;

}

else

{ // try to augment mat
hing along

// path of length 3 given by se
_edge[℄

pot[a℄ = max;

e2 = G.first_adj_edge(b);

e = se
_edge[target(e2)℄;

if( e && G.outdeg(target(e)) == 0 )

{ free[a℄ = free[G.target(e)℄ = false;

G.rev_edge(e); G.rev_edge(e2); G.rev_edge(eb);

}

}

}

else pot[a℄ = 0;

}

}

The worst case running time of our matching algorithm isn times the worst case running
time of the shortest-path computation. The worst case running time of the shortest-path
computation depends on the implementation of the priority queue. Priority queues are dis-
cussed in Section 5.4. With either the Fibonacci heap or the pairing heap implementation
we obtain a worst case running time ofO(n(m + n logn)) and with the redistributive heap
implementation we obtain a worst case running time ofO(n(m + n logC)) whereC is the
largest edge weight (edge weights are assumed to be integralfor the latter time bound). The
implementation given has worst case running timeO(n(m + n logn)). The average case
running time seems to be much better as Table 7.8 shows.

Arithmetic Demand: How large are the numbers that are handled by the program above?
Let us assume that all edge weights are integers whose absolute value is bounded byC.

We observe first that all node potentials are non-negative integers less than or equal toC.



7.8 Maximum Weight Bipartite Matching and the Assignment Problem 151

This is clear for the nodes inA since their potential is initialized to a value less than or equal
to C and is only decreased afterwards. For the nodes inB it follows from the observation
that the potential of any matched node is at mostC (since the reduced cost of a matched
edge is zero) and that the potential of free nodes inB is zero.

The fact that node potentials are bounded byC implies that the reduced cost of any edge
is bounded by 2C. Thus the largest number handled in any of the shortest-pathcomputations
is at most 2 min(|A|, |B|) ·C. This bound holds since matched edges have reduced cost zero
and hence no simple path can contain more than min(|A|, |B|) edges of non-zero reduced
cost.

We will next establish a much better bound. The quantityminA is always bounded by
C, since it is initialized to the potential of a node inA and is only decreased afterwards.
The shortest-path computation stops as soon as a distance value larger thanminAis selected
from the queue. Thus only distance values less thanminA(and hence less thanC) can lead
to the insertion of additional distance values into the queue. We conclude that the maximal
value ever put into the queue is bounded byC plus the maximal reduced cost of any edge
and is hence bounded by 3C. We summarize.

Lemma 31 If all edge weights are integers whose absolute value is bounded by C then the
largest number handled by the maximum weight bipartite matching algorithm is bounded
by3C.

Experimental Data: Table 7.8 contains some running times. We used random bipartite
graphs withn nodes on each side andm edges, and three different kinds of edge weights:

• Uniform edge weights, i.e., all edge weights equal to one.

• Random edge weights in [1..1000].

• Large random edge weights in [10000..10005].

In all cases we also solved the corresponding unweighted matching problem.

The instances with random edge weights are by far the simplest, followed by the instances
with large random edge weights, followed by the uniform instances. We expected that
random edge weights from a large range lead to simple problems because heavy edges are
much more favorable than light edges. We were surprised to find that the uniform problems
are the hardest and have no explanation for it.

The density of the problem has a big influence on running time.For very sparse prob-
lems (m = 2n) the weighted matching algorithm is faster than the unweighted matching
algorithm. This is due to the use of the potential function.

Consider the graph shown in Figure 7.36. It consists of a connected graphH which has
a perfect matching and additional nodesa1, a2, . . . , ak. Eacha1 is connected to a node
on the B-side ofH . In the figure, allai are connected to the same node inB, but this is
not essential. Assume that the perfect matching inH has already been constructed and
that the nodesa1, a2, . . . , ak are considered in turn. In the unweighted matching algorithm
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C n m No Simple Refined Check Unweighted

U 20000 40000 0.995 0.997 0.994 0.186 2.633

U 20000 60000 61.1 60.41 58.43 0.213 3.679

U 20000 80000 116.2 114.2 109.9 0.239 6.248

U 40000 80000 2.139 2.153 2.144 0.39 6.791

U 40000 120000 212.2 210.3 204.3 0.4539 9.61

U 40000 160000 410 402.8 387.8 0.5081 9.217

R 20000 40000 0.84 0.849 0.8467 0.1836 2.73

R 20000 60000 1.399 1.401 1.391 0.2189 3.811

R 20000 80000 2.635 2.509 2.578 0.2402 6.32

R 40000 80000 1.812 1.82 1.817 0.3922 7.056

R 40000 120000 3.001 2.941 2.973 0.4621 9.855

R 40000 160000 5.667 5.364 5.512 0.5168 9.532

L 20000 40000 1.293 1.31 1.307 0.1838 2.811

L 20000 60000 20.84 20.89 20.65 0.2305 3.922

L 20000 80000 41.6 40.69 41.05 0.2529 6.726

L 40000 80000 2.815 2.816 2.816 0.4213 7.222

L 40000 120000 57.06 56.9 54.67 0.4834 9.98

L 40000 160000 116.5 113.9 103.1 0.5283 9.595

Table 7.8 The running times of three versions of the weighted bipartite matching algorithm. The
first three columns contain the running times of the algorithm above with the three different
heuristics, the fourth column shows the time to verify the result and the last column shows the
time required to solve the unweighted problem (byMAX CARDBIPARTITE). The graphs were
generated byrandombigraph(G, n, n, m, A, B) and three kinds of edge weights were used:
uniform edge weights (denoted U), i.e., all edge weights were set to one, random edge weights
(denoted R) in [1.. 1000] and random edge weights (denoted L) in [10000.. 10005]. Each
number is the average of ten runs. The function mwbmatchingtime in the demo directory
allows readers to perform their own experiments.

every search for an augmenting path will exploreH in its entirety. Not so in the weighted
matching algorithm. After the search froma1, a1 will have potential equal to zero (since it
is free) and hence the node inB connected to it will have potential equal to one. SinceH is
assumed to be connected, every node inH ∩ B will have potential equal to one. Consider
next a search for an augmenting path starting atai , i ≥ 2. The nodeai is given potential one
(since one is the largest cost of an edge incident toai ), and hence all edges out ofai have
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H

a1

ak

Figure 7.36 H has a perfect matching and eachai , 1 ≤ i ≤ k is connected to some node on the
B-side ofH . After the search for an augmenting path froma1 all nodes inB will have potential
one. The searches fromai , i > 2, take constant time.

reduced cost one. When the first neighbor ofai is removed from the queue (with distance
value one), the conditiondv >= minA holds and hence the search for an augmenting path
terminates. In this way, the fact thatai cannot be matched is detected in timeO(1). We
conclude that node potentials help tremendously in the example of Figure 7.36. Of course,
this example is very special and hence we need to generalize the argument.

Our algorithm considers the nodes inA in turn. LetAi−1 = {a1, . . . , ai−1}. After having
considered the nodes inAi−1, it has computed a maximal matchingMi−1 in the subgraph
Gi−1 spanned byAi−1 ∪ B and a potential functionπi−1 which proves the optimality of
Mi−1. Observe now that a node inB which can be reached from a free node inA must have
potential one (since free nodes have potential zero and hence their neighbors have potential
one, and hence the neighbors of the neighbors have potentialzero, . . . ).

Consider now the search for an augmenting path fromai . We claim that it will not enter
the subgraphH of Gi−1 consisting of all nodes that can be reached from a free node in
Ai−1. This is most easily seen for what we called the basic versionof the algorithm in
Section 7.8.2. We observe first that the nodeai is given potential one (since one is the
largest cost of an edge incident toai ) and hence an edge(ai , b) will have reduced cost
equal to zero or equal to one depending on whether the potential of b is zero or one. The
edges connectingai to nodes inH will have reduced cost equal to one. The search will
first explore all nodes that can be reached by tight edges. If afree node inB is reached, the
matching will be increased. If no free node inB can be reached, a potential change will be
made. The change reduces the potential ofai to zero and hence no further search will be
performed. We conclude thatH is never entered.
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For random edge weights the weighted matching algorithm is faster than the unweighted
matching algorithm on the corresponding unweighted problem.

Alternative Interpretation: We close this section with an alternative interpretation ofour
algorithm. The alternative interpretation may be skipped.

We consider only the construction ofMi from Mi−1 andπi−1. For any alternating path
starting ina = ai let d(p) be the total cost of the edges inp that belong toM minus the
total cost of the edges that do not belong toM, i.e.,

d(p) =
∑

e∈p∩M

c(e) −
∑

p\M

c(e).

Consider the matchingM ⊕ p obtained by augmentingM by p. It has costc(M) − d(p)

and henceM ⊕ p is “better” thanM iff d(p) is negative. This observation suggests the
following definition. We call a pathp improving with respect toM if d(p) is negative. The
observation also suggests the following algorithm for finding an improving path.

We orient all matching edges fromB to A and all non-matching edges fromA to B.
We assign weightc(e) to any matching edge and assign weight−c(e) to any non-matching
edge and search for a path of negative cost starting ina. If there is no such path thenM is
also a maximum cost matching inGi . If there is such a path then letp be the most negative
such path, i.e., the one with the most negatived(p), and obtainMi by augmentingM by p.
A simple way to findp is to solve a single-source shortest-path problem with sourcea.

The previous paragraph leaves many questions unanswered. Why is M also a maximum
cost matching inGi if no path of negative cost exists, why isM ⊕ p a maximum cost
matching inGi if p is a most negative path, and why can there be no negative cycles?

In answering these questions the potential functionπ = πi−1 comes handy. Recall that
the first action in the construction ofMi is to extendπ to a potential function onAi ∪ B by
settingπ(a) to any value that makes the reduced cost of every edge out ofa non-negative.
Consider any alternating pathp with respect toM starting ina. Let p = [e1, . . . , ek ] with
ej = (v j −1, v j ). Thenv0 is equal toa, v0, v2, . . . are nodes inA, v1, v3, . . . are nodes inB,
e1, e3, . . . are edges not inM ande2, e4, . . . are edges inM, and ifk is odd, thenvk is a free
node inB. We have

d(p) =
∑

j ; j even

c(ej ) −
∑

j ; j odd

c(ej ).

Sinceπ is tight with respect toM, we havec(ej ) = π(v j −1) + π(v j ) for all even j . Thus

d(p) =
∑

j ; j even

(π(v j −1) + π(v j )) −
∑

j ; j odd

c(ej )

= −π(a) +
∑

j ; j odd

(π(v j −1) + π(v j ) − c(ej )) + (−1)kπ(vk)

= −π(a) +
∑

j ; j odd

c(ej ) + (−1)kπ(vk) = −π(a) +
∑

j

c(ej ) + (−1)kπ(vk)
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= −π(a) +
∑

j

c(ej ) + π(vk).

This derivation deserves explanation. The first equality amounts to rearranging the sum.
For example, ifk = 4 then

−c(e1) + (π(v1) + π(v2)) − c(e3) + (π(v3) + π(v4)) =
−π(a) + (π(v0) − c(e1) + π(v1)) + (π(v2) − c(e3) + π(v3)) + π(v4)

and if k = 3 then

−c(e1) + (π(v1) + π(v2)) − c(e3) =
−π(a) + (π(v0) − c(e1) + π(v1)) + (π(v2) − c(e3) + π(v3)) − π(v3).

The second equality follows fromc(e) = π(v) + π(w) − c(e) for any edgee = (v, w),
the third equality follows from the fact thatc(e) = 0 for anye ∈ M, and the last equality
follows from the fact thatπ(vk) = 0 if k is odd (since in this casevk is a free node inB).

The derivation above is extremely powerful. It tells us thatd(p) is equal to the cost of
p with respect to the reduced costsc plus the potential of the target node ofp minus the
potential of the source node ofp. The source node ofp is equal toa and hence the latter
contribution is independent ofp. In other words, searching for a path that minimizesd(p)

amounts to searching for a path that minimizesc(p) + π(vk). For fixedvk this amounts to
searching for the pathp from a to vk that minimizesc(p). This problem is easily solved
by Dijkstra’s algorithm. For any nodev ∈ Vi let µ(v) be the minimum cost of a path from
a to v with respect to the cost functionc. The iterative step fromM = Mi−1 to Mi is then
performed as follows:

Computeµ(v) for all v by Dijkstra’s algorithm.

Let v be the node that minimizesd = −π(a) + µ(v) + π(v) and letp be a path froma
to v that realizesµ(v).

If d < 0, augmentM by p.

This completes our alternative derivation of the algorithm.

The first algorithm for the assignment problem was given by Kuhn [Kuh55]. In the early
60’s, Jewell [Jew58], Iri [Iri60] and Busacker and Gowen [BG61] observed that the assign-
ment problem can be solved by a sequence of shortest-path computations in general graphs.
In the early 70’s Tomizawa [Tom71] and Edmonds and Karp [EK72] showed that the use of
node-potentials restricts the shortest-path computations to non-negative edge costs. Recent
surveys of algorithms for the assignment problem can be found in an article by Galil [Gal86]
and the book by Ahuja, Magnanti, and Orlin [AMO93]. In his master’s thesis Markus
Paul [Pau89] extended the algorithms to the maximum weight matching problem; he also
implemented the algorithm for LEDA. His implementation always searched for augmenting
paths from all nodes inA. Uli Finkler [Fin97] observed, in his PhD-thesis, that substantial
improvements (not asymptotically but on average) can be obtained by considering the nodes
in A one by one. The implementation given here follows his suggestion.
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7.8.4 The Assignment Problem
The assignment problem asks for a perfect matching of maximum or minimum weight. A
simple modification of the algorithm of the preceding section solves the maximum weight
assignment problem.

We only need to change the way we search for augmenting paths.We insist that every
augmentation increases the size of the matching and hence wecontinue our search for an
augmenting path until a free node inB is found. When no free node inB is ever found, we
return false to indicate that the graph has no perfect matching.

We obtain:

〈procedure augment for max weight assignment〉�
#in
lude <LEDA/sta
k.h>

template <
lass NT>

bool max_weight_assignment_augment(graph& G,

node a, 
onst edge_array<NT>& 
,

node_array<NT>& pot, node_array<bool>& free,

node_array<edge>& pred, node_array<NT>& dist,

node_pq<NT>& PQ)

{ 〈augment: initialization〉
while ( true )

{ node b; NT db;

if (PQ.empty()) { return false; }

else { b = PQ.del_min(); db = dist[b℄; }

if ( free[b℄ )

{ Delta = db;

〈augmentation by path to b〉
}

else

{〈continue shortest-path computation〉 }

}

〈augment: potential update and reinitialization〉
return true;

}

The minimum weight assignment problem is easily reduced to the maximum weight
assignment problem. We only have to change the sign of all weights.

〈mwb matching.t〉+�
template <
lass NT>

list<edge> MIN_WEIGHT_ASSIGNMENT_T(graph& G,


onst list<node>& A, 
onst list<node>& B,


onst edge_array<NT>& 
, node_array<NT>& pot)

{ edge_array<NT> w(G);

edge e;

forall_edges(e,G) w[e℄ = - 
[e℄;

list<edge> M = MAX_WEIGHT_ASSIGNMENT_T(G,A,B,w,pot);

node v;
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forall_nodes(v,G) pot[v℄ = -pot[v℄;

return M;

}

The worst case running time of the maximum and minimum weightassignment algorithms
is the same as for the maximum weight bipartite matching algorithm, namelyO(n(m +
n logn)).

Arithmetic Demand: How large are the numbers that are handled by the assignment algo-
rithms? We assume that all edge weights are integers whose absolute value is bounded by
C. Let k = |A| = |B|.

We will first derive a bound on the node potentials. Letv be any node and consider a
change27 of π(v). After a change ofπ(v) there is an undirected pathp of tight edges from
a nodeb ∈ B that was just matched tov. Let p = [b = v0, v1, . . . , vs = v ], where
s ≤ 2k. We claim thatπ(vi ) ∈ [−iC .. iC] for all i after the potential update. This is
true for i = 0, sinceb was just matched and hence has potential equal to zero. Fori > 0
the claim follows from the fact that the edge{vi , vi−1} has reduced cost equal to zero and
cost in [−C .. C]. We conclude thatπ(a) ∈ [−(2k − 1)C .. (2k − 1)C] for a ∈ A and
π(b) ∈ [−(2k − 2)C .. (2k − 2)C] for b ∈ B after a potential change. These bounds also
hold before the first change ofπ(v) since the potential of nodes inB is initialized to zero
and since the potential of nodes inA is initialized such that there is a tight edge incident to
the node.

The reduced cost of any edge is therefore bounded byC + (2k − 1)C + (2k − 2)C ≤
(4k − 2)C.

