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7
Graph Algorithms

LEDA offers a wide variety of graph algorithms. Startingliretthird section of this chapter
we discuss depth-first and breadth-first search, algoritiome®mpute graph decomposi-
tions, and algorithms for shortest paths, matchings inrbiteaand general graphs, maxi-
mum flows, and minimum cuts. For each class of algorithms veg diiscuss their func-
tionality and then discuss implementations. In many caseslso derive a checker of
correctness.

The first two sections of this chapter are orthogonal to thermsections of the chapter.
They deal with general considerations for algorithms orgiisd graphs. In Section 7.1 we
discuss the use of template functions for such algorithrddmSection 7.2 we discuss the
requirements on the underlying arithmetic. Both secti@rslme skipped on first reading.

7.1 Templatesfor Network Algorithms

Many graph algorithms operate on graphs whose nodes or édgesin associated weight
from some number type. For example, the single-sourceestgoath algorithm operates
on an edge-weighted graph and computes for each node igmdéstrom the source. The
algorithm works for any linearly ordered number type. It sural to formulate it as a
template function.

template <class NT>

bool DIJKSTRA T(const graph& G, node s, const edge_array<NT>& c,
node_array<NT>& dist, node_array<edge>& pred);
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The template paramet®IT can be instantiated with any number typ&he most frequent
instantiations are with the built-in number typasanddoubleand the LEDA number types
integerandreal. It is desirable that:

e the most frequent instantiations are pre-compiled, agéuisces the compilation time
of application programs and allows us to distribute objectscinstead of source code
to all those users, who do not need instantiations with atberber types, and that

e the pre-instantiated versions can be used side by side éttemplate version.

We describe our mechanism to achieve these goals. We udedtiest-path algorithm as
our running example. We write three files: dijkstra.h, dijed, and_dijkstra.c, which are
contained in the directories LEDAROOQT/incl/LEDA, LEDARQ®UNcl/LEDA/templates,
and LEDAROOT/src, respectively.

The file dijkstra.h contains the prototypes of all functioifge distinguish the template
version and the pre-instantiated versions of a functiorhbysuffix_T in the function name.
Thus

(dijkstra.h=
#ifndef DIJKSTRA_H
#define DIJKSTRA_H
#include <LEDA/graph.h>

template <class NT>
void DIJKSTRA_T(const graph& G, node s, const edge_array<NT>& c,
node_array<NT>& dist, node_array<edge>& pred);

/* next come the pre-instantiated versions */

void DIJKSTRA(const graph& G, node s, const edge_array<int>& c,
node_array<int>& dist, node_array<edge>& pred) ;

// and, similarly, for double,

#endif

The file dijkstra.t contains the definition of the templatedtion.

(dijkstra.t=
#include <LEDA/dijkstra.h>

template <class NT>
void DIJKSTRA_T(const graph& G, node s, const edge_array<NT>& c,
node_array<NT>& dist, node_array<edge>& pred)
{
/* implementation of DIJKSTRA_T */
}

1 The number type must, of course, satisfy certain syntaoticsemantic requirements, e.g., there must be a linear
ordering defined on it and addition must be monotone.
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The file _dijkstra.c contains the implementations of the instaiarest in terms of the tem-
plate function.

(_dijkstra.qo=
#include <LEDA/templates/dijkstra.t>

void DIJKSTRA(const graph& G, node s, const edge_array<int>& c,
node_array<int>& dist, node_array<edge>& pred)

{
DIJKSTRA_T(G,s,c,dist,pred);
}

// and, similarly, for double ...

Observe the include statement. As mentioned already,edldibntaining definitions of tem-
plate functions are collected in the subdirectmmplatef the LEDA include directory.

The file _dijkstra.c is pre-compiled into the object fildijkstra.o, which is included in
one of the object libraries of the LEDA system.

We next discuss how to use the pre-instantiated and the ééenyarsions of the shortest-
path algorithm.

In order to use one of the pre-instantiated versions, orledes dijkstra.h into the appli-
cation program, for example,

(foo.g=
#include <LEDA/dijkstra.h>
// define G, s, c, dist, pred with number type int
DIJKSTRA(G,s,c,dist,pred);

In order to use the template version, one includes tempthjlestra.t into the application
program, as, for example, in

(foo.0+=
#include <LEDA/templates/dijkstra.t>
// define G, s, c, dist, pred for any number type NT
DIJKSTRA_T(G,s,c,dist,pred);

// define G, s, c, dist, pred for number type int
// and use template version

DIJKSTRA_T(G,s,c,dist,pred);
// use pre-instantiated version
DIJKSTRA(G,s,c,dist,pred);

Observe that there is no problem to use one of the pre-iiatadiversions and the template
version side by side in an application program such as foo.c.

We nevertheless recommend a different strat&yg. suggest that the t-files are not in-
cluded directly into application programs, as t-files magtet the definitions of auxiliary
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functions which might clobber the name space of the apjptiogirogram. We rather rec-
ommend to define intermediate files as shown next.

In order to instantiate DIJKSTRA for a particular number type, say the LEDA number
typereal, we recommend defining files

(real_dijkstra.n=
#include <LEDA/real.h>

void DIJKSTRA(const graph& G, node s, const edge_array<real>& c,
node_array<real>& dist, node_array<edge>& pred)

and

(real_dijkstra.g=

#include "real_dijkstra.h"
#include <LEDA/templates/dijkstra.t>

void DIJKSTRA(const graph& G, node s, const edge_array<real>& c,
node_array<real>& dist, node_array<edge>& pred)

{
DIJKSTRA_T(G,s,c,dist,pred);
}

to include the former in application programs, to pre-cdmphe latter, and to add the
object file realdijkstra.o to the set of objects for the linker. The alteivestrategy has the
advantage of introducing no extraneous names into apjgicptograms.

We summarize: functions whose name ends wittare function templates. In order to
use them one must include a file LEDA/templates/X.t. Theipséantiated functions have
the same name except for the In order to use them one needs to include a file LEDA/X.h.

7.2 Algorithmson Weighted Graphsand Arithmetic Demand

Many algorithms of this chapter operate on weighted grapdsaork for any number type
NT. The algorithms use additions, subtractions, comparisoms$in rare cases multiplica-
tion and division. The correctness proofs of the algoritlmelg on the laws of arithmetic
and hence the algorithms are only correct if the impleméntadf the number type obeys
the laws of arithmetic.

The two most commonly used number types iteand double Unfortunately, both
types do not guarantee that the basic arithmetic operatibag their mathematical laws.
For examplejnt-arithmetic may overflow and wrap arodnanddoublearithmetic incurs
rounding error, see Chapter 4. It is therefore not at all ebvithat an instantiation of a
network algorithm with typeit or doublewill work correctly. Sections 4.1 and 7.10.5
contain examples of what can go wrong.

2 Executecout << MAXINT + MAXINT;



6 Graph Algorithms

We use the following two-step approach to guarantee coresst

Step 1: We analyze the arithmetic demand of our algorithms. We slataly which oper-
ations must be supported by the number type (that's easy, &imtme a simple inspection of
the code suffices) and we prove theorems of the following faofal input weights are in-
tegers whose absolute value is bounded@bthen all numbers handled by the algorithm are
integers whose absolute value is bounded byB. We call such an algorithnfi-bounded
For example, we will show that the maximum weight bipartitatoming algorithm is 3-
bounded and that the maximum weight assignment algoritlm-®ounded, whera is the
number of nodes of the bipartite graph.

Step 2 for typeint: In the instantiation of a network algorithm for tyjp®, we check that
all input weightsw satisfy f - w < MAXINT. If not, we write an appropriate message to
diagnostic output. If yes, step 1 guarantees correctnetbe @omputation.

We give an example. We mentioned already that the maximumghwbipartite matching
algorithm is 3-bounded. The instantiation is thereforecdisws:

(instantiation for int$=

list<edge> MAX_WEIGHT_BIPARTITE_MATCHING(graph& G,
const edge_array<int>& c, node_array<int>& pot)
{ int W = MAXINT/3;
check_weights(G,c,-W,W, "MWBM<int>");

return MAX_WEIGHT_BIPARTITE_MATCHING_T(G,c,pot);
}

where

(scaleweights.h+=

inline bool check_weights(const graph& G, const edge_array<int>& c,
int 1b, int ub, string inf)
{ edge e;
bool all_edges_ok = true;
forall_edges(e,G)
if ( cle]l < 1b || cle]l > ub ) all_edges_ok = false;

if ( 'all_edges_ok ) cerr << inf << ": danger of overflow.\n";

return all_edges_ok;

}

There is a similar function for node arrays.

Step 2 for type double: The problem withdoublearithmetic is round-off error. Round-off
errors invalidate the correctness and termination prodtemce a “naive” instantiation of a
network algorithm with the number tygimublemay run forever, terminate with a run-time
error, terminate with an incorrect result, or terminatewtiite correct result.

It would be nice if we could guarantee that no rounding ocduring a computation, as
this will guarantee termination and the absence of run-8mers. It does not guarantee by
itself that the result produced has any relationship to threect result. We come back to
this point below.
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We can avoid rounding by scaling the input weights approgisiaWe replace any input
weightw by sign(w)- | |w|- S| /S, where thescaling parameter S 25 is a suitable power of
two. We use thsamescaling parameter for all input weights. This has the effleat, after
scaling, all input weights are of the forma’ - 25, wherew’ is an integer. Hence floating
point arithmetic will incur no rounding error as long as alldrmediate results are of the
form z. 275, wherez is an integer that fits into the mantissa of a floating point bem|t
remains to choose

Let C be the maximum absolute value of any input weight. Since thisidn by 2
effects only the exponent of a floating point number, we mayalt assume that every
input weightw is replaced bysign(w)||w| - S|. This will turn all inputs into integers and
hence step 1 guarantees that the absolute value of all iatkate results is bounded by
f .| C- S] inthe case of arf -bounded algorithm. If we choosesuch that all intermediate
results can be represented exactly as a double precisiamfgaoint number then the
computation will incur no rounding error. This is the case if

f.|C-S| <2%

since double precision floating point arithmetic can repnéall integers in the range-[2°3—
1) .. 253 — 1]. Observe that double precision floating point arithmesies a 52-bit mantissa
and that a floating point number with mantissam; . .. ms, and exponent 52 represents
the integer

a+ Y m27).2%2

1<i<b2
The inequalityf - |C - S| < 2°3is certainly satisfied if
f.C.S<2%
or
s < 53—log(f -C).

We summarize:

Lemma 1 Consider an f-bounded algorithm, let C be the maximum alsolalue of
any input weight, and let S be a power of two such thatCf- S < 253, If every input
weightw is replaced by sigfw) | |w| - SJ, then the algorithm will incur no rounding error
in a computation with doubles and hence computes the camsatt for the scaled inputs
weights.

What is the relationship between the result for the scalgdiinveights and the result
for the original input weight2 We can make no general claim. However, there are many
situations where one can claim that the result for the sdajadts is a good approximation
for the result on the unscaled inputs. For all but one netvpodblem considered in this
chapter, namely min-cost flow, the objective value is a summiit weights; for example,
the cost of a shortest path is a sum of edge weights, the c@sihtdtching is a sum of
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edge weights, and the maximum flow in a network is the minimageacity of a cut and
hence a sum of edge weights. Assume that the objective valtleisum of at most
weights. For any set of at mokt weights the sum of the scaled weights and the sum of
the unscaled weights differs by at mastS, since for any individual weight the difference
is at most ¥S. If Sis chosen as the largest power of two such Bat 2°3/(f - C), then

S> 252/(f . C) and hence the maximum absolute error in the objective fondsi at most

L. f.C-275 We summarize in:

Lemma 2 Under the hypothesis of the preceding lemma and the additassumption that
the algorithm computes an objective value, which is the sitahmost L input weights, the
maximum absolute error in the objective function is at mostfL: C - 2752,

Let us give an example. Consider the maximum weighted magcaigorithm for bi-
partite graphs. This algorithm is 3-bounded and the valug wfatching is the sum of at
mostn edges, whera is the number of nodes of the graph. The maximum absoluteisrro
therefore at most 3C - 2752,

Observe that Lemma 2 bounds the absolute error in the olgefethction, but not the
relative error. We can make no general claims about thelveletror. It must be studied
individually for each algorithm.

In order to compute and to scale the input weights, we use the functioesp, Idexp
andfloor from the math-library. Lex = f - C.

double frexp(double x, int* exp);

returns a doublg such thaly is a double with magnitude in the interval [1/2, 1) or 0, and
equalsy times 2 raised to the powexp(more preciselyxexp. If x is 0, both parts of the
result are 0.

Thus, ifx is non-zero, then lofx| = exp— ¢ where O< ¢ < 1 and hence

53— log(f - C) =53 — exp+e.

We therefore choosgas
s=53—-exp

If C = 0 and hencex = 0, the choice o§ is arbitrary. We will sek to 53 in this case. The
following procedures implement the computationsand S. We also compute /IS, as it
will be convenient to have it around.

(scaleweights.h+=
#include <math.h>

inline int compute_s(double f, double C)
{

int exp;

double x = frexp(£*C,&exp);

return 53 - exp;

}
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inline double compute_S(double f, double C, double& one_over_S)
{

int exp;

double x = frexp(f*C,&exp);

one_over_S = ldexp(l,exp - 53);

return ldexp(1,53 - exp);

where
double ldexp(double x, int exp);

computes the quantity - 25%P,
How can we compute’ = sign(w) - [|w| - S]/S? We use

double floor(double x);

which computes the largest integral value not greater xhan

(scaleweights.h+=

inline double scale_weight(double w, double S, double one_over_S)
{

if (w == 0 ) return O;

int sign_w = +1;

if (w<O0) {signw=-1; w=-w; }

return sign_w * floor(w * S) * one_over_S;

Let us see scaling at work. We use again the weighted matelgagithm for bipartite
graphs. The instantiation for number tygeubleis as follows.

(instantiation for doublg=

list<edge> MAX_WEIGHT_BIPARTITE_MATCHING(graph& G,
const edge_array<double>& c, node_array<double>& pot)
{ edge_array<double> c1(G);

scale_weights(G,c,c1,3.0,"MWBM<double>");

return MAX_WEIGHT_BIPARTITE_MATCHING_T(G,cl,pot);
}

where

(scaleweights.h+=

inline bool scale_weights(const graph& G, const edge_array<double>& c,
edge_array<double>& cl, double f)
{ edge e;
double C = 0;
forall_edges(e,G) C = leda_max(C,fabs(cl[el));
double one_over_S;
double S = compute_S(f,C,one_over_S);

bool no_scaling = true;
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forall_edges(e,G)
{ ci[e] = scale_weight(c[e],S,one_over_S);
if ( cle]l !'= ci[e]l ) no_scaling = false;

}

return no_scaling;

}

inline bool scale_weights(const graph& G, const edge_array<double>& c,
edge_array<double>& cl, double f, string inf)
{ bool no_scaling = scale_weights(G,c,cl,f);
if ( no_scaling == false ) cerr << inf << ": scaling was required";
return no_scaling;

}

We also offer a function that replaces a weight vector bydéded version.

(scaleweights.h+=

inline bool scale_weights(const graph& G, edge_array<double>& c,
double f)
{ edge_array<double> cO = c;
return scale_weights(G,cO,c,f);

}

There are also analogous functions for node arrays.

How does scaling interact with program checkh@/e showed in Lemmas 1 and 2 that
a computation with doubles computes the exact result fostladed weights and that the
result for the scaled weights is frequently a good approtiomaf the result for the unscaled
weights. We should not expect them to be equal. It is theeafonsense to check whether
a double computation produced the correct result for thealed weights if scaling took
place.

For example, in the program

list<edge> M = MAX WEIGHT BIPARTITE MATCHING(G,c,pot);
CHECK_MWBM (G, c,M,pot) ;

the call of CHECKMWBM may fail. Indeed, it is very likely to fail if scaling tdoplace
in the computation of the maximum weight matching.

We recommend the following strategy of using program chegkbgether with a com-
putation with doublesThe scaling should be done on the level of the user progiiamthis
end, each network algorithm comes with a function that iegdall input weights by their
scaled versions.

For example, ikmwhmatchingh> we also define a function

bool MWBM_SCALE WEIGHTS(const graph& G, edge array<double>& c)

{

return scale_weights(G,c,S.O);

}

that replaces the cost vecioby a scaled version. One may then write
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MWBM_SCALE_WEIGHTS(G,c);
list<edge> M = MAX WEIGHT BIPARTITE MATCHING(G,c,pot);
CHECK_MWBM (G, c,M,pot) ;

and checking will work.

The remainder of this section may be skipped. It is worthevtol study in more detail
what it means to replace by w’ = sign(w) - [|w| - S|/S. Clearly, ifw = 0 thenw’ = 0.
So assume # 0. By symmetry, it suffices to study the case> 0.

Lemma3Llet0 < w = x-2°with1/2 < |X| < 1, e integral, and letw;w; . . . wsy be the
mantissa of the floating point representatioruaf Let s be an integer, let S 25, and let
w = |w-S|/S. Ife+s < 0thenw = 0. Ife+s > 0thenw’ is obtained fromw by
replacing the mantissa by; . .. weys-10...0.

Proof We havew = x - 2° with 1/2 < |x| < 1. If e+ s < O thenw’ = 0. So assume
e+s>0 Wehave2x =1+, _swi2" and hence

lw-S] = |x-28%] = |2.x.28571
= A+ Y w22 < @4+ Yy w228
1<i<52 1<i<e+s—1
= 1+ > w2H/@2-2°.2)
l<i<ets-1
and hence
w=lw-S|/S=1+ Y w2)/2-2),
l<i<ets-1
i.e.,w’ has the same exponentasand mantissa; . .. we;s_10...0. O

Let us consider two special cases.

If all input weights are integers, then the scaling will nbiaoge any input as long as
f . C < 2% This is as foiints, but withMAXINT replaced by 2 — 1.

For the second case we assume that all input weights arenkas®he. We may assume
w.l.o.g.that¥2 < C < 1. Thens = 53— kwherek = |logf | +1ork = [log f]|. If wis
any input weight andv has binary representation

Owwiws...
thenw’ has binary representation
0.w1w2 e w53_k000. ey

i.e., the binary representation is truncated after(8&— k)-th bit. In this way the scaled
weights leavek bits of the mantissa unused. The unused bits can be used tputem
intermediate results without rounding error.



12 Graph Algorithms

7.3 Depth-First Search and Breadth-First Search

Depth-first search and breadth-first search are two powedtthods to explore a graph in a
systematic way. Both methods start at some nodka directed grapls and visit all nodes
that can be reached from They differ in the order in which they visit the nodes.

Depth-first search always explores edges out of the node moshtly reached by the
search. When it has exhausted all edges out of a node it bakktto the node from which
the node was reached.

Depth-first search is most easily formulated as a recursiveggluredfsthat takes a node
v as an argument (and additional arguments depending on fiieaton of depth-first
search). A caldfs(v, ...) first labelsv as reached and then makes recursive calls for all
nodesw such that(v, w) is an edge out of and nodew is not yet reached. A depth-
first search on a grap® induces two numberings of the vertices®@f one in the order in
which the nodes are reached by the search and one in the arddnich the calls talfs
are completed. The two numbers associated with a node aadlyusalled itsdepth-first
search numbeand itscompletion numberDepth-first search can also be used to partition
the edges ofs into so-calledree, forward, backward andcrossedges.

In the program below we use node arrdfsnumandcompnumno record the two number-
ings and we use a ligt to collect tree edges. The sets of forward, backward, arst@dges
are determined implicitly, as we will discuss later. We defiwo procedures, a recursive
proceduradfy(v, dfsnumcompnumT) and a masteDFSNUM(G, dfsnumcompnum A
calldfs(v, . ..) visits and numbers all vertices reachable frothat were not reached previ-
ously. We maintain the invariant thdtsnunfiv] = —1 iff v was not visited yet. The master
procedureDFSNUM initializes the variables and then iterates over all nodes:. every
nodev that was not reached yet it catlés(v, . ..). The calldfy(v, ...) setsdfsnunfv] to the
current value ofifsnumcounter and then iterates over all edges ouvoEach edgév, w)
to an unreached node is added tol and leads to a recursive calis(w, ...). When the
edges out ob are exhaustedompnurfw] is set to the current value @bmpnuntountet

(dfg+=
static int dfsnum_counter;
static int compnum_counter;

static void dfs(node v, node_array<int>& dfsnum, node_array<int>& compnum,
list<edge>& T )
{ dfsnum[v] = ++dfsnum_counter;
edge e;
forall_adj_edges(e,v)
{ node w = target(e);
if (dfsnum[w] == -1)
{ T.append(e);
dfs(w,dfsnum, compnum,T) ;
}
}

compnum[v] = ++compnum_counter;

}
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list<edge> DFS_NUM(const graph& G, node_array<int>& dfsnum,
node_array<int>& compnum)

{
list<edge> T;
df snum_counter = compnum_counter = O;

dfsnum.init(G,-1); // declares all nodes unreached

node v;
forall_nodes(v,G)
if (dfsnum[v] == -1) dfs(v,dfsnum,compnum,T);

return T;

Figure 7.1 shows the result of a runDFSNUM. A call DFSNUM(G, ...) partitions the
edges ofG into four classes in a natural way; the four classes are alswsin Figure 7.1.
Anedgee = (v, w) is called aree edgef dfs(w, ...) is called when the edgeis scanned
in dfgv, ...); we useT to denote the set of tree edges. The tfeés the call tree of
proceduralfs An edgee = (v, w) is called aforward edgéf it is parallel to a path of tree

edges, but is not a tree edge, i.e%w ande ¢ T; it is called abackward edgdor back

edge) if it is anti-parallel to a path of tree edges, iue%v; and it is called aross edgén

all other cases. The two numberings of the vertices can ke toselassify the edgés An
edge(v, w) is a:

e treeorforward edge iffifsnunfv] < dfsnunfiw] andcompnurfw] > compnurfw],
e backward edge ififsnunfiv] > dfsnuniw] andcompnurfw] < compnurfw],
e cross edge iftifsnunfiv] > dfsnunfiw] andcompnurfw] > compnurfw].

Let us see why this is true. We only give an intuitive argumemd refer the reader to
[Meh84, 1V.5] and [CLR90, chapter 23] for more detailed dissions.

If two calls C and D of dfsare nested within one another, syis nested withirC, then
C starts beforedD and ends afteb, i.e., the dfs-number of the node corresponding tis
smaller than the dfs-number of the node correspondirg &md the completion-number of
the node corresponding @is larger than the completion number of the node correspondi
to D. This explains the characterization of tree, forward, aackiwvard edges.

If two calls C and D are not nested within one another and, €agtarts afterD, then
C starts after the completion dd and hence the dfs-number of the node corresponding
to C is larger than the dfs-number of the node correspondirig emd the same holds for
completion-numbers. This fact together with the obseovetihat a cross edge always runs
from a node reached later to a node reached earlier explaénsharacterization of cross
edges.

Depth-first search considers every edge of the gapxactly once and hence runs in
linear timeO(n + m), wheren = |V|andm = |E|.