When we search for an augmenting path from a free nodea ∈ A we start a shortest-path
computation froma. The computation stops when the first free node inB is encountered.
Let p be an augmenting path froma to a free node inB. The maximal number handled
in the shortest-path calculation is the cost ofp (with respect to the reduced cost function)
plus the maximal reduced cost of any edge. The cost ofp is the difference between the old
and the new potential ofa and is therefore bounded by 4kC. We conclude that the absolute
value of all integers handled by the algorithm is bounded by 8kC.

We summarize.

Lemma 32 If all edge weights are integers whose absolute value is bounded by C then the
absolute value of all numbers handled by the maximum and minimum weight assignment
algorithm is bounded by8kC = 4nC, where k= |A| = |B| and n= 2k.

7.8.5 Shortest Paths via Assignment
Our algorithms for the maximum weight matching problem and the assignment problem use
an algorithm for the shortest-path problem (for non-negative edge weights) as a subroutine.
We show in this section that any algorithm for the assignmentproblem can be used to solve

27 We will derive a bound on the initial value ofπ(v) later in the section.
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n m D A BF A BF A

5000 50000 0.76 2.51 2.51 185.9 0.67 2.01

Table 7.9 A comparison of the running time of the shortest path via assignment algorithm
(denoted A) with the shortest-path algorithms of Section 7.5. Columns three and four contain a
comparison with Dijkstra’s algorithm (D) and columns five and six and seven and eight contain a
comparison with the Bellman–Ford algorithm (BF). We used random graphs with non-negative
edge weights for the first comparison, random graphs with arbitrary edge weights but no negative
cycle for the second comparison, and graphs generated byBF GEN for the third comparison.
The program shortestpath via assignmenttime in the demo directory allows readers to perform
their own experiments.

the shortest-path problem with arbitrary edge weights. This will give us an alternative to
the algorithms in Section 7.5. The alternative is of considerable theoretical interest and
has led to the asymptotically most efficient shortest-path algorithm for arbitrary edge costs,
see [AMO93, sections 12.4 and 12.7]. We wrote this section tofind out whether it also leads
to efficient programs. At least in our implementation it doesnot, see Table 7.9.

Let G = (V, E) be a directed graph. We construct a bipartite networkG′ = (V ′ ∪̇
V ′′, E′); see Figure 7.37 for an illustration.G′ contains two copies of each node ofG, one
in V ′ and one inV ′′. For each nodev ∈ V we usev′ to denote the copy inV ′ andv′′ to
denote the copy inV ′′. For each edge(v, w) there is an edge{v′, w′′} of the same cost in
E′. In addition, for each nodev ∈ V we have an edge{v′, v′′} of cost zero inE′. Clearly,
the set

{

{v′, v′′} ; v ∈ V
}

is an assignment of cost zero. It is a minimum cost matching iff
G has no negative cycle.

Lemma 33 G′ contains a perfect matching of negative cost iff G contains anegative cycle.

Proof Let C = [e0, e1, . . . , ek−1] with ei = (vi , vi+1) andvk = v0 be a simple cycle of
negative cost inG. We construct a perfect matching of the same cost inG′. It consists of
the edges{v′

i , v′
i+1} for i , 0 ≤ i < k, and the edges{v′, v′′} for all nodesv that do not lie

onC.
For the reverse direction consider any perfect matchingM of negative cost inG′. We

show thatM corresponds to a set of cycles inG and that one of these cycles has negative
cost. Consider any edge{v′

0, v′′
1} ∈ M with v0 6= v1; there must be at least one such edge

sinceM has negative cost. The nodev′
1 must also be matched. Letv′′

2 be its mate. Contin-
uing in this fashion we construct a sequence of edges{v′

0, v′′
1 }, {v′

1, v′′
2}, . . . , {v′

k−1, v′′
k } in

M. We stop as soon as we encounter a nodev′′
k such thatv′

k appeared previously in the se-
quence. We must havevk = v0 sincevk = v j for some j , j > 0, implies that two matching
edges are incident tov′′

k . We conclude that [v0, v1, . . . , vk ] is a simple cycle inG. ThusM
induces a set of simple cycles inG and the total cost of these cycles is equal to the cost of
M. Hence, one of the cycles must have negative cost.
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Figure 7.37 A directed graph and the derived bipartite graph. All dashededges in the graph on
the right have cost zero. The dashed edges define a perfect matching of cost zero. The solid
edges together with the lowest dashed edge define a perfect matching of negative cost. It
corresponds to the negative cycle in the graph on the left.

Assume now thatG contains no negative cycle, letM be a minimum weight assignment
in G′ and letπ ′ be a potential function that proves the optimality ofM. We show thatπ ′

can be used to transform the cost functionc into a non-negative cost function.M has cost
zero28 and hence

∑

v∈V π ′(v′) + π ′(v′′) = 0. Alsoπ ′(v′) + π ′(v′′) ≤ 0 for all v ∈ V and
hence

π ′(v′) = −π ′(v′′) for all v ∈ V.

We define a potential functionπ on V by

π(v) = π ′(v′′) for all v ∈ V.

Consider any edgee = (v, w) in G and letc(e) = π(v) + c(e) − π(w) be its reduced cost.
We have:

c(e) = π(v) + c(e) − π(w) = π ′(v′′) + c(e) − π ′(w′′)

= −π ′(v′) + c(e) − π ′(w′′) ≥ 0,

where the inequality follows from the fact thatc(e) ≥ π ′(v′) + π ′(w′′) for all edgese =
{v, w}.

We conclude thatc is a non-negative cost function onG. The shortest-path problem
with respect toc can be solved by Dijkstra’s algorithm. Also, ifµ(v) andµ(v) are the
shortest-path distances froms to v with respect toc andc, respectively, then

µ(v) = −π(s) + µ(v) + π(v),

28 It is possible that one of the edges(v′, v′′) is not contained inM . How?
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see Section 7.5.10.
The discussion above leads to the following program.

〈shortestpath via assignment.c〉�
template <
lass NT>

bool shortest_path_via_assignment(
onst graph& G, node s,


onst edge_array<NT>& 
,

node_array<NT>& dist,

node_array<edge>& pred)

{ node v,w; edge e;

GRAPH<NT,NT> G1;

list<node> A,B;

node_array<node> left_
opy(G), right_
opy(G);

forall_nodes(v,G)

{ A.append(left_
opy[v℄ = G1.new_node());

B.append(right_
opy[v℄ = G1.new_node());

G1.new_edge(left_
opy[v℄,right_
opy[v℄,0);

}

forall_edges(e,G)

{ v = G.sour
e(e); w = G.target(e);

G1.new_edge(left_
opy[v℄,right_
opy[w℄,
[e℄);

}

list<edge> M =

MIN_WEIGHT_ASSIGNMENT_T(G1,A,B,G1.edge_data(),G1.node_data());

NT sum = 0;

forall_nodes(v,G1) sum += G1[v℄;

if (sum < 0) return false;

node_array<NT> pot(G);

forall_nodes(v,G) pot[v℄ = G1[right_
opy[v℄℄;

edge_array<NT> red_
ost(G);

forall_edges(e,G)

red_
ost[e℄ = pot[G.sour
e(e)℄ + 
[e℄ - pot[G.target(e)℄;

DIJKSTRA_T(G,s,red_
ost,dist,pred);

forall_nodes(v,G) dist[v℄ += pot[v℄ - pot[s℄;

return true;

}

7.8.6 Maximum Weighted Matchings of Maximum Cardinality
We show how to compute a matching of maximum weight among the matchings of maxi-
mum cardinality29. Let L be a real number and consider the weight functioncL defined by
addingL to the weight of every edge, i.e.,

cL(e) = c(e) + L for everye ∈ E.

It is intuitively clear that larger values ofL favor matchings of larger cardinality. We make
this precise.

29 For graphs that have a perfect matching this is the same as looking for a maximal weight perfect matching.
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We observe first thatcL(M) = c(M) + L|M | for any matchingM. Thus, for two match-
ingsM andN of the same cardinality the relative weight of the matchingsdoes not change.
Let C be the largest absolute value of any edge weight and letk = min(|A|, |B|). Then
|c(M)| ≤ kC for any matchingM (since a matching consists of at mostk edges) and hence
|c(N) − c(M)| ≤ 2kC for any two matchingsM and N. We conclude that|M | < |N|
impliescL(M) < cL(N) for L > 2kC. Thus in order to find a maximum weight matching
of maximum cardinality we only have to find a maximum weight matching with respect to
the cost functioncL whereL = 2kC + 1.

〈mwb matching.t〉+�
template <
lass NT>

list<edge> MWMCB_MATCHING_T(graph& G,


onst list<node>& A, 
onst list<node>& B,


onst edge_array<NT>& 
, node_array<NT>& pot)

{ NT C = 0;

edge e;

forall_edges(e,G)

{ if (
[e℄ > C) C = 
[e℄;

if (-
[e℄ > C) C = -
[e℄;

}

int k = Max(A.size(),B.size());

C = 1 + 2*k*C;

edge_array<NT> 
_L(G);

forall_edges(e,G) 
_L[e℄ = 
[e℄ + C;

list<edge> M = MAX_WEIGHT_BIPARTITE_MATCHING_T(G,A,B,
_L,pot);

#ifndef LEDA_CHECKING_OFF

if ( !CHECK_MWBM_T(G,
_L,M,pot) )

error_handler(0,"
he
k in MWMCB_MATCHING_T failed");

#endif

return M;

}

Be aware that the computed potential function proves optimality with respect to the cost
functioncL , whereL = 1 + 2kC. The function has an arithmetic demand similar to the
programs for the assignment problem. Recall that the maximum weight matching algorithm
deals with numbers up to 3D when all edges costs are bounded byD in absolute value. We
haveD = C + 1 + 2kC and hence the numbers handled by the algorithm may be as large
as 3+ (6k + 3)C. SinceC ≥ 1 andk ≥ 1 we have 3+ (6k + 3)C ≤ 4nC.

Exercises for 7.8
1 Write a checker for the maximum weight assignment problem.
2 Write a checker for the maximum weight assignment problem that takes only a matching

M as input. Hint: Direct all edges in the matching fromB to A, give each edge in
the matching costc(e) and each edge outside the matching cost−c(e). Show that the
matching is optimal iff the resulting graph has no negative cycle.

3 Formulate Lemma 27 for the minimum weight assignment problem and write a checker
for it.
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4 Implement the basic version of the weighted bipartite matching algorithm.
5 Extend the functionshortestpathvia assignmentsuch that it can also deal with graphs

with negative cycles.
6 Show that the following strategy computes a maximum weightmatching among the

matchings of maximum cardinality: when searching for augmenting path froma = ai

choose the shortest path to a free node inB (if there is one) and choose the path to the
best node inA otherwise.

7 Write a program that computes a minimum weight matching among the matchings of
maximal cardinality.

8 Write a program that computes a maximum weight matching of cardinalityk, wherek is
a parameter of the algorithm. You may assume that the graph isconnected.

7.9 Weighted Matchings in General Graphs

A matching Min a graphG is a subset of the edges no two of which share an endpoint, see
Figure 7.38. The cardinality|M | of a matchingM is the number of edges inM. If w is a
weight function on the edges ofG then the weightw(M) of a matchingM is the sum of the
weights of its edges, i.e.,

w(M) =
∑

e∈M

w(e).

A nodev is calledmatchedwith respect to a matchingM if there is an edge inM incident
to v and it is calledfreeor unmatchedotherwise. An edgee is called matching ife ∈ M. A
matching is called amaximum weight matchingif its weight is at least as large as the weight
of any other matching. Figure 7.38 shows an example.

The function

list<edge> MAX WEIGHT MATCHING(
onst graph& G, 
onst edge array<int>& w)

returns a maximum weight matching inG with respect to the weight functionw. Ob-
serve that the algorithm is only available for integer weights. The underlying algorithm is
the so-called blossom shrinking algorithm of Edmonds[Edm65b, Edm65a]. Its worst case
running time isO(n3) ([Law76]). The implementation is due to Thomas Ziegler [Zie95].
There are algorithms with better performance, both theorically [GMG86, Gal86] and prac-
tically [AC93]. At present the function cannot be asked to return a proof of optimality.

7.10 Maximum Flow

Let G = (V, E) be a directed graph, lets and t be distinct vertices inG and letcap :
E −→ IR≥0 be a non-negative function on the edges ofG. For an edgee, we callcap(e)
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Figure 7.38 A maximum weight matching: The edges of the matching are shown in bold and the
edge weights are indicated. We used the xlman-demo gwmw matching to generate this figure.

thecapacityof e. An (s, t)-flowor simplyflow is a function f : E −→ IR≥0 satisfying the
capacity constraints and the flow conservation constraints:

(1) 0 ≤ f (e) ≤ cap(e) for every edgee ∈ E

(2)
∑

e;source(e)=v

f (e) =
∑

e;target(e)=v

f (e) for every nodev ∈ V\{s, t }

The capacity constraints state that the flow across any edge is bounded by the capacity of
the edge, and the flow conservation constraints state that for every nodev different froms
andt , the total flow out of the node is equal to the total flow into thenode.

We calls andt the source and the sink of the flow problem, respectively, andwe useV+

to denoteV\{s, t}. For a nodev, we call

excess(v) =
∑

e;target(e)=v

f (e) −
∑

e;source(e)=v

f (e)

theexcessof v. Flow conservation states that all nodes except fors andt have zero excess.
Thevalueof a flow f , denoted| f |, is the excess of the sink, i.e.,

| f | = excess(t).

A flow is calledmaximum, if its value is at least as large as the value of any other flow.
Figure 7.39 shows an example.

In Section 7.10.1 we define the functionality of max flow algorithms and derive a checker,
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Figure 7.39 A maximum(s, t)-flow: For every edgee its capacitycap(e) and the flowf (e)
across it are shown ascap(e)/ f (e). The value of the flow is equal 171. A saturated cut is
indicated by the dashed line. It proves the maximality of theflow. The xlman-demo
gw max flow visualizes maximum flows.

in Section 7.10.2 we discuss the generic preflow push algorithm, in Section 7.10.3 we give
a first implementation of the preflow push algorithm, in Section 7.10.4 we describe several
heuristic improvements, and in Section 7.10.5 we discuss the arithmetic demand of the
algorithm and the danger of using the network flow algorithm with a number type that may
incur rounding error.

7.10.1 Functionality
The function

NT MAX FLOW T(
onst graph& G, node s, node t


onst edge array<NT>& 
ap, edge array<NT>& f)

computes a maximum flowf in the network(G, s, t, cap) and returns the value of the flow.
The function can be used with an arbitrary number typeNT. There are pre-instantiated
versions for the number typesint anddouble. The function name of the pre-instantiated
versions is MAXFLOW, i.e., without the suffix T. In order to use the pre-instantiated
versions one must include<LEDA/maxflow.h>, and in order to use the template version,
one must include<LEDA/templates/maxflow.t>.

Special care should be taken when using the template function with a number typeNT
that can incur rounding error, e.g., the typedouble. Section 7.2 contains a general discussion
of this issue and Section 7.10.5 gives an example of what can go wrong in the computation
of a maximum flow. The template function is only guaranteed toperform correctly if all
arithmetic performed is without rounding error. This is thecase if all numerical values in
the input are integers (albeit stored as a number of typeNT) and if none of the intermediate
results exceeds the maximal integer representable by the number type (253 − 1 in the case
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of doubles). All intermediate results are sums and differences of input values, in particular,
the algorithms do not use divisions and multiplications.

The algorithm has the following arithmetic demand. LetC be the maximal absolute value
of any edge capacity. If all capacities are integral then allintermediate values are bounded
by d · C, whered is the outdegree of the source.

The pre-instantiation for number typeint issues a warning ifC is larger thanMAXINT/d.
The pre-instantiation for number typedoublecomputes the optimal matching for a mod-

ified capacity functioncap1, where for every edgee

cap1[e] = sign(cap[e])⌊|cap[e]| · S⌋/S

andS is the largest power of two such thatS < 253/(d · C). The value of the maximum
flow for the modified capacity function and the value of the maximum flow for the original
capacity function differ by at mostm · d · C · 2−52.

The weight modification can also be performed explicitly andwe advise you to do so.
The function

bool MAX FLOW SCALE CAPS(
onst graph& G, node s, edge array<double>& 
ap)

replacescap[e] by cap1[e] for every edgee, wherecap1[e] is as defined above. The function
returnsfalseif the scaling changed some weight, and returnstrueotherwise.

In the remainder of this section we discuss a check of optimality and derive the famous
max-flow-min-cut theorem of Ford and Fulkerson [FF63]. We need a technical lemma that
generalizes the notion of excess to a set of nodes.

Lemma 34 Let S⊆ V and let T= V\S. Then
∑

u∈S

excess(u) =
∑

e∈E∩(T×S)

f (e) −
∑

e∈E∩(S×T)

f (e).

Proof We have

∑

u∈S

excess(u) =
∑

u∈S

(

∑

e;target(e)=u

f (e) −
∑

e;source(e)=u

f (e)

)

,

by definition of excess. We now observe that each edgee ∈ E ∩ (T × S) contributesf (e)
to this sum, each edgee ∈ E ∩ (S × T) contributes− f (e) to this sum, and each edge
e ∈ E ∩ (S× S) contributesf (e) − f (e) to this sum.

We draw a quick consequence. An application withS = V and henceT = ∅ yields

excess(s) + excess(t) = 0,

i.e., excess(s) = −| f |. This agrees with the intuition that the flow arriving att must
originate ats.
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Figure 7.40 The residual networkG f : The left part shows an edgee = (v, w) with capacity 3
and flow 1. It gives rise to two edges in the residual network shown on the right. The edge(v, w)

has residual capacity 2 and the edge(w, v) has residual capacity 1.

An (s, t)-cut or simplycut is a setS of nodes withs ∈ S andt /∈ S. Thecapacityof a
cut is the total capacity of the edges leaving the cut, i.e.,

cap(S) =
∑

e∈E∩(S×T)

cap(e).

A cut S is calledsaturatedif f (e) = cap(e) for all e ∈ E ∩ (S× T) and f (e) = 0 for all
e ∈ E ∩ (T × S).

The next lemma relates flows and cuts: the capacity of any(s, t)-cut is an upper bound
for the value of any(s, t)-flow. Conversely, the value of any(s, t)-flow is a lower bound for
the capacity of any(s, t)-cut.

Lemma 35 Let f be any(s, t)-flow and let S be any(s, t)-cut. Then

| f | ≤ cap(S).

If S is saturated then| f | = cap(S).

Proof We have

| f | = −excess(s) = −
∑

u∈S

excess(u)

=
∑

e∈E∩(S×T)

f (e) −
∑

e∈E∩(T×S)

f (e) ≤
∑

e∈E∩(S×T)

cap(e)

= cap(S).

For a saturated cut, the inequality is an equality.

A saturated cut proves the maximality off . A saturated cut is easily extracted from a
maximum flow by means of the so-called residual network.

The residual network Gf with respect to a flowf has the same node set asG. Every
edge ofG f is induced by an edge ofG and has a so-calledresidual capacity. Let e be an
arbitrary edge ofG. If f (e) < cap(e) thene is also an edge ofG f . Its residual capacity
is r (e) = cap(e) − f (e). If f (e) > 0 thenerev is an edge ofG f . Its residual capacity is
r (erev) = f (e). Figure 7.40 shows an example.
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Figure 7.41 A path in the residual network and the resulting change of flow: A graph and an
(s, t)-flow is shown at the top. The corresponding residual networkis shown in the middle. A
path p from s to t in the residual network is shown in bold. The flow obtained from
augmentation byp is shown at the bottom.

Theorem 5 Let f be an(s, t)-flow, let Gf be the residual network with respect to f , and
let S be the set of nodes that are reachable from s in Gf .

a) If t ∈ S then f is not maximum.
b) If t /∈ S then S is a saturated cut and f is maximum.

Proof a) Let p be any simple path froms to t in G f and letδ be the minimum residual
capacity of any edge ofp. Thenδ > 0. We construct a flowf ′ of value| f | + δ. Let (see
Figure 7.41)

f ′(e) =







f (e) + δ if e is in p
f (e) − δ if erev is in p
f (e) if neithere norerev belongs top.

Then f ′ is a flow and| f ′| = | f | + δ.
b) There is no edge(v, w) in G f with v ∈ Sandw ∈ T . Hence,f (e) = cap(e) for any

e with e ∈ E ∩ (S× T) and f (e) = 0 for anye with e ∈ E ∩ (T × S), i.e., the cutS is
saturated. Thusf is maximal.

The function
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bool CHECK MAX FLOW T(
onst graph& G, node s, node t


onst edge array<NT>& 
ap, 
onst edge array<NT>& f)

checks whetherf is a maximum(s, t)-flow. It returnsfalse if this is not the case. The
implementation is easy.

We check the capacity condition for each edge and compute theexcess of all nodes.
All nodes buts andt must have excess equal to zero. We then use breadth-first search to
compute the set of nodes reachable froms in the residual graph;t must not be reachable.

〈maxflow check〉�
bool False_MF(string s)

{ 
err <<"\n\nCHECK_MAX_FLOW: " << s << "\n";

return false;

}

template <
lass NT>

bool CHECK_MAX_FLOW_T(
onst graph& G, node s, node t,


onst edge_array<NT>& 
ap, 
onst edge_array<NT>& f)

{ node v; edge e;

forall_edges(e,G)

if ( f[e℄ < 0 && f[e℄ > 
ap[e℄ )

return False_MF("illegal flow value");

node_array<NT> ex
ess(G,0);

forall_edges(e,G)

{ node v = G.sour
e(e); node w = G.target(e);

ex
ess[v℄ -= f[e℄; ex
ess[w℄ += f[e℄;

}

forall_nodes(v,G)

{ if ( v == s || v == t || ex
ess[v℄ == 0 ) 
ontinue;

return False_MF("node with non-zero ex
ess");

}

node_array<bool> rea
hed(G,false);

queue<node> Q;

Q.append(s); rea
hed[s℄ = true;

while ( !Q.empty() )

{ node v = Q.pop();

forall_out_edges(e,v)

{ node w = G.target(e);

if ( f[e℄ < 
ap[e℄ && !rea
hed[w℄ )

{ rea
hed[w℄ = true; Q.append(w); }

}

forall_in_edges(e,v)

{ node w = G.sour
e(e);

if ( f[e℄ > 0 && !rea
hed[w℄ )

{ rea
hed[w℄ = true; Q.append(w); }

}

}

if ( rea
hed[t℄ ) return False_MF("t is rea
hable in G_f");

return true;

}
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push fromv to w push fromw to v

Figure 7.42 A push: The top left shows an edgee = (v, w) in G with capacity three and flow
one. This gives rise to two edges in the residual network shown on the right. A push of one unit
of flow acrosse increases the flow acrosse by one and a push acrosserev decreases the flow
acrosse by one.

7.10.2 Algorithms
The maximum flow problem is a widely studied problem and numerous algorithms have
been proposed for it [FF63, EK72, Din70, Kar74, AO89, Gol85,GT88, CH95, CHM96,
GR97].

Our implementations are based on the preflow-push method of Goldberg and Tarjan [GT88].
It manipulates a preflow that gradually evolves into a flow. Detailed computational studies
of the preflow-push method can be found in [CG97, AKMO97] and in Section 7.10.4.

A preflow f is a function f : E −→ IR≥0 with

(1) 0 ≤ f (e) ≤ cap(e) for every edgee ∈ E and
(2) excess(v) ≥ 0 for every nodev ∈ V+

i.e., the flow conservation constraint is replaced by the weaker constraint that no node in
V+ has negative excess. We call a nodev ∈ V+ activeif its excess is positive. The residual
networkG f with respect to a preflowf is defined as in the case of a flow.

The basic operation to manipulate a preflow is apush. Let v be an active node, let
e = (v, w) be a residual edge out ofv, and letδ ≤ min(excess(v), r (e)). A push ofδ across
e changesf as follows: it increasesf (e) by δ if e is an edge ofG, and it decreasesf (erev)

by δ if e is the reversal of an edge ofG, see Figure 7.42.
A push of δ acrosse increasesexcess(w) by δ and decreasesexcess(v) by δ. A push

is calledsaturatingif δ = r (e) and is callednon-saturatingotherwise. A saturating push
acrosse removese from the residual network and either kind of push addserev to the residual
network (if it is not already there).

The question is now which pushes to perform? Goldberg and Tarjan suggested to put the
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nodes ofG (and henceG f ) onto layers witht on the bottom-most layer and to perform only
pushes with transport excess to a lower layer. We used(v) to denote the (number of the)
layer containingv. We call an edgee = (v, w) ∈ G f eligible if d(w) < d(v).

Let us summarize: a push across an edgee = (v, w) ∈ G f can be performed ifv is
active ande is eligible. It movesδ ≤ min(excess(v), r (e)) units of flow fromv to w. If e is
also an edge ofG then f (e) is increased byδ, and ife is the reversal of an edge ofG then
f (e) is decreased byδ.

What are we going to do whenv is active but there is no eligible edge out ofv? In this
situationv is relabeledby increasingd(v) by one.

We are now ready for the generic preflow-push algorithm.

/* initialization */
set f (e) = cap(e) for all edges withsource(e) = s;
set f (e) = 0 for all other edges;
setd(s) = n andd(v) = 0 for all other nodes;

/* main loop */
while there is an active node
f let v be any active node;

if there is an eligible edgee = (v, w) in G f

f pushδ acrosse for someδ ≤ min(excess(v), r (e)); g
else
f relabelv; g

g

We will show that the algorithm terminates with a maximum flow(if it terminates). Call
an edgee = (v, w) ∈ G f steepif d(w) < d(v) − 1, i.e., if it reaches down by two or more
levels.

Lemma 36 The algorithm maintains a preflow and does not generate steepedges. The
nodes s and t stay on levels 0 and n, respectively.

Proof The algorithm clearly maintains a preflow.
After the initialization, each edge inG f either connects two nodes on level zero or con-

nects a node on level zero to a node on leveln. Thus, there are no steep edges (there are
not even any eligible edges). A relabeling of a nodev does not create a steep edge since
a node is only relabeled if there are no eligible edges out of it. A push across an edge
e = (v, w) ∈ G f may add the edge(w, v) to G f . However, this edge is not even eligible.

Only active nodes are relabeled and only nodes different from s andt can be active. Thus,
s andt stay on layersn and 0, respectively.

The preceding lemma has an interesting interpretation. Since there are no steep edges,
any path fromv to t must have length (= number of edges) at leastd(v) and any path from
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v to s must have length at leastd(v) − n. Thus,d(v) is a lower bound on the distance from
v to t andd(v) − n is a lower bound on the distance fromv to s.

The next lemma shows that active nodes can always reachs in the residual network (since
they must be able to send their excess back tos). It has the important consequence thatd-
labels are bounded by 2n − 1.

Lemma 37 If v is active then there is a path fromv to s in Gf . No distance label ever
reaches2n.

Proof Let Sbe the set of nodes that are reachable fromv in G f and letT = V\S. Then
∑

u∈S

excess(u) =
∑

e∈E∩(T×S)

f (e) −
∑

e∈E∩(S×T)

f (e),

by Lemma 34. Please convince yourself that this lemma holds for preflows and not only for
flows.

There is no edge(v, w) ∈ G f with v ∈ S and w /∈ S. Thus, f (e) = 0 for every
e ∈ E ∩ (T × S). We conclude

∑

u∈S excess(v) ≤ 0.
Sinces is the only node whose excess may be negative and sinceexcess(v) > 0 we must

haves ∈ S.
Assume that a nodev is moved to level 2n. Since only active nodes are relabeled this

implies the existence of a path (and hence simple path) inG f from a node on level 2n to s
(which is on leveln). Such a path must contain a steep edge, a contradiction to Lemma 36.

Theorem 6 When the algorithm terminates, it terminates with a maximumflow.

Proof When the algorithm terminates, there are no active nodes andhence the algorithm
terminates with a flow. Call itf .

In G f there can be no path froms to t since any such path must contain a steep edge
(sinces is on leveln, t is on level 0). Thus,f is a maximum flow by Theorem 5.

There is no guarantee that the generic preflow-push algorithm terminates, as it may
choose to perform arbitrarily small pushes. However, it is fairly easy to bound the num-
ber of relabels and the number of saturating pushes.

Lemma 38 There are at most2n2 relabels and at most nm saturating pushes.

Proof No distance label ever reaches 2n by Lemma 37 and hence each node is relabeled at
most 2n times. The total number of relabels is therefore at most 2n2.

A saturating push across an edgee = (v, w) ∈ G f removese from G f . We claim that
v has to be relabeled at least twice before the next push acrosse and hence there can be
at mostn saturating pushes across any edge. To see the claim, observethat only a push
acrosserev can again adde to G f . Since pushes occur only across eligible edges,w must
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be relabeled at least twice after the saturating push acrosse and before the next push across
erev. Similarly, it takes two relabels ofv beforee becomes eligible again.

It is more difficult to bound the number of non-saturating pushes. It depends heavily
on which active node is selected for pushing, which edge is selected for pushing, and how
much flow is pushed across the selected edge. In fact, withoutfurther assumptions, the
number of non-saturating pushes is unbounded since we may choose to send only miniscule
portions of flow. We make two assumptions for the remainder ofthe section:

Maximality: Every push moves the maximal possible amount, i.e., when flowis pushed
across an eligible edgee = (v, w) out of an active nodev, the amount pushed is

δ = min(excess(v), r (e)).

This rule guarantees that every non-saturating push makes the source of the push inactive.
Persistence: When an active nodev is selected, pushes out ofv are performed until eitherv

becomes inactive (because of a non-saturating push out ofv) or until there are no eligible
edges out ofv anymore. In the latter casev is relabeled.

We study three rules for the selection of active nodes.

Arbitrary: An arbitrary active node is selected. Goldberg and Tarjan have shown that the
number of non-saturating pushes isO(n2m) when the Arbitrary-rule is used. We will
give their proof below.

FIFO : The active nodes are kept in a queue and the first node in the queue is always
selected. When a node is relabeled or activated the node is added to the rear of the
queue. The number of non-saturating pushes isO(n3) when the FIFO-rule is used. This
bound is due to Goldberg.

Highest-Level: An active node on the highest level, i.e., with maximal dist-value, is se-
lected. Observe that when a maximal level active node is relabeled it will be the unique
maximal active node after the relabel. Thus, this rule guarantees that, when a node is
selected, pushes out of the node will be performed until the node becomes inactive. The
number of non-saturating pushes isO(n2√m) when the highest-level-rule is used. This
bound is due to Cheriyan and Maheshwari [CM89]. The proof given below is due to
Cheriyan and Mehlhorn [CM99].

Lemma 39 When the Arbitrary-rule is used, the number of non-saturating pushes is O(n2m).

Proof The proof makes use of a potential function argument. Consider the potential func-
tion

8 =
∑

v;v is active

d(v).

We will show:

(1) 8 ≥ 0 always, and8 = 0 initially.



7.10 Maximum Flow 173

(2) A non-saturating push decreases8 by at least one.
(3) A relabeling increases8 by one.
(4) A saturating push increases8 by at most 2n.

Suppose that we have shown (1) to (4). By (3) and (4) and Lemma 38 the total increase of
8 is at mostn2 + nm2n = n2(1+ 2m). By (1), the total decrease can be no larger than this.
Thus, the number of non-saturating pushes can be at mostn2(1 + 2m) by (3).

It remains to show (1) to (4). (1) is obvious. For (2) we observe that a non-saturating
push deactivates a node. It may or may not activate a node at the level below. In either case,
8 decreases by at least one. For (3) we observe that a relabeling of v increasesd(v) by one,
and for (4) we observe that a saturating push may activate a node and that all distance labels
are bounded by 2n.

We turn to the FIFO-rule. Recall that it keeps the active nodes in a queue and always
selects the head of the queue. Relabeled and activated nodesare added to the rear of the
queue.

It is convenient to split the execution into phases. The firstphase starts at the beginning
of the execution and a phase ends when all nodes that were active at the beginning of the
phase have been selected from the queue. In this way each nodeis selected at most once in
each phase and hence the number of non-saturating pushes is at mostn times the number of
phases.

Lemma 40 When the FIFO-rule is used, the number of non-saturating pushes is O(n3).

Proof By the discussion preceding the lemma it suffices to show thatthe number of phases
is O(n2).

We use a potential function argument. Consider

8 = max{d(v) ; v is active} .

We show:

(1) 8 ≥ 0 always, and8 = 0 initially.
(2) A phase containing no relabel operation decreases8 by at least one.
(3) A phase containing a relabel operation increases8 by at most one.

Suppose that we have shown (1) to (3). By (3) and Lemma 38, the total increase is bounded
by 2n2. By (1), the total decrease can be no larger. Thus the number of phases containing no
relabel operation is bounded by 2n2 by (3). The total number of phases is therefore bounded
by 4n2.

It remains to show (1) to (3). (1) is obvious. For (2) we observe that if a phase contains
no relabel operation then all nodes selected in the phase getrid of their excess and push it
to a lower layer. Thus,8 decreases by at least one (it can decrease by more than one if an
active node on leveln + 1 pushes its excess back tos). For (3), we observe that pushes
move excess to a lower layer and that a relabeling of a node moves the node to one higher
level.
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We turn to the highest-level selection rule. Recall that it always selects an active node
with maximal distance label.

Lemma 41 When the Highest-Level-rule is used, the number of non-saturating pushes is
O(n2√m).

Proof We use a potential function argument. LetK =
√

m; this choice ofK will become
clear at the end of the proof. For a nodev, let

d′(v) = |{w; d(w) ≤ d(v)}|/K

and consider

8 =
∑

v;v is active

d′(v).