3 There is no standard convention concerning self-loops. lésify self-loops as back edges.
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Figure 7.1 Depth-first search: The search started at the bottom-mafgt. eor each node the

dfs- and the completion-number are shown inside the nods= &dges are shown as thick solid
edges, forward edges are shown as thin solid edges, backdges are shown as dashed edges,
and cross edges are shown a dotted edges. It is customagwalts-trees such that tree edges
are directed upwards and cross edges are directed fromtoitgft. Observe how dfs-numbers
increase along every tree path and how completion-numtesnedse. Also observe that cross
edges go from nodes with higher dfs- and completion-nuntbaotes with lower dfs- and
completion-number. You may generate your own figures byngpthe xIman-demo gvdfs.

Why should one be interested in the classification of the gdge tree, forward, back-
ward, and cross edges? Here is one reason. A depth-firshsgam@n acyclic graph does
not find any backward edges. Thesmpnurfw] > compnurfw] for any edge(v, w), i.e.,
all edges go from higher to lower completion numbers. In otherds, compnumis a
topological numbering of the graph.

We turn to breadth-first search. It explores the edges in ttieran which their source
vertex is reached. It uses a que@eto store the vertices in the order in which they are
reached and always explores edges out of the first node ofuthigeq When all edges out
of the first node are scanned, the first node is popped fromubeejand exploration from
the new first node is started. BFS can be used to label theeertith their distance from
a particular nods, i.e., to compute aodearray<int> dist such thadisfw] = d iff there
is a path frorrs to w of lengthd andd is the smallest integer with this property.

(bfe=
void BFS(const graph& G, node s, node_array<int>& dist)
{ queue<node> ;
node v,w;
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forall_nodes(w,G) dist([w] = -1;
dist[s] = 0;
Q.append(s);
while (!Q.empty())
{ v =0Q.popQ);
forall_adj_nodes(w,v)
if (dist[w] < 0)
{ Q.append(w);
dist[w] = dist[v] + 1;
}
}
}

The correctness of BFS is easy to establish. Cleartlisifw] = d then there is a path of
lengthd from s to w. On the other hand, = v, v1, ..., v = w is a path frons to w of
lengthl thendisvi] <i foralli,1<i <I.

Exercises for 7.3

1  Why can there be no edde, w) in a depth-first search wittfsnunfiv] < dfsnunfiw]
andcompnurfw] < compnurfw]?

2  Write a procedure based on depth-first search that testapd gor acyclicity. If the
graph is acyclic it should also compute a so-called topcklgiumbering of the vertices
of G, i.e., alabeling of the nodes & such that for all edges @ the label of the source
node is smaller than the label of the target node.

3 Use the program LEDAROOT/demo/xIman/glfs.c as the basis of a program that il-
lustrates BFS.

7.4 Reachability and Components

We start with an overview of the algorithms that compute haadity information and sim-
ple structural information of directed and undirected @iapgransitive closure, connected
and biconnected components, and strongly connected camgsrmhen we discuss the de-
tails of the strongly connected components algorithm, arallfi we describe an animation
of this algorithm.

7.4.1 Functionality
We deal with basic problems concerning reachability inated and undirected graphs. We
first consider directed graphs and later turn to undirecteghs.

Let G = (V, E) be a directed graph and letandw be two vertices ofs. Recall that
w is reachablefrom v if there is a path infG from v to w, i.e., if eitherv = w or there
is a sequencey, ..., & of edges ofG with k > 1, v = sourcée;), w = target(es), and
targete ) = sourcde 1) foralli, 1 <i < k.
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Figure 7.2 A graph with five strongly connected components. The five comepts are induced
by the node set§y = {8}, C1 = {5},C> ={1,3,4,6, 7}, C3 = {0}, andC4 = {1}. The
xlman-demo gwsccanim illustrates strongly connected components.

The graphG* = (V, E*) whereE* = {(v, w); w is reachable from} is called there-
flexive transitive closuref G. The procedure

graph TRANSITIVE CLOSURE(const graph& G);

computesG* from G in time O(n? + Myeq - N) Wheren = |V| andmyeq is the number of
edges in a transitive reduction 6f A transitive reductiorof G is a minimal (with respect
to setinclusion of edges) subgraph®fvith the same transitive closure &s In an acyclic
graph,myq is the number of edge®, w) of G such that there is no path of length two or
more fromv to w in G. For random graphs in th&, ,-model and arbitrary value g,
E(mreg) = O(N) and hence the expected running time of the transitive céoalgorithm is
O(n?), see [Meh84, IV.3].

A directed graphs is calledstrongly connected from any node ofG there is a path
to any other node o6. A strongly connected compongstc) of a grapl is a maximal
strongly connected subgraph. Figure 7.2 shows a graph wétstiongly connected com-
ponents. Shrinking the strongly connected components odghgo single nodes gives rise
to an acyclic graplss = (Vs, Eg) with

Vs = {C; Cis an scc ofG}
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Figure 7.3 The graph obtained by shrinking the sccs of the graph in Eigu2 to single nodes.
The given numbering of the sccs will be obtained if a first Hefpst search is started in node 0
(it will only reach 0) and a second depth-first search is ethirt node 2.

and
Es = {(C, D); C, D € Vs and there existév, w) € E withv € C andw € D}

Figure 7.3 shows the shrunken graph obtained from the grilpigore 7.2.
The procedure

int STRONG_COMPONENTS (const graph& G, node_array<int>& comp_num)

returns the number of strongly connected componen®arid computes aodearray<int>
compnumwith the following propertiek

e For all nodes of G: 0 < compnun{v] < number of sccs of.

e compnunjv] = compnuniw] iff the verticesv andw belong to the same strongly
connected component.

e If (v, w)is an edge ofs thencompnuniv] > compnuniw].

In other words, the arrayompnumencodes the strongly connected components ahd
moreover induces a topological ordering of the shrunkeplyra’he scc demo illustrates
the strongly connected components algorithm. The demwsléme to construct a graph
interactively. After every edit step the strongly conndatemponents are recomputed and
highlighted by a color and numbering code. Proce@FfRONGCOMPONENTSunNs in

4 Observe thatompnumstands for component number acmmpnunstands for completion number.



18 Graph Algorithms

linear timeO(n + m), wheren = |V| andm = |E|; its implementation is given in the next
section.

The transitive closure algorithm uses the strongly coretecobmponents algorithm as a
subroutine: it first computes the sccs, then the shrunkgrhgthen the transitive closure of
the shrunken graph, and finally the transitive closure oftliegraph. We give the simple
procedure for computing the shrunken gr&fcorresponding to a grapB. We first call
the strong components algorithm f@rand giveSGone vertex for each scc &. We then
iterate over the edges & and add an edge ®Gfor each edgév, w) of G wherev andw
belong to distinct sccs. Finally, we remove parallel edgesailing MakeSimpl€SG.

(shrunkengraphy=

graph SHRUNKEN_GRAPH(const graph& G)
{ node_array<int> comp_num(G) ;
int N = STRONG_COMPONENTS(G, comp_num);
graph SG;
array<node> V(N);
for (int i = 0; i < N; i++) V[i] = SG.new_node();
edge e;
forall_edges(e,G)
{ node v = G.source(e); node w = G.target(e);
if (comp_num[v] > comp_num[w] )
SG.new_edge (V[comp_num[v]],V[comp_num[w]]);
}
Make_Simple(SG);
return SG;

We turn to undirected graphs. The data tygeaphrepresents undirected graphs. Alter-
natively, directed graphs may be interpreted as undiregteghs, see Section 6.7. In the
early versions of LEDA we usedgraphsas the argument of all graph algorithms that op-
erate on undirected graphs. We now prefer tograghsand to let the algorithms interpret
them as undirected graphs. In the discussion of the algositive talk about undirected
graphs, of course.

Let G = (V, E) be an undirected graph. It is callednnectedf for any two verticesv
andw there is a path from tow in G, i.e., eithen = w orthereis a sequenes, ..., vk
of vertices such that = vy, w = vk, and{vj, viy1} isanedgeofs foralli, 1 <i < k. A
component ofs is a maximal connected subgraph®@f The procedure

int COMPONENTS(const graph& G, node_array<int>& comp_num)

computes the number of connected componentsNsayf G and an arragompnumsuch
that 0 < compnuniv] < N for all verticesv andcompnuniv] = compnunmw] iff the
verticesv and w belong to the same connected componenGoflt runs in linear time
O+ m).

A connected undirected graggh = (V, E) is calledbiconnectedf G — v is connected



7.4 Reachability and Components 19

Figure7.4 A graph with four bces. The beces are indicated by ovals. Thesetedge sets
{{f,c}}, {e g}},{{a, b}, {b, c}, {a, c}}, and{{b, d}, {b, €}, {e, d}}, respectively. The articulation
points are the nodds c, ande.

for everyv € V. Here
G—v=(V-v,{gecEandv ¢ ¢}

is the graph obtained by removing the verieand all edges incident to from G. For
graphs with at least three nodes the following alternate#ndtion is useful:G is bicon-
nected if for any distinct verticess andw there are two vertex-disjoint paths connecting
andw. A biconnected componefticc) is a maximal biconnected subgraph. A vedas
called anarticulation pointof G if G — a is not connected. Figure 7.4 shows a graph with
four biconnected components.

Let G be an undirected graph and I8y = (V1, E1), ..., Gm = (Vm, Em) be the bi-
connected components &. We claim thatE = E; U ... U Eyand|V,NV;| < 1 and
EiNE; =@ fori # j. To see this, note first that for each edgew} € E the graph con-
sisting of verticess andw and the single edgf, w} is biconnected, and hence contained
in one of the biconnected components@f It remains to show that any two distinct bccs
share at most one vertex (this also implies that they caresiaedge). Assume otherwise,
i.e., we have distinct bcdS; andG; and a paifv, w} of nodes belonging to both. SinGs
andG; are maximal biconnected subgraphs, the subg@ipa (V; U Vj, E; U E;) is not
biconnected and hence has an articulation pointasdyet x andy be vertices in different
components o6’ — a. Sincea is neither an articulation point i®; nor in G;, the graphs
Gi —aandG; — a are connected and hengendy cannot both be vertices in the same
graphG; or G;. We may assume w.l.0.g. thate V; andy € V;. Sincea cannot be equal
to bothv andw we may assume # a. SinceG; — a andG; — a are connected, a path
exists fromx to v in G; — a and fromy to v in G; — a. Hence a path exists fromto y in
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G’ — a and we have reached a contradiction. We conclude that theedfecgraph partition
the edges.
The procedure

int BICONNECTED_COMPONENTS (const graph& G, edge_array<int>& comp_num)

returns the number of bccs of the undirected versioladnd computes an edge array
compnumsuch thatompnunie] = compnuni f]iff the edgess and f belong to the same
biconnected component &. The running time iO(n + m).

We give more details. Lat be the number of biconnected components and'lbe the
number of biconnected components containing at least ayez ed ¢’ is the number of iso-
lated nodes i1, i.e., the number of nodesthat are not connected to a node different from
v. The function returns and labels each edge &f (which is not a self-loop) by an integer
in [0..¢' — 1]. Two edges receive the same label iff they belong to theesaiconnected
component. The edge labels are returnecompnum Be aware that self-loops receive no
label since self-loops are ignored when interpreting algespan undirected graph.

The nodes of a biconnected graph can be numbered in a spesialiich is useful for
many algorithms on biconnected graphs. Imagine the foliguphysical experimen is
a biconnected graph argdandt are any two nodes db that are connected by an edge.
We replace all edges @& by rubber bands and then pgllandt apart. SinceG has no
articulation point, this will exert force on every node®fand order the nodes @& along
the line froms to t. We number the nodes from 1 tostarting withs and proceeding
towardst. Every nodev of G, except fors andt, will have a smaller numbered and a higher
numbered neighbor. Such a numbering is calledtamumberingf G. The function

void ST_NUMBERING(graph& G, node_array<int>& stnum, list<node>& stlist)

numbers the nodes @& with the integers 1 tan (the number of any node is returned
in stnunjv] and the ordered list of nodes is returnedstfist) such that every node with

1 < stnunjv] < nis connected to a node with smaller number and to a node wgthehi
number, and such that the nodes with numbers 1raade connected by an edge. The
running time isO(n + m). We will see an application of st-numbering in Section 8.7.

7.4.2 Strongly Connected Components: An Implementation

We give a program to compute the strongly connected compgsnéa directed graph. An
animation of this program is available as the xiIman-demosgaanim. The algorithm is
an extension of depth-first search and was first describedM9p]; alternative algorithms
are described in [Tar72] and [Sha81].

Consider a depth-first search @Gnand uses. = (V, Ec) to denote the subgraph already
explored, i.e.V; is the set of nodes for which dfs(v, . ..) has been called arig, consists
of all edgese which have been explored in one of the callgitsf The algorithm maintains
the strongly connected components®{ In order to derive the algorithm we first introduce
some notation and then state some propertig€S.of

We call a vertex € V completedf the calldfs(v, ...) has been completednreachedf
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Figure7.5 A snapshot of depth-first search on the graph of Figure 7.2lendhrunken graph
corresponding to it.

A first dfs was started at nodeand a second dfs was started at nbd&he upper part shows the
snapshot of dfs; it is assumed that the search has just kackieh and is starting to explore
the edges out di. The edggh, i) and the nodé have not been seen yet and the depth-first
search numbers of the nodes are indicated. The hagl¢he current node. Completed nodes are
shown shaded.

The shrunken graph is shown in the lower part of the figure. cdmponentga} and{e} are
permanent and all other components are tentative. The pemhaomponents are shown
shaded. The tentative components form a gaith the shrunken graph ardbelongs to the last
component ofP. The roots of the tentative components are the vertices f, andh. They lie

on a common tree path of the depth-first search trgg.of

the calldfg(v, ...) has not been started yet, aactiveotherwise, i.e., if the call has already
been started but not yet completed. All active nodes lie anglespath inG and this path
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corresponds to the recursion stack of depth-first searchcalVg¢he last node of this path

the current node We call an scc of5. permanentf all its vertices are completed and we
call it tentativeif this is not the case. Thmot of an scc is the node in the scc with the
smallest depth-first search number. Figure 7.5 illustritese concepts. In this example
the shrunken graph @& exhibits considerable structure:

(1) Thereis no edgé, w) € E with v belonging to a permanent scc amcot belonging
to a permanent scc. In particular, all vertices reachablm fa vertex in a permanent
scc are completed.

(2) The tentative sccs form a pafhin the shrunken graph and the current node is
contained in the last scc of this path.

(3) If C andC’ are distinct tentative sccs with precedingC’ on P then all vertices irC
have smaller dfs-number than all vertice<dh

(4) LetC be atentative scc db; and letr be its root. Then all vertices i@ and all nodes
in all successors df on P are tree descendantsroin the depth-first search tree, i.e.,
the name root is justified.

We will show below that all four properties hold true genbrand not only for our
running example. The four properties will be invariantsta# ailgorithm to be developed.
The first invariant implies that the permanent scc&gfare actually sccs 08, i.e., it is
justified to call them permanent. This observation is so irga that it deserves to be
stated as a lemma.

Lemma4 A permanent scc of 3s an scc of G.

Proof Let v be a vertex in a permanent scc®§ and letw be a node of5 such that and

w belong to the same scc &. Thus there is a cycl€ in G passing through andw. If v
andw do not belong to the same scc @f, one of the edges & does not belong t&..
The source node of this edge cannot be completed and hensendbke in a permanent
component. Since lies in a permanent component, there must be an édge onC such
thatx lies in a permanent component, butloes not. This is a contradiction to our first
invariant. O

Invariants (2) to (4) suggest a simple method to representehtative sccs oB.. We
simply keep a sequenasfinishedof all vertices in tentative sccs in increasing order of
dfs-number and a sequenamts of all roots of tentative sccs. In our examplefinished
ish, c, d, f, g, h, androotsis b, c, f, h. For both sequences the data tygtecknode is
appropriate.

We can now start to write code. As already mentioned the progs an extension
of depth-first search and has the same global structure. Sgdation 7.3 we define two
proceduresSTRONGCOMPONENTSs the main procedure ar®iCCDFSis an auxiliary
procedure. Both procedures make use of the stagksishedandrootsand the node arrays
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dfsnumandcompnum dfsnunfiv] is the dfs-number ob for all reached nodes and isl1
for all unreached nodespmpnuniv] is the number of the scc containingfor all nodes
belonging to permanent sccs and-4 for all other nodes. The variablescountand
compcountkeep track of the used dfs-numbers and component numbspgatévely.

STRONGCOMPONENTSIefines and initializes all variables and then iterates aller
nodes ofG. It calls SCCDFS(v, ...) for each unreached node A call SCCDFS(v, ...)
assigns the next dfs-numberit@nd make® a tentative scc of its own. It then explores all
edges out ob. Finally, it returns from the call.

(SCC=
void SCC_DFS(node v, const graph& G, node_array<int>& dfsnum,
node_array<int>& comp_num, stack<node>& unfinished,
stack<node>& roots, int& dfscount, int& comp_count)
{ dfsnum[v] = dfscount++;
(make v a tentative scc of its oyvn
node w;
forall_adj_nodes(w,v){ (explore edge (v,W)2}
(return from the call for node)v
}

int STRONG_COMPONENTS(const graph& G, node_array<int>& comp_num)
{ stack<node> unfinished;

stack<node> roots;

node_array<int> dfsnum(G, - 1);

node v;

forall_nodes(v,G) comp_num[v] = - 1;

int dfscount = 0;

int comp_count = O;

forall_nodes(v,G)

if (dfsnum[v] == -1)
SCC_DFS(v,G,dfsnum,comp_num,unfinished,roots,dfscount,comp_count) ;

return comp_count;

A call SCCDFS(v, ...) makesv a tentative scc of its own sind®; contains no edges out
of v yet. This amounts to addingto the top ofunfinishedandroots Thus

(make v a tentative scc of its oy

unfinished.push(v);
roots.push(v);

It is easy to check that all invariants are maintained.

We come to the exploration of an edge- (v, w). If eis a tree edge (this is the case iff
dfsnuniw] = —1) we simply initiate a recursive call. &is a non-tree edge and belongs
to a permanent scc (this will be the caselfi$nunjw] > 0 andcompnuniw] > 0), then,
by Lemma 4, no action is required to maintain the invarialits.is a non-tree edge and
belongs to a tentative scc (this will be the casgf#nunjw] > 0 andcompnunw] = —1)
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N
collapse componen

Figure 7.6 The path of tentative sccs and the effect of exploring an €dge), wherew
belongs to a tentative scc. All tentative sccs on the path fie tentative scc containing to
the tentative scc containingare collapsed into a single scc.

then some final segment of the path of tentative sccs cobapsesingle scc (cf. Figure 7.6).
Thus

(explore edge (v,\WE
if (dfsnum[w] == - 1)
SCC_DFS(w,G dfsnum,comp_num,unfinished,roots,dfscount,comp_count);
else if (comp_num[w] == - 1) { (merge sccs }

We give the details of merging sccs. Assume tihdielongs to a tentative scc with roat
Thenr is the topmost root imoots with dfsnuntnr] < dfsnun]jw] (by invariant (3)). Any
rootr’ abover ceases to be a root sinee— w —> r —> r' = v. Note thatw — r
sincew andr belong to the same scc, and—> r’ — v since the shrunken graph of
tentative sccs is a path. Thus

(merge sccs=
while (dfsnum[roots.top()] > dfsnum[w]) roots.pop();

What do we have to do when we return from a call, say for ngdi&he completion ob
completes an scc if is a root (by invariant (4)) and is a root iffv = rootstop( ) (since
the call for the topmost root is completed before the calihgf@ther root contained iroots,
again by invariant (4)). Ib is a root the scc of consists of all nodes innfinishedvhose
dfsnunis at least as large ass dfsnum(by invariant (3)). We simply pop these nodes from
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unfinishedand define theicompnum Lemma 4 tells us that this scc is also an scc of the
final graph.

(return from the call for node)=

if (v == roots.top())
{ do
{ w = unfinished.pop();
comp_num[w] = comp_count;
} while (w != v);
comp_count++;
roots.pop();

Invariants (2), (3), and (4) are clearly maintained. Fomnmnt (1) this can be seen as
follows. LetC be the scc with root. ThenC is the last scc of the path of tentative sccs
and hence all other tentative sccs are predecess@soof P. Thus there can be no edge
in E; from a vertex inC to a vertex in any other tentative scc. Since all node€ iare
completed, all edge&, y) € E with x € C are also edges i&. and invariant (1) holds.

7.4.3 Strongly Connected Components: An Animation

We describe an animation of the algorithm of the precediragi@® The animation is
available as the xIman-demo gsecanim . The animation consists of two parts. In the
first part the user can interactively construct a directeghlyG; after every edit operation
of the user the strongly connected componentS afre recomputed and shown in number
and color code, i.e., nodes belonging to the same scc arenshaive same color and with
the same integer label. In the second part the executionra$amsalgorithm on the graph
constructed in the first section is animated. Figure 7.7 shawcreen-shot. The overall
structure of the program is as follows:

(gw_sccanim.¢=

#include <LEDA/graph_alg.h>
#include <LEDA/graphwin.h>
(display functions for part one
(display functions for part two
(help panels

int main(){

GraphWin gw("SCC Animation Demo");
gw.display() ; // open display
gw.set_directed(true);

int h_menu = gw.get_menu("Help");
gw_add_simple_call(gw,about_scc_animl, "About SCC: phase 1",h_menu);
gw_add_simple_call(gw,about_scc_anim2, "About SCC: phase 2",h_menu);
gw_add_simple_call(gw,about_scc_anim_basics, "About SCC: basics",h_menu);
gw_add_simple_call(gw,about_scc_anim_data_structures,

"About SCC: data structures',h_menu);

(part one of demp
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Tﬂ SCC Animation Demo

done

| returned from a recursive call. The node with number 2 got reactivated
press done

-17.83 80.18
fil State Of The Algorithm

Unfinished
Roots

,nodes: 9 edges: 12

Figure7.7 A screen-shot of the second part of gecanim. Explored nodes are labeled with
their depth-first search number and nodes in permanent setabeeled with their depth-first
search number and the number of the scc containing themokexpédges are drawn solid and
unexplored edges are drawn dashed. The nodes in permansrirscshown in the left half of

the window and the other nodes are shown in the right halfetttteen. The node with
depth-first number 2 is the currently active node and thezdvem tentative components, one
consisting of node 0 and the other one consisting of nodesah®3. There is one unreached
node. The stacksnfinishedandrootsare indicated at the bottom of the screen-shot. The text at
the top of the window explains the actions of the algorithm.

(part two of demp
return O;

}

The animation is based on the data tgraphWin this data type is a combination of graphs
and windows and is discussed in ChafterMost of the current section can be appreciated
without knowledge of GraphWins, as we explain the used featof GraphWin as we go
along. However, the explanations of GraphWin will be kemirshind hence readers without
knowledge of GraphWin will miss some of the fine points. We dtipat all readers will
enjoy the demo so much that they will also study GraphWin.

In mainwe first define aGraphWin gwand then infornrgw that we are dealing with di-
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rected graphs. We then set up the help m&naphWinhas already a predefined help menu.
We get its number and add three buttons to it. The correspgridhctionsaboutsccaniml,

. are defined in the program chuttkelp panels. We do not show it as the help buttons
of gw_sccanim should give sufficient information. Having set up thipHmittons we start
part one of the demo. It makes use of the display functionséeéfin the corresponding
chunk. The same holds true for the second part of the demo.