We split the execution into phases. We define a phase to consist of all pushes between two
consecutive changes of

d∗ = max{d(v) ; v is active}

and call a phaseexpensiveif it contains more thanK non-saturating pushes, andcheap
otherwise.

We show:

(1) The number of phases is at most 4n2.
(2) The number of non-saturating pushes in cheap phases is at most 4n2K .
(3) 8 ≥ 0 always, and8 ≤ n2/K initially.
(4) A relabeling or a saturating push increases8 by at mostn/K .
(5) A non-saturating push does not increase8.
(6) An expensive phase containingQ ≥ K non-saturating pushes decreases8 by at least

Q.

Suppose that we have shown (1) to (6). (4) and (5) imply that the total increase of8 is at
most(2n2 + mn)n/K and hence the total decrease can be at most this number plusn2/K
by (3). The number of non-saturating pushes in expensive phases is therefore bounded by
(2n3+n2+mn2)/K . Together with (2) we conclude that the total number of non-saturating
pushes is at most

(2n3 + n2 + mn2)/K + 4n2K .

Observing thatn = O(m) and that the choiceK =
√

m balances the contributions from
expensive and cheap phases, we obtain a bound ofO(n2√m).

It remains to prove (1) to (6). For (1) we observe thatd∗ = 0 initially, d∗ ≥ 0 always,
and that only a relabel can increased∗. Thus,d∗ is increased at most 2n2 times, decreased
no more than this, and hence changed at most 4n2 times. (2) follows immediately from (1)
and the definition of a cheap phase. (3) is obvious. (4) follows from the observation that
d′(v) ≤ n/K for all v and at all times. For (5) observe that a non-saturating push across an
edge(v, u) deactivatesv, activatesu (if it is not already active), and thatd′(u) ≤ d′(v).
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For (6) consider an expensive phase containingQ ≥ K non-saturating pushes. By defi-
nition of a phase,d∗ is constant during a phase, and hence allQ non-saturating pushes must
be out of nodes at leveld∗. The phase is finished either because leveld∗ becomes empty or
because a node is moved from leveld∗ to leveld∗ +1. In either case, we conclude that level
d∗ containsQ ≥ K nodes at all times during the phase. Thus, each non-saturating push in
the phase decreases8 by at least one (sinced′(u) ≤ d′(v) − 1 for a push fromv to u).

7.10.3 A First Implementation
We describe a first implementation of the generic preflow-push algorithm. The implemen-
tation is straightforward. We initialize a preflow, refine the flow into a flow, check that the
computed flow is maximal, and return the value of the flow.

We want to execute the program with different rules for selection from the set of active
nodes and therefore give the function two template parameters: the number typeNT and the
implementation of the setU of active nodes.

We want to count the number of pushes, the number of relabels,and the number of
inspections of edges and therefore introduce appropriate parameters.

〈maxflow basic〉�
template<
lass NT, 
lass SET>

NT MAX_FLOW_BASIC_T(
onst graph& G, node s, node t,


onst edge_array<NT>& 
ap, edge_array<NT>& flow,

SET& U,

int& num_pushes, int& num_edge_inspe
tions,

int& num_relabels)

{ if (s == t) error_handler(1,"MAXFLOW: sour
e == sink");

〈MF BASIC: initialization〉
〈MF BASIC: main loop〉

#ifndef LEDA_CHECKING_OFF

assert(CHECK_MAX_FLOW_T(G,s,t,
ap,flow));

#endif

return ex
ess[t℄;

}

Initialization and Data Structures: We use the following data structures and variables:
for each edgee we store the flow acrosse in flow[e] and for each nodev we store the level
of v and the excess ofv in dist[v] andexcess[v], respectively. We store the active nodes in
U .

We initialize the flow and the excess to zero, we put all nodes except fors on level zero,
we puts on leveln, we saturate all edges out ofs, and initializeU with all nodes of positive
excess. Thus
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〈MF BASIC: initialization〉�
〈initialize flow and excess and saturate edges out of s〉
〈MF BASIC: initialize dist and U〉
〈MF BASIC: initialize counters〉

where

〈initialize flow and excess and saturate edges out of s〉�
flow.init(G,0);

if (G.outdeg(s) == 0) return 0;

int n = G.number_of_nodes(); int max_level = 2*n - 1;

int m = G.number_of_edges();

node_array<NT> ex
ess(G,0);

// saturate all edges leaving s

edge e;

forall_out_edges(e,s)

{ NT 
 = 
ap[e℄;

if (
 == 0) 
ontinue;

node v = target(e);

flow[e℄ = 
;

ex
ess[s℄ -= 
;

ex
ess[v℄ += 
;

}

〈MF BASIC: initialize dist and U〉�
node_array<int> dist(G,0); dist[s℄ = n;

node v;

forall_nodes(v,G)

if ( ex
ess[v℄ > 0 ) U.insert(v,dist[v℄);

〈MF BASIC: initialize counters〉�
num_relabels = num_pushes = num_edge_inspe
tions = 0;

Implementations of the Set of Active Nodes: The implementation ofU must support the
following operations:

node U.del( ); delete a node fromU and return it (returnnil if U is empty).

U.insert(nodev, int d); insert a nodev with dist-valued. This version is to be used in the
initialization phase and when a node is reinserted into the set of active nodes after a relabel.

U.insert0(nodev, int d); insert a nodev with dist-valued. This version is to be used
when a node gets activated by a push into it.

bool U.empty( ); return true ifU is empty.

U.clear( ); remove all elements fromU .

Construction and Destruction.
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We give three implementations:

TheFIFO implementationkeeps the nodes inU in a queue. Insertions add to the end of
the queue, and deletions remove from the front of the queue.

〈FIFO implementation of SET〉�
#in
lude <LEDA/list.h>


lass fifo_set{

list<node> L;

publi
:

fifo_set(){}

node del() { if (!L.empty()) return L.pop(); else return nil; }

void insert(node v, int d) { L.append(v); }

void insert0(node v, int d) { L.append(v); }

bool empty() { return L.empty(); }

void 
lear() { L.
lear(); }

~fifo_set(){}

};

The MFIFO (modified FIFO) implementationkeeps the nodes inU in a linear list and
always selects the first node from the list. Nodes that are reinserted after a relabel operation
are added to the front of the linear list, and nodes that get activated by a push into them are
added to the rear of the list. In this way the same node is selected until all excess is removed
from the node. The MFIFO implementation guarantees anO(n3) bound on the number of
non-saturating pushes, see the exercises.

〈MFIFO implementation of SET〉�
#in
lude <LEDA/list.h>


lass mfifo_set{

list<node> L;

publi
:

mfifo_set(){}

node del() { if ( !L.empty() ) return L.pop(); else return nil; }

void insert(node v, int d) { L.push(v); }

void insert0(node v, int d){ L.append(v); }

bool empty() { return L.empty(); }

void 
lear() { L.
lear(); }

~mfifo_set(){}

};

Thehighest-level implementationof U maintains an arrayA of linear lists with index range
[0 .. maxlevel], wheremaxlevelis an argument of the constructor. The listA[d] contains all
nodesv that were inserted byinsert(v, d) or insert0(v, d). The implementation maintains
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a variablemaxsuch thatA[d] is empty ford > max. In insert0we exploit the fact that it
always inserts below the maximal level.

〈Highest level implementation of SET〉�
#in
lude <LEDA/list.h>

#in
lude <LEDA/array.h>


lass hl_set{

int max, max_lev;

array<list<node> > A;

publi
:

hl_set(int max_level):A(max_level+1)

{ max = -1; max_lev = max_level;}

node del()

{ while (max >= 0 && A[max℄.empty()) max--;

if (max >= 0) return A[max℄.pop(); else return nil;

}

void insert(node v, int d)

{ A[d℄.push(v);

if (d > max) max = d;

}

void insert0(node v, int d) { A[d℄.append(v); }

bool empty()

{ while (max >= 0 && A[max℄.empty()) max--;

return ( max < 0 );

}

~hl_set(){}

void 
lear()

{ for (int i = 0; i <= max_lev; i++) A[i℄.
lear();

max = -1;

}

};

The Main Loop: In the main loop we select a nodev from U . We callv thecurrentnode.
If v does not exist, we break from the main loop, and ifv is equal tot , we continue to the
next iteration of the main loop. So assume otherwise. We try to push the excess ofv to its
neighbors in the residual graph. We inspect first the residual edges that correspond to edges
out ofv in G and then the residual edges that correspond to edges intov in G.

If v remains active after saturating all residual edges out of it, we relabelv and reinsert it
into U .

〈MF BASIC: main loop〉�
for(;;)

{

node v = U.del();

if (v == nil) break;

if (v == t) 
ontinue;
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NT ev = ex
ess[v℄; // ex
ess of v

int dv = dist[v℄; // level of v

edge e;

〈MF BASIC: push across edges out of v〉
if ( ev > 0 )

{ 〈MF BASIC: push across edges into v〉 }

ex
ess[v℄ = ev;

if (ev > 0)

{ dist[v℄++;

num_relabels++;

U.insert(v,dist[v℄);

}

}

Pushing Excess Out of a Node: Let v be a node with positive excess. We want to push
flow out of v along eligible edges. An edgee ∈ G f is either also an edge ofG (and then
flow[e] < cap[e]) or the reversal of an edge ofG (and thenflow[erev] > 0). We therefore
iterate over all edges out ofv and all edges intov.

For each edgee out of v we push max(excess[v], cap[e] − flow[e]). If a push decreases
the excess ofv to zero we break from the loop.

〈MF BASIC: push across edges out of v〉�
for (e = G.first_adj_edge(v); e; e = G.adj_su

(e))

{ num_edge_inspe
tions++;

NT& fe = flow[e℄;

NT r
 = 
ap[e℄ - fe;

if (r
 == 0) 
ontinue;

node w = target(e);

int dw = dist[w℄;

if ( dw < dv ) // equivalent to ( dw == dv - 1 )

{ num_pushes++;

NT& ew = ex
ess[w℄;

if (ew == 0) U.insert0(w,dw);

if (ev <= r
)

{ ew += ev; fe += ev;

ev = 0; // stop: ex
ess[v℄ exhausted

break;

}

else

{ ew += r
; fe += r
;

ev -= r
;

}

}

}

The code for the edges intov is symmetric.
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〈MF BASIC: push across edges into v〉�
for (e = G.first_in_edge(v); e; e = G.in_su

(e))

{ num_edge_inspe
tions++;

NT& fe = flow[e℄;

if (fe == 0) 
ontinue;

node w = sour
e(e);

int dw = dist[w℄;

if ( dw < dv ) // equivalent to ( dw == dv - 1 )

{ num_pushes++;

NT& ew = ex
ess[w℄;

if (ew == 0) U.insert0(w,dw);

if (ev <= fe)

{ fe -= ev; ew += ev;

ev = 0; // stop: ex
ess[v℄ exhausted

break;

}

else

{ ew += fe; ev -= fe;

fe = 0;

}

}

}

Our first implementation is now complete. Let us see how it performs. We investigate the
worst case complexity first and then give experimental data.

Worst Case Running Time: The running time of our implementation, not counting the
time spent in the implementation ofU , is proportional to the number of edge inspections.
We bound the number of edge inspections first and then turn to the time spent in the imple-
mentation ofU .

Consider an arbitrary iteration of the main loop and letv be the node selected in the
iteration. In the iteration we inspect all edges incident tov, and either perform a push
across an edge incident tov or relabelv. Thus the number of inspections of an edgee is
bounded by the number of relabels of the endpoints ofe plus the number of pushes out of
the endpoints ofe. No node is relabeled more than 2n times and hence the total number of
edge inspections due to relabels isO(nm). If P denotes the total number of pushes then the
number of edge inspections due to pushes isO(deg∗ · P), wheredeg∗ is the maximal degree
of any node. The number of pushes isO(n3) with the FIFO or MFIFO implementation for
the set of active nodes and isO(n2√m) with the highest-level implementation.

We turn to the time spent in maintaining the set of active nodes. For the FIFO and
MFIFO implementation each operation onU takes constant time, and for the highest-level
implementation each operation onU takes constant time plus the number of decreases of
max. The number of decreases ofmax is bounded by the total increase ofmaxandmax
is only increased by relabel operations. A relabel increases maxby one. We conclude the
total change ofmaxis bounded byO(n2) by Lemma 38. The time spent in maintaining the
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set of active nodes is thereforeO(n2) plus the number of operations onU . The number of
operations onU is certainly bounded by the number of edge inspections.

We summarize in:

Theorem 7 The worst case running time of our implementation is O(n3 · deg∗) with the
FIFO- or MFIFO-rule and is O(n2√m ·deg∗) with the highest-level-rule, where deg∗ is the
maximum degree of any node.

Thedeg∗-factor in the running time is easily removed by means of the so-calledcurrent
edge data structure. We used it already in Section 7.6. We found that the improvement is
theoretical and does not show positively in the observed running times for all graphs where
the average degree is bounded by 20. We therefore did not include the current edge data
structure in our implementations.

We maintain for each nodev a current out-edgecur outedge[v] and a current in-edge
cur in edge[v] with the property that:

• no edge precedingcur outedge[v] in the list of edges out ofv is eligible and

• no edge precedingcur in edge[v] in the list of edges intov is eligible.

When we push excess out ofv we start searching for eligible edges atcur outedge[v] and
cur in edge[v], respectively. When we relabelv we resetcur outedge[v] andcur in edge[v]
to the first edge out ofv and intov, respectively.

The implementation is correct since the only way a non-eligible edgee = (v, w) can
become eligible is through a relabeling ofv.

The current edge implementation has the property that for any nodev and between con-
secutive relabels ofv the time spent in searching for eligible edges incident tov is pro-
portional to the degree ofv plus the number of pushes performed. The total time spent in
searching for eligible edges is therefore bounded byO(nm) plus the number of pushes.

Theorem 8 The worst case running time of our implementation with the current edge data
structure is O(n3) with the FIFO- or MFIFO-rule and is O(n2√m) with the highest-level-
rule.

Four Generators: We describe four generators for max flow problems.
The first generator produces a graph withn nodes and 2n + m edges. It first produces a

random graph withn nodes andm edges and makess andt the first and the last node ofG,
respectively. It then adds edges(s, v) and(v, t) for all nodesv. The capacities are random
numbers between 2 and 11 for all edges leavings and between 1 and 10 for all other edges.

〈 maxflow gen.c〉+�
void max_flow_gen_rand(GRAPH<int,int>& G, node& s, node& t, int n, int m)

{ G.
lear();

random_graph(G,n,m);

s = G.first_node(); t = G.last_node();
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node v; edge e;

forall_nodes(v,G) { G.new_edge(s,v); G.new_edge(v,t); }

forall_edges(e,G)

G[e℄ = ( G.sour
e(e) != s ? rand_int(1,10) : rand_int(2,11) );

}

The next two generators are due to Cherkassky and Goldberg [CG97]. For each integerk,
k ≥ 1, they generate the networks shown in Figure 7.43.

〈 maxflow gen.c〉+�
void max_flow_gen_CG1(GRAPH<int,int>& G, node& s, node& t, int n)

{ G.
lear();

if (n < 1)

error_handler(1,"max_flow_gen_CG1: n must be at least one");

array<node> V(2*n);

int i;

for(i = 0; i < 2*n; i++) V[i℄ = G.new_node();

s = V[0℄; t = V[2*n - 1℄;

node v = V[n℄;

for (i = 0; i < n; i++)

{ G.new_edge(V[i℄,V[i + 1℄, n - i);

G.new_edge(V[i℄,v, 1);

}

G.new_edge(V[n - 1℄,V[2*n - 1℄, 1);

G.new_edge(V[n - 1℄,V[n℄, 1);

for (i = n; i <= 2*n - 2 ; i++ ) G.new_edge(V[i℄,V[i + 1℄,n);

}

void max_flow_gen_CG2(GRAPH<int,int>& G, node& s, node& t, int n)

{ G.
lear();

if (n < 1)

error_handler(1,"max_flow_gen_CG2: n must be at least one");

array<node> V(2*n);

int i;

for(i = 0; i < 2*n; i++) V[i℄ = G.new_node();

s = V[0℄; t = V[2*n-1℄;

for (i = 0; i < n; i++ ) G.new_edge(V[i℄,V[2*n - 1 - i℄, 1);

for (i = 0; i <= n - 1; i++ ) G.new_edge(V[i℄,V[i + 1℄, 2*n);

for (i = n; i <= 2*n - 2; i++ ) G.new_edge(V[i℄,V[i + 1℄, n);

}

Observe the order in which we generate the edges out of nodei : the edge fromi to 2n−1−i
precedes the edge to nodei + 1.