We come to the first part of the demo. Thanks to the powésfalphWindata type it is
extremely simple to write. AGraphWinalways has an associated graph and moreover it
maintains information about how to display the constitaeritthis graph: for example, for
a node it maintains the position of the node, the color of tidenand the shape of the node
(circle, square, rectangle, or ellipse), and for an edgaihtains the style of the edge (solid
or dashed or dotted) and the color and the width of the edge.didplay information can
be modified.

In displaysccwe first get the current grapB from gw and then compute the strongly
connected components 6f We then set for each nodeof G the color ofv to the compo-
nent number ob modulo 16 (as we rely only on the availability of 16 differenlors) and
we set the so-called user labef v to the component number of We also informgw that
we want the user label to be displayed with each node.

We wantdisplaysccto be called whenever the graph associated githis modified.
This is easy to achieve. It is possible to associate funstigith a GraphWin(so-called
handlers) that are called whenever a node or edge is addedleted. For example,
gwsetdeledgehandlerdisplayscg informsgwthat the functiordisplaysccis to be called
whenever an edge is deleted. The handlers for the additianrafde or edge are syn-
tactically required to have a second argument which is a modmige, respectively. We
therefore need to wragisplaysccaccordingly before defining the new edge and the new
node handler.

After having set the handlers we open the display, show theihtormation for phase
one, and pugw into edit mode. The caljwedit( ) is terminated by a click on the done-
button ofgw.

(display functions for part orje=

void display_scc(GraphWin& gw)
{ graph& G = gw.get_graph();
node_array<int> comp_num(G);

int N = STRONG_COMPONENTS(G,comp_num) ;

node v;

forall_nodes(v,G)

{ gw.set_color(v,comp_num[v]%16);
gw.set_user_label (v,string("%d",comp_num[v]));
gw.set_label_type(v,user_label);

}

}

void new_edge_handler (GraphWin& gw, edge) { display_scc(gw); }

5 In GraphWineach node has a number of predefined labels; one of themésl ¢a# user label.
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void new_node_handler (GraphWin& gw, node) { display_scc(gw); }

(part one of dem=

gw.set_init_graph_handler(display_scc);
gw.set_del_edge_handler(display_scc);
gw.set_del_node_handler(display_scc);
gw.set_new_node_handler (new_node_handler) ;
gw.set_new_edge_handler (new_edge_handler);

about_scc_animi(gw); // inform user about phase 1

gw.message (""\\blue Construct or load a graph and press done.");
wait(1.75);
gw.message("");

gw.edit () ; // enter edit mode

We come to part two of the demo. The goal of part two is to argntia¢ strongly con-
nected components algorithm of the preceding section. ddeebehind the animation is as
follows. We use a split design for the main window. The righif lof the window shows all
tentative components @ and all unexplored nodes and the left half of the screen shows
all permanent components. Also, unreached nodes are stowhite empty circles and
unexplored edges are shown dashed. The code below setsinjtifieonfiguration of this
design and also displays some textual information for tlee (s8hich we do not show here
to save space).

We first get the coordinates of the window boundaries and thewe the contents of
gw to the right half of the screen. We then create the initialning of the demo. For
each node we set the color to white, state that the node is to be drawrcasla of radius
smallwidth (smallwidthis defined in program chunklisplay functions for part twy, state
that the displayed information is the user label, set the lade| to the empty string, and
compute the position to whichis moved once it belongs to a permanent component. We
also set the style of all edges to dashed. We then caBTHRONGCOMPONENTSunction
of the preceding section; of course, this function needstalgmented by display actions
and therefore needs additional arguments, nargalgndpermpos

(part two of demp=
gw.disable_calls(); // disable buttons
about_scc_anim2(gw) ;

graph& G = gw.get_graph();
window& W = gw.get_window();

node_array<point> perm_pos(G);

double xmin = gw.get_xmin() + W.pix_to_real(20);
// coordinate of left boundary plus 20 pixels
double xmax = gw.get_xmax() - W.pix_to_real(20);
double ymin = gw.get_ymin() + W.pix_to_real(30);
double ymax = gw.get_ymax() - W.pix_to_real(20);

double dx = xmax - xmin;
double dy = ymax - ymin;
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gw.place_into_box(xmin+dx/2,ymin,xmax,ymax-dy/5) ;
// move everything to right half of screen

gw.set_flush(false); // changes are accumulated

node v;

forall_nodes(v,G)

{ gw.set_color(v,white);
gw.set_label(v,user_label); gw.set_user_label(v,"");
gw.set_shape(v,circle_node);
gw.set_node_width(small_width);
double xcoord = gw.get_position(v).xcoord();
double ycoord = gw.get_position(v).ycoord();
perm_pos[v] = point(xcoord-dx/2,ycoord) ;

}

edge e;

forall_edges(e,G) gw.set_style(e,dashed_edge);

gw.redraw() ; // all changes are performed now
gw.set_flush(true);

(more information about part two

node_array<int> comp_num(G);
STRONG_COMPONENTS (G, comp_num,gw ,perm_pos) ;

gw.message ("\\bf Wasn\’t this a nice demo ?");
wait(1);
gw.message("");

gw.fill_window();

gw.enable_calls(); // enable buttons
gw.edit () ;

We come to the display functions used for part two. We disptades in two sizes: roots and
nodes in permanent components are shown as large rectandla#i other nodes are shown
as small circles. All nodes in the same strongly connectatboments are colored with the
same color. For permanent components we use the color ponéisig to the component
number and for tentative components we use the height obibteof the component in the
roots-stack. In order to keep the colors for permanent and teetatimponents separate (or
at least approximately so) we add an integ@or_shiftto all colors of tentative components.

The demo can be run in either of two modes. In step mode theawtiin is triggered
by a click on the done-button and in continuous mode the aiomés run to completion
without user interaction. The choice of mode is controllgdtiee variablestepand the
proceduremessageavhich we use to write messagessginto gw. If stepis true, msgis
displayed until the done-button is pressedstHpis true and the exit button is pressetkp
is set to false and the demo runs to completion (smessagéias no effect whestepis
false).

We define a windovstatewin (in addition to the window associated wigjny) and use it
to display state information. The state information is gatedl by the functiorstateinfo.
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It draws the stacKsunfinishedandroots as sequences of rectangles istatewin. Each
rectangle is labeled with the dfs-number of the node it regmes. The stacksnfinished
androots are displayed in a way that equal elements are aligned [rizlroots is a
subsequence ainfinishedl.

(display functions for part twa=

static int small_width = 20;
static int large_width = 36;
static int color_shift 5;

static bool step = true;
void message (GraphWin& gw, string msg)
{ msg += "\\5 \\blue press done \\black";
if (step && !gw.wait(msg)) step = false;
}
static window state_win(320,60,"State 0f The Algorithm");

static void state_redraw(window* wp) { wp->flush_buffer(); }

static color text_color(color col)

{ if (col==black || col==red || col==blue || col==violet ||
col==brown || col==pink || col==blue2 || col==grey3)
return white;

else
return black;

}

void state_info(GraphWin& gw, const list<node>& unfinished,
const list<node>& roots,
const node_array<int>& dfsnum,
node cur_v)

if (!state_win.is_open())

{ state_win.set_bg_color(greyl);
state_win.set_redraw(state_redraw);
state_win.display(-gw.get_window() .xpos()+8,0);
state_win.init (0,320,0);
state_win.start_buffering();

}

state_win.clear();
double th = state_win.text_height ("H");

double x0 = state_win.text_width("Unfinished") + 2%th;
double yl1 = state_win.ymax() - 1.75%th;
double y2 = state_win.ymax() - 3.20%th;

double d = 18;

state_win.draw_text (5,y1+(d+th)/2,"Unfinished");
state_win.draw_text (5,y2+(d+th)/2,"Roots");
list_item r_it = roots.first();

double x = x0;

6 In contrast to the preceding section we realize both stasksta, the reason being that we need to iterate over all
elements in both stacks and that stacks do not supportidterater their elements (they probably should).
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list_item u_it;

forall_items(u_it, unfinished)

{ node v = unfinished[u_it];
color col = gw.get_color(v);
int dn dfsnum[v];

state_win.draw_box(x,yl,x+d,yl+d,col);

state_win.draw_rectangle(x,yl-1,x+d,yl+d,black);

state_win.draw_ctext(x+d/2,y1+d/2,string("%d",dn) ,text_color(col));
if ( v == roots[r_it] )

{ state_win.draw_box(x,y2,x+d,y2+d,col);
state_win.draw_rectangle(x,y2-1,x+d,y2+d,black) ;
state_win.draw_ctext (x+d/2,y2+d/2,string("%d",dn),

text_color(col));
r_it = roots.succ(r_it);
}

else

state_win.draw_box(x+1,y2,x+d,y2+d,white) ;

x += d;

}
state_win.draw_rectangle(x0,y1-1,x,y1+d,black);
state_win.draw_rectangle (x0,y2-1,x,y2+d,black) ;
state_win.flush_buffer();

}

The functionsSSTRONGCOMPONENT&ndSCCDFS have the same overall structure
as in the preceding section, but are augmented by displagnactAt the beginning of a
call SCCDFS(v, ...) we callgwselectv) to highlightv and at the end of the call we call
gwdeseledat) to unhighlightv. In theforall_.adjedgedoop we color the edge explored red
and make it solid.

(display functions for part twoet=

void SCC_DFS(node v, const graph& G, node_array<int>& dfsnum,
node_array<int>& comp_num, list<node>& unfinished,
list<node>& roots, int& dfscount, int& comp_count,
GraphWin& gw, const node_array<point>& perm_pos)
{ gw.select(v);
(new node v was reachgd
node w; edge e;
forall_adj_edges(e,v)
{ w = G.target(e);
gw.set_style(e,solid_edge) ;
gw.set_color(e,red);
string msg = "I am exploring the red edge.\\3 ";
if (dfsnum[w] == - 1) { (tree edge and recursive call}
else if (comp_num[w] == - 1)
{ (non-tree edge into tentative componjet
else
{ (non-tree edge into permanent componeht
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if (v == roots.head()) { (visaroo} }

gw.deselect (v) ;
}

In STRONGCOMPONENTSve inform the user about every new call®€CDFS except
for the first.

(display functions for part twet=
int STRONG_COMPONENTS(const graph& G, node_array<int>& comp_num,
GraphWin& gw, const node_array<point>& perm_pos)
{ list<node> unfinished;
list<node> roots;
node_array<int> dfsnum(G,-1);
node v;
forall_nodes(v,G) comp_num[v] = -1;
int dfscount = 0;
int comp_count = O;
forall_nodes(v,G)
if (dfsnum[v] == -1)
{ SCC_DFS(v,G,dfsnum, comp_num,unfinished,roots,dfscount,
comp_count,gw,perm_pos) ;
message (gw,"This was a return from an outermost call\\3
I am looking for an unreached node and \\n\
(if successful) start a new search from it.");

}

return comp_count;

When a new node is reached it is given a dfs-number and is dushenfinishedand
roots The new node forms a tentative strongly connected comparfets own. We set
the color ofv to the size of theootsstack (shifted bycolor_shift so as to avoid too much
overlap with the colors used for permanent components)eiiias user label of to its dfs-
number, and we set the shape and width td a large rectangular shape (so as to indicate
thatv is a root). We build up a string to explain our actions, hartd inessagé¢o display
it, and callstateinfo to update the state information.

(new node v was reachgd

dfsnum[v] = dfscount++;
unfinished.push(v);
roots.push(v);

gw.set_color(v, (color_shift + roots.size())%16);
gw.set_user_label(v,string("/%d",dfsnum[v]));
gw.set_shape(v,rectangle_node) ;
gw.set_width(v,large_width);

string msg;

msg += "A new node has been reached.\\3 ";
msg += "It got the dfs-number ";

msg += string(")d ",dfsnum[v]);

msg += "and it is the new current node.\\3 ";
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msg += "It is the root of a new tentative component.";

state_info(gw,unfinished,roots,dfsnum,v);
message (gw,msg) ;

A tree edges = (v, w) leads to a recursive call. We inform the reader about this fac
by textual output, we unhighlight as it ceases to be a current node, and we emphasize the
edgee (by increasing its width and setting its color to blue); irstivay the tree path to the
current node is always shown as a path of thick blue edgesn Waeemake the recursive
call. After the return from the recursive call, we de-empbasand highlightv (again), and
we inform the reader that we just returned from a recursilleacal thatv became active
again.

(tree edge and recursive cgE

msg += "It’s a tree edge and I am making a recursive call.";
message (gw,msg) ;
state_info(gw,unfinished,roots,dfsnum,v) ;

gw.deselect (v);
gw.set_color(e,blue);
gw.set_width(e,2);

SCC_DFS(w,G,dfsnum, comp_num,unfinished,roots,dfscount,
comp_count ,gw, perm_pos);

gw.set_width(e,1);
gw.set_color(e,black);
gw.select (v);

state_info(gw,unfinished,roots,dfsnum,0) ;

message(gw,"I returned from a recursive call. The node with \
number " + string("/%d ",dfsnum[v]) + " got reactivated");

A non-tree edgee = (v, w) into a tentative component may close a cycle involving
several tentative components. These components are matgezhe. More precisely, all
components whose root has a dfs-number larger difismunfw] cease to exist. We inform
the user about this fact by textual output and then startipgppots Whenever a node is
popped fronrootsits shape and width are changed to a small circle. We puaig0.25)
statement into the loop that pops fraoots so that different roots are visibly popped one
after the other. Once all roots are popped we recolor themiodtie newly formed scc and
give state information. Finally, we change the coloediack to black.

(non-tree edge into tentative component

msg += "It’s a non-tree edge into a tentative component. This edge may \
merge several components into one.\\n More precisely: all \
components whose root is larger than " + string("d ",dfsnum[w]);
msg += "cease to exist and are merged into the component \
containing the node with dfs-number " + string("’%d. ",dfsnum[w]);
msg += "Algorithmically, this amounts to removing all roots \
larger than " + string("/d ",dfsnum[w]);
msg += "from the stack of roots. I do so one by one. Removal of a node \
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from the stack of roots turns its shape from rectangular \
to circular.";

message (gw,msg) ;

state_info(gw,unfinished,roots,dfsnum,v);

while (dfsnum[roots.head()] > dfsnum[w])

{ node z = roots.pop(Q);
gw.set_shape(z,circle_node);
gw.set_width(z,small_width);
state_info(gw,unfinished,roots,dfsnum,v);
wait (0.25);

}

node u;
forall (u,unfinished)
if (dfsnum[u] >= dfsnum[roots.head()] )
gw.set_color (u, (color_shift + roots.size())%16);

state_info(gw,unfinished,roots,dfsnum,0) ;

message (gw,string("Now all roots are removed and the newly formed \
component has been recolored. The current \
node is still: %d.", dfsnum[v]));

gw.set_color(e,black);

A non-tree edge into a permanent component requires no action. We infornugiese
and change the color efback to black.

(non-tree edge into permanent component
msg += "It’s a non-tree edge into a permanent component. I do nothing.";

message (gw,msg) ;
state_info(gw,unfinished,roots,dfsnum,v);

gw.set_color(e,black) ;

When a callSCCDFS(v, ...) for a rootv is completed a permanent component has been
found. We inform the reader accordingly. All nodes in thenpanent component are moved
to the left half of the window (by setting their position as&i bypermpos the shape and
width is changed to a large rectangular shape, the userigiel to a pair consisting of
dfs-number and component number, and the color is set todlee corresponding to the
component number.

(vis aroot=

string msg = "Node " + string("%d",dfsnum[v]) + " has been \
completed. It is a root and hence we have identified \
a permanent component. \\3 \
The permanent component consists of all nodes in \
unfinished whose dfs-number is at least as large as "
+ string("%d",dfsnum[v]) + ". \\3 \
I move all nodes in the component to the left and \
indicate their dfs-number and their component number.";

state_info(gw,unfinished,roots,dfsnum,0) ;
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message (gw,msg) ;

do { w = unfinished.pop();

if (v == w) roots.pop();

comp_num[w] = comp_count;

gw.set_shape(w,rectangle_node) ;

gw.set_width(w,large_width);

gw.set_color(w,comp_count%16) ;

gw.set_user_label (w,string("%d | %d", dfsnum[w],comp_num[w]));
state_info(gw,unfinished,roots,dfsnum,0) ;
gw.set_position(w,perm_pos[w]);

} while (w !'= v);

comp_count++;

Enjoy the animation.

Exercises for 7.4

1

7.5

Modify the algorithm for the computation of strongly coterd components to compute
biconnected components of undirected graphs. Hint: Defineadot of a biconnected
component as the node in the component with the second tadéeaumber. Then
proceed as for strongly connected components.

Part one of the animation of strongly connected comporieniasatisfactory as color
changes are not “local”. It would be desirable to have thiodahg behavior: after
the addition or deletion of a node or edge only the colors o$¢hnodes change whose
containing strongly connected component has changed.fiylib@i animation to achieve
this behavior.

Animate the biconnected components algorithm of the fiest

Extend the first part of the animation of strongly conneatethponents so that the
shrunken graph is also visualized. A reasonable appro&chsto represent each vertex
of the shrunken graph by the convex hull of the vertices ofciveesponding strongly
connected component.

Define the shrunken graph of an undirected graph with ré$péis biconnected com-
ponents as follows. There is a vertex for each biconnectetbooent and for each
articulation point. A vertex standing for a component ismected to a vertex represent-
ing an articulation point if the articulation point is coimtad in the component. Show
that the shrunken graph is a tree and give a program that desju

Shortest Paths

We introduce the shortest-path problem and describe thotifumality of our various shortest-
path programs. We discuss a checker for the single-souargéesh-path problem and de-
rive a generic shortest-path algorithm. We give algorittand their implementations for
acyclic networks, for the single-source problem with adif edge costs, for the single-
source single-sink problem, for the all-pairs problem, &rdthe minimum cost to profit
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Figure 7.8 The node labels indicate(s, .). The graph on the left contains a negative cycle and
also a node that is not reachable frenTherefore there are node labels equatts. The graph
on the right contains no negative cycle and all nodes ardedde froms. Therefore all node
labels are finite.

ratio cycle problem; an algorithm for the single-sourcelieon with non-negative edge
costs was already given in Section 6.6. We also give expeatmheesults about the running
times of the various implementations.

7.5.1 Functionality
LetG = (V, E) be adirected graph and let E — IR be acostfunction on the edges
of G. We will also saylengthinstead of cost. We extend the cost functiorpaghsin the
natural way: the cost (or length) of a path is the sum of thescokits constituent edges,
e, if p =[e,e,...,&]is a path therc(p) = >, c(&). We will abuse notation
and writec(u, v) instead ofc(e) for e = (u, v). For e_véry vertexw € G the trivial path
consisting of no edge is a path franto v; its cost is zero. Aycleis a non-trivial path from
v to v for some node. A negative cyclés a cycle whose cost is negative.

For two vertices andw we useu (v, w) to denote the minimal cost of a path frano

w,i.e.,
w(, w) =inf{c(p); pis a path fromw tow}.

The infimum of the empty set is defined-&so, i.e., u(v, w) = +o0 if w is not reachable
from v. Figure 7.8 illustrates this definition. The set of pathsrfroto w is in general an
infinite set and hence it is not clear whethgw, w) is actually achieved by a path from
to w. The following lemma gives information about the existeatehortest paths.

Lemmab

(a) If wis not reachable fromy thenu (v, w) = +oc.
(b) If there is a path fromv to w containing a negative cycle then(v, w) = —occ.
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(c) If w is reachable fromv and there is no path from to w passing through a negative
cycle then—oco < u(v, w) < +o0 and u (v, w) is the length of a simple path fromto
w.

(d) If u(v, w) = —oo then there is a path from to w containing a negative cycle.

Proof Part (a) is true by definition.

For part (b), we observe that if there is a path frorto w containing a negative cycle
then by going around the cycle sufficiently often a path fremo w whose cost is below
any prescribed number is obtained. Thu®, w) = —oo.

For part (c) consider any pathfrom v to w. If p contains a cycle lep’ be obtained
by removing a cycle fronp. Sincep contains no negative cycle we hawg’) < c(p).
Continuing in this way we obtain a simple path franto w whose cost is at most the cost
of p. Thus

u(v, w) = inf {c(p) ; pis asimple path from tow}.

The number of simple paths fromto w is finite and hence (v, w) = c(p) for some simple

pathp.
We turn to part (d). lfu(v, w) = —oo thenw is reachable fromv. If there is no path
from v to w containing a negative cycle then(v, w) > —oco by part (c). O

We distinguish between th&ngle-source single-sink shortest-path probléhe single-
source shortest-path problerand theall-pairs shortest-path problemThe first problem
asks for the computation @f(s, t) for two specified nodes andt and will be discussed in
Section 7.5.6. The second problem asks to compusev) for a specified nods and all
v and the third problem asks to computés, v) for all nodess andv. The single-source
problem is the basis for the solutions to the other two prokland hence we discussiit first.

In our discussion of the single-source problem we sise denote the source and we
write w (v) instead ofu (s, v). The following characterization of the functignis extremely
useful for the correctness proofs of shortest-path algst.

Lemma6
(a) We have
w(s) = min(0, min{w(u) +c(e) ;e =(u,s) € E})
and
() =min{u(u) +ce ;e =(u,v) € E}
forv #s.

(b) Ifd is a function from V to IRJ {—o0, 400} with
o d() > pu)foralveV,

7 In this characterization and for the remainder of the saatie use the following definitions for the arithmetic
and order orR U {—o00, +00}: —00 < X < 400, +00 + X = +00, and—oo + X = —oo for all x € R.
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e d(s)<0,and

e d(w) <d(u)+c(u,v)foralle=(u,v) € E
then dv) = u(v) forallv e V.

Proof For part (a) we consider only the casez s and leave the case= s to the reader.
Any path p from s to v consists of a path frorato some nodel plus an edge from to v.
Thus

w@) = inf{c(p); pisa pathfromstov}
= rrLininf {c(p) +c(e); p'is a path fromstou ande = (u, v) € E}
= min{u(u) +c(e) ;e= (u,v) € E}.

For part (b) we assume for the sake of a contradictiondbat > w(v) for somev. Then
u() < +oo. We distinguish cases.

If u(v) > —oo, let[s = vp, v1, ..., vk = v] be a shortest path fromto v. We have
w(s) = 0=d(s), u(vi) = uw(vi_1) + c(vi_1, vj) fori > 0, andu(v) < d(v). Thus, there
is aleast > 0 with u(vi) < d(vj) and hence

d(vi) > u(vi) = u(vi—1) + c(vi, vi—1) = d(vi_1) + c(vi, vi_1),

a contradiction.

If w(v) = —oo, let[s = wvg,v1,...,0i,...,vj,...,vx = v] be a path froms to v
containing a negative cycle. Such a path exists by Lemma &urs that the subpath from
vi to v is a negative cycle. Ifi(v) > w(v) thend(v) > —oo and hencel(v;) > —oo for
alll, 0 <l < k. Thus,

d(vy) d(vj) sincevj = Vj
d(vj_1) + c(vj_1, vj)

d(vj-2) + c(vj_2, vj—1) + C(Vj_1, V)

RV

< d@) + X5 e, v,

and henc{jljz_i1 c(vr, vi+1) > 0, a contradiction to the fact that the subpath frarto v; is
a negative cycle. O

We split the set of vertices @ into three sets:

VT = {veV;pul) = —oo},
Vi = (veV; —oo < pu@) < +o0}, and
VYt = {veV;uw) =+oo}.

The vertexs belongs toV f if there is no negative cycle passing througgind it belongs to
V-~ otherwise; in the latter cadé’ is empty. The se¥* consists of all vertices that are not
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Figure7.9 A solution to a single-source problem: It consists of a sirpath tree ol f, a
collection of negative cycles plus trees emanating frormtbaV —, a setv* of isolated nodes,
and the valueg.(v) forv e V f.

reachable frons. A shortest-path treevith respect tcs is a tree defined oW ' such that
foranyv € V' the tree path frons to v is a shortest path fromito v.

We next define the output convention for the single-souroetsht-path problem. What
do we want to know? Certainly (v) for all nodesv. However, knowingu (v) is usually
not enough. 1fv € V', it is useful to know a shortest path frosrto v and ifv € V-, it
is useful to know the negative cycle that “putsinto V~. Our algorithms therefore also
produce a shortest-path tree @i and a collection of negative cycles plus trees emanating
from them onV —, see Figure 7.9. The exact definition is as follBws

The solution to a single-source shortest-path prob{@ns, ¢) is a pair (dist, pred),
wheredistis anodearray<NT> andpredis anodearray<edge. Let

P = {predv]; v € V andpredv] # nil}.
The pair must have the following properties:
e se V'iff preds] = nil ands € V~ iff preds] # nil.
e Forv#s:veVTiff predv] = nilandv € VT UV~ iff predv] # nil.

8 We further comment on our output convention after its de€init
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-3

Figure7.10 The output of a single-source shortest-path problem. Theesmodes is shown
bigger than all other nodes. list-label is zero. Edge costs are indicated. For every nodih
predv] + nil the edgepredv] is shown in bold. For the nodes W' thedistvalue is shown
inside the node. For nodesc V* UV~ the set containing is indicated by a+ or —. V*
consists of all nodes + s with predv] = nil, Vf consists of all nodes that are reachable fiom
by a P-path, andv ~ consists of all nodes that lie onRxcycle or are reachable fromRecycle

by the P-path. All P-cycles have negative cost. You may generate your own figuitbshe
xlman-demo gwshortestpath.

e v e V'ifvisreachable frons by aP-patl? ands € V f. P restricted tov ' forms a
shortest-path tree amtisfv] = 1 (v) forv e V.

e All P-cycles have negative cost andt V~ iff v lies on aP-cycle or is reachable
from a P-cycle by aP-path.

Figure 7.10 shows an example. Observe that our output ctiowvdeaves the value of
disfv] unspecified forv € V* U V™. We have made this choice because most number
types have no representation feto and—oo. In theabsence of negative cyclesr output
convention simplifies to the following:

e Forv#s:veV'iff predv] # nil andv € V* otherwise.
e preds] = nil.
e Pis ashortest-path tree an' anddistv] = u(v) forv e V',

Our output convention for the single-source shortest-patblem is non-standard. Most
papers on the shortest-path problem do not define preciselybgative cycles are reported
and this was also true for early versions of LEDA. We have éeffiour output convention
such that:

e the return value of a single-source algorithm consists @ia(dist, pred), as is
customary for single-source algorithms. We played withitlea to add an output

9 A P-path is a path all of whose edges belondPtand aP-cycle is a cycle all of whose edges belongfto
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parameter, which indicates for every node its membershipasets/+, V', andVv .
We decided against it, because we wanted to stick with tiiitivaal interface of
shortest-path algorithms,

e it can be checked in linear time whether a pdlist, pred) is a solution to the
shortest-path problenG, s, c), see Section 7.5.2,

e shortest-path algorithms can satisfy it with little aduofital effort.

We turn to algorithms. All algorithms are function tempkatlkat work for an arbitrary num-
ber typeNT. We use the convention that names of function templatesréptgalgorithms
end with T. In order to use the templates one must include LEDA/teraplahortespath.t.
LEDA also contains pre-compiled instantiations for the bemtypesnt anddouble The
function names for the instantiated versions a&ithout the suffix T. In order to use the
instantiated versions one must include LEDA/gragdp.h. Section 7.1 discusses the rela-
tionship between templates and instantiated versions e ehetail.

Acyclic Graphs:

void ACYCLIC_SHORTEST_PATH.T(const graph& G, node s,
const edge_array<NT>& c,
node_array<NT>& dist,
node_array<edge>& pred)

solves the problem in tim®(n + m) for acyclic graphs, see Section 7.5.4. As always, we
usen to denote the number of nodes®@fandm to denote the number of edges®f
Non-Negative Edge Costs:

void DIJKSTRA T(const graph& G, node s, const edge_array<NT>& c,
node_array<NT>& dist, node_array<edge>& pred)

solves the problem in tim®(m + nlogn) if all edge costs are non-negative. We have
discussed this function already in Section 6.6. If all edmgi€are equal to one then breadth-
first search, see Section 7.3, solves the problem in linewss. ti

General Edge Costs:

bool BELLMAN FORD_T(const graph& G, node s, const edge array<NT>& c,
node_array<NT>& dist, node_array<edge>& pred)

solves the problem in tim@®(n - m) for arbitrary edge costs. It returns falseuifv) = —oo
for some vertex. Otherwise, it returnrue.
We also have a procedure

bool SHORTEST PATH.T(const graph& G, node s, const edge array<NT>& c,
node_array<NT>& dist, node_array<edge>& pred)
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that tests whether one of the two special cases appliesfau] d@pplies the efficient proce-
dure applicable to the special case. If none of the speciaiscapplie BELLMANFORDT
is called. The implementation SHORTESIPATHLT is simple.

(SPy=
template <class NT>
bool SHORTEST_PATH_T(const graph& G, node s, const edge_array<NT>& c,
node_array<NT>& dist, node_array<edge>& pred )
{ if ( Is_Acyclic(G) )
{ ACYCLIC_SHORTEST_PATH_T(G,s,c,dist,pred);
return true;

3

bool non_negative = true;

edge e;

forall_edges(e,G) if (c[e] < 0) non_negative = false;

if (non_negative) { DIJKSTRA_T(G,s,c,dist,pred);
return true;

}
return BELLMAN_FORD_T(G,s,c,dist,pred);

The Single-Sink Problem: The single-source single-sink shortest-path problem #sks
the computation of a shortest path from a specified mptiee source, to a specified node
the sink.

NT DIJKSTRA T(const graph& G, node s, node t,
const edge_array<NT>& c, node_array<edge>& pred)

computes a shortest path fragno t and returns its length. The cost of all edges must be
non-negative. The return value is unspecified if there is @t froms to t. The array
predallows one to trace a shortest path frarto t in reverse order, i.epredt] is the last
edge on the path. If there is no path freno t or if s = t thenpredt] = nil. The worst
case running time i©(m + nlogn), but frequently much better. The implementation is
discussed in Section 7.5.6.

The All-Pairs Problem: The all-pairs shortest-path problem asks for the compraif
the complete distance functign

bool ALL_PAIRS_SHORTEST PATHS T(graph& G, edge_array<NT> c,
node_matrix<NT> DIST)

returnstrue if G has no negative cycle and returiadse otherwise. In the latter case all
values returned iDIST are unspecified. In the former case we have fonaindw: if
u(, w) < oo thenDIST(v, w) = u(v, w) and if w(v, w) = oo, the value oDIST(v, w)

is unspecified. The procedure runs in ti@enm+ n?logn).
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Our output convention for the all-pairs problem is somewlmesatisfactory. It is dictated
by the fact that many number types have no representatieraof An alternative solution
is to also return a node matrREDof edges in analogy to the single-source problem.

7.5.2 A Checker for Single-Source Shortest-Path Algorithms
We develop a progra@HECKSPT (G, s, ¢, dist, pred) that checks whethedist, pred) is
a correct solution to the shortest-path problé® s, ¢). If not, the program aborts (with
the error message “assertion failed”) and if so, the progetnrns anodearray<int> label
with labe[v] < 0if v € V~, labe[v] = Oif v e VT, andlabe[v] > 0if v € V*.

Let P = {predv]; predv] # nil} be the set of edges defined by theed-array and
define

Ut = {v;v#sandpredv] = nil},

uf = g, if preds] # nil,
U" = {v;visreachable frons by aP-path, if preds] = nil,
U~ = {v;vliesonaP-cycle oris reachable fromR-cycle by aP-path} .

We perform the following checks:

(1) v € UTiff vis not reachable fromin G.

(2) All P-cycles have negative cost.

(3) Thereis no edgév, w) € Ewithv e U~ andw e UT.

(4) Foralle= (v,w) € E:if ve Uf andw € U' thendist{v] + c[e] > disfw].

(5) Forallv € Uf: if v = sthendisfv] = 0 and ifv # s thendistv] = disfu] +
c[predv]] whereu is the source opredv].

Lemma 7 If (dist pred) satisfies the five conditions above then it is a solution to the
shortest-path problenG, s, c).

Proof Observe first that € V* iff v is not reachable frons. Thus (1) implies that
Ut =V+tandhenc&J T UU- = VT UV~. We next show thay~ € V~. Consider
anyv € U~. By definition ofU ~ there is aP-cycle, call itC, from whichv is reachable.
Moreover, the cost of is negative by (2) and there is a node®©nhat is reachable frora
by (1). Thusu(s, v) = —oo and hence € V~. ThusU~ € V~ and thereforé&) F > VT,
Assume for the sake of a contradiction that the latter irichuis proper andlet e U\ V
be arbitrary. Thenn € V~ and hence there is a pafhfrom s to v containing a negative
cycle, sayC. By (3) there is no edgex, y) with x € U~ andy € U f. We conclude that all
vertices onp belong toU f. This implies that (4) holds for all edges 6f Letey, e, ...,
&1 with g = (vj, viy1) be the edges dE. Thenvg = vx. We have

disfvo] +¢(C) = disfvol + Y cle]

O<i<k
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A%

disfv] + Y cle] > ... > disfw]

1<i<k
= dist{v]

by repeated application of (4). ThaéC) > 0, a contradiction. We have now shown that
Ut =Vv*H,Uf =V’ andU- = V—. We still need to show tha® restricted toV { is

a shortest-path tree. Consider ang V . Condition (5) implies thatdlisfv] is the length

of the P-path froms to v and (4) implies that the length of any path franto v is at least
disfv]. ThusP is a shortest-path tree. O

We come to the implementation. We start with condition (1§ W¥e depth-first search to
determine all nodes reachable fremand we check whether for all nodedifferent from
s: predv] = nil iff v is not reachable frora. We give all nodes that are not reachable from
sthe labelPLUS PLUSIs an element of an enumeration type that we use to classifgsi0o
All nodes start with the labdlNKNOWN The other members of the enumeration type will
be explained below.

(condition oné=
enum{ NEG_CYCLE = -2, ATT_TO_CYCLE = -1, FINITE = 0, PLUS = 1,
CYCLE = 2, ON_CUR_PATH = 3, UNKNOWN = 4 };

node_array<int> label (G,UNKNOWN) ;
node_array<bool> reachable(G,false);

DFS(G,s,reachable);

node v;
forall_nodes(v,G)
{ if (v '= s)
{ assert( (pred[v] == nil) == (reachable[v] == false));
if (reachable[v] == false) label[v] = PLUS;
}
}

Next we compute the set$” andU~. Consider any node ¢ U*. Tracing the path
[v, sourcépredv]), sourcépred sourc&predv])]), . ..] until either a node is encountered
twice or until the path cannot be extended further (it mustiars in the latter case because
sis the only node outsidg * which may have no incoming-edge) allows us to classify
all nodes on the path. In the former casand all nodes on the path belondto and in the
latter case all of them belong td’. For the sequel it is useful to have a finer classification
of the nodes iJ ~ into nodes lying on &-cycle (labelCYCLE and nodes attached to a
cycle by aP-path (labelATT.TOQ.CYCLE and so we will compute the finer classification.

Of course, we do not want to trace the same path several tiwWlesherefore stop trac-
ing a path once a node is reached whose label is known (moceselg is different from
UNKNOWN. As we trace a path all nodes on the path are put onto a &ackl are given
the labelON.CURPATH.

We initialize the classification step by givirsghe labelFINITE if its pred-value isnil.
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(classification of nodes=
if (pred[s] == nil) label[s] = FINITE;
forall_nodes(v,G)
{ if ( label[v] == UNKNOWN )
{ stack<node> S;
node w = Vv;
while ( label[w] == UNKNOWN )
{ label[w] = ON_CUR_PATH;
S.push(w);
w = G.source(pred[w]);

}
(label all nodes on current path

}
}

When a nodeaw is encountered whose label is different frathNKNOWNwe distinguish
cases: ifw is labeledFINITE, i.e.,v € U, then all nodes on the path belongud, and

if wis labeledCYCLEor ATTTQCYCLE i.e.,v € U™, then all nodes on the path (except
for w) are attached to a cycle but do not lie on a cycle themselwekifav belongs to the
current path then the situation is as shown in Figure 7.11s [€hds to the following code.

My
.

Figure7.11 A cycle and a path emanating from it. The search startedaindw is the first node
encountered twice.

(label all nodes on current patke

int t = labellw];
if ( t == ON_CUR_PATH )
{ node z;

do { z = S.pop(Q);

label[z] = CYCLE;
}

while ( z '= w );

while ( !S.empty() ) label[S.pop()] = ATT_TO_CYCLE;
}
else // t is CYCLE, ATT_TO_CYCLE, or FINITE
{ if ( t == CYCLE ) t = ATT_TO_CYCLE;

while ( !S.empty() ) label[S.pop()] = t;
}

We next check that alP-cycles have negative cost. Given our classification of sode
this is fairly simple. For every cycle node we trace the cydataining it and compute its
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cost. We assert that the cost is negative. If so, we prombtedks on the cycle to label
NEGCYCLE this guarantees that every cycle is traced only once.

{(condition two=

forall_nodes(v,G)
{ if ( label[v] == CYCLE )
{ node w = v;
NT cycle_length = 0;
do
{ cycle_length += clpred[w]l];
label[w] = NEG_CYCLE;
w = G.source(pred[w]);
} while (w != v);
assert(cycle_length < 0);

Conditions (3), (4), and (5) are trivial to check.

(conditions three, four, and fiye
if ( label[s] == FINITE ) assert(dist[s] == 0);
edge e;
forall_edges(e,G)
{ node v = G.source(e);
node w = G.target(e);
if ( label[w] == FINITE )
{ assert( label[v] == FINITE || label[v] == PLUS);
if ( label[v] == FINITE )
{ assert( dist[v] + cle]l >= dist[w] );
if ( e == pred[w] ) assert( dist[v] + cl[e]l == dist[w] );
}
}
}

Putting it all together we obtain:

(checksp.y+=
template <class NT>
node_array<int> CHECK_SP_T(const graph& G, node s,
const edge_array<NT>& c,
const node_array<NT>& dist,
const node_array<edge>& pred)
{ (condition oné
(classification of nodes
(condition two
(conditions three, four, and fiye
return label;
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7.5.3 A Generic Single-Source Shortest-Path Algorithm
We derive a generic shortest-path algorithm. All our impdemations for the single-source
problem will be instances of the generic algorithm and theeminess proofs and running
time claims of our implementations will be consequencesheflemmas derived in this
section.

In Lemma 6 we gave a characterization of shortest-pathriista

Letd : V — R U {—o00, oo} be a function with

1D dw) = u) forallv eV
(2 ds) < 0
@) dw) =< d@u)+c(u,v) foralle=(u,v)eE

Thend(v) = u(v) forallv e V.
The generic algorithm maintains a functidsatisfying (1) and (2) and aims at establish-
ing (3). We calld(v) thetentative distance labelf v.

d(s) =0;d(v) =ocoforv #s;
7 (v) = nil forallv € V;
while there is an edge = (u, v) € E with d(v) > d(u) + c(e)
{ d) =d(u) + c(e);
(v) =€

We will refer to the body of the while-loop aslaxing'® edge e Besides the tentative
distance labels the generic algorithm maintains for eaclendhe edger (v) that defined
d(v).

It is easy to see that (1) and (2) are invariants of the algoritWe only have to observe
thatd(v) never increases (and hentés) < 0 always) and thad(v) < +oo implies that
d(v) is the length of some path fromto v (and hencal(v) > w(v) always). When the
algorithm terminates we also have (3). Thaig;) = w(v) for all v € V when the algorithm
terminates. A lot more can be said about the generic algorith

Lemma 8 The following is true at any time during the execution of taeeyic algorithn?.
Let

P={e;e=n(v) € Eforsomev € V}.

(@) d(s) = 0iff #(s) = niland d(v) < oo iff 7w (v) # nil for v # s.

(b) If 7(v) = e= (u,v) thendv) > d(u) + c(e).

(c) If w(v) # nil thenv either lies on a P-cycle, or is reachable from a P-cycle by a
P-path, or is reachable from s by a P-pathxdfs) # nil then s lies on a P-cycle.

10 Think of e = (u, v) as a rubber band that wants to keepithin distancec(e) of u. If d(v) > d(u) + c(e) the
rubber band is under tension. Settioh@) to d(u) + c(e) relaxes it.

11 Observe the similarity of items (a), (d), (e), (f), and (g}wihe four bullets in the definition of our output
convention.
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(d) P-cycles have negative cost.

(e) If vlies on a P-cycle or is reachable from a P-cycle thev) = —oo.

() If v e VI and dv) = p(v) then there is a P-path from s toand this path has cost
wu(v).

(9) Ifd(v) = u(v) forall v e VT then P defines a shortest-path tree oh.V

Proof (a) We start withd(s) = 0, d(v) = oo for all v with v # s, andz (v) = nil for all v.
Whend(v) is decreaseds (v) is set, and whenm (v) is set,d(v) is decreased.

(b) Consider the moment of time when(v) was set most recently. At this moment
we hadd(v) = d(u) + c(u, v), d(v) has not changed since then, ah@) can only have
decreased.

(c) Consider any node, u # s, with (u, v) € P for somev. Thens(v) = (u, v) and
henced(v) < oo by part (a). Them(u) + c(u, v) < d(v) by part (b) and hencg(u) < co.
Thus, (u) # nil by part (a). We conclude that any nadleu # s, with an outgoingP-edge
has also an incoming-edge. Thus is the only node which may have outgoifgedges
but no incomingP-edge.

(d) Let [ey, ..., &x_1] with & = (v, viy1) andvg = vk be aP-cycle. We may assume
w.l.o.g. thatr (vk) = ex_1 is the edge in the cycle that was addedPttast. Just prior to the
addition ofec_; we have

d(viz1) > d@) +c(g)foralli,0<i <k-2
by part (b) and
d(vk) > d(vk-1) + C(&-1).

Summation yields
Y dip) > Y () +c@))
O<i<k O<i<k
and hence (sinca = vg and thusd (vk) = d(vo))
Z ce) < 0.
O<i<k

(e) Any nodev with 7 (v) # nil hasd(v) < oo and is hence reachable fragnin G. Any
P-cycle has negative cost. Thugv) = —oo for any nodev lying on aP-cycle or being
reachable from &-cycle.

(f) AssumeV ' £ ¢ and consider any nodee V' with d(v) = u(v). Forv = sthere
is nothing to show. For # s, d(v) = u(v) < oo impliess(v) # nil. From (c) and (e) we
conclude thav is reachable frons by a P-pathp = [ey, ..., &_1] with & = (vi, viy1),
vo = S, andvk = v. From (b) we conclude

d(viy1) > d(v) +c(g) fori,0<i <k
and hence
d(vk) > d(vo) + c(p) = c(p),
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where the last equality follows fromy = s € V' and hencel(s) = u(s) = 0 by (1) and
(2). Thus,c(p) < d(v) = u(v) and we must have equality since no path freto v can be
shorter thant(v).

(g) This follows immediately from part (f). O

There are two major problems with the generic algorithm:

¢ Inthe presence of negative cycles it will never terminaitecgsthed-values are always
the length of some path and hence cannot reash)).

e Eveninthe absence of negative cycles the running time caxpenential, see
[Meh84, page40] for an example.

We address the second problem in the remainder of this seatid deal with the first
problem in Section 7.5.7. When we decrease the distancé ddbg of a nodev in the
generic algorithm this may create additional violationg3)f namely for the edges out of
v. This suggests maintaining a $¢tof nodes with

U D {u;d(u) < oo and3(u, v) € Ewithd(u) + c(u, v) < d()}

and to rewrite the algorithi4 as:

d(s) =0;d(v) =ocoforv #s;
U ={s}
while U # ¢
{ selectu € U and remove it;
forall edgese = (u, v)
{ if d(u) +c(e) < d(v)

{ addvtoU;
d(v) =d(u) + c(e);
w(v) = €
}
}

We are left with the decision of which nodeto select fromU. There is always an
optimal choice.

Lemma 9 (Existence of optimal choice)

(@) Aslong as dv) > u(v) for somev € V': foranyv € V' with d(v) > u(v) thereis a
u € U with d(u) = w(u) and lying on a shortest path from s to
(b) When a node u is removed from U witful = w(u) then itis never added to U again.

12 e reuse the name generic shortest-path algorithm for thifieo version of the algorithm.
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Proof (a) Let [s = vg, v1,..., vk = v] be a shortest path fromto v. Thenu(s) =
0 = d(s) andd(vx) > u(vk). Leti be minimal such thatl(vi) > w(v;). Theni > 0,
d(vi—1) = p(vi-1) and

d(vi) > p(vi) = n(vi—1) + c(vi—1, vi) = d(vi_1) + c(vi_1, vi).

Thus,vi_; € U.

(b) We haved(u) > n(u) always. Also, whem is added tdJ thend(u) is decreased.
Thus, if a nodai is removed fronU with d(u) = w(u) it will never be added t&J at a later
time. [l

There are two important special cases of the single-souatd#gm where the existence
claim of an optimal choice can be made algorithmic. Both sasal with graphs where the
structure of the graphs excludes negative cycles: graptisnen-negative edge costs and
acyclic graphs.

Lemma 10 (Algorithmic optimal choice)

(a) Ifc(e) > Oforall e € E then du) = w(u) for the node ue U with minimal du).
(b) If G is acyclic and g, Uy, ..., Uy_1 is a topological order of the nodes of G, i.e., if
(ui, uj) € Etheni< j, then du) = p(u) for the node u= u; € U with i minimal.

Proof Assumed(u) > u(u) for the node chosen in either part (a) or (b). By the preceding
lemma there is a node € U lying on a shortest path fromto u with d(z) = w(2). We
now distinguish cases.

In part (a) we haveu(z) < w(u) since all edge costs are assumed to be non-negative.
Thus,d(2) < d(u), contradicting the choice af.