The fourth generator was suggested by Ahuja, Magnanti, and Orlin [AMO93]. The gen-
erated network is also shown in Figure 7.43.
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Figure 7.43 The generatorsmaxflowgenCG1, maxflowgenCG2, andmaxflowgenAOM
generate the graphs shown. All three generators take the parametern as an input.

〈 maxflow gen.c〉+�
void max_flow_gen_AMO(GRAPH<int,int>& G, node& s, node& t, int n)

{ G.
lear();

if (n < 1)

error_handler(1,"max_flow_gen_AMO: n must be at least one");

array<node> V(n);

s = G.new_node();

int i;
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for(i = 0; i < n; i++) V[i℄ = G.new_node();

t = G.last_node();

for (i = n - 2; i >= 0; i-- )

{ G.new_edge(s,V[i℄, 10000);

G.new_edge(V[i℄,V[i + 1℄, 1);

}

}

Running Times: Table 7.10 shows the behavior of our first implementation of the preflow-
push method with three different selection rules and for four different kinds of graphs. For
each of the four generators above we ran the casesn = 500 andn = 1000. For the random
graph generator we usedm = 3n. The number of pushes, the number of edge inspections,
the number of relabels, and the running time quadruples or more than quadruples whenn is
doubled.

In the next section we will describe several optimizations which will lead to a dramatic
improvement of observed running time. None of them improvesthe worst case behavior,
however.

7.10.4 Optimizations
What is the best case running time of our implementation? Therunning time is�(n2) if
�(n) nodes need to be lifted above leveln. This is usually the case. The best case behavior
of the other parts of the algorithm isO(m) and hence the cost of relabeling dominates the
best case running time. In this section we will describe several heuristics that frequently
reduce the time spent in relabeling nodes and as a side-effect reduce the time spent in all
other operations. The heuristics will turn the preflow-pushalgorithm into a highly effective
algorithm for solving flow problems.

Consider the example shown in Figure 7.44. We have nodes 0 ton − 1, s = 0, t = n − 1,
and edges(i , i + 1) for all i , 0 ≤ i < n − 1. All edges have capacity two, except for edge
(n − 2, n − 1) which has capacity one.

Let us see what the preflow-push method does. In the initialization phase we saturate the
edge(0, 1), put s on leveln, and all other nodes on level 0. Node 1 has positive excess.
We lift node 1 to level 1 and push its excess to node 2. We lift node 2 to level 1 and push
its excess to node 3. Continuing in this way the excess is pushed to noden − 2. Only one
unit can be forwarded tot and one unit remains on noden − 2. At this point the value of
the maximum flow has been determined. There is one unit of flow into t and this is the
maximum possible. However, the algorithm does not know thisfact yet and it will take the
algorithm a long time to discover it. We lift noden − 2 to level 2 and push the unit back to
noden − 3. Continuing in this way we lift nodesn − 2, n − 3, . . . , 2 to level 2 and push the
excess back to node 1. Then we lift node 1 to level 2 and then level 3, and . . . . Continuing
in this way, we will invest�(n2) relabels (and pushes) until nodes 1 ton−1 end up at level
n + 1. At this point we can push the excess back tos and the algorithm terminates.
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Generator Rule Pushes Inspections Relabels Time

rand FIFO 1.764e+05 2.467e+06 2.34e+05 1.42

6.831e+05 9.833e+06 9.28e+05 5.88

HL 1.775e+05 2.672e+06 2.34e+05 1.47

7.442e+05 1.073e+07 9.28e+05 6.04

MFIFO 2.262e+05 2.566e+06 2.34e+05 1.28

8.524e+05 1.018e+07 9.28e+05 5.25

CG1 FIFO 1.761e+05 9.63e+05 2.281e+05 0.81

6.835e+05 4.121e+06 8.92e+05 3.94

HL 1.875e+05 6.009e+06 1.885e+05 2.75

7.5e+05 4.486e+07 7.52e+05 20.47

MFIFO 1.682e+05 8.629e+05 2.207e+05 0.68

6.713e+05 3.608e+06 8.801e+05 3.08

CG2 FIFO 2.864e+06 1.367e+07 2.751e+06 12.12

1.149e+07 5.479e+07 1.1e+07 50.97

HL 1.695e+06 1.226e+07 2.752e+06 11.33

6.764e+06 4.902e+07 1.1e+07 43.17

MFIFO 2.864e+06 1.367e+07 2.751e+06 11.02

1.149e+07 5.479e+07 1.1e+07 45.14

AMO FIFO 500 4.498e+06 1.5e+06 3.27

1000 1.8e+07 6e+06 13.13

HL 500 4.498e+06 1.5e+06 3.79

1000 1.8e+07 6e+06 15.25

MFIFO 500 4.498e+06 1.5e+06 2.74

1000 1.8e+07 6e+06 11.13

Table 7.10 The basic implementation of the preflow-push algorithm. We show its behavior for
four different kinds of graphs and three different selection rules. For each generator we ran the
casesn = 500 andn = 1000. For the random graph generator we usedm = 3n. The program
max flow basictime in the demo directory allows readers to make their own experiments.

We describe five optimizations. The first optimization is based on the observation that
nodes on layern and above can be treated more simply than nodes below leveln. The
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0 1 2 n-2 n-1n-3
2 2 12

Figure 7.44 A network with nodes 0, . . . ,n − 1 and edges(i , i + 1) for all i , 0 ≤ i < n − 1. All
edges have capacity two except for edge(n − 2, n − 1) which has capacity one.

second and third optimizations increase distance labels more aggressively, the fourth opti-
mization splits the execution into two phases (where a maximum preflow is computed in
the first phase and the remaining excess is pushed back tos in the second phase), and the
fifth optimization recognizes nodes that have no chance of forwarding their flow tot . The
combined effect of the five heuristics is to reduce the running time dramatically for many
instances of the max flow problem, see Table 7.16 on page 204.

Large Distance Labels: We call a nodev high if d(v) ≥ n and low otherwise and show
that high nodes can be treated simpler than low nodes.

What distinguishes high nodes from low nodes? There can never be a path of residual
edges from a high node tot as any such path would necessarily contain a steep edge. All
excess of active high nodes must therefore flow back tos. The situation is different for
active low nodes. Some of their excess can be pushed tot and some of their excess must
flow back tos.

How can we exploit the difference? All excess of active high nodes must flow back to
s. The excess reaches the active high nodes through edgese ∈ E with f (e) > 0. This
suggests that it can be sent back through such edges.

We therefore define

E∗
f =

{

erev ; e ∈ E and f (e) > 0
}

and use only edges inE∗
f when pushing out of high active nodes. We relabel a high active

node when there are no eligible edges inE∗
f out of it.

/* initialization */
set f (e) = cap(e) for all edges withsource(e) = s;
set f (e) = 0 for all other edges;
setd(s) = n andd(v) = 0 for all other nodes;

/* main loop */
while there is an active node
f let v be any active node;

if d(v) < n and there is an eligible edgee = (v, w) ∈ E f or
d(v) ≥ n and there is an eligible edgee = (v, w) ∈ E∗

f

f pushδ acrosse for δ = min(excess(v), r (e)); g
else
f relabelv; g

g
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We need to show that the modified algorithm is correct. We adapt the correctness proof
of the basic preflow-push algorithm. The modified algorithm may create steep edges. We
show that no steep edge can end below leveln − 1 and that every steep edge belongs to
E f \ E∗

f ; this modifies Lemma 36.

Lemma 42 Any residual edge e= (v, w) that becomes steep in the modified algorithm
satisfies e∈ E f \ E∗

f and d(w) ≥ n − 1.

Proof A steep edgee = (v, w) can only be created by a relabeling ofv. A nodev is only
relabeled when there is no eligible edge(v, w) ∈ E∗

f . Thus only edges inE f \ E∗
f can

become steep.
A nodev with d(v) < n is only relabeled when there is no eligible edge out of it. Thus

a relabeling ofv that creates a steep edgee = (v, w) can only occur whend(v) ≥ n. The
edgee was not steep before the relabeling ofv and henced(w) ≥ n − 1.

We next show that every active node can reachs in G∗
f ; this modifies Lemma 37. The

proof carries over almost literally.

Lemma 43 If v is active then there is a path fromv to s in G∗
f . No distance label ever

reaches2n.

Proof Let Sbe the set of nodes that are reachable fromv in G∗
f and letT = V\S. Then

∑

u∈S

excess(u) =
∑

e∈E∩(T×S)

f (e) −
∑

e∈E∩(S×T)

f (e),

by Lemma 34.
There is no edge(v, w) ∈ G∗

f with v ∈ S and w /∈ S. Thus, f (e) = 0 for every
e ∈ E ∩ (T × S). We conclude

∑

u∈S excess(v) ≤ 0.
Sinces is the only node whose excess may be negative and sinceexcess(v) > 0 we must

haves ∈ S.
Assume that a nodeu is moved to level 2n. Since only active nodes are relabeled this

implies the existence of a path (and hence simple path) inG∗
f from a node on level 2n to s

(which is on leveln). Such a path must contain a steep edge, a contradiction to Lemma 42.

Theorem 9 When the modified algorithm terminates it terminates with a maximum flow. All
bounds on the number of relabels and the number of pushes shown for the basic algorithm
hold also true for the modified algorithm.

Proof When the algorithm terminates there are no active nodes and hence the algorithm
terminates with a flow. Call itf .

Assume that there is a pathp in G f from s to t . Write p = p1 ⊙ p2 wherep1 ends in a
node with level at leastn andp2 contains no node with leveln or more. Thenp2 starts with
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a node on leveln − 1 and contains no steep edges. Both claims follow from Lemma 42.
However,p2 contains at mostn−1 nodes (since it cannot contains) and hence must contain
a steep edge.

Thus there is no path froms to t in G f and hencef is optimal by Theorem 5.

The changes in the program are minor. We push across the edgesout of v only whenv

lives on a layer less thann.

〈MF LH: main loop〉�
for(;;)

{

node v = U.del();

if (v == nil) break;

if (v == t) 
ontinue;

NT ev = ex
ess[v℄; // ex
ess of v

int dv = dist[v℄; // level of v

edge e;

if ( dist[v℄ < n )

{ 〈MF BASIC: push across edges out of v〉 }

if ( ev > 0 )

{ 〈MF BASIC: push across edges into v〉 }

ex
ess[v℄ = ev;

if (ev > 0)

{ dist[v℄++;

num_relabels++;

U.insert(v,dist[v℄);

}

}

The procedure MAXFLOW LH T results from MAXFLOW BASIC T by replacing the
main loop. Table 7.11 shows the effect of distinguishing between low and high nodes. The
effect is small and significant savings are only observed forthe CG2-generator.

The Local Relabeling Heuristic: The local relabeling heuristicapplies whenever a node
is relabeled. It increases the dist-value ofv to

1 + min
{

d(w) ; (v, w) ∈ G f
}

.

Observe thatv is active whenever it is relabeled and that an active node hasat least one
outgoing edge inG f . The expression above is therefore well defined. Whenv is relabeled,
none of the outgoing edges is eligible and henced(w) ≥ d(v) for all (v, w) ∈ G f . Thus,
the local relabeling heuristic increasesd(v) by at least one. It may increase it by more than
one.

The correctness of the heuristic follows from the followingalternative description: when
a node is relabeled, continue to relabel it until there is an eligible edge out of it.

The local relabeling heuristic is easily incorporated intoour implementation. We main-
tain a variabledmin, which we initialize to MAXINT before we scan the edges incident
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Generator Rule Pushes Inspections Relabels Time

rand FIFO 1.728e+05 2.426e+06 2.27e+05 1.51

1.726e+05 2.422e+06 2.269e+05 1.54

HL 1.811e+05 2.654e+06 2.27e+05 1.6

1.81e+05 2.649e+06 2.269e+05 1.64

MFIFO 2.164e+05 2.513e+06 2.27e+05 1.36

2.16e+05 2.508e+06 2.268e+05 1.4

CG1 FIFO 1.761e+05 9.63e+05 2.281e+05 0.85

1.761e+05 9.63e+05 2.281e+05 0.9

HL 1.875e+05 6.009e+06 1.885e+05 2.83

1.875e+05 6.009e+06 1.885e+05 2.88

MFIFO 1.682e+05 8.629e+05 2.207e+05 0.73

1.682e+05 8.629e+05 2.207e+05 0.89

CG2 FIFO 2.864e+06 1.367e+07 2.751e+06 12.82

2.54e+06 1.221e+07 2.544e+06 11.98

HL 1.695e+06 1.226e+07 2.752e+06 11.31

1.57e+06 1.12e+07 2.627e+06 11.24

MFIFO 2.864e+06 1.367e+07 2.751e+06 11.6

2.54e+06 1.221e+07 2.544e+06 10.87

Table 7.11 Effect of low-high distinction. We show the behavior for three different kinds of
graphs and three different selection rules. For each generator we ran the casen = 500. For the
random graph generator we usedm = 3n. For each case we give the running time of
MAX FLOW BASIC T (first line) and of MAX FLOW LH T (second line). Use the program
max flow lh time in the demo directory to perform your own experiments.

to the current active nodev. Let e = (v, w) be a residual edge. Ife is eligible, i.e.,
d(w) < d(v), we push acrosse, and if e is not eligible, i.e,d(w) ≥ d(v), we setdmin to
min(dmin, d(w)). If v is still active after scanning all residual edges incident to it, we can
setd(v) to 1+ dmin.

We obtain

〈push across edges out of v〉�
for (e = G.first_adj_edge(v); e; e = G.adj_su

(e))

{ num_edge_inspe
tions++;

NT& fe = flow[e℄;
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NT r
 = 
ap[e℄ - fe;

if (r
 == 0) 
ontinue;

node w = target(e);

int dw = dist[w℄;

if ( dw < dv ) // equivalent to ( dw == dv - 1 )

{ num_pushes++;

NT& ew = ex
ess[w℄;

if (ew == 0) U.insert0(w,dw);

if (ev <= r
)

{ ew += ev; fe += ev;

ev = 0; // stop: ex
ess[v℄ exhausted

break;

}

else

{ ew += r
; fe += r
;

ev -= r
;

}

}

else { if ( dw < dmin ) dmin = dw; }

}

The code for the edges intov is symmetric.

〈push across edges into v〉�
for (e = G.first_in_edge(v); e; e = G.in_su

(e))

{ num_edge_inspe
tions++;

NT& fe = flow[e℄;

if (fe == 0) 
ontinue;

node w = sour
e(e);

int dw = dist[w℄;

if ( dw < dv ) // equivalent to ( dw == dv - 1 )

{ num_pushes++;

NT& ew = ex
ess[w℄;

if (ew == 0) U.insert0(w,dw);

if (ev <= fe)

{ fe -= ev; ew += ev;

ev = 0; // stop: ex
ess[v℄ exhausted

break;

}

else

{ ew += fe; ev -= fe;

fe = 0;

}

}

else { if ( dw < dmin ) dmin = dw; }

}

The main loop turns into
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〈MF LRH: main loop〉�
for(;;)

{

node v = U.del();

if (v == nil) break;

if (v == t) 
ontinue;

NT ev = ex
ess[v℄; // ex
ess of v

int dv = dist[v℄; // level of v

int dmin = MAXINT; // for lo
al relabeling heuristi


edge e;

if (dv < n)

{ 〈push across edges out of v〉 }

if ( ev > 0 )

{ 〈push across edges into v〉 }

ex
ess[v℄ = ev;

if (ev > 0)

{ dist[v℄ = 1 + dmin;

num_relabels++;

U.insert(v,dist[v℄);

}

}

The procedure MAXFLOW LRH T results from MAXFLOW BASIC T by replacing the
main loop. Table 7.12 shows the combined effect of the local relabeling heuristic and the
low-high distinction.

The Global Relabeling Heuristic: Theglobal relabeling heuristicupdates the dist-values
of all nodes. It sets

d(v) =



















µ(v, t) if there is a path fromv to t in G f

n + µ∗(v, s) if there is a path fromv to s in G∗
f but no

path fromv to t in G f

2n − 1 otherwise

Hereµ(v, t) andµ∗(v, s) denote the lengths (= number of edges) of the shortest paths from
v to t in G f and fromv to s in G∗

f , respectively. The reader should convince himself that
the global relabeling heuristic does not generate any steepedges.

The global relabeling heuristic can be implemented by breadth-first search and requires
time O(m). It should therefore not be applied too frequently. We will apply it everyh · m
edge inspections for some suitable constanth. In this way�(m) time is spent between ap-
plications of the global relabel heuristic and hence the worst case running time is increased
by at most a constant factor. The best case can improve significantly.

In our example from the beginning of the section, the global relabeling heuristic is highly
effective. Assume that it is applied after the edge(n−2, n−1) is saturated. It will put node
i on leveln + i for all i , 1 ≤ i ≤ n − 2, and the excess on noden − 2 will flow back tos in
a series ofn pushes. In this way the running time decreases from�(n2) to O(n).
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Generator Rule Pushes Inspections Relabels Time

rand FIFO 1.878e+05 2.554e+06 2.349e+05 1.51

1.945e+05 1.949e+06 1.498e+05 1.25

HL 1.915e+05 2.768e+06 2.349e+05 1.6

1.915e+05 2.04e+06 1.36e+05 1.27

MFIFO 2.332e+05 2.644e+06 2.348e+05 1.39

2.332e+05 1.986e+06 1.457e+05 1.17

CG1 FIFO 1.761e+05 9.63e+05 2.281e+05 0.85

2.234e+05 7.007e+05 1.403e+05 0.68

HL 1.875e+05 6.009e+06 1.885e+05 2.8

1.875e+05 5.726e+06 9.438e+04 2.67

MFIFO 1.682e+05 8.629e+05 2.207e+05 0.71

1.682e+05 5.482e+05 1.16e+05 0.52

CG2 FIFO 2.54e+06 1.221e+07 2.544e+06 11.35

2.216e+06 9.529e+06 1.82e+06 9.19

HL 1.57e+06 1.12e+07 2.627e+06 10.35

1.57e+06 7.51e+06 1.377e+06 7.41

MFIFO 2.54e+06 1.221e+07 2.544e+06 10.35

2.54e+06 9.996e+06 1.796e+06 8.99

Table 7.12 Effect of low-high distinction and local relabeling heuristic. We show the behavior
for three different kinds of graphs and three different selection rules. For each generator we ran
the casen = 500. For the random graph generator we usedm = 3n. For each case we give the
running time of MAX FLOW LH T (first line) and of MAX FLOW LRH T (second line). The
local relabeling heuristic results in a considerable saving in all cases. Use maxflow lrh time in
the demo directory to perform your own experiments.

We turn to the implementation.
We define two functionscomputedist t andcomputedist s that compute the distance tot

ands, respectively. Both functions need access to the residual graph and hence have param-
etersG, flow, andcap. We also provide them with the nodet and the nodes, respectively.
The functions store the computed distances indist. It is assumed thatdist[v] ≥ n for all
nodesv prior to a call ofcomputedist t and thatdist[v] = 2 ∗ n − 1 for all nodesv that
cannot reacht in G f prior to a call ofcomputedist s; the latter function also assumes that
nodes that can reacht in G f have a distance value less thann.
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The calls insert all active nodes with their new distance labels intoU . It is assumed that
U is empty prior to a call ofcomputedist t and thatU contains all active nodes that can
reacht in G f prior to a call ofcomputedists.

The functions are realized by breadth-first search and henceneed a queueQ. We provide
it as a parameter. It is assumed that the queue is empty prior to a call of both functions.
Both functions leaveQ empty when they terminate.

The functioncomputedist t also computes for eachd, 0 ≤ d < n, the number of nodes
v with dist[v] = d and stores the number incount[d]; this count will be needed in the
so-called gap heuristic to be described later.

The details of both functions are fairly simple. Incomputedist t we perform a “back-
ward” breadth-first search starting att . Whenever a new nodew is reached, say from node
v, we setdist[w] to 1+dist[v], we insertw into U if it is active, we increasecount[dist[w]],
and we addw to the rear ofQ. Since we are computing distances tot ands, respectively,
all edges are considered in their reverse direction.

〈maxflow dist st〉+�
template<
lass NT, 
lass SET>

void 
ompute_dist_t(
onst graph& G, node t, 
onst edge_array<NT>& flow,


onst edge_array<NT>& 
ap,


onst node_array<NT>& ex
ess, node_array<int>& dist,

SET& U, b_queue<node>& Q, array<int>& 
ount)

{

int n = G.number_of_nodes();

Q.append(t);

dist[t℄ = 0;


ount.init(0);


ount[0℄ = 1;

while ( !Q.empty() )

{ node v = Q.pop();

int d = dist[v℄ + 1;

edge e;

for(e = G.first_adj_edge(v); e; e = G.adj_su

(e))

{ if ( flow[e℄ == 0 ) 
ontinue;

node u = target(e);

int& du = dist[u℄;

if ( du >= n )

{ du = d;

Q.append(u); 
ount[d℄++;

if ( ex
ess[u℄ > 0 ) U.insert(u,d);

}

}

for(e = G.first_in_edge(v); e; e = G.in_su

(e))

{ if ( 
ap[e℄ == flow[e℄ ) 
ontinue;

node u = sour
e(e);

int& du = dist[u℄;

if ( du >= n )

{ du = d;

Q.append(u); 
ount[d℄++;
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if (ex
ess[u℄ > 0) U.insert(u,d);

}

}

}

}

The “backward” breadth-first search froms is simpler because it only needs to consider
edges inG∗

f .

〈maxflow dist st〉+�
template<
lass NT, 
lass SET>

void 
ompute_dist_s(
onst graph& G, node s, 
onst edge_array<NT>& flow,


onst node_array<NT>& ex
ess, node_array<int>& dist,

SET& U, b_queue<node>& Q)

{

int n = G.number_of_nodes();

int max_level = 2*n - 1;

Q.append(s);

dist[s℄ = n;

while ( !Q.empty() )

{ node v = Q.pop();

int d = dist[v℄ + 1;

edge e;

for(e = G.first_adj_edge(v); e; e = G.adj_su

(e))

{ if ( flow[e℄ == 0 ) 
ontinue;

node u = target(e);

int& du = dist[u℄;

if ( du == max_level )

{ du = d;

if (ex
ess[u℄ > 0) U.insert(u,d);

Q.append(u);

}

}

}

}

Before we describe the required changes to the initialization phase and the main loop we
describe one further optimization.

Two-Phase Approach: We partition the execution into two phases. The first phase ends
when there is no active node at a level belown anymore. At this point of the execution the
algorithm has determined a maximum preflow, i.e., a preflow which maximizesexcess[t ].
This follows from the observation that there can be no path inG f from an active node tot
at the end of phase one.

In the first phase we push only out of nodes with level belown and in the second phase
we push only out of nodes with level at leastn. Phase two ends when there are no active
nodes anymore.

For the first phase we initializedist[v] with the distance fromv to t (if v can reacht in
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G f where f is the flow obtained by saturating all edges out ofs) and we initializedist[v]
with n otherwise.

〈MF GRH: initialize dist and U for first phase〉�
node_array<int> dist(G);

dist.init(G,n);


ompute_dist_t(G,t,flow,
ap,ex
ess,dist,U,Q,
ount);

The other initializations are as before:

〈MF GRH: initialization〉�
〈initialize flow and excess and saturate edges out of s〉
〈MF GRH: additional data structures〉
〈MF GRH: initialize dist and U for first phase〉
〈MF GRH: initialize counters〉

〈MF GRH: initialize counters〉�
num_relabels = num_pushes = num_edge_inspe
tions = 0;

num_global_relabels = 0;

We need some additional data structures: the global distance calculations need a queue and
we need to know which phase we are in. We also need to introducethe arraycount: count[d]
is to contain the number of nodes at leveld for 0 ≤ d < n. It will be required by the gap
heuristic to be explained below.

〈MF GRH: additional data structures〉�
b_queue<node> Q(n);

int phase_number = 1;

array<int> 
ount(n);

The main loop has the same structure as before.

〈MF GRH: main loop〉�
for(;;)

{

〈MF GRH: extract v from queue〉
NT ev = ex
ess[v℄; // ex
ess of v

int dv = dist[v℄; // level of v

int dmin = MAXINT;

edge e;

if ( dist[v℄ < n )

{ 〈push across edges out of v〉 }

if ( ev > 0 )

{ 〈push across edges into v〉 }

ex
ess[v℄ = ev;

if (ev > 0)

{ 〈MF GRH: update distance label(s)〉 }

}
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We still need to describe how nodes are selected from the queue and how distance labels
are updated.

Let v be the node selected from the setU of active nodes. Ifv does not exist and we are
in the second phase, we break from the main loop. Ifv does not exist and we are in the
first phase, we start the second phase. Ifv is equal tot , we ignorev. In all other cases, we
proceed and attempt to push out ofv.

How do we start the second phase? We need to initialize the distance labels and also the
set of active nodes for the second phase. We first compute the set of nodes that can still
reacht (none of them is active) and collect its complement in a setS. None of the nodes in
S can reacht . We then compute the distance labels for all nodes inS by computing their
distances tos in G∗

f .

〈MF GRH: extract v from queue〉�
node v = U.del();

if (v == nil)

{

if ( phase_number == 2 ) break; // done

dist.init(G,n);


ompute_dist_t(G,t,flow,
ap,ex
ess,dist,U,Q,
ount);

node u;

forall_nodes(u,G)

{ if (dist[u℄ == n)

{ S.append(u);

dist[u℄ = max_level;

}

}

phase_number = 2;


ompute_dist_s(G,s,flow,ex
ess,dist,U,Q);


ontinue;

}

if (v == t) 
ontinue;

The setSneeds to be declared.

〈MF GRH: additional data structures〉+�
list<node> S;

It remains to describe how we update distance labels. We mentioned already that the
global relabeling heuristic has a cost of2(m) and that we want to apply it everyh · m edge
inspections for some constanth.

We therefore introduce two integer variableslimit heurandheuristic, initialize heuristic
to h · m, incrementlimit heurby heuristicwhenever the global relabel heuristic is applied,
and apply the global relabel heuristic whenever the number of edge inspections exceeds
limit heur. Thus



7.10 Maximum Flow 197

〈MF GRH: update distance label(s)〉�
if (num_edge_inspe
tions <= limit_heur)

{ 〈MF GRH: update the distance label of v〉 }

else

{ limit_heur += heuristi
;

num_global_relabels++;

〈MF GRH: global relabel〉
}

and

〈MF GRH: additional data structures〉+�
int heuristi
 = (int) (h*m);

int limit_heur = heuristi
;

In order to update the distance label ofv we incrementdminand then distinguish cases.
If we are in phase one anddmin is at leastn, we setdist[v] to n and do not insertv into the
set of active nodes (sincev cannot reacht in G f anymore). In all other cases, we setdist[v]
to dminand insertv into U .

〈MF GRH: update the distance label of v〉�
dmin++; num_relabels++;

if ( phase_number == 1 && dmin >= n) dist[v℄ = n;

else { dist[v℄ = dmin;

U.insert(v,dmin);

}

A global relabel operation clearsU and then distinguishes cases. In phase two the dis-
tance tos is recomputed for all nodes inS; recall that the nodes inV \ Scan reacht in G f

and hence are irrelevant for phase two.
In phase one we compute the distance fromv to t in G f for all nodesv. For nodes that

cannot reacht we set the distance label ton. If no active node can reacht , phase one ends.
We setS to all nodes that cannot reacht and then proceed as described above for phase two.

〈MF GRH: global relabel〉�
U.
lear();

if (phase_number == 1)

{ dist.init(G,n);


ompute_dist_t(G,t,flow,
ap,ex
ess,dist,U,Q,
ount);

if ( U.empty() )

{ node u;

forall_nodes(u,G)

{ if (dist[u℄ == n)

{ S.append(u);

dist[u℄ = max_level;

}

}

phase_number = 2;
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ompute_dist_s(G,s,flow,ex
ess,dist,U,Q);

}

}

else

{ node u;

forall(u,S) dist[u℄ = max_level;


ompute_dist_s(G,s,flow,ex
ess,dist,U,Q);

}

The function MAX FLOW GRH T incorporates the distinction between low and high nodes,
the local and the global relabel heuristic, and the distinction between phases one and two.

〈maxflow GRH〉�
template<
lass NT, 
lass SET>

NT MAX_FLOW_GRH_T(
onst graph& G, node s, node t,


onst edge_array<NT>& 
ap, edge_array<NT>& flow,

SET& U, int& num_pushes, int& num_edge_inspe
tions,

int& num_relabels, int& num_global_relabels, float h)

{ if (s == t) error_handler(1,"MAXFLOW: sour
e == sink");

〈MF GRH: initialization〉
〈MF GRH: main loop〉

#ifndef LEDA_CHECKING_OFF

assert(CHECK_MAX_FLOW_T(G,s,t,
ap,flow));

#endif

return ex
ess[t℄;

}

Table 7.13 shows that the combined effect of the global relabel heuristic and the two-
phase approach is dramatic. The running times decrease considerably for all generators and
for all three selection rules.

The Gap Heuristic: We come to our last optimization.
Consider a relabeling of a nodev in phase one and letdv be the layer ofv before the

relabeling. If the layerdv becomes empty by the relabeling ofv, thenv cannot reacht
anymore inG f after the relabeling, since any edge crossing the now empty layer would be
steep.

If v cannot reacht in G f then no node reachable fromv in G f can reacht . We may
therefore movev and all nodes reachable fromv to layern whenever the old layer ofv
becomes empty by the relabeling ofv. This is called thegap heuristic.

We realize the heuristic as follows. For eachd, 0 ≤ d < n we keep a count of the
number of nodes in layerd. For this purpose we use the arraycount introduced in the
previous section.

The arraycountis recomputed incomputedist t and is updated whenever a node is rela-
beled. When a nodev is moved from a layerdv to a layerdmin, we decrementcount[dv]
and incrementcount[dmin] (if dvor dmin is smaller thann).

Whencount[dv] is decremented to zero we movev and all nodes reachable fromv in G f



7.10 Maximum Flow 199

Gen Rule Pushes Inspections Relabels GR Time

rand FIFO 7.377e+05 7.354e+06 5.794e+05 — 4.8

6978 5.181e+04 4119 2 0.06

HL 7.254e+05 7.749e+06 5.32e+05 — 4.82

5.412e+04 5.264e+05 4.2e+04 21 0.43

MFIFO 8.907e+05 7.498e+06 5.631e+05 — 4.5

8048 5.171e+04 3918 2 0.06

CG1 FIFO 8.908e+05 2.789e+06 5.581e+05 — 2.87

5.02e+05 5.05e+05 994 6 0.91

HL 7.5e+05 4.373e+07 3.763e+05 — 20.92

5.015e+05 5.045e+05 988 12 1.22

MFIFO 6.713e+05 2.352e+06 4.619e+05 — 2.3

5.02e+05 5.05e+05 994 6 0.91

CG2 FIFO 8.851e+06 3.807e+07 7.277e+06 — 37.29

9.793e+05 9.939e+05 4710 9 1.76

HL 6.265e+06 3.002e+07 5.504e+06 — 29.81

1.928e+04 5.53e+04 6518 1 0.17

MFIFO 1.019e+07 4.012e+07 7.16e+06 — 36.53

5.033e+05 5.085e+05 1992 9 0.98

Table 7.13 Effect of low-high distinction, the local relabeling heuristic, the global relabeling
heuristic, and the two-phase approach. We show the behaviorfor three different kinds of graphs
and three different selection rules. For each generator we ran the casen = 1000. For the random
graph generator we usedm = 3n. For each case we give the running time of
MAX FLOW LRH T (first line) and of MAX FLOW GRH T (second line). The savings are
dramatic in all cases. The column GR shows the number of timesthe global relabeling heuristic
was applied. The parameterh of MAX FLOW GRH T was set to 5. Use maxflow grh time in
the demo directory to perform your own experiments.

to layern. We find these nodes by a breadth-first search starting inv. We reuse the queue
Q, which we introduced for the distance calculations, for thebreadth-first search.

〈MF GAP: update the distance label of v〉�
num_relabels++;

if (phase_number == 1)

{ if ( --
ount[dv℄ == 0 || dmin >= n - 1)

{ // v 
annot rea
h t anymore
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〈move all vertices reachable from v to level n〉
}

else

{ dist[v℄ = ++dmin; 
ount[dmin℄++;

U.insert(v,dmin);

}

}

else // phase_number == 2

{ dist[v℄ = ++dmin;

U.insert(v,dmin);

}

Let us see the details of the breadth-first search. The layerdmin is the highest layer con-
taining a node reachable fromv. If this layer is less thann, we start the breadth-first search
from v. We visit all nodes that are reachable fromv in G f and that live on a layer less than
n. We move all such nodes to layern. We count the number of nodes moved by the gap
heuristic innumgaps.