In part (b) we have = u; for somej < i, contradicting the choice af. O

Part (a) of the lemma above is the basis of Dijkstra’s alparjtsee Section 6.6, and part
(b) is the basis of a linear time algorithm for acyclic graplvhich we will discuss in the
next section.

In our shortest-path programs we useadearray<NT> dist to represent the function
d and anodearray<edge pred for the functionzz. Since most number types have no
representation of-co we will not be able to maintain equality betwedranddist We
exploit the fact that the equivalence

d(v) = +o0 iff v #£ sandz (v) = nil

holds in the generic algorithm and use it for the represemaif +oco. We maintain the
following relationship betwee(d, =) and(dist, pred): for all nodesv:

e predv] = 7 (v) and
e disfv] = d(v), if d(v) < oo, anddisfv] arbitrary, ifd(v) = +oo.

With this representation a comparison< d(v) with d € IR can be realized as:
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(pred[v] == nil && v !'=s) || d < dist[v]
We remark that the alternative
(v '= s && pred[v] == nil) || d < dist[v]

is less efficient. All but one nodeis different froms and hence the test !'= s evaluates
to true most of the time; thus the tgated [v] == nil will also be performed most of the
time in the second line. In the first line, the tested[v] == nil evaluates to true only
when the first edge intois considered (sincg(v) < +oo afterwards) and hence evaluates
to false in the majority of the cases (at least if the averadedree is larger than two). Thus
the testv !'= s will not be made in the majority of the cases.

The general rule is that in a conjunction of tests one shadald with the test that evalu-
ates to false most often and that in a disjunction of testssbielld start with the test that
evaluates to true most often. Please, do not use this ruidiplsince interchanging the
order of tests may change the semantics (sinee €/aluates a test from left to right and
terminates the evaluation once the value of the test is kihowmthe example above, it
would be unwise (why?) to change the expression into

d < dist[v] || (pred[v] == nil && v != s)

7.5.4 Acyclic Graphs

We show how topological sorting can be used to solve theesiaglirce shortest-path prob-
lem in acyclic graphs in linear tim®(n + m). Let G be an acyclic graph and assume that
v1, V2, ..., Un IS an ordering of the nodes such tiiat, v;) € E impliesi < j. Such an
ordering is easy to compute.

(acyclic graphs: establish topological order

node_array<int> top_ord(G);
TOPSORT (G,top_ord); // top_ord is now a topological ordering of G

int n = G.number_of_nodes();
array<node> v(1,n);

node w;
forall_nodes(w,G) v[top_ord[w]] = w; // top_ord[v[i]] == i for all i

The call TOPSORTY(...) numbers the node&ofvith the integers 1 ta such that all edges
go from lower numbered to higher numbered nodes. In thelfo@e-loop we store the
node with numbetr in v[i].

It is now easy to implement the generic single-source algori Letk = topord[s].
Nodeswv; with i < k are not reachable from We step through the nodes in the order
Uk, Uk+1, --- @and maintain the sé&t implicitly. Assume we have reached nodeThenU
consists of all nodes; with j > i anddist(vj) < +oo. Forj > k the latter condition
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is equivalent tqpredv;] # nil. If v[i] is equal tos or has a defined predecessor edge we
propagatealisfv[i]] over all edges out ob[i] and proceed to the next node.

(acyclicsp.y+=
template <class NT>
void ACYCLIC_SHORTEST_PATH_T(const graph& G, node s,

}

const edge_array<NT>& c,
node_array<NT>& dist,
node_array<edge>& pred)

(acyclic graphs: establish topological order

forall_nodes(w,G) pred[w] = nil;
dist[s] = 0;
for(int i = top_ord[s]; i <= n; i++)
{ node u = v[il;
if ( pred[u] == nil && u != s ) continue;
edge e;
NT du = dist[ul;
forall_adj_edges(e,u)
{ node w = G.target(e);
if ( pred[w] == nil || du + c[el < dist[w])
{ pred[w] e;
dist[w] = du + c[el;

}
}
}

The correctness follows immediately from the remarks piizgethe program and Lemma 10.
The running time i<D(n 4+ m) since each node and each edge is considered at most once.

7.5.5 Non-Negative Edge Costs
Dijkstra’s algorithm for the shortest-path problem wittaeegative edge costs was already
treated in Section 6.6.

7.5.6 The Single-Source Single-Sink Problem

The single-source single-sink shortest-path problemabaioly the most natural shortest-
path problem. The goal is to find a shortest path from a giveincgonodes to a given sink
nodet.

We describe the so-calldaidirectional search algorithnfan alternative approach is dis-
cussed in the exercises). The algorithm assumes that edfg @@ non-negative. The
worst case running time of the algorithm@(m + mlogn); the observed running time is
frequently much better.

The bidirectional search algorithm runs two instances ¢fdbia’s algorithm (see Sec-
tion 6.6) concurrently, one to find shortest-path distaricms s and one to find shortest-
path distances tb The first instance is simply Dijkstra’s algorithm and the@®d instance
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Figure 7.12 Termination of the bidirectional shortest-path algoritHmour implementation we
alternately add nodes ts andK;. In the example we adslto Ks, t to K¢, u to Ks, v to K¢, w
to Ks, w to K¢, andv to Ks. The algorithm terminates whenis added tKs. It does not
terminate whenw is added tKy, althoughw € Kg N K; at this point of time. Observe that

di (v) = 1 after adding to K; andds(v) = 2 after addingi to Ks. ThusD = 3 after addingu to
Ks and hencev does not realiz® when it is added td&s N K;.

is a symmetric version of Dijkstra’s algorithm, where thareh starts at and shortest-path

distances are propagated across the eiiges node instead of the edges out of a node.
We useds(v) to denote the tentative distance frerto v andd; (v) to denote the tentative

distance fromv to t. Initially, ds(s) = d;(t) = 0, ds(v) = oo for v # s, andd; (v) = oo for

v # t. The algorithm maintains

D = min(ds(v) + & (v))

which is the shortest known length of a path frero t.
Let Ks and K; be the set of nodes that were removed from the priority queuée
shortest-path calculations frosrandt, respectively. We know from Section 7.5.3 that

ds(v) = pu(s,v)forve Kg
ds(v) = min{u(s, u)+cu,v);ue Kg}forv & Kg
d(v) = u,t)forveK;
d(w) = min{c(v,u) + u(u,t);u e K¢} forv ¢ K,

The bidirectional algorithm terminates whénis realized by a node iKs N K; or when
both queues become empty. In the former cBsis the shortest-path distance frasmo

t, and in the latter case there is no path freto t. Figure 7.12 illustrates the termination
condition.

Theorem 1 The bidirectional search algorithm is correct.

Proof If there is no path frons to t then there is never a node kK N K; and hence the
algorithm terminates when both queues become empty. Thualgorithm is correct if
there is no path fromrs tot.
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So let us assume that there is a path fotat. Letp =[S = vo, v1, ..., vk_1, vk = t]
be a shortest path frosto t.

We argue first that the event thBtis realized by a node iKs N K; will occur. This is
easy to see. Observe first that all nodegpa@re reachable fromas well ag. When a node
vp on p is added tdK¢ N K¢, we have

wn(s,t) < D < ds(vn) + di(vn) = p(S, vp) + (v, t) = u(s, t),

and hence the event thBtis realized by a node iKs N K; will occur at the latest when a
node onp is added tKs N K;.

It remains to show thab = c(p) when the event actually occurs. Assume otherwise,
i.e.,c(p) < D when the algorithm terminates. Then there is no nodeiof Ks N K; at the
time of termination.

Consider the time of termination, let € Ks N K be the node witlD = ds(w) + di(w),
leti be minimal withvi ;1 & Ks, and letj be maximal withw;_; ¢ K;. Both indices exist
sincevg = s is the first node to be added Ky andvk = t is the first node to be added to
K:. We have < j by our assumption that no node pfis added toKs N K; and hence
ds(w) < ds(vi4+1), Ssincew € Ks andvj_1 ¢ Ks, andd;(w) < d;(vj_1), Sincew € K¢ and
vji—1 € Ke. Ifi +1 < j — 1, we have

c(p) > u(s, vig1) + p(vj_1,t) = ds(vis1) + di(vj_1) > ds(w) + di(w) = D,
andifi +1 = j, we have withv = vj 11 = vj
c(p) = u(s, v) + u(v, t) = ds(v) + i (v) > D.
O

We turn to the implementation. We distinguish the two versiof Dijkstra’s algorithm
by indices 0 and 1 and provide two copies of the required dat&tsres in arrays with
index set{0, 1}.

(single sink: data structurés=

array<node> terminal(2);
terminal[0] = s; terminal[1] = t;

array<node_pq<NT>* > PQ(2);

PQ[0] = new node_pq<NT>(G) ;

PQ[1] = new node_pq<NT>(G);
PQ[0]->insert(terminal[0],0);

PQ[1]->insert (terminal[1],0);
array<node_array<NT> > dist(2);

dist[0] = dist[1] = node_array<NT>(G);
dist[0][s] = dist[1][t] = O;
array<node_array<edge> > Pred(2);

Pred[0] = Pred[1] = node_array<edge>(G,nil);

bool D_equals_infinity = (s != t? true : false);
NT D = 0;
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We store the tentative distanadgv) andd; (v) in disf0][v] anddis{1][ v], respectively, we
usePQ0] and PQ[1] as the priority queue in the search franandt, respectively, we use
PredO][v] to record the edge into that definesls(v), and we uséred1][v] to record the
edge out ofv that defines (v).

We initialize D to infinity if s # t, and to zero otherwise. Since we cannot assume that
the number typ&\T provides the valug-co we use a boolean flag to indicate this special
value.

A remark is in order about the declarations above. We detidist as an array of node
arrays andPQas an array of pointers to priority queues. Why did we malkedrstinction?

In order to declare aarray<T> for some typel, T must provide a default constructor, a
copy constructor, and some other operations, e.g., thé amlioutput operator and>>,
see Section 2.8. Node arrays provide all required functxegpt for the input and output
operators and those are easily defined in the current filee $ie missing functions are non-
member functions of node arrays. The situation is diffefenhode priority queues; they
define only a few of the required functions and, in particildanember function is missing.
We cannot add the member function in this file. Moreover, i ¢hse ofdist it is more
important to have an array of node arrays instead of an affgginters to node arrays, since
having an array of pointers to node arrays would force us tteweither (xdist [i]) [v]
ordist[i]->operator[] (v) instead ofdist [i] [v].

(dijkstra_single sink.f=
template <class T>
ostream& operator<<(ostream& o,const node_array<T>&) { return o; }

template <class T>
istream& operator>>(istream& i,node_array<T>&) { return i; }

The structure of the single-source single-sink progransigl@scribed above. We run
both instances of Dijkstra’s algorithm concurrently, aedninate when either both queues
become empty or when we encounter a nade Ks N K; with D = ds(u) + d;(u). In
the former case there is no path frao t. According to our output convention for the
single-source single-sink problem this fact is recordetdningpredt] = nil in the return
values.

(dijkstra_single sink.y+=
template<class NT>
NT DIJKSTRA_T(const graph& G, node s, node t,
const edge_array<NT>& cost, node_array<edge>& pred)

{
(single sink: data structurés

while ( !'PQLO]->empty() || !'PQ[1]1->empty() )
{ for (int i = 0; i < 2; i++)
{ if ( PQ[il->empty() ) continue;
node u = PQ[i]->del_min();

(return if uis in Ks and Kt and D = ds(u) + d_t(u))
(relax edges out of u, ifi =0, orinto u, if i =1
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}
}
pred[t] = nil; // no path from s to t
return D;

}

The relaxation of edges is copied from Section 6.6 with twalsmodifications.

In the search for shortest paths frarwe iterate over the edges outwafand in the search
for shortest paths tbwe iterate over the edges intio

Whenever the dist-value of a node is improved we check wheth® leads to an im-
provement oD.

(relax edges out of u, if i =0, orinto u, ifi ==

for ( edge e = (i == 0?7 G.first_adj_edge(u): G.first_in_edge(u));
e !'= nil;
e = (i == 07 G.adj_succ(e): G.in_succ(e)) )
{ node v = (i == 07 G.target(e) : G.source(e) );
NT c¢ = dist[il[u]l + costlel;
if ( Pred[i][v] == nil && v != terminal[i] )
PQ[il->insert(v,c); // first path to v
else if (c < dist[i]l[v]) PQ[il->decrease_p(v,c); // better path
else continue;
dist[i]l[v] = c;
Pred[i] [v] e;

if ( ( v == terminal[1-i] || Pred[1-i][v] != nil )
// dist[1-i][v] is defined iff true
&% ( D_equals_infinity || dist[0][v] + dist[1]1[v] < D ))
{ D_equals_infinity = false;
D = dist[0][v] + dist[1][v];
}

}

How can we check whethere KN K;? Assume w.l.0.g. that= 0. Thenu € Ks since
we have just removed it froRQ[0]. Also, we haveu € K; if u has been iPQ[1], but is
not there anymoreu has been or still is iPQ[1] if either u = t or Pred1][u] is defined,
andu is not inPQ[1] if PQ[1] — membe(u) returns false.

If ue KsnN Ky andD = ds(u) + d; (u) we terminate the computation, record the path in
the predecessor array, and retlrras the length of the shortest path frero t. In order to
record the path in thpred-array we trace the two “half paths” fromto s and fromu to't,
respectively. When tracing the latter path we observeRhed[1] stores out-edges and not
in-edges.

(return if uis in Ks and Kt and D = ds(u) + d._t(u))=

if ( (u == terminal[1-i] || Pred[1-i][u] != nil) &&
'PQ[1-i]->member (u) && dist[0] [u] + dist[1][u] == D )
{ // have found shortest path from s to t.
// trace path from u to s
node z = u;
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n m  Single-sink  Dijkstra

10000 500000 0.118 0.736

Table 7.1 A comparison of the running time of the single-sink alganitvith the running time
of the standard version of Dijkstra’s algorithm. The staddaersion computes the distance from
the source to all other vertices and then extracts the distaalue of the sink.

while ( z != s ) z = G.source(pred[z] = Pred[0][z]);

// trace path from u to t

z = u;

edge e;

while ( (e = Pred[1][z] ) != nil) { pred[z = G.target(e)] = e; }

return D;

Table 7.1 compares the running times of the single-soumglessink algorithm pre-

sented in this section and the standard version of Dijksalgorithm.

7.5.7 General Networks: The Bellman—Ford Algorithm

We derive and implement a single-source shortest-pathrittigofor arbitrary edge costs.
The algorithm is due to Bellman [Bel58] and Ford. We will nefe the algorithm as the
basic Bellman—Ford algorithth In Section 7.5.3 we studied a generic shortest-path algo-
rithm. Let us recall what we know:

The algorithm maintains a set containing all nodes for which there is an edge
(u, v) with d(u) + c(u, v) < d(v). U may also contain other nodes.

In each iteration the algorithm selects some nodd i&nd relaxes all edges out of it.

As long asd(v) > u(v) for somev € V', there is a noda € U with d(u) = u(u)
(Lemma 9). We use the phrase that not all finite distance satedetermined to
mean thatl(v) > u(v) for somev € V.

When a node is removed fromJ with d(u) = w(u) it will never be added tdJ again
at a later stage.

LetP ={e;e=n(v) € E forsomev € V}. All P-cycles are negative and if
d(v) = u(v) forall v € V' thenP defines a shortest-path tree \@rh.

What is a good strategy for selecting fras? We know that) contains a perfect choice

(at least as long as not all finite distance values are detexdihi but we do not know which
node inU is the perfect choice. In order to play it safe we should tfegeenot discriminate
against any node id. A way to achieve fairness is to organize the computatiorhasps.

13 We will study a refined version in the next section.
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Let U; be the setU at the beginning of phasei > 0; Ug is equal to{s}. In phasd we
remove all vertices itJ; from U. Newly added vertices are inserted itdp ;. In this way
we guarantee that at least one finite distance value is dieednm each phase (if there is
one that is still to be determined) and hence all finite distaralues are determined after at
mostn phases

In the program below we realize the $étby a queud. During phaseé all nodes inU;
are at the front of the queue and all nodelin; are at the rear of the queue. We sepathte
andU;1 by the markenil. We count the number of phasespghasecount Whenever the
marker appears at the front @ we incremenphasecount In order to avoid putting nodes
several times int@ we keep anodearray<boob inQ with inQ[v] = trueiff v € Q.

We terminate the algorithm whe@ becomes empty or when phasés reached. In the
former case we have(v) = u(v) for all v and in the latter case we hadév) = n(v) for
allv e VT U V. We will deal with the nodes i~ in a postprocessing step.

(bellmanford_basic.t=

#include <LEDA/graph_alg.h>
#include <LEDA/b_queue.h>
(BF: helpen
template <class NT>
bool BELLMAN_FORD_B_T(const graph& G, node s, const edge_array<NT>& c,
node_array<NT>& dist, node_array<edge>& pred )
{ int n = G.number_of_nodes();
int phase_count = 0;

b_queue<node> Q(n+1);
node_array<bool> in_Q(G,false);
node u,v;

edge e;

forall_nodes(v,G) pred[v] = nil;

dist[s] = 0;
Q.append(s); in_Q[s] = true;
Q.append((node) nil); // end marker

while( phase_count < n )
{u=0Q.pop0);
if ( u == nil)
{ phase_count++;
if ( Q.empty() ) return true;
Q.append((node) nil);
continue;
}

else in_Q[u] = false;
NT du = dist[u];
forall_adj_edges(e,u)
{ v = G.opposite(u,e); // makes it also work for ugraphs
NT d = du + c[el;
if ( (pred[v] == nil && v != s) || d < dist[v] )
{ dist[v] = 4; predlv] = e;
if ( 'in_Q[v] ) { Q.append(v); in_Q[v] = true; }
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0 10000

Figure 7.13 The situation at the beginning of phase= |V| = 5. Note that belongs tov —,
that P contains a negative cycle from whiehs reachable irG, but thatv is not reachable from
this cycle by aP-path. Running the algorithm for another 10000 phases wffidish the output
convention; the quantity 10000 reflects the fact that tisimgrthe cycle 10000 times creates a
path of cost-10000.

}
}
}
(BF: postprocessing
return false;

}

We turn to the postprocessing step required whleis non-empty aften phases. Fig-
ure 7.13 shows that our output convention is not automdgisatisfied. As the figure shows
there may be nodes Wi~ that are not reachable yet fromPacycle by aP-path.

How can we establish our output convention that all nodeg inare reachable from a
P-cycle by aP-path? We could run the algorithm for more phases until a pattiaining
a negative cycle has been discovered for all nodasin This may take very long as Fig-
ure 7.13 shows. We need a better method. In the following lamveishow that Figure 7.14
describes the situation at the beginning of phasérhe argument is with respect to the
generic algorithm with the selection rule of the BellmanreFalgorithm.

For an integek, k > 0, let

uk(w) = min{c(p) ; pis a path frorms to v consisting of at mogt edges .

Lemma 11 After n phases:

(@) d(v) < un(v) andifv € U then dv) < pn_1(v).

(b) s e VTiff m(s) = nil.

(c) Every ue U lies either on a P-cycle or on a P-path emanating from a Pleyc
(d) Everyv € V™~ isreachablein G froma & U.

(e) If m(s) # nil then the output convention is already satisfied.
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reachable \
S in G |

Figure 7.14 The situation at the beginning of phaseSome nodes iV~ are still reachable
from s by a P-path and some are already contained P-aycle or lie on aP-path emanating
from a P-cycle. All nodes inU (nodes inU are shown as solid circles) belong to the latter

category by part (d) of Lemma 11. All nodes\tT are reachable i from a node irJ by part(
e) of Lemma 11.

Proof (a) Letp = [s = wvg, v1,..., vk = v] be any path starting is. Thend(v;) <
Zo<j§i c(vj-1, vj) at the beginning of phaseand hence (v) < un—1(v) at the beginning
of phasen — 1 andd(v) < un(v) at the beginning of phase If v is added tdJ in phase
n—1,d(v) is decreased and hendé) < un_1(v) at the beginning of phase

(b) If s € VT thend(s) = 0 and hencer(s) = nil. If s ¢ VT then there is a negative
cycle passing throughiand henceun(s) < 0. Thus,d(s) < 0 and hencer(s) # nil.

(c) If (s) # nil part (c) follows from Lemma 8, part (c). So assusne V ' and assume
that there is a1 € U that is reachable frors by a P-path, sayp. Thend(u) > c(p) >
un—1(U), a contradiction to part (a).

(d) Letv € V~ be arbitrary. Since.(v) = —oo there must be a path from s to v with
c(p) < d(v). Let p; be the path consisting of the fiisedges ofp and letv; be the target

node ofp;. Letk be minimal such that(px) < d(vk). Thenk > 0 sincec(py) = 0 and
d(vg) = d(s) < 0and hence(pk_1) > d(vk-1). Thus,

d(vk) > c(px) = C(Pk—1) + C(vk—1, Vk) = d(vk—1) + C(Vk—1, Vk)
and hencey_1 € U.

(e) If =(s) # nil then part (c) of Lemma 8 tells us that every node reachabie $rties
either on aP-cycle or aP-path emanating from B-cycle. O

Parts (a), (d), and (e) of the lemma above are the key for tisgppressing step. |If
7(s) # nil we are done. So assumes) = nil, i.e.,V' # ¢, and letR be the set of nodes
that are reachable fromby a P-path. ThenR 2 V but this inclusion may be proper,
see Figure 7.14. All nodes iR that are reachable from a nodes U belong toV~ and
hence theitr-values have to be changed. We can do so by performing a fiegiteearch
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from each node € U. Whenever a node iR is reached we change itsvalue to the edge
which led to the node. In this way we connect all nodefin V~ to the nodes ifJ and
hence, by part (c), make them reachable friBraycles byP-paths.

How can we determine the nodesR? We simply perform a depth-first search frem
on the subgraph defined B8. This can be done by hiding all edges notRn performing
a depth-first search, and restoring (= unhiding) all edgeB.irn the program below the
nodes inR are labeled true in the node arriayR.

In the program chunk below the caggraphx) &G) turnsG from a const-object to a
non-const-object. The cast is required sifmtgeedgeand restoreall_edgesmodify the
graph and the cast is safe sirrestoreall_edgesestores the original situation.

(BF: postprocessing=
if (pred[s] != nil) return false;
node_array<bool> in_R(G,false);
forall_edges(e,G)
if (e != pred[G.target(e)]) ((graph*) &G)->hide_edge(e);
DFS(G,s,in_R); // sets in_R[v] = true for v in R
((graph*) &G)->restore_all_edges();
node_array<bool> reached_from_node_in_U(G,false);
forall_nodes(v,G)

if (in_Q[v] && !'reached_from_node_in_U[v])
Update_pred(G,v,in_R,reached_from_node_in_U,pred);

where

(BF: helpen=

inline void Update_pred(const graph& G, node v,
const node_array<bool>& in_R,
node_array<bool>& reached_from_node_in_U,
node_array<edge>& pred)
{ reached_from_node_in_U[v] = true;
edge e;
forall_adj_edges(e,v)
{ node w = G.target(e);
if ( !reached_from_node_in_U[w] )
{ if ( in_R[w] ) pred[w] = e;
Update_pred(G,w,in_R,reached_from_node_in_U,pred);
}

The running time of the Bellman—Ford algorithm@gnm). This can be seen as follows.
There are at most phases and the running time of each phase is proportionaé teum of
the outdegrees of the nodes removed fiQrin the phase. This implies that the cost of any
one phase i©(m) and the bound follows.
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A somewhat tighter analysis is as follows. LBtbe the maximal number of edges on
any shortest path. We ha < nif V~ is empty and = oo otherwise. TherQ is empty
after phaséd and hence the running time @(min(D, n) - m).