〈move all vertices reachable from v to level n〉�
dist[v℄ = n;

if ( dmin < n )

{ Q.append(v);

node w,z;

while ( !Q.empty() )

{ edge e;

w = Q.pop(); num_gaps++;

forall_out_edges(e,w)

{ if ( flow[e℄ < 
ap[e℄ && dist[z = G.target(e)℄ < n)

{ Q.append(z);


ount[dist[z℄℄--; dist[z℄ = n;

}

}

forall_in_edges(e,w)

{ if ( flow[e℄ > 0 && dist[z = G.sour
e(e)℄ < n)

{ Q.append(z);


ount[dist[z℄℄--; dist[z℄ = n;

}

}

}

}

The main loop has the same structure as before and only one change is required. When
the gap heuristic moves a node to layern it does not remove it from the set of active nodes
(which it should because the node should stay inactive till the beginning of phase two). We
remedy the situation as follows. Whenever a node on leveln is removed from the set of
active nodes in phase one we ignore the node and continue to the next iteration.
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〈MF GAP: main loop〉�
for(;;)

{

〈MF GRH: extract v from queue〉
if (dist[v℄ == n && phase_number == 1) 
ontinue;

NT ev = ex
ess[v℄; // ex
ess of v

int dv = dist[v℄; // level of v

int dmin = MAXINT;

edge e;

if ( dist[v℄ < n ) { 〈push across edges out of v〉 }

if ( ev > 0 ) { 〈push across edges into v〉 }

ex
ess[v℄ = ev;

if (ev > 0) { 〈MF GAP: update distance label(s)〉 }

}

〈MF GAP: update distance label(s)〉�
if (num_edge_inspe
tions <= limit_heur)

{ 〈MF GAP: update the distance label of v〉 }

else

{ limit_heur += heuristi
;

num_global_relabels++;

〈MF GRH: global relabel〉
}

Finally, we give the function MAXFLOW GAP T a further parameternumgaps, in which
we count the number of nodes that are moved by the gap heuristic.

〈maxflow GAP〉�
template<
lass NT, 
lass SET>

NT MAX_FLOW_GAP_T(
onst graph& G, node s, node t,


onst edge_array<NT>& 
ap, edge_array<NT>& flow,

SET& U, int& num_pushes, int& num_edge_inspe
tions,

int& num_relabels, int& num_global_relabels,

int& num_gaps, float h)

{ if (s == t) error_handler(1,"MAXFLOW: sour
e == sink");

〈MF GRH: initialization〉
num_gaps = 0;

〈MF GAP: main loop〉
#ifndef LEDA_CHECKING_OFF

assert(CHECK_MAX_FLOW_T(G,s,t,
ap,flow));

#endif

return ex
ess[t℄;

}

Table 7.14 shows the combined effect of all heuristics.
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Gen Rule Pushes Inspections Relabels GR Gaps Time

rand FIFO 1.394e+04 1.036e+05 8154 2 — 0.18

1.39e+04 1.036e+05 8142 2 2 0.17

HL 1.911e+05 1.929e+06 1.444e+05 38 — 1.59

2.536e+04 1.959e+05 1.258e+04 3 934 0.27

MFIFO 1.589e+04 1.033e+05 7674 2 — 0.15

1.589e+04 1.033e+05 7672 2 11 0.15

CG1 FIFO 2.002e+06 2.008e+06 1988 12 — 4.49

2.002e+06 2.008e+06 1988 12 0 4.05

HL 2.003e+06 2.009e+06 1975 25 — 5.41

2.003e+06 2.009e+06 1975 25 0 5.67

MFIFO 2.004e+06 2.01e+06 1988 12 — 3.64

2.004e+06 2.01e+06 1988 12 0 4.08

CG2 FIFO 3.951e+06 3.971e+06 6846 18 — 8.85

3.982e+06 3.992e+06 3983 18 2015 7.88

HL 3.852e+04 1.106e+05 1.302e+04 1 — 0.36

1.599e+04 4.396e+04 4002 0 3995 0.28

MFIFO 2.079e+06 2.098e+06 6684 18 — 3.93

2.001e+06 2.012e+06 3983 18 2017 4.27

Table 7.14 Effect of low-high distinction, the local relabeling heuristic, the global relabeling
heuristic, the two-phase approach, and the gap heuristic. We show the behavior for three
different kinds of graphs and three different selection rules. For each generator we ran the case
n = 2000. For the random graph generator we usedm = 3n. For each case we give the running
time of MAX FLOW GRH T (first line) and of MAX FLOW GAP T (second line). The effect
of the gap heuristic is small. The column GR shows the number of global relabels and the
column Gaps shows the number of nodes moved by the gap heuristic. Use maxflow gap time in
the demo directory to perform your own experiments.

Choice of H: How often should the heuristics be applied? Table 7.15 showsthe behavior
for different values ofh. The choice ofh does not have a big influence on running time. We
have chosenh = 5 as the default value ofh.

Summary and Implementation History: Table 7.16 summarizes our experiments. It
shows the running times of our different implementations for four different kinds of graphs,
three selection rules, and two different graph sizes (n = 1000 andn = 2000). The heuristics
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Gen Rule h Pushes Inspections Relabels GR Gaps Time

rand FF 0.5 9988 6.362e+04 4850 3 9 0.14

2.5 1.18e+04 8.356e+04 6562 2 4 0.14

4.5 1.6e+04 1.236e+05 9753 2 7 0.19

6.5 1.989e+04 1.636e+05 1.287e+04 2 9 0.22

HL 0.5 1.425e+04 8.442e+04 5506 16 1333 0.36

2.5 1.967e+04 1.403e+05 9113 5 280 0.26

4.5 2.563e+04 1.998e+05 1.28e+04 4 811 0.28

6.5 2.347e+04 1.812e+05 1.18e+04 2 1279 0.25

MF 0.5 1.112e+04 5.376e+04 3592 10 17 0.2

2.5 1.328e+04 7.814e+04 5729 3 0 0.15

4.5 1.476e+04 9.33e+04 6992 2 0 0.15

6.5 1.956e+04 1.333e+05 9943 2 0 0.18

CG1 FF 0.5 1.992e+06 1.998e+06 1970 30 0 4.23

2.5 1.996e+06 2.002e+06 1985 15 0 4.11

4.5 2e+06 2.006e+06 1990 10 0 4.06

6.5 2.004e+06 2.01e+06 1993 7 0 4.05

HL 0.5 2.003e+06 2.009e+06 1750 250 0 8.6

2.5 2.003e+06 2.009e+06 1950 50 0 5.67

4.5 2.003e+06 2.009e+06 1973 27 0 5.33

6.5 2.003e+06 2.009e+06 1981 19 0 5.21

MF 0.5 2.004e+06 2.01e+06 1874 126 0 5.08

2.5 2.004e+06 2.01e+06 1975 25 0 4.19

4.5 2.004e+06 2.01e+06 1986 14 0 4.11

6.5 2.004e+06 2.01e+06 1991 9 0 4.06

Table 7.15 Effect of the choice ofh. We show the behavior for two different kinds of graphs and
three different selection rules. For each generator we ran the casen = 2000. For the random
graph generator we usedm = 3n. For each case we give the running time of
MAX FLOW GAP T for different values ofh. FF stands for FIFO and MF stands for MFIFO.

lead to dramatic savings in all cases, the global relabelingheuristic being the main source
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Gen Rule BASIC HL LRH GRH GAP LEDA

rand FF 5.84 6.02 4.75 0.07 0.07 —

33.32 33.88 26.63 0.16 0.17 —

HL 6.12 6.3 4.97 0.41 0.11 0.07

27.03 27.61 22.22 1.14 0.22 0.16

MF 5.36 5.51 4.57 0.06 0.07 —

26.35 27.16 23.65 0.19 0.16 —

CG1 FF 3.46 3.62 2.87 0.9 1.01 —

15.44 16.08 12.63 3.64 4.07 —

HL 20.43 20.61 20.51 1.19 1.33 0.8

192.8 191.5 193.7 4.87 5.34 3.28

MF 3.01 3.16 2.3 0.89 1.01 —

12.22 12.91 9.52 3.65 4.12 —

CG2 FF 50.06 47.12 37.58 1.76 1.96 —

239 222.4 177.1 7.18 8 —

HL 42.95 41.5 30.1 0.17 0.14 0.08002

173.9 167.9 120.5 0.3599 0.28 0.1802

MF 45.34 42.73 37.6 0.94 1.07 —

198.2 186.8 165.7 4.11 4.55 —

AMO FF 12.61 13.25 1.17 0.06 0.06 —

55.74 58.31 5.01 0.1399 0.1301 —

HL 15.14 15.8 1.49 0.13 0.13 0.07001

62.15 65.3 6.99 0.26 0.26 0.1399

MF 10.97 11.65 0.04999 0.06 0.06 —

46.74 49.48 0.1099 0.1301 0.1399 —

Table 7.16 The effect of the different heuristics. We show the behaviorfor four different kinds
of graphs and three selection rules. For each generator we ran the casesn = 1000 andn = 2000.
The last column stands for the default implementation in LEDA. It uses one further optimiziation
which we have not explained in the text.

of improvement. You may use the program maxflow summarytime in the demo directory
to perform your own experiments.
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Gen Rule GRH GAP LEDA

rand FF 0.16 0.41 1.16 0.15 0.42 1.05 — — —

HL 1.47 4.67 18.81 0.23 0.57 1.38 0.16 0.45 1.09

MF 0.17 0.36 1.06 0.14 0.37 0.92 — — —

CG1 FF 3.6 16.06 69.3 3.62 16.97 71.29 — — —

HL 4.27 20.4 77.5 4.6 20.54 80.99 2.64 12.13 48.52

MF 3.55 15.97 68.45 3.66 16.5 70.23 — — —

CG2 FF 6.8 29.12 125.3 7.04 29.5 127.6 — — —

HL 0.33 0.65 1.36 0.26 0.52 1.05 0.15 0.3 0.63

MF 3.86 15.96 68.42 3.9 16.14 70.07 — — —

AMO FF 0.12 0.22 0.48 0.11 0.24 0.49 — — —

HL 0.25 0.48 0.99 0.24 0.48 0.99 0.12 0.24 0.52

MF 0.11 0.24 0.5 0.11 0.24 0.48 — — —

Table 7.17 The asymptotic behavior of our implementations. We show thebehavior for four
different kinds of graphs and three selection rules. For each generator we ran the cases
n = 5000· 2i for i = 0, 1, and 2. For the random graph generator we usedm = 3n. FF stands
for FIFO and MF stands for MFIFO. You may use the program maxflow large time in the demo
directory to perform your own experiments. The program maxflow time in the demo directory
times the default implementation.

The FIFO and MFIFO selection rule are superiour to the HL-rule on three of our four
generators, although never by a large margin. However, on the generator CG2 both rules do
very badly compared to the HL-rule. Figure 7.17 shows this even more clearly. For genera-
tors rand and AMO the running time seems to grow linearly (or maybe slightly more) for all
three selection rules, for generator CG1 the running time seems to grow quadratically for all
three selection rules, and for generator CG2 the running time seems to grow quadratically
for the FIFO and the MFIFO-rule and seems to grow linearly forthe HL-rule.

We have chosen the HL-rule as the default selection rule for our max flow algorithm.
This is also what other researchers recommend [CG97, AKMO97].

The worst case running time of our max flow algorithm isO(mdeg· n2√m), wheremdeg
is the maximal degree of any node. This can be improved toO(n2√m) with the current
edge data structure. Theoretically more efficient algorithms are known. Goldberg and Tar-
jan [GT88] have shown that the so-called dynamic tree data structure can be used to improve
the running time of the preflow-push method toO(nmlogn). In [CH95, CHM96] this was
further improved toO(nm+n2 logn). The dynamic tree data structure is available in LEDA.
Monika Humble [Hum96] has implemented the preflow-push algorithm with the dynamic
tree data structure. The observed running time was not impressive. Recently, Goldberg and



206 Graph Algorithms

Rao [GR97] improved the running time toO(min(n2/3, m1/2m log(n2/m)logU), whereU
is the largest capacity of any edge (the capacities must be integral for their algorithm). It
remains to be seen whether the improved bound also leads to better observed running times.
A first experimental evaluation can be found in [HST98].

The first implementation of the preflow-push algorithm for LEDA was done by Cheriyan
and Näher in 1989. It used the FIFO selection rule, the distinction between low and high
nodes, and the local and global relabeling heuristic. Stefan Näher refined the implementa-
tion over the years and added the highest-level selection rule. For the book we added the
two-phase approach, the gap heuristic, and the possibilityof choosing the selection rule.

7.10.5 Network Flow and Floating Point Arithmetic
The preflow-push algorithm computes the maximum flow iteratively (and so do all other
maximum flow algorithms). It starts with a preflow which it gradually transforms into a
flow. The flow across any single edge is changed by pushes across the edge. These pushes
may be in forward and backward direction, i.e., the flow across an edge is changed by
additions and subtractions: the final flow across an edge is a sum of flow portions and these
flow portions may be positive and negative.

What happens when the algorithm is executed with an arithmetic which may incur round-
ing error, e.g., floating point arithmetic? Then there may becancellation in forming this
sum. As a consequence the correctness of the algorithm is no longer guaranteed. The algo-
rithm may not terminate or compute a functionf which is not a flow (because it violates
one of the constraints) or is a flow but not a maximal flow. Figure 7.45 shows an example
of the disastrous effect that rounding error may have.

The preflow-push algorithm uses only additions and subtractions to manipulate flow and
determines the flow to be sent across an edge as the maximum of the available excess and
the residual capacity of the edge. This implies that all flow values are integral when the
capacities are integral. Also the maximum excess of any nodeis bounded byD, whereD
is the sum of the capacities of the edges out ofs.

If the number typedoubleis used and all edge capacities are integral, there will be no
overflow as long asD < 253. If the number typedoubleis used and the edge capacities are
not integral, we replace the edge capacities by

cap1[e] = sign(cap[e])⌊|cap[e]| · S⌋/S,

whereS is the largest power of two such thatS < 253/D, and apply the results of Sec-
tion 7.2. They guarantee that there is no rounding error in the computation of the maximum
flow with respect tocap1and that the value of the maximum flows with respect tocapand
cap1, respectively, differ by at mostm · D · 2−52. The bound follows from the fact that the
value of the maximum flow is equal to the capacity of a minimum cut, that the capacity of
a minimum cut is the sum of at mostm edge capacities and that the choice ofSguarantees
that for each edge the difference between the orginal capacity and the modified capacity is
at mostD · 2−52.

The paragraph above bounds the absolute error in the value ofthe flow resulting from
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s v t

0.27

0.71

0.32

Figure 7.45 The effect of rounding error on the preflow-push algorithm: The capacities of the
edges are as shown. The preflow-push algorithm starts by saturating all edges out ofs. This will
create an excess of 0.27+ 0.32+ 0.71 = 1.3 in v. In the course of the execution, the algorithm
will determine that none of this excess can be forwarded tot and hence the excess will be
shipped back tos by sending 0.27, 0.32, and 0.71, respectively, across the three edges(v, s). The
final excess inv is 1.3 − 0.27− 0.32− 0.71 = 0.
Assume now that all calculations are carried out in afloating point system with a mantissa of two
decimal places and rounding by cut-off. Then the excess inv after saturating all edges out ofs
will still be 1.3 as there is no cancellation in the summation. However, whenthe flow is pushed
back tos the first subtraction 1.3 ⊖ 0.29 yields 1.1 as the last digit of 0.29 is dropped when the
two summands are aligned for the subtraction; here⊖ denotes floating point subtraction. The
effect of this is thatv ends up with an excess of 0.09, but no outgoing edge across which to push
flow. This may put the algorithm into an infinite loop.

scaling. It does not bound the relative error. Observe that the quotient betweenD and the
maximum flow may be arbitrarily large. Althaus and Mehlhorn [AM98] have shown that a
slightly more elaborate scaling scheme can be used to bound the relative error. The idea is
as follows. One modifies the edge capacities as described above and computes a maximum
flow f with respect to them. Then

|val( fopt) − val( f )| ≤ m · D · 2−52,

where fopt is a maximum flow with respect to the original edge capacities. One now dis-
tinguishes cases. Ifm · D · 2−52 ≪ val( f ), the relative error in the value of the flow is
small. Otherwise, letB = val( f ) + m · D · 2−52 and observe thatval( fopt) ≤ B and hence
any capacity which is larger thanB may be decreased toB without changing the maximum
flow. Next they recomputeD and S and repeat. After a smaller number of iterations the
relative error will be small.

Exercises for 7.10
1 Let G = (V, E) be a directed graph, letcap : E −→ IR≥0 be a non-negative capacity

function, and letd : V −→ IR be a function with
∑

v∈V d(v) = 0. A nodev with
d(v) > 0 is called asupply node, a nodev with d(v) < 0 is called ademand node, and
d is called a demand function. A flowf is a function f : E −→ IR≥0 satisfying the
capacity constraints and the supply-demand constraintsexcess(v) = d(v) for all v ∈ V .
Design an algorithm that decides whether a flow exists and, ifso, computes a flow. Hint:
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Add two verticess and t , an edge(s, v) with capacityd(v) for every supply node, an
edge(v, t) with capacity−d(v) for every demand node, and compute a maximum(s, t)-
flow.