For many graph® is much smaller tham. Examples are complete graphs with edge
costs chosen uniformly at random from.[@]. In this caseD = O(log?n) with high
probability [CFMP97]; the expected running time is theref®(n2log? n) for complete
graphs with random edge costs. More generally, it is an éxyertal fact that the Bellman—
Ford algorithm is efficient for almost any kind of random drap

However, there are also graphs where the worst case runinieggs actually achieved.
We give one example in the next section and one now.

A first example are graphs with negative cyclesVIf is non-empty then the algorithm
always uses phases and a high running time results. We will show in the hakone
section how negative cycles can frequently be recognizdi¢ea

7.5.8 A Difficult Graph
The goal of this section is to construct a graph with non-tiegadge costs that forces the
algorithm of the preceding section into its worst case rngtime.

The running time analysis given above tells us that a runtimg of 2 (nm) results if
a fixed fraction of the nodes is removed and added to the queeadh iteration. The
Bellman—Ford algorithm uses a breadth-first scanningegyati.e., essentially explores
paths in the order of their number of edges. Thus if we endwakpaths consisting of
more edges have smaller cost we will ensure that every nodéded to the queue many
times.

We will define the graph in two steps. In the first step we withaledges of negative cost
and in the second step we will remove them. Figure 7.15 shaowvsvorst case example.
The graph has nodes 0, . L ,— 1,L,...,L + K —2whereL = 2' is a power of two. We
will fix K andL later.

On noded. — 1toL + K — 2 we have the complete graph in which all edge costs are
zero. This makegsK — 1)? edges. On the first nodes we have the edge, L — 1), the
edgesL — L/2i, L — L/2i*Yy and(L — L/2i+1, L —1)forall j,0< j <| — 1, and the
L edgeqdi,i + 1) foralli,0<i < L — 1. This makes for no more thar.Z2dges.

We claim that for any, 1 <r < L, there is exactly one path from node 0 to ndde 1
consisting ofr edges. This is certainly true for= 1. So assume that> 1. We construct
the path as follows. If > L/2 we uselL /2 edges to go from 0 th /2 and ifr < L/2 we
use one edge. In either case we are left with the task of aanstg a path fromL /2 to
L — 1 consisting of ' edges, where ¥ r’ < L /2. This path is constructed by applying the
argument recursively.

How do we assign edge costs to the ed@es) with 0 < i < j < L? We want an
assignment which favors paths with more edges. This suggssigning cost1 to every
edge as this makes sure that the cost of a path consistikgddes is equal te-k. Thus
paths with more edges are shorter than paths with fewer edijesaid at the beginning
that we will construct a graph with non-negative edge costsreow we have set the cost
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Figure7.15 The graph generated BF GENfor L = 8 andK = 4. TheK nodes labeled
L —1toL + K — 2 form a complete directed graph in which all edge costs ai@ Zée edges
in this clique are not shown.

of some edges te-1. This is easily corrected. We set the cost of edgé) to j —i — 1.
Then all edges have non-negative cost and the cost of a path(ftoL — 1 consisting of
k edges has codt — 1 — k. Thus we are again favoring paths with more edges over paths
with fewer edges.

The total number of edges in our graph is certainly less thas X ? and the number of
nodesid + K — 1. WithK = [,/m/2| andL the largest power of two no larger thap2,
we get a graph with at most+ m/2 edges and/2 + ./m/2 nodes. This is less thanand
n, respectively, iim > 2n andm < n?/2.

The following procedur@F.GEN realizes the construction just outlined. For the edge
costs there is the choice between non-negative and asbédge costs. Im > 2n and
m < n?/2 then the constructed graph has at nrosbdes and at most edges.

(.BF.GEN.g=

#include <LEDA/array.h>
#include <LEDA/graph_alg.h>

void BF_GEN(GRAPH<int,int>&% G, int n, int m,
bool non_negative)
{ G.clear();
int K 1; while ( (K+1)*(K+1) <= m/2 ) K++;
int 1 = 0; int L = 1;
while ( 2%L <= n/2 ) {1++; L
array<node> V(n);
int i, j;
for (i = 0; i < n; i++) V[i] = G.new_node(i);
for (i =L -1; i <L -1+ K; i++)
for (j =L -1; j <L -14+K; j++)
if ( j !'=1 ) G.new_edge(V[il, V[jI1, 0);
for (1 = 0; i <L - 1; i++) G.new_edge(V[i], V[i+1], 0);
G.new_edge(V[0],V[L-1], (non_negative? L-1-1 :-1));
int powj = 1;
for (j = 0; j < 1-1; j++)
{ int x = L - L/powj;

2%L; }
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int y = L - L/(2%powj);

G.new_edge(V[x],V[y]l, (non_negative? y-x-1 : -1));
G.new_edge(V[y],V[L-1], (non_negative? L-1-y-1 : -1));
powj *= 2;

}

How does our algorithm of the previous section do on the gggeimerated bBF. GEN?
There will beL phases and in each phase thenodesL — 1, ..., L + K — 2 will be
removed from the queue and heri¢éedges will be scanned in each phase. Sincen/4
andK? > m/4 the running time i€2 (nm).

Table 7.2 shows the running times of the basic and the refieesion of the Bellman—
Ford algorithm (the refined version is the subject of the sextion), the time for checking
the output, and, if applicable, the running time of Dijk&ralgorithm. We observe that
the basic version beats the refined version for random irmmdsthat both of them are al-
most competitive with Dijkstra’s algorithm for random intpwith non-negative edge costs.
The situation changes completely for graphs with negatpedes and graphs generated by
BF.GEN.

For random graphs with negative cycles the running time efldhsic version explodes
because it always executagphases on such graphs. The refined version behaves much
better.

For graphs generated IBF GEN the basic version shows the claim@dnm) behavior.
Doublingn (more than) quadruples the running time; the fact that tinaing time more
than quadruples is due to cache effects. Again, the refinesiovebehaves much better.
Its running time seems to less than triplenifs doubled. We will explain this effect at the
end of Section 7.5.9. Dijkstra’s algorithm performs mucktdrethan either version of the
Bellman—Ford algorithm.

In all cases the time needed to verify the computation is rgelthan the time required
to compute the result.

There are more shortest-path algorithms than the onesdréathis book, see [AMQO93],
and some of them have an edge over the algorithms in LEDA itaicesituations. The
papers [CG96, CGR94, MCN91] contain extensive experini@maparisons of various
shortest-path algorithms. The algorithms that we havetsddor LEDA are the asymptot-
ically most efficient and also exhibit excellent actual rimgrtimes.

7.5.9 A Refined Bellman—Ford Algorithm

We describe a variant of the Bellman—Ford algorithm due tgaig Tar81]. The worst case
running time of the variant is also (nm). However, the algorithm is frequently much faster
than the basic Bellman—Ford algorithm, as Table 7.2 shawestlee algorithm is never much
slower. It is available aBELLMANFORDT,

14 This is clearly a misnomer. However, we want to keep the nBFieLMANFORDT for our currently best
implementation for the single-source problem with arbjtrdge costs.
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Instance BFBasic BellmarFord Dijkstra Checking
n,n = 10000 0.3 0.57 0.22 0.31
n,n = 20000 0.69 1.36 0.57 0.69
n, n = 40000 1.98 3.59 1.47 1.69
c¢,n = 10000 0.3 0.63 — 0.3
c¢,n = 20000 0.81 1.63 — 0.7
c,n = 40000 2.02 3.72 — 1.68
r,n = 2000 20.2 0.08 — 0.03
r,n = 4000 73.15 0.17 — 0.08
r,n = 8000 462.5 0.54 — 0.18
g,n = 4000 7.52 0.42 0.01001  0.04999
g,n = 8000 30.66 1.17 0.04004 0.07996
g,n = 16000 131.5 3.24 0.07001 0.19

Table 7.2 Running times of different shortest-path algorithms. Wedueur different kinds of
graphs. Random graphs (generateddydomgraph(G, n, m)) with random non-negative edge
costs in [0. 1000], random graphs with arbitrary edge costs but no negaticles (we chose for
each node a random node potentigbtfv] € [0..1000] and for each edge= (v, w) a random
costc[e] € [0..1000] and then set the cost®fo poffv] + c[€] — potfw]; this generates arbitrary
edge costs but no negative cycles as the potentials caocg ahy cycle, see Section 7.5.10.),
random graphs with random edge costs-#10.. 1000], and graphs generated B GEN. In
the table above the four types of graphs are indicated byatteld n, c, r, and g, respectively. For
each type we generated graphs with three different valuesaofim = 8n. Observe that the
graphs in the top half of the table are much larger than thehgran the lower half of the table.
The columnBF_Basicstands for the basic version of the Bellman—Ford algoritifou may
generate your own version of this table by calling shorpegh time in the demo-directory.

The variant maintains the shortest-path tPe®t only implicitly in the form of thepred-
array but also explicitly. We us€ to denote the shortest-path tree. The algorithm dses
to overcome two weaknesses of the basic Bellman—Ford #igoriConsider the scanning
of an edgee = (v, w) and assume that it reducdisw] to disfv] + c[e]. In the basic
algorithm the only action is to add to Q (if it is not already there). In the variant we do
more:

e The fact that a shorter path tohas been discovered implies that shorter paths exist
for all nodes inT,, (= the subtree of rooted atw). Thus there is no need to propagate
the current distance labels of these nodes any further (aliesrdistance labels will be

15 We ignore the possibility of a negative cycle for the moment.
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Figure 7.16 The pre-order traversal of the tree shown yields the se@ueers; c, e, f, h,i, g, d.

propagated sometime in the future) and hence all nod&g oan be removed fror®
andT. Upon removal ofT,, from Q andT, w is added taQ and made a child of in
T. This modification introduces a distance related compoimémthe otherwise
purely breadth-first scanning strategy of the Bellman—dgdrithm.

e If wis an ancestor aof or, equivalentlyp is a descendant af then a negative cycle
has been detected and all nodes reachable froan be added tv' —. This
modification replaces the indirect way of recognizing negatycles used in the basic
algorithm (“more tham phases”) by a direct method.

We come to the details. We u3eto denote the current shortest-path tree. It is rooted at
sand ifw is a child ofv in T thenpredw] = (v, w). Conversely, ifpredw] # nil thenw
was already added {D at least once; it may or may not belongTacurrently. The tred
is represented by its list of vertices in pre-order tradess®e Figure 7.16, i.e., a single node
tree is represented by that node and a tree withrramid subtreess, ..., Tk is represented
by r, followed by the list forTy, ..., followed by the list forTy. We use dist<node> T to
represent the shortest-path treepaearray<int> t degreeto store the degree of each node,
and anodearray<listiten> posin.T to store the position of each node in the [ist For
nodesv ¢ T we havet degreg¢v] = 0 andposinT[v] = nil and for nodes € T we have
T[posinT[v]] = v.

The queueQ is also realized as a list of nodes. Every node knows its iposit Q .
We use anodearray<listitem> posin.Q for that purpose. If a node belongs toQ then
posinQ[v] is its position inQ and if a nodey does not belong tQ thenposinQ[v] = nil.

We usenitem = posin_T[w] to denote the item corresponding to nadée T. We define
a proceduraleletesubtregéw.item . ..) that deletes all nodes in the subtfBefrom T and
Q and returns the item followindj,, in T. In Figure 7.16 a caltieletesubtredf_item .. .)
would delete the subtreél and return the item correspondinggo

If w has no childrent(degre¢w] = 0), we simply deletev from T and maybe also from
Q. If w has children, the idea is to remove the subtrees of the emildy recursive calls.
The first child is easy to find; it is the node immediately aftein the list T. The second
child (if the degree ofw is more than one) is the first node after the sublist repréasgnt
the first subtree off,. This is precisely the node returned by the first recursiveafa
deletesubtreeand hence a simple loop removes all subtre€gk,of
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The procedureeletesubtreeusesQ, T, posinQ, posin.T andt.degree We make them
parameters. We will initialize them below.

(BF: auxiliary function$=

inline list_item BF_delete_subtree(list_item w_item, list<node>& Q,
list<node>& T, node_array<int>& t_degree,
node_array<list_item>& pos_in_Q,
node_array<list_item>& pos_in_T)

{ list_item child = T.succ(w_item);

node w = T[w_item];
while (t_degreel[w] > 0)
{ t_degreelw]--;
child = BF_delete_subtree(child,Q,T,t_degree,pos_in_Q,pos_in_T);
}
pos_in_T[w] = nil;
T.del_item(w_item);
if ( pos_in_Q[w] )
{ Q.del_item(pos_in_Q[w]l);
pos_in_Q[w] = nil;
}

return child;

As in the basic algorithm we operate in phases. For the zgttdke we initialize) and
T with s.

(BF: initialize T, Q, dist, and pred=
node_array<list_item> pos_in_Q(G,nil);
node_array<int> t_degree(G,0);
node_array<list_item> pos_in_T(G,nil);

node v;
forall_nodes(v,G) pred[v] = nil;
dist[s] = 0;

list<node> Q; pos_in_Q[s]
list<node> T; pos_in_T[s]

Q.append(s);
T.append(s);

During thek-th phasek > 0, we maintain the following invariants. They refine the
invariants of the basic algorithm. We ugg(v) to denote the length of a shortest path from
sto v consisting of at modt edges.

(1) Forevery node, disfv] is the cost of some path frostto v, and ifv belongs tol then
disf{v] is the cost of the tree path frostto v andpredv] is the tree edge ending in

(2) If v has beenifT atleast once, but is not i now, thenu (v) < disffv], i.e, its current
distance label is not its true distance label.

(3) Only leaves ofT belong toQ, and these leaves have deftbrk + 1 in T. The nodes
of depthk precede the nodes of degtht+ 1 in Q.

(4) The algorithm maintains aodearray<boob in.Vmsuch that the following items hold
for every nodev:
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(@) inVmv] = trueimpliesv € V.
(b) If every path defininguk(v) contains a negative cycle thenVnv] = true.
(©) If inVmv] = trueandw is reachable from in G theninVmw] = true.

(5) If vis anode inT \ Q thendistiv] + c[e] > disfw] for all edgese = (v, w) with
inVmw] = false i.e., if vis in T but not in Q then its outgoing edges are relaxed.
Observe thain Vmw] = true implies u(w) = —oo and hence may be interpreted as
“disfw] = —o0”.

(6) For every node with inVmv] = false dist(v) < uk(v).

Phasek ends wherQ contains no node of depthanymoré® and the algorithm terminates
whenQ is empty.

Let v be the first node iQ and letk be its depth inT. The goal is to remove from
Q without violating the invariants. We explain the requiradiens first and then give the
code. We suggest that the code is read in parallel to the riiden.

We scan all edges= (v, w) out ofv. If inVmMw] = truethen there is nothing to do (by
invariants (5) and (6)). So assume otherwise. We comgliafje] + c[e] anddisfw]. There
are two cases to consider.

If disfw] < disfv] + c[€] then there is nothing to do, i.e, all invariants hold alneathis
is obvious if we have inequality ap € T. So assume that we have equality andloes
not belong toT. Don’t we have to aday to T? No! Observe thadisfw] = disfv] + c[€]
impliesdisfw] < oo. Thusw has been i at least once, and hence (2) implie&w) <
disfw]. Thus the invariants also hold in this case.

If disfv] + c[e] < disfw] then u(2) < disfZz] for all nodesz in T,,. Thus, we may
removew and all its descendants fromand Q, setdisfw] to disv] + c[€] and pred w]
toe.

If v was not inT,, and hence is still in T at this point we makay a child ofv and add
w to Q. This maintains all invariants. In order to makea child ofv, we simply insert it
immediately aftew into the listT and increment the degree of

If v belonged tal,, then we discovered a negative cycle consisting of the trédefpam
w to v followed by the edge. We move all nodes reachable franin Gto V.

(bellmanford.ty=
#include <assert.h>
(BF: auxiliary function$

template <class NT>

bool BELLMAN_FORD_T(const graph& G, node s,
const edge_array<NT> & c,
node_array<NT> & dist,
node_array<edge>& pred)

{ (BF:initialize T, Q, dist, and pred

node_array<bool> in_Vm(G,false); // for V_minus
bool no_negative_cycle = true;

16 The algorithm does not keep track of node depths and phaskaranwe only use them in the correctness proof.
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while (!'Q.empty())
{ // select a node v from Q
node v = Q.pop(); pos_in_Q[v] = nil;
edge e;
forall_adj_edges(e,v)
{ node w = G.target(e);
if ( in_Vm[w] ) continue;
NT d = dist[v] + clel;
if ( ( pred[w] == nil & w '= s ) || d < dist[w])
{ dist[w] = 4;
// remove the subtree rooted at w from T and Q
// if w has a parent, decrease its degree
if (pos_in_T[w])
{ BF_delete_subtree(pos_in_T[w],Q,T,t_degree,
pos_in_Q,pos_in_T);
if (pred[w] !'= nil) t_degree[G.source(pred[w])]-—;
}
pred[w] = e;
if (pos_in_T[v] == nil) // v belonged to T_w
{ no_negative_cycle = false;
(move v and all nodes reachable from it to ¥m
}

else
{ // make w a child of v and add w to Q
pos_in_T[w] = T.insert(w,pos_in_T[v],after);
t_degree[v]++;
pos_in_Q[w]l = Q.append(w);
}
}
}
}
#ifndef LEDA_CHECKING_OFF
CHECK_SP_T(G,s,c,dist,pred);
#endif
return no_negative_cycle;

}

We still need to complete the case that a negative cycle ectist. When belonged to
T, we discovered a negative cycle. After settprgdw] = e = (v, w) this negative cycle
is already recorded in thered-array. What remains is to add all nodes that are reachable
from v to V~ and to set theipred-values accordingly. We want to do so without destroying
the negative cycle just found.

This is readily achieved. We first setVVmto true for all nodes on the cycle and then
in a second pass over the cycle cadldta Vm(G, z, ...) for all nodesz of the cycle. In
addtoVm(G, z, ...) we scan all edges out af For each edge = (z, w), wherew does
not belong toV~ yet, we remove all nodes i, from T and Q, we addw to V~, set
predw] to e, and make a recursive call.
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(move v and all nodes reachable from it to \m

node z = v;

do

{ in_Vm[z] = true;
z = G.source(pred[z]);

} while (z !'= v);

do

{ BF_add_to_Vm(G,z,in_Vm,pred,Q,T,t_degree,pos_in_Q,pos_in_T);
z = G.source(pred[z]);

} while (z !'= v);

where

(BF: auxiliary function$+=
inline void BF_add_to_Vm(const graph& G, node z,
node_array<bool>& in_Vm,
node_array<edge>& pred,
list<node>& Q, list<node>& T,
node_array<int>& t_degree,
node_array<list_item>& pos_in_Q,
node_array<list_item>& pos_in_T)
{ edge e;
forall_adj_edges(e,z)
{ node w = G.target(e);
if ( !in_Vm[w] )
{ if (pos_in_T[w])
{ BF_delete_subtree(pos_in_T[w],Q,T,t_degree,
pos_in_Q,pos_in_T);
if (pred[w] !'= nil) t_degree[G.source(pred[w])]--;

}

pred[w] = e;

in_Vm[w] = true;

BF_add_to_Vm(G,w,in_Vm,pred,

Q,T,t_degree,pos_in_Q,pos_in_T);

This completes the description of the algorithm. We stilldnéo complete the correctness
proof and establish th®(nm) running time.

Lemma 12 The refined Bellman—Ford algorithm solves the single-sewghortest-path
problem in time @nm).

Proof The nodes i’V * are never reached and hence are treated correctly.

Next consider the nodes M~. Invariant (4) tells us thanVmis set to true only for
nodes inV~. We need to show tham Vmis set to true for all nodes i~ at some point
during the execution. Let € V~ be arbitrary. If every path defining,(v) contains a
negative cycle or ifv is reachable from such a node thiarV[v] is set to true by invariant
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(4). We need to show that this is indeed the case. ¢f V~ then there must be an integer
N > nandapath{o = s, v1, ..., vy = v] from sto v such that this path is shorter than
any path frons to v with less tharN edges. The prefix consisting of the firgdges of this
path is a path t@; that is shorter than any path tp with less than edges. In particular,
un(vn) < un—1(vn) and hence any path tg, definingun(vs) contains a negative cycle.

Finally, consider a node i ' and assume that(v) = ux(v). Thendisfv] = u(v)
after phask, the tree path frons to v has cosfu(v), and the tree path is recorded in the
pred-array by invariants (1), (2), and (6).

The two preceding paragraphs establish that there are atrmpd phases. Since each
node is removed fron® at most once in each phase the running tim@iam). O

Table 7.2 shows the running times of the refined Bellman—Bfgdrithm on the graphs
generated byBF-GEN. The running time seems to triple iif is doubled. This can be
explained as follows. At the beginning of each phase thesibde L — K — 2 are children
of nodeL — 1 in the shortest-path tree and the nodes 1 toL — K — 2 (and some nodes
smaller tharl. —1) are inQ. In the basic algorithm all nodds—1toL — K — 2 are removed
from the queue and their outgoing edges are scanned. Thissrés2 (m) edge scans per
phase. In the refined algorithm the discovery of a better fpatiodel. — 1 causes the nodes
LtoL — K — 2 to be removed fron®Q andT without(!!) scanning their edges. When the
edges out of node — 1 are scanned they are again adde@tandT. In this way only the
edges out of node — 1 are scanned in each phase. Thus @éK) = ©(,/m) edges are
scanned in each phase and the total running time is ther€far¢/m). In particular, for
m = 8n as in Table 7.2, the running time grows lik&? and hence about triples wheris
doubled’.

7.5.10 The All-Pairs Problem
The all-pairs shortest-path problem is the task to compufie w) for all pairs of nodes
v andw. This could be solved by solving the single-source probldth vespect to each
v. We describe a better method based on so-caltgte potentialsthe improved method
applies wheneve® has no negative cycles. We will see further uses of the notinpal
method in the section on matchings.

A node potential assigns a numhmt(v) to each vertex. Thetransformedor reduced
edge costs with respect to a potential functigpot are defined by

&(e) = pot(v) + c(€) — pot(w)

for each edge = (v, w) € E. Consider a patlp = [ey, ..., &_1] and lete = (vi, vit1).
Then

&p) = Y C@® = Y (Potwi)+ c(&) — pot(vi1)

O<i<k O<i<k

17 The authors initially assumed that the running time of tHimeel algorithm would also grow likem on the
BF.GEN-examples and were surprised to learn from the experimbatghis is not the case. It took us some time
to understand why not.
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= pot(wo) + Y _ c(@) — pot(wx) = Ppot(vo) + C(pP) — POt(w),
O<i<k
i.e., the cost ofp with respect toC is the cost ofp with respect toc plus the potential
difference between the source and the target of the patls.ditiérence is independent(!!)
of the particular pattp and only depends on the endpoints of the path. Thus for any two
pathsp andq with the same source and the same targg) < ¢(q) iff c(p) < c(q), i.e.,
the relative order of path costs is not changed by the tramsfton.