2 The problem is as above but a lower boundlb(e) on the flow across any edgee is also
specified, i.e., for each edge two valueslb(e) andub(e) with 0 ≤ lb(e) ≤ ub(e)are
specified and the flow across any edge must lie between the lower and the upper bound.
Hint: For any edgee = (v, w) introduce two additional verticesae andbe, replacee by
the edges(v, ae), (ae, be), and(be, w), giveae demand−lb(e), givebe supplylb(e), and
give (ae, be) capacityub(e) − lb(e). Solve the problem above.

3 Show that the number of non-saturating pushes isO(n3) when the MFIFO-rule is used.
Hint: Reuse the proof for the FIFO-rule.

4 Study alternative implementations of the highest-level-rule: Insert(v, d) andinsert0(v, d)

may addv to the front or the rear of thed-th list.
5 Incorporate the current edge data structure into our implementations.
6 Experiment with the global relabel heuristic but without the two-phase approach.

7.11 Minimum Cost Flows

The minimum cost maximum flow problem generalizes the maximum flow problem of the
preceding section.

Let G = (V, E) be a directed graph. For each edgee ∈ E let lcap(e) anducap(e) be
lower and upper bounds for the flow acrosse (we assume 0≤ lcap(e) ≤ ucap(e)) and let
cost(e) be the cost of shipping one unit of flow acrosse, and for each nodev let supply(v)

be the supply or demand at nodev. We talk about a supply ifsupply(v) > 0 and we talk
about a demand ifsupply(v) < 0. We assume that the supplies and demands balance, i.e.,

∑

v∈V

supply(v) = 0.

A flow f is a function on the edges satisfying the capacity constraints and the mass balance
conditions, i.e.,

lcap(e) ≤ f (e) ≤ ucap(e)

for every edgee and

supply(v) =
∑

e; source(e)=v

f (e) −
∑

e; target(e)=v

f (e)

for every nodev.
For every edgee, cost(e) is the cost of sending one unit of flow across the edge. The total

cost of a flow f is therefore given by

cost( f ) =
∑

e∈E

f (e) · cost(e).

A minimum cost flowis a flow of minimum cost. The function
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bool MIN COST FLOW(graph& G, 
onst edge array<int>& l
ap,


onst edge array<int>& u
ap,


onst edge array<int>& 
ost,


onst node array<int>& supply,

edge array<int>& flow)

returnstrue if a flow exists and returnsfalseotherwise. If a flow exists, it returns a minimum
cost flow inflow. Observe that capacities and costs must be integers. The algorithm is based
on capacity scaling and successive shortest-path computation (cf. [EK72] and [AMO93])
and has running timeO(m logU (m + n logn)), wheren is the number of nodes ofG, m is
the number of edges ofG, andU is the largest absolute value of any capacity.

There is also a variant of this function where the lower boundon all flows is assumed to
be zero.

bool MIN COST FLOW(graph& G, 
onst edge array<int>& 
ap,


onst edge array<int>& 
ost,


onst node array<int>& supply,

edge array<int>& flow);

The function

int MIN COST MAX FLOW(graph& G, node s, node t,


onst edge array<int>& 
ap,


onst edge array<int>& 
ost,

edge array<int>& flow)

computes a minimum cost maximal flow, i.e., it computes a maximal flow froms andt and
among these flows a flow of minimum cost. The value of the flow is returned.

The xlman-demo gwmin costflow illustrates minimum cost flows.

Exercises for 7.11
1 Consider an edgee = (u, v) with c = lcap(e) > 0. Change the problem as follows:

decreaselcap(e) anducap(e) by c, decreasesupply(u) by c, and increasesupply(v) by c.
Show that a solution to the modified problem yields a solutionof the original problem.

2 Allow negative lower bounds. Describe a transformation that gets rid of negative lower
bounds.

3 Assume thatlcap(e) = 0 for all e. Introduce auxiliary nodess andt and edges(s, v)

with capacityc = supply(v) for all nodesv with supply(v) > 0 and edges(u, t) with
capacityc = −supply(u) for all nodesu with supply(u) < 0. Show that there is a
flow satisfying the capacity constraints and the bass balance constraints in the original
network iff there is a flow froms to t in the modified network that saturates all edges out
of s (and hence all edges intot). Based on this insight derive a necessary and sufficient
condition for the existence of a flow satisfying the capacityconstraints and the mass
balance constraints.

4 Let f be a flow satisfying the capacity constraints and the mass balance constraints and
let G f be the residual network with respect tof . If e = (v, w) is an edge inG with
f (e) < ucap(e) then there is an edge(v, w) in G f with capacityucap(e) − f (e) and
costcost(e) and ife = (v, w) is an edge inG with f (e) > lcap(e) then there is an edge
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(w, v) in G f with capacity f (e)− lcap(e) and cost−cost(e). Show thatf is a minimum
cost flow iff there is no negative cycle inG f .

5 Derive a checker for minimum cost flows based on the preceding items.
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Figure 7.46 A minimum cutC in a graph. The nodes inC are shown as circles and the nodes
outsideC are shown as squares. The value of the cut is 47. You may generate your own figures
with the xlman-demo gwmin cut.

7.12 Minimum Cuts in Undirected Graphs

Let G = (V, E) be an undirected graph (self-loops and parallel edges are allowed) and let
w : E → IR≥0 be anon-negativeweight function on the edges ofG. A cut C of G is any
subset ofV with ∅ 6= C 6= V . The weight of a cut is the total weight of the edges crossing
the cut, i.e.,

w(C) =
∑

e∈E;|e∩C|=1

w(e).

A minimum cutis a cut of minimum weight. Figure 7.46 shows an example. The function

int MIN CUT(
onst graph& G,
onst edge array<int>& weight,

list<node>& C, bool use heuristi
 = true)
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5000 10000 15000 20000

NOH WH NOH WH NOH WH NOH WH

1000 9.22 3.52 17.11 17.11 27.86 29.36 38.88 39.46

2000 29.58 1.26 54.32 2.76 82.14 33.77 117.6 98.68

3000 62.51 3.71 107.2 3.64 145.6 8.76 191.1 85.17

4000 91.66 5.51 157 4.84 205.7 4.98 279.5 8.99

5000 144.2 15.62 213.5 11.8 273.8 11.7 378.6 18.22

Table 7.18 Running times of the minimum cut algorithms. We used random graphs withn
nodes andm edges and random edge weights. The rows are indexed byn and the columns are
indexed bym. For each combination ofn andm we ran the algorithm without (NOH) and with
the heuristic (WH). The use of the heuristic is the default.

takes a graphG and aweight function on the edges and computes a minimum cut. The
value of the cut is returned and the nodes in the cut are assigned toC. The running time of
the algorithm isO(nm+ n2 logn). The algorithm is due to [NI92, SW97]. The algorithm
can be asked to use a heuristic. In some cases the heuristic improves the running time
dramatically; it never seems to harm, see Table 7.18. There is also a version of the function
where the cutC is the return value of the function.

list<node> MIN CUT(
onst graph& G, 
onst edge array<int>& weight)

The function

int CUT VALUE(
onst graph& G,
onst edge array<int>& weight,


onst list<node>& C)

returns the value of the cutC.

We use a particularly simple and nevertheless efficient min-cut algorithm due to Nag-
amochi and Ibaraki [NI92] and later refined by Stoer and Wagner [SW97]. The algo-
rithm runs in timeO(nm + n2 logn). Alternative minimum cut algorithms can be found
in [PR90, HO92, KS96]. The papers [CGK+97, JRT97] contain experimental comparisons
of minimum cut algorithms.

We need the notion of ans-t cut. For a pair{s, t } of distinct vertices ofG a cutC is
called ans-t cut if C contains exactly one ofs andt .

The algorithm works in phases. In each phase it determines a pair of verticess and t
and a minimums-t cut C. If there is a minimum cut ofG separatings andt thenC is a
minimum cut ofG. If not then any minimum cut ofG hass and t on the same side and
therefore the graph obtained fromG by combining sandt has the same minimum cut asG.
So a phase determines verticess andt and a minimums-t cutC and then combiness andt
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into one node. Aftern−1 phases the graph is shrunk to a single node and one of the phases
must have determined a minimum cut ofG.

〈min cut〉�
〈combine s and t〉
int MIN_CUT(
onst graph& G0, 
onst edge_array<int>& weight,

list<node>& C, bool use_heuristi
)

{ node v; edge e;

forall_edges(e,G0)

if ( weight[e℄ < 0 )

error_handler(1,"MIN_CUT: no negative weights");

〈initialization〉
while ( G.number_of_nodes() >= 2 ) { 〈a phase〉 }

return best_value;

}

We call our input graphG0 and our current GraphG. Every node ofG represents a set of
nodes ofG0. This set is stored in a linear list pointed to byG[v] and hence we use the type
GRAPH<list<node>∗, int> for G. Every edgee = {v, w} of G represents a set of edges of
G0, namely{{x, y} ; x ∈ G[v] and y ∈ G[w] }. The total weight of these edges is stored in
G[e].

It is easy to initializeG. We simply makeG a copy ofG0 (except for self-loops) and
initialize G[v] to the appropriate singleton set for every vertexv of G.

〈initialization〉�
typedef list<node>* nodelist_ptr;

GRAPH<nodelist_ptr, int> G;

G.make_undire
ted();

node_array<node> partner(G0);

forall_nodes(v,G0)

{ partner[v℄ = G.new_node(new list<node>);

G[partner[v℄℄->append(v);

}

forall_edges(e, G0)

if ( sour
e(e) != target(e) )

G.new_edge(partner[sour
e(e)℄, partner[target(e)℄,weight[e℄);

We also fix a particular nodea of G and introduce variables to store the currently best cut.

〈initialization〉+�
node a = G.first_node();

int best_value = MAXINT;

int 
ut_weight = MAXINT;

We now come to the heart of the matter, a phase. A phase initializes a setA to the singleton
set{a} and then successively merges all other nodes ofG into A. In each stage the node
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v 6∈ A which maximizes

w(v, A) =
∑

e; e={v,y} for somey∈A

w(e)

is merged intoA. Let s and t be the last two vertices added toA in a phase. The cutC
computed by the phase is the cut consisting of nodet only; in the graphG0 this corresponds
to the cutG[t ].

Lemma 44 Let s and t be the last two nodes merged into A during a phase. Then {t } is a
minimum s-t cut.

Proof Let C′ be anys-t cut. We show thatw(C′) ≥ w({t }). Let v1, . . . , vn be the order in
which the nodes are added toA. Thenv1 = a, vn−1 = s, andvn = t .

Call a vertexv = vi critical if i ≥ 2 andvi andvi−1 belong to different sides ofC′. Note
that t is critical. Letk be the number of critical nodes and leti1, i2,..., ik be the indices of
the critical nodes. Thenik = n. For integeri useAi to denote the set{v1, . . . , vi }. Then

w({t }) = w(vik , Aik−1)

and

w(C′) ≥
k
∑

j =1

w(vi j , Ai j −1 \ Ai j −1−1),

since any edge counted on the right side is also counted on theleft and edge costs are
non-negative. We now show for all integersl , 1 ≤ l ≤ k, that

w(vil , Ail −1) ≤
l
∑

j =1

w(vi j , Ai j −1 \ Ai j −1−1).

For l = 1 we have equality. So assumel ≥ 2. We have

w(vil , Ail −1) = w(vil , Ail−1−1) + w(vil , Ail −1 \ Ail−1−1)

≤ w(vil−1, Ail−1−1) + w(vil , Ail −1 \ Ail−1−1)

≤
l−1
∑

j =1

w(vi j , Ai j −1 \ Ai j −1−1) + w(vil , Ail −1 \ Ail−1−1)

≤
l
∑

j =1

w(vi j , Ai j −1 \ Ai j −1−1).

Here the first inequality follows from the fact thatvil−1 is added toAil−1−1 and notvil and
the second inequality uses the induction hypothesis.

〈a phase〉�
〈determine s and t and the value of the cut V-t,t〉;
bool new_best_
ut = false;

if ( 
ut_weight < best_value )
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{ C = *(G[t℄);

best_value = 
ut_weight;

new_best_
ut = true;

}


ombine_s_and_t(G,s,t);

〈heuristic〉

How can we determine the order in which the vertices are merged into A? This can be
done in a manner akin to Prim’s minimum spanning tree algorithm. We keep the vertices
v, v 6∈ A, in a priority queue ordered according tow(v, A). In each stage we select the
node, sayu, with maximalw(u, A) and add it toA. This increasesw(v, A) by w({v, u})
for any vertexv 6∈ A andv 6= u. Since LEDA priority queues select minimal values we
store−w(v, A) in the queue. The node added last toA is the vertext . The valuecutweight
is w(t, At ).

〈determine s and t and the value of the cut V-t,t〉�
node t = a;

node s;

node_array<bool> in_PQ(G,false);

node_pq<int> PQ(G);

forall_nodes(v,G)

if (v != a)

{ PQ.insert(v,0);

in_PQ[v℄ = true;

}

forall_adj_edges(e,a)

PQ.de
rease_inf(G.opposite(a,e),PQ.prio(G.opposite(a,e)) - G[e℄);

while (!PQ.empty())

{ s = t;


ut_weight = -PQ.prio(PQ.find_min());

t = PQ.del_min();

in_PQ[t℄ = false;

forall_adj_edges(e,t)

{ if (in_PQ[v = G.opposite(t,e)℄)

PQ.de
rease_p(v,PQ.prio(v) - G[e℄);

}

}

It remains to combines andt . We do so by deletingt from G and moving all edges incident
to t to s. More precisely, we need to do three things:

• Add G[t ] to G[s] (G[s] → conc(∗(G[t ]))).

• IncreaseG[{s, v}] by G[{t, v}] for all verticesv with {t, v} ∈ E andv 6= s.

• Deletet and all its incident edges fromG (G.delnode(t)).

The second step raises two difficulties: the edge{s, v} might not exist and there is no
simple way to go from the edge{t, v} to the edge{s, v}. We overcome these problems by
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first recording the edge{s, v} in sedge[v] for every neighborv of s. We then go through
the neighborsv of t : if v is connected tos then we simply increaseG[{s, v}] by G[{t, v}],
if v is not connected tos and different froms then we add a new edge{s, v} with weight
G[{t, v}].

We formulate the piece of code to combines andt as a procedure because we want to
reuse it in the heuristic.

〈combine s and t〉�
stati
 void 
ombine_s_and_t(GRAPH<list<node>*,int>& G, node s, node t)

{ G[s℄->
on
(*(G[t℄));

node_array<edge> s_edge(G,nil);

edge e;

forall_adj_edges(e,s) s_edge[G.opposite(s,e)℄ = e;

forall_adj_edges(e,t)

{ node v = G.opposite(t,e);

if ( v == s) 
ontinue;

if (s_edge[v℄ == nil) G.new_edge(s,v,G[e℄);

else G[s_edge[v℄℄ += G[e℄;

}

G.del_node(t);

}

This completes the description of the algorithm. The running time of our algorithm is
clearly at mostn times the running time of a phase. A phase takes timeO(m + n logn) to
merge all nodes into the setA ( the argument is the same as for Prim’s algorithm) and time
O(n) to record the cut computed and to merges andt . The total running time is therefore
O(nm+ n2 logn).

We next discuss a heuristic improvement. Clearly, any edge whose weight is at least
bestvaluecannot cross a minimum cut whose value is smaller thanbestvalue. We therefore
might as well shrink any such edge.

Which edges might have weight at least as large asbestvalue? If bestvaluedecreased
in the current phase, then all edges ofG are candidates, and ifbestvaluestayed unchanged
in the current phase, then all edges incident tos are candidates, because their weight may
have increased .

〈heuristic〉�
if ( use_heuristi
 )

{ bool one_more_round = true;

while ( one_more_round )

{ one_more_round = false;

forall_adj_edges(e,s)

{ node t = G.opposite(s,e);

if ( G[e℄ >= best_value )

{ 
ombine_s_and_t(G,s,t); one_more_round = true; break; }

}

}

if ( new_best_
ut )
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{ bool one_more_round = true;

while ( one_more_round )

{ one_more_round = false;

forall_edges(e,G)

{ node s = G.sour
e(e);

node t = G.target(e);

if ( G[e℄ >= best_value )

{ 
ombine_s_and_t(G,s,t); one_more_round = true; break; }

}

}

}

}

Table 7.18 shows that the heuristic can lead to dramatic improvements in running time.
We will now argue that is does increase the asymptotic running time. If the phase did not
decreasebestvalue, the running time of the heuristic isO((1+ k)n), wherek is the number
of edges shrunken by the heuristic. If the phase decreasedbestvalue, the running time of
the heuristic isO((1 + k)m), wherek is the number of edges shrunken by the heuristic. In
either case the asymptotic running time of our procedure is not increased, since a phase has
cost�(m + n logn).

We considered an alternative implementation of the heuristic. We kept the edges ofG
in a priority queue according to negative weight and at the end of each phase selected all
edges from the queue which had weight at least as large asbestvalue. The alternative
implementation was slower than the simple implementation described above.
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