Assume now thaG has no negative cycles and that all nodeadre reachable from
some nodes. We claim thatpot(v) = u(s, v) is a node potential such that all reduced
costs with respect to it are non-negative. This is easilynse@bserve first that(s, v)
is finite for all v if G has no negative cycles and all nodes are reachable $rofihe
reduced costs are therefore well defined. Observe nextdhanfy edgee = (v, w) we
haveu (s, v) + c(e) > u(s, w) and hence

C(e) = u(s,v) +c(e) — u(s, w) = 0.

The observations above suggest the following strategylte sbe all-pairs problem. We
first solve the single-source problem with respect to sonmtkesdrom which all nodes of
G are reachable. & has a negative cycle, we stop. Otherwise we use the distioces
to transform the edge costs into non-negative ones and swh&@ngle-source problem for
each node of G. Finally, we translate the computed distances back to tigénat edge
costs, i.e., for each paip, w) we set

dist(v, w) = distl(v, w) + pot(w) — pot(v),

wheredist anddist1 denote the distances with respect to the original and tmsfiramed
distance function.

How do we chooss? We add a new vertexto G and add edges, v) of length O for all
vertices ofG. Observe that this does not create any additional cyclgzsiiticular, it does
not create any negative cycles. We use the distan¢g) as our potential function.

(all_pairs.ty=
#include <LEDA/graph_alg.h>
template <class NT>
bool ALL_PAIRS_SHORTEST_PATHS_T(graph&G, const edge_array<NT>& c,
node_matrix<NT>& DIST)
{ edge e;
node v,w;
node s = G.new_node();
forall_nodes(v,G) if ( v != s ) G.new_edge(s,v);
edge_array<NT> c1(G);
forall_edges(e,G) cl[e] = (G.source(e) == s? 0 : clel);
node_array<NT> dist1(G);
node_array<edge> pred(G);
if (!BELLMAN_FORD_T(G,s,cl,distl,pred)) return false;

G.del_node(s);
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forall_edges(e,G)
cl[e] = dist1[G.source(e)] + clel - distl[G.target(e)];

// (G,cl) is a non-negative network; for every node v
// compute row DIST[v] of the distance matrix DIST
// by a call of DIJKSTRA_T(G,v,cl,DIST[v])

forall_nodes(v,G) DIJKSTRA_T(G,v,c1,DIST[v],pred);
// correct the entries of DIST

forall_nodes(v,G)
{ NT dv = dist1[v];

forall_nodes(w,G) DIST(v,w) += (disti[w] - dv);
}

return true;

}

7.5.11 Minimum Cost to Profit Ratio Cycles
We consider a graps with two weight functions defined on its edges: a functjpthat
assigns a profit to each edge and a functidimat assigns a cost to each edge. For a o§cle
we use
pC) =) pE), cC)=) c@E, rC)=c(C)/p(C)

ecC ecC
to denote the profit, the cost, and cost to profit ratio of thdegyrespectively. Our goal is
to find a cycle that minimizes the cost to profit rafio We user* andC* to denote the
minimum ratio and a cycle realizing it, respectively, i.e.,

A= A(C*) =min{A(C) ; Cisacyclg.
Figure 7.17 shows an example. We will define a function

rational MINIMUM RATIO_CYCLE (graph& G,
const edge_array<int>& c,
const edge_array<int>& p,
list<edge>& C_opt);
that returns the ratio and the list of edgesCiopt) of a minimum cost to profit ratio cycle.
The program returns zero if there is no cyclédnalso the empty list is returned @optin
this case. The procedure runs in ti@¢nmlog(n-C- P)) whereC andP are the maximum
cost and profit of any edge, respectively. Observe that edgjs and profits are assumed to
be integral. We assume that there are no cycles of cost zéesowith respect to either
or p.
Lawler [Law66] has shown that* andC* can be found by binary search and repeated
shortest-path calculations.
Let A be a real parameter and consider the cost funajatefined by

C.(8) =c(e) — A - p(e)

18 For some readers it may seem more natural to maximize tleepéfi) /c(C). However, maximizingp(C)/c(C)
is the same as minimizing(C)/ p(C) if the cost and profit of all cycles are positive.
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Figure 7.17 An example of a minimum cost to profit ratio cycle. Edge lalzetsof the form
“cost/profix”. The optimal cycle is shown in bold. It has cd&tand profit 17. This figure was
generated with the ximan-demo gwinimum.ratio_cycle. The program minimumatio_cycle in
LEDAROOT/demo/book/Graph illustrates the executiofVbNIMUM_RATIQCYCLE

for all edgese. We can comparg with the unknown.* by solving a shortest-path problem
with cost functiorc,.
If A > A* then

G (CH) =c(C") =4 p(C") =((C") =1 - p(C") <0,

i.e., there is a negative cycle.
If A < A* andC is any cycle then

G(C)=c(C)—r-p(C)=@AC)—1)-p(C)=>@A"—1)-p(C) =0,

i.e., there is no negative cycle.

We capture this argument in the following procedure. It sakerationallambdaand
returns true ifambdais greater than*. The implementation is simple. It assumes that
a node from which all other nodes &f are reachable. We set up the cost functiprand
then test for a negative cycle. It is important that all noalesreachable frora (otherwise,
a negative cycle could hide in a part of the graph that is wiraale froms).

We have performed one optimization. The cas(®) for e € E are rational numbers, all
with the same denominator. We therefore multiply all costh their common denominator
and work in integers.

{minimum ratio cycle: compajes
bool greater_than_lambda_star(const graph& G, node s,
const edge_array<int>& c,
const edge_array<int>& p,
rational lambda)
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{ edge_array<integer> cost(G);
edge e;
integer num = lambda.numerator();
integer denom = lambda.denominator() ;
forall_edges(e,G) costl[e]l = denom*c[e] - num*pl[el;

node_array<integer> dist(G);
node_array<edge> pred(G) ;

return !BELLMAN_FORD_T(G,s,cost,dist,pred);

We next show how to use the compare function above in a bireanch ford*. Let Pyax
andCpax be the maximum profit and cost of any edge, respectively. Then

pP(C)e[l..n-Pnay and c(C) € [1..n- Cray.

ThusA(C) is a rational number whose denominator is in the former rargewhose nu-
merator is in the latter range. @; andC; are cycles with.(C1) = a/b # c¢/d = A(Cyp)
then

[4(C1) — A(Cp)| = |a/b — c/d| = |ad — cb|/(bd) > 1/(bd) > 1/(N - Pma0’.

Lets = 1/(n - Pnay?. We now have all the ingredients for a binary search. We staint w
the half-open intervalmin .. Amax) = [0.. 14 n - Cnay (it is convenient to maintain the
invariantimin < A* < Amax) and then repeatedly compaxe= (Amin + Amax)/2 With A*.

If A > A* we setimax to A and if A < A* we setinin to A. In this way we maintain the
invariantimin < A* < Amax. We continue untihmax— Amin < 8. Thenimin < A* < Amin+98
and hence there is no cydlewith A* < A(C) < Amax- We will use this observation below
to extractC* andi*.

The following procedure summarizes the discussion. Weditdta new nodsand edges
(s,v) forall v € V to our graph (this makes all nodes reachable fg)rand then perform
the binary search. Whenever a midpoint is computed in tharpisearch we normalize
its representation, i.e., cancel out common factors of matoeand denominator. This is
important to keep the representations of the rationalslsmal

(-minimumratio_cycle.¢=

#include <LEDA/templates/shortest_path.t>
#include <LEDA/rational.h>
(minimum ratio cycle: compaye
rational MINIMUM_RATIO_CYCLE(graph& G,
const edge_array<int>& c,
const edge_array<int>& p,
list<edge>& C_opt)
{ node v; edge e;
(additional variables for demos// for minimum ratio cycle demo
C_opt.clear();
if ( Is_Acyclic(G) ) return rational(0);

node s = G.new_node();
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forall_nodes(v,G) if (v != s) G.new_edge(s,v);

edge_array<int> c1(G);
edge_array<int> p1(G);

int Cmax = 0; int Pmax = 0;

forall_edges(e,G)
{ if (G.source(e) == s) { ci[e] = pilel = 0; }
else
{ cilel = clel; pilel = plel;
Cmax = Max(Cmax,cle]);
Pmax = Max(Pmax,ple]);
}
}

int n = G.number_of_nodes();
(minimum ratio cycle: check preconditipn
integer int_n(n);
integer int_Pmax(Pmax) ;
rational lambda_min(integer(0));
rational lambda_max(int_n * integer(Cmax) + integer(1));
rational delta(l,int_n * int_n * int_Pmax * int_Pmax);
while (lambda_max - lambda_min > delta)
{ rational lambda = (lambda_max + lambda_min)/2;
lambda.normalize(); // important
(report progress in dem@s

if ( greater_than_lambda_star(G,s,cl,pl,lambda) )
lambda_max lambda;

else

lambda_min = lambda;

}

rational lambda_opt;
{ (minimum ratio cycle: determine lambdpt and Copt) }

G.del_node(s);

return lambda_opt;

When the binary search terminates we have
Amax — Amin <8 and Amin < A" < Amax

and hence there can be no cyClavith A* < A(C) < Amax- LetA = Amax. SINCEA* < Amax
there is a negative cycle with respecicfo Let C be any negative cycle with respectao
Theni(C) < A = Amax @and hence.(C) = A*. We conclude that any negative cycle with
respect ta; is an optimal cycle.

A negative cycle with respect 1 is easy to find. We set up the cost functigrand run
BELLMAN _FORD_T. We then run CHECKSP.T on the output. It labels all nodes lying
on a negative cycle by-2. We pick any such node and trace the cycle containing it.



7.5 Shortest Paths 77

{minimum ratio cycle: determine lambagpt and Copty=
edge_array<integer> cost(G);

node v; edge e;

integer num = lambda_max.numerator() ;

integer denom = lambda_max.denominator();
forall_edges(e,G) cost[e]l = denom*cl[e] - num#*pl[e];

node_array<integer> dist(G) ;
node_array<edge> pred(G);

BELLMAN_FORD_T(G,s,cost,dist,pred);
node_array<int> label = CHECK_SP_T(G,s,cost,dist,pred);
forall_nodes(v,G) if (labellv] == -2) break;
int P = 0; int C = 0;
node z = v;
do { P += p[pred[z]l]; C += c[pred[z]];

C_opt.append (pred[z]) ;

z = G.source(pred[z]);

} while ( z !'= v);

lambda_opt = rational(C)/rational(P);

We still need to show how to check the preconditip(C) > 0 andc(C) > 0 for
all cyclesC. We discuss the latter condition. Consider the cost funatjodefined by
c'(e) = c(e) — 1/n for all edgese. Clearly, if there is no negative cycle with respect to
¢’ then there is no cycle of length zero or less with respect tGonversely, ifc(C) > 0
and hence(C) > 1 for all C thenc'(C) = ¢(C) — |C|/n > 1 —n/n > 0 and there is no
negative cycle with respect .

We can therefore misuse our comparison function to checgréheondition.

(minimum ratio cycle: check preconditiga

edge_array<int> unit_cost(G,1);
rational one_over_n(integer(1),integer(n));

if (greater_than_lambda_star(G,s,cl,unit_cost,one_over_n))
error_handler(1,"cycle of cost zero or less wrt c");

if (greater_than_lambda_star(G,s,pl,unit_cost,one_over_n))
error_handler(1,"cycle of cost zero or less wrt p");

The running time of the algorithm i® (nmlog(n - Pnax - Cmax)). This can be seen as
follows. The binary search starts with an interval of leng@,ax + 1 and ends with an
interval of length Z(n - Pmax?. The length of the interval is halved in each iteration and
hence the number of iterations@log(n - Pmax- Cmax)). Each iteration takes tim@®(nm).

The technique used in our program for the minimum ratio cpetdlem is callegara-
metric searchParametric search is applicable in the following situatio

e One searches for the threshold valtieof a monotone predicate(1) of one real
argument.. A predicateP is monotone if

A < Az andP(Ap) imply P(A2),
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and the threshold value &f is
A =inf{A; P(L)}.

In the problem of this sectioR (1) holds if there is a negative cycle with respect to the
cost functionc,..

e There is a decision procedure fBA).

e There is a master procedure that drives the searchfoiVe used binary search as the
master procedure in this section.

We refer the reader to [Meg83] and [AST94] for further apglions of parametric search.

Parametric search has high demands on the underlying atithnYou can get an impres-
sion of the arithmetic demand of the minimum ratio cycle pehare by calling the program
minimum.ratio_cycle in LEDAROOT/demo/book/Graph. The paper [SSS97]udises an
application of the number classal to parametric search.

Exercises for 7.5

1 (Single-pair shortest-path problem) lseindt be distinct nodes in a directed graph with
non-negative edge costs. The goal is to compute a shortésfrpen s to t. Assume
that there is heuristic information available which givies,any nodev, alower bound
Ib(v) for the length of a shortest path fromto t. Modify Dijkstra’s algorithm such that
dist(v) + Ib(v) is used as the priority of node

2 Show that the conditiod(v) > w(v) for all v in part (b) of Lemma 6 is essential, i.e.,
the claim does not hold without it.

3 Investigate the following shortest-path algorithm. Siple input graplG into G~ con-
sisting of all edges of negative cost aBd° consisting of all edges of non-negative cost.
What can you say whe@~ is not acyclic? IfG~ is acyclic then run alternately the
acyclic shortest-path algorithm @i~ and Dijkstra’s algorithm 0i6=°. In each case the
distance labels output by the preceding run must be takeneaisitial distance labels
for the next run. Modify the programs accordingly.

4 Consider the following version of the Bellman—Ford algori. It iterates over all edges
on the grapm times. Whenever an edge= (v, w) is consideredd(w) is set to the
minimum ofd(w) andd(v) + c(e).

dist[s] = 0;
forall nodes(v,G) pred[v] = nil;
for(int i = 0; i < n; i++)
forall edges(e,G)
{ node v = G.source(e);
node w = G.target(e);
if (v !'= s &% pred[v] == nil) continue;
// dist[v] is finite
d = dist[v] + cost[e]l;
if ( pred[w] == nil && v != s || d < dist[w] )
{ dist[w] = 4; pred[w] = e; }
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Show that the algorithm computes all finite distances cdgr€elint: show thatd (v) is
bounded above by the length of a shortest path consistingmbstk edges after thi-
th iteration.). Modify the algorithm so that it satisfies autput convention. Implement
the algorithm and compare its running time to the implemoria of the Bellman—Ford
algorithm given in the text. What is best case running timthefalgorithm?

5 Inall our algorithms we implemented the test d(w) in a somewhat clumsy way due
to the fact thad(w) may be+oo and that most number types have no representation
for +00. Show thatnC whereC is the largest cost of any edge can be taken as an
approximation oft-co. Modify the algorithms accordingly and time them in compari
to the algorithms in the text.

6  Our algorithm for determining minimum ratio cycles usesaoy search. It starts with
an interval of lengtmCrax + 1 and stops as soon as the length of the interval becomes
1/(nPnax? or less. Thus there are lai#P2,,Cmay) iterations and hence the algorithm
handles rational numbers with denominator as Iarga?@#,axcmax. This is unnecessar-
ily large since the.(C) are rational numbers whose denominator is bounderniFBys .
Explore the possibility that the values bfare restricted to rational numbers whose de-
nominator is bounded by Pnax. This requires us to write a function that “rounds” a
rational number to the closest rational number whose demaaii is bounded by some
prescribed integer. Inspect the functiemallrationalnear of classrational to see how
such a function can be realized.

7 Define a number clags8T_star. The definition is with respect to a fixed gra@hwith
integral weight functions and p. LetA* be the minimum cost to profit ratio of a cycle in
G. Each number of this class is represented by a pair of indedeldition is component-
wise and there is no multiplication. Zero has both its congmis equal to zero. A
pair (a, b) is less than (equal to, larger than) a péird) if a + A*b < (=, >)c +
A*d. Implement the compare function as follows. Let= (c — a)/(b — d) and use
the comparison between and A* (realized by a shortest-path computation as in the
text). The number type maintains an intervighi, .. Amax] containingr*. Whenever a
comparison is performed this interval is updated. Use tmelyar type in a shortest-path
computation on the grap@. What will the final interval be?

7.6 Bipartite Cardinality Matching

We start with the problem definition and the functionalitytbé bipartite matching algo-
rithms. We describe a checker and then lay the foundatiomsatthing algorithms. In
the bulk of the section we discuss the implementations afrs¢vnatching algorithms and
derive some general implementation principles. We closle &n experimental comparison
of our implementations.
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Figure7.18 A graph and a maximum matching: The bold edges form a mataifingrdinality
three. The filled nodes form a node cover of cardinality theeeode cover is a set of nodes
containing at least one endpoint of every edge. The node pogees the optimality of the
matching. This figure was generated with the xIman-demavga matching.

7.6.1 Concepts and Functionality

Let G = (V, E) be a graph. Anatching Mis a subset of the edges no two of which share
an endpoint, see Figure 7.18. The cardindlj of a matchingM is the number of edges
in M.

A nodev is calledmatchedwith respect to a matchini if there is an edge itV incident
tov and it is calledreeor unmatchedtherwise. An edge € M is called anatchingedge.
A matching is callegberfectif all nodes ofG are matched. For a matched nadiée unique
nodew connected t@ by a matching edge is called theateof v.

In this section we assume th@tis bipartite, i.e., that there is a partitiod = AU B
of the nodes ofs such that every edge @ has one endpoint i and one endpoint ifB.
Matchings in general graphs are the topic of Section 7.7.pfbeedure

bool Is Bipartite(const graph& G, list<node>& A, list<node>& B)

tests whethe6 is bipartite and if so computes an appropriate partitiornefriodes in lists
AandB. It runs in timeO(n + m).
The procedure
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list<edge> MAX_CARD BIPARTITE MATCHING (graph& G);

returns a maximum cardinality matching; the gr&@must be bipartite. The worst case and
average case running time of the algorithm@xg/n-m) andO(mlogn), respectively. The
variant

list<edge> MAX_CARD BIPARTITE MATCHING(graph& G, node_array<bool>& NC);

returns in addition a proof of optimality in the form of a noctw/erNC.

A node coveis a setJ of nodes such that for every edge w) of G at least one of the
endpointsisirJ.

Lemma 13 Let M be a matching and let U be a node cover. THdh < |U|.
If IM] = |U]| then M is a maximum cardinality matching and U is a minimundoaality
node cover.

Proof SinceU is a node cover, each edge M has at least one endpointlih We assign
an endpointirJ to each edge iM; for an edge iVl having both endpoints id the choice
of the endpoint is arbitrary. Each node is assigned at mast eimce every node has at
most one edge iM incident to it. HencelM| < |U].

If IM] = |U]| thenM is a maximum cardinality matching, since no matching carehav
cardinality larger thafiU |, andU is a minimum cardinality node cover, since no node cover
can have cardinality smaller thail|. O

We will later show that in bipartite graphs there is alwaysdancover and a matching
of the same cardinality. Lemma 13 is the basis for a checkemfaximum cardinality
matchings in bipartite graphs. The checker takes a/sef edges and a s&C of nodes,
and checks thatl is a matchingNC is a node cover, and that the cardinalityMfis equal
to the cardinality oNC.

(-mchmatching=

static bool False(string s)
{ cerr << "CHECK_MCB: " + s +"\n'"; return false; }

bool CHECK_MCB(const graph& G,const list<edge>& M,
const node_array<bool>& NC)
{ node v; edge e;
// check that M is a matching
node_array<int> deg_in_M(G,0);
forall(e,M)
{ deg_in_M[G.source(e)]++;
deg_in_M[G.target (e)]++;
}
forall_nodes(v,G)
if ( deg_in_M[v] > 1 ) return False("M is not a matching");
// check size(M) = size(NC)
int K = 0;
forall_nodes(v,G) if (NC[v]) K++;
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if ( K '= M.size() ) return False("M is smaller than node cover");
// check that NC is a node cover
forall_edges(e,G)
if (! (NC[G.source(e)] || NC[G.target(e)]) )
return False("NC is not a node cover");
return true;

7.6.2 Concepts for Maximum Matching Algorithms
We introduce the concepts of alternating and augmentirgsghat are crucial for all match-
ing algorithms. A large part of the section applies not owhbipartite graphs but to all
graphs. We will clearly state when we restrict attentionifmaltite graphs.

A simple pathp = [ep, €1, ..., &-_1] from v to w in G is called aralternatingpath with
respect to a matchiniy if:

e the edges irp are alternately ifM and not inM,
e exactly one ofy ande,_; is a matching edge if = w,

e eitherg is a matching edge aris free and eitheg,_1 is a matching edge av is free
if v=£w.

Figure 7.19 shows examples. The importance of alternatitigsgstems from:

Lemma 14 If p is an alternating path with respectto M then M M @& p= (M \ p) U
(p\ M) is also a matching.

Proof Consider any node. We need to show that at most one edg#/dfis incident toz.
This is obvious ifz does not lie orp or if z is not an endpoint op or if p is a cycle. So
assume that is an endpoint o and p is not a cycle, say = v # w. Sincep is simple,
it contains only one edge incident #9 namelyey. Moreover, ifep ¢ M thenw is free with
respect taVl. Thus at most one edge df’ is incident tov. O

If pis alternating with respect ol thenM & p has cardinality one larger tha if both
endpoints ofp are free, has the same cardinalityMsif exactly one endpoint is free, and
has cardinality one smaller thawh if no endpoint is free.

An alternating pattp is calledaugmentingf both endpoints ofp are free. For an aug-
menting path the cardinality of the matchiMy® p is one larger than the cardinality f.

If M does not have maximum cardinality then there is always amaugng path, as the
next lemma shows; iM is “far” from optimality there are many augmenting pathsefev
short ones).

Lemma 15 Let M and M be matchings in a graph G. We have the following:
¢ M @ M’ consists of alternating paths and alternating cycles.
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Figure 7.19 Alternating paths: The edges of a matchiMgare shown in bold. The paths
pr=[a,Vy,b,v], p2=[u,b,v],and ps = [u, b, v, c] are alternating with respect #d, but the
pathps = [a, y, b] is not. AugmentingM by p; decreases the size of the matching (as both
endpoints ofp; are matched), augmenting Ipg leaves the size of the matching unchanged (as
exactly one of the endpoints @b is matched), and augmentation pyincreases the size of the
matching by one (as both endpointsmfare free). The right half of the figure shows the
matching obtained by augmenting py.

e If [M] < |M’| then there is at least one augmenting path in G with respebt to

e Letd=|M’| — |M]. Then there is at least one augmenting path of length at mfabst n
and there are at least /2 augmenting paths of length at m@st/d.

Proof Consider the graph with edge 9dt@® M’. In this graph each node has degree zero,
one, or two, and hence the graph consists of paths, cycldssalated nodes. Sindd and
M’ are matchings, the edgesf andM’ alternate on every path and cycle.

An alternating cycle contains the same number of edged ahdM’. Thus, if M| <
|M’], then there must be at least one patlvirp M’ which contains more edges bf’ than
of M. Such a path contains one more edg#/fthan ofM and hence the first and the last
edge of the path belong td’. Thus the path is augmenting with respecMo

The argument in the previous paragraph actually shows tteme tmust bel paths in
M @ M’ which contain more edges o’ than of M. Thus there aré augmenting paths
with respect toM. The paths are node-disjoint and hence contain at meslges in total.
Thus their average length is at mogd and there are at leady2 paths whose length is at
most 2h/d. O

It is worthwhile looking at a numerical example. Assume thais empty and thaG
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allows for a perfect matching. Takirg’ as a perfect matching we hagtle= n/2 and hence
there are at least/4 augmenting paths of length at most 2.

Coroallary 2 Let M be a matching in a graph G. M is a maximum cardinality rhatg in
G iff there is no augmenting path in G with respectto M.

Proof Clearly, if there is an augmenting paptwith respect tavl thenM is not a maximum
cardinality matching.

Assume conversely, thd#l is not a maximum cardinality matching. Then there is a
matchingM’ such thatM| < |M’|. Lemma 15 implies the existence of an augmenting path
with respect tavl. O

Corollary 2 immediately suggests an algorithm for findingcimaum matchings.

M = some matching;
while there is an augmenting paphwith respect tavi
{ augmeniM by p; }

In the remainder of this section we concentrate on bipagtighs. In a bipartite graph
G = (AU B, E) there is a particularly simple method for finding augmentaghs. We
direct all free edges fronA to B and all matching edges frof to A. The existence of an
augmenting path is then tantamount to the existence of afpatha free node inAto a
free node inB. Also, augmentation by a pathis trivial. One simply reverses the direction
of all edges on the path. Observe that this correctly recivatsthe endpoints gb are now
matched and tha¥l was replaced by & p, see Figure 7.20We will use this “directed”
view in all our implementations of bipartite matching algbms.

Before we turn to implementations we make the observatiahitisuffices to search for
augmenting paths only from verticesAnand from each vertex only once, i.e., the algorithm
above can be modified to:

M = some matching;

forall nodesvin A

{ if there is an augmenting pathwith respect taM starting inv
{ augmentM by p; }

We prove that the modified algorithm is correct. We obsengt firat the set of nodes in
A that are matched iM @ p are exactly the nodes that are matchedirplus the source
node ofp.

Let Mg be the initial matching, leBg be the nodes irA that are matched iMg and let
v1, U2, ..., vk be the vertices ilA \ A in the order in which they are considered. For all
i,i > 1, let M; be equal toM;_; if there is no augmenting path with respect toM; _1
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Figure7.20 The edges of a matching are shown in bold. Matching edges are directed from
right to left and non-matching edges are directed from teftght. The pathp = [c, v, b, u] is

an augmenting path with respectb. AugmentingM by p yields the matchingyl & p shown

in the right half of the figure.

starting inv; and let it beM;_1 @ p; otherwise. LetA; = Ag U {v1, ..., vj} and letG; be
the subgraph spanned by = A; U B.

Lemmal6 Foralli: M; is a maximum cardinality matching in;G

Proof The claim is certainly true for = 0 as all nodes inA, are matched. So consider
i > 1 and assume that the claim is true fdr_;. Letk; be the maximum cardinality of a
matching in the subgraph spanned\y If ki = ki_; then the claim clearly holds for So
assume that; > k;_; and letM* be an optimal matching iG;. Thenv; must be matched
in M* (otherwise there would be a matching of cardindiitin G;_1, a contradiction to the
optimality of Mj_;) and henceéM;_; & M* contains a patlp starting inv;. The path starts
with an edge irM* and is alternating with respect M, _;; we consider the maximal length
path of this form. Ifp also ends with an edge M* then p is augmenting with respect to
Mi_; and hence the cardinality ®f; is one larger than the cardinality & _;. ThusM,; is
optimal. If p ends with an edge iiM;_; thenM* & p has the same cardinality &* and
does not match;. Thus there is a matching of cardinalkyin G;_;, a contradiction to the
optimality of M;_;. O
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7.6.3 Translating between the Directed and the Undirected View
We stated in the previous section that augmenting pathgartie graphs are particularly
easy to find if one adopts a directed view: all matching edgesiaected fromB to A,
all non-matching edges are directed frdto B, and augmentation by a pafhmeans
to reverse all its edges. We take this directed view in allimplementations of bipartite
matching algorithms. However, we do not want to impose thieseted view on the users of
matching algorithm. For them an “undirected” view is mor@mgpriate. In this section we
discuss how to translate between the two views.

We postulate the following common interface for all our ieplentations:

e The node set is partitioned into disjoint sétsand B (given as lists of nhodes).
e All edges are directed frorA to B.

e The implementations are allowed to modify the graph in twgsvdhey may reorder
adjacency lists and they may change the orientation of edigisg execution. At
termination, all edges must ag&iibe directed fromA to B. However, the ordering of
the adjacency lists may be arbitrary.

In this section we show how to prepare this input format and toorestore the original
graph.

We determine a bipartitio = AU B of V by callingIs Bipartite(G, A, B). This call
will return true iff G is bipartite and computé andB if G is bipartite. We then orient all
edges fromA to B. Having oriented all edges fromito B we compute a maximum match-
ing by calling one of our matching algorithms. After returgifrom the matching algorithm
we restore the original orientation of all edges and theiaigprder of all adjacency lists.

We give more details. We deal with the edge orientations. fiv§¥e collect all edges
out of nodes inB in a list edgesoutof_B and reverse the orientation of all of them (op-
erationrevedgd. After return from the matching algorithm we again reveaieedges in
edgesutof_B and thus restore their original orientation.

We come to the orderings of the adjacency lists. We numbeidgles according to their
original order and ussortedgedo restore the original order.

Among our implementations of matching algorithms the atgar by Alt, Blum, Mehlhorn,
and Paul seems to be the best, see Section 7.6.7 for an egp&iraomparison of all im-
plementations. We therefore use it as our default impleatiemt.

(_mchmatching+=

list<edge> MAX_CARD_BIPARTITE_MATCHING(graph& G, node_array<bool>& NC)
{ list<node> A,B;
node v; edge e;
if ( !Is_Bipartite(G,A,B) )
error_handler(1,"MAX_CARD_BIPARTITE_MATCHING: G is not bipartite");
edge_array<int> edge_number(G); int i = 0;
forall_nodes(v,G)

19 We would not make this requirement anymore if we could starnfscratch.



7.6 Bipartite Cardinality Matching 87

forall_adj_edges(e,v) edge_number[e] = i++;

list<edge> edges_out_of_B;

forall(v,B)

{ list<edge> outedges = G.adj_edges(v);
edges_out_of_B.conc(outedges) ;

}
forall(e,edges_out_of_B) G.rev_edge(e);

list<edge> result = MAX_CARD_BIPARTITE_MATCHING_ABMP(G,A,B,NC);
forall(e,edges_out_of_B) G.rev_edge(e);
G.sort_edges (edge_number) ;

#ifndef LEDA_CHECKING_OFF
CHECK_MCB(G,result,NC) ;
#endif

return result;

}

7.6.4 The Ford and Fulkerson Algorithm
In this sectionG = (V, E) is a bipartite graph withv = A U B. All edges have one
endpoint inA and one endpoint if8 and all edges are directed frofto B. Our goal is
to compute a matching of maximum cardinality. We are allotceckorder adjacency lists
and to reorient edges but we must at the end again orientgdissflomA to B.

We will give several implementations of the Ford and Fulkeralgorithm [FF63] already
derived in Section 7.6.2.

M = some matching;

forall nodesvin A

{ if there is an augmenting pafhwith respect taM starting inv
{ augmentM by p; }

The implementations differ:

e inthe strategy used to search for augmenting paths (we twidlysdepth-first and
breadth-first search),

e inthe choice of the initial matching (we will either use thamgty matching or the
matching produced by the so-called greedy heuristic),

e inthe data structures used.

All implementations have a worst case running time&dghm). They have different best
case behaviors and different average case behaviors antéhave drastically differently
in practice.
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A First Implementation: We implement the algorithm above and call the resulting pro-
cedure MAX CARD_BIPARTITE_.MATCHING _FFB; FFB stands for basic version of the
Ford and Fulkerson algorithm. It starts by declaring all emds free and then iterates
over all nodes inA. For each node in A it tries to find an augmenting path starting
in v by calling findaugpathby dfs(G, f, freg reached for the edgesf out of v. A call
findaugpathbydfs(G, f,...) returns true if there is an augmenting path starting with
and returns false otherwise. In the former case it also antgrtbe current matching by
the path (by reversing all its edges) and labels the endpoitof the path as non-free. In
either case it labels all visited nodes (by settiegchedw] to true for each visited node).
If an augmenting path starting with a particular edgis found,v is made non-free and the
next node inA is considered.

When all nodes irA have been considered the result list is prepared, all edgelracted
from A to B (as this is required by our interface convention), and a moder is computed.

(_.FFB_matching=
(FFB: dfy
list<edge> MAX_CARD_BIPARTITE_MATCHING_FFB(graph& G,
const list<node>& A, const list<node>& B,
node_array<bool>& NC)
{ node v; edge e;
node_array<bool> free(G,true);
// check that all edges are directed from A to B
forall(v,B) assert(G.outdeg(v) == 0);
forall(v,A)
{ edge f£;
node_array<bool> reached(G,false);
forall_adj_edges(f,v)
{ if (find_aug_path_by_dfs(G,f,free,reached))
{ freel[v] = false;
break;
}
}
}

(MCB: prepare result and node cover and restore orientatijons

We give the details dindaugpathby dfs(G, f, freg reached. It is a variant of depth-first
search; later in the section we will also consider breadtidiearch. In a general cafl,is
some edge and the recursion stack contains apathrting at a free node iA and ending
in f. In the procedure we distinguish cases according to whéeiieetarget node of is
free or not.

If the target nodeaw of f is free, we have found an augmenting path. We labels
non-free and then reverse all edgeirrhis can be done by unwinding the recursion stack
and reversing all edges contained in it. More precisely, evenrsef and return true. The
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enclosing call receives true and knows that an augmentitighzes been found. It reverses
its argument and returns true. In this way all edges on the sn&t reversed.

If wis not free, we try to extend the path. leet= (w, z) be any edge out ob. If zwas
already reached then there is no need to ex@a@e we know already that no free node in
B can be reached from If zwas not reached yet we make a recursive cal&for

(FFB: dfg=

static bool find_aug_path_by_dfs(graph& G, edge f,
node_array<bool>& free, node_array<bool>& reached)
{ node w = G.target(£f);
reached[w] = true;
if (freelwl)
{ free[w] = false;
G.rev_edge(f);
return true;
}
edge e;
forall_adj_edges(e,w)
{ node z = G.target(e);
if ( reached[z] ) continue;
if ( find_aug_path_by_dfs(G,e,free,reached) )
{ G.rev_edge(£f);
return true;
}
}

return false;

We complete the description of our first matching algorithnaiscussing how to produce
the matching, the node cover, and how to orient all edges f#otm B. The matching
consists of all edges that are directed fr8mo A. Their directions need to be reversed.

How can we find a node cov&C? We claim that the following rule determines a node
cover. For each matched edge we select the endpoit ihthis endpoint can be reached
from a free node irA, and the endpoint iA otherwise, see Figure 7.21.

Clearly, each matching edge is incident to a nodédNft. We now consider a non-
matching edge = (v, w) with v € Aandw € B. If v is free therw must be matched (by
optimality of M), andw was selected according to the rule above: i§ matched and was
not selected then there must be a matching efdge (v, w") with w’ selected. This means
thatw’ can be reached from a free nodeAn Extend this path byf ande to see thaw is
selected according to the rule above.

(MCB: prepare result and node cover and restore orientatiens
list<edge> result;
forall(v,B)
forall_adj_edges(e,v) result.append(e);

forall_nodes(v,G) NC[v] = false;
node_array<bool> reachable(G,false);
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Figure7.21 The edges of a matching are shown in bold. Matching edges are directed from
right to left and non-matching edges are directed from tefight. The edgey is the only
matching edge whose endpointinis reachable from a free node & The node cover is shown
as large solid circles.

forall(v,A)
if (freel[v]) DFS(G,v,reachable);
forall(e,result)
if ( reachable[G.source(e)] )
NC[G.source(e)] = true;
else
NC[G.target(e)] = true;

forall(e,result) G.rev_edge(e);

return result;

What is the time complexity of our implementation? The warase complexity is
O(nm) since we search at mosttimes for an augmenting path and since each search
takes timeO(m) in the worst case. On many graphs the running time is small@rever,
the running time of the implementation above is never bettan2(n?). This is due to
very poor algorithmicsvhich lets each search for an augmenting path take €r®. The
culprit is the innocent looking statement

node_array<bool> reached(G,false);
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which consume® (n) time and is executed in each of thephases. We will next describe
two improvements. None of them improves the worst case ngntiine, but both of them
improve the running time dramatically for many inputs.

Improving the Best Case: We show how to improve the best case frénin?) to O(m).
We will see that the optimization has a dramatic effect orofreerved running time of our
implementation.

Consider the first search for an augmenting path when themumatching is still empty.
At this point any edge is an augmenting path and hence theéilistf find augpathby dfs
returns with success immediately. However, in the implaiaiton above the search will
take time2 (n) since the initialization of theodearray<boob reachedtakes linear time.
We aim for a design where the cost for reinitializirgicheds proportional to the number
of nodes that were actually reached in the previous seatinatnproportional to the total
number of nodes. We call this the principle of

paying only for what we actually touched
and not
for what we could have conceivably touched.

We describe three ways to realize the principle.

The first method uses staclkknode> reachedstackin addition to the boolean array
reached Whenevereachedw] is set to true for a node we also pushw ontoreachedstack
and after a successful augmentation we resehedstackto resetreachedto false for all
nodes on the stack. In this way reinitialization takes timapprtional to the number of
elements reached. We obtain the following coddindaugpathby dfswe write

reached[w] = true; reached stack.push(w);
and in the body of MAXCARD_BIPARTITE_MATCHING _FFB we write

node_array<bool> reached(G,false);
stack<node> reached_stack;

forall(v,A)
{ edge £;
forall adj_edges(f,v)
{ if (find_aug path by dfs(G,f,free,reached))
{ free[v] = false;
while ( !reached_stack.empty() )
reached[reached stack.pop()] =
break;
}
}
}

The second method uses the data tppeeslist This data type offers the functions
membey push pop, andemptyand hence combines the functionality of a boolean array

false;
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with a stack. We leave it to the reader to rewrite the algorio that anodeslist is used
instead ofreachedandreachedstack

The third method uses a countarmberof_augmentationsind anodearray<int> mark
instead ofreached The counter is increased whenever an augmentation d€and the
marknumberof_augmentationss assigned to all nodes reached in the current search for an
augmenting path. The test whether a nadeas already been reached in the current search
amounts tanarlf w] == numberof_augmentationsWe obtain the following code. In this
code we have also made provisions for our second improveindatm of the program
chunk(MCB: greedy heuristic

(-FF_DFS.matching=
(FF: dfs)

list<edge> MAX_CARD_BIPARTITE_MATCHING_FF_DFS(graph& G,
const list<node>& A, const list<node>& B,
node_array<bool>& NC)
{ node v; edge e;
node_array<bool> free(G,true);
node_array<int> mark(G,-1);

// check that all edges are directed from A to B
forall(v,B) assert(G.outdeg(v) == 0);

(MCB: greedy heuristic

number_of_augmentations = O;
forall(v,A)
{ if ( 'free[v] ) continue;
edge f;
forall_adj_edges(f,v)
{ if (find_aug_path_by_dfs(G,f,free,mark))
{ free[v] = false;
number_of _augmentations++ ;
break;
}
}
}

(MCB: prepare result and node cover and restore orientatijons

where

(FF: dfs)=
static int number_of_augmentations;
static bool find_aug_path_by_dfs(graph& G, edge f,
node_array<bool>& free, node_array<int>& mark)
{ node w = G.target(£f);
mark [w] = number_of_augmentations;
if (freelwl)
{ freel[w] = false;

20 There are 32 numbers of typént and hence this counter will never overflow.
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G.rev_edge(f);
return true;
}
edge e;
forall_adj_edges(e,w)
{ node z = G.target(e);
if ( mark[z] == number_of_augmentations ) continue;
if ( find_aug_path_by_dfs(G,e,free,mark))
{ G.rev_edge(£);
return true;
}
}

return false;

The third method has an interesting side effect (which wendidintend). Suppose that
we searched for an augmenting path framnd did not succeed. Then all nodes reached by
this search are marked (and stay marked) and hence the $eamnctine next free node iA
will not explore them. In this way the worst case time betwsetcessive augmentations is
O(m).

Table 7.3 compares the running times of the implementafiéid and FF in columns
FFB- and FF- on random bipartite graphs; the other columiid@iexplained in the next
section. Observe that FF is much faster than FFB. We conthadehe principle of

paying only for what we actually touched
and not
for what we could have conceivably touched

is worth being observed.

The Greedy Heuristic: We come to our second improvement. In our consideratiortseat t
beginning of the section we started the matching algorittith the line

M = some matching;

So far, we have chosen the empty matching as out initial nradchVe will now do some-
thing more clever and use the so-calp@edy heuristido find an initial matching. The
greedy heuristic considers all edges in turn and adds antedlye current matching if both
of its endpoints are free.

(MCB: greedy heuristi=

forall_edges(e,G)
{ node v = G.source(e);
node w = G.target(e);
if ( freel[v] && freel[w] )
{ freel[v] = freelw] = false;
G.rev_edge(e);
}
}
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n m FFB- FFB+ FF- FF+ Check
1000 2000 117 0.32 0.04 0.03 0
1000 4000 1.26 0.3 0.11 0.08 0.01
1000 8000 1.2 018 0.08 01 0.01
2000 4000 4.57 1.22 0.09 0.07 0
2000 8000 5.04 1.2 027 0.25 0.01
2000 16000 4.67 057 021 0.25 0.01

4000 8000 18.32 451 0.29 0.18 0.009998

4000 16000 20.57 482 097 0.1 0.02

4000 32000 18.47 209 064 07 0.04

8000 16000 72.05 181 0.67 046  0.04001

8000 32000 82 19.82 279 147 0.04999

8000 64000 74.05 7.63 1.78 154  0.07999

Table 7.3 The running times of four versions of the basic bipartitechatg algorithm. FFB and
FF refer to the two programs above, a minus sign indicatésithheuristic was used to find an
initial matching and a plus sign indicates that the greedyiktic was used. The last column
shows the time required to check the results. The programes muae on random bipartite graphs
with n nodes on each side andedges (generated gndombigraph(G, n, n, m, A, B)). FFB
and FF use depth-first search to find augmenting paths. Youerdgrm your own experiments
by calling FEmatchingtime in the demo directory.

The greedy heuristic is frequently highly effective. We got this statement by analysis
and also by experimental evidence.

For the analysis we consider random graphs whéfe= |B| = n and each node i
hasd incident edges for some integir The edges go to random destinations, e.g., for each
edge the endpoint iB is chosen uniformly at random from the node<®8in

Let us consider the case= 1 first. We consider the nodes fone by one. When the
nodev is considered and its incident edgeeis= (v, w) we adde to the matching ifw is
free and we discardif w is already matched. This shows that every nodB wwhich has
degree at least one will be matched by the greedy heuristie probability that a node
w in B has degree zero id — 1/n)" ~ e! ~ 0.37 since the probability that the edge
starting in any particular node iA does not end i is (n — 1)/n = 1 — 1/n and hence
the probability that none of the edges starting in a node i ends inw is (1 — 1/n)".
Thus about1 — e )n = 0.63n nodes will be matched by the greedy heuristic in the case
d = 1. Of course, even more nodes will be matched on averagerfyerld. We give a
plausibility argument of what to expect; the remainder a$ tharagraph is not rigorous.
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Considerd = 2. Aboute™n nodes inA will not be matched by only considering the first
edge incident to any node. For these nodes the second imeidge will be considered and
hence a total number of abau#-n/e edges will be considered. The probability that a node
in B stays unmatched reduces(fio— 1/n)""e ~ e~(1+1/ ~ 0,25,

We turn to experiments. Table 7.4 shows the effect and thieofdke greedy heuristic.
We used the program below. The effect of the heuristic is edipted by our analysis, i.e,
for m = n about 63% of the nodes are matched by the heuristic ana fer2n about 75%
of the nodes are matched by the heuristic. The running tintlesofieuristic is insignificant.
Even for the graphs witin = 10n the running time of the heuristic is less than 10 times
the time required to initialize the node arrge and the time to check that all edges are
directed fromA to B.

(mcb: effect of heuristje=

double MCB_EFFECT_O0F_HEURISTIC(graph& G,
const list<node>& A, const list<node>& B)
{ node v; edge e;
node_array<bool> free(G,true);

forall(v,B) assert(G.outdeg(v) == 0);
if (use_heuristic == 0) return O;
(MCB: greedy heuristic

int n = 0;

forall(v,A) if (!'freel[v]) n++;

return double(n)/A.size();

Table 7.3 shows the running time of four variants of our bafjorithm. The table indi-
cates that both refinements have a tremendous impact omgutimie at least for random
graphs. The greedy heuristic finds a large initial matchimgd) lsence saves many searches
for augmenting paths and the refined implementation of thefseached nodes keeps the
cost of searching for augmenting paths low. Observe thatieing time of both versions
of FFB is quadratic im. FFB+ (that is, FFB with greedy heuristic) has a smaller con-
stant in then? term in the running time since the expensive search for angneepaths is
only started from those nodes i that are left free by the greedy heuristic. Also FFB+
runs faster for denser graphs since the matching found bgréely heuristic is larger for
denser graphs. FF is always much better than FFB and thedicteeck the output of our
algorithms is negligible compared to the running times efalgorithms.

We summarize the findings of this section:

e The use of a heuristic to find a good initial solution can spgedraph algorithms
tremendouslyWe recommend exploring the use of a heuristic alwaye value of a
heuristic is usually the highest for the least sophistidaigorithm.

e If graph exploration, e.g., a depth-first or a breadth-fiestrsh or a shortest-path
computation, is used as a subroutine in a graph algoritherinitialization of the data
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n m No heuristic  Greedy heuristic

% time % time

10000 10000 0.02 0.632 0.07

10000 20000 0.03 0.764 0.08

10000 30000 0.02 0.823 0.1

10000 40000 0.02 0.858 0.11

10000 50000 0.03 0.881 0.11

10000 60000 0.03 0.9 0.12

10000 70000 0.02 0.912 0.13

10000 80000 0.03 0.927 0.14

10000 90000 0.02 0.931 0.14

ol OOl O] O] O] O]|]OC|O| O| O

10000 100000 0.03 0.937 0.14

Table 7.4 Percentage of nodes matched by the greedy heuristic andfdbst greedy heuristic.
The experiments were performed on random bigraphs mitbdes on each side andedges
(generated byandombigraph(G, n, n, m, A, B)). You can perform your own experiments by
calling mcheffect of_heuristic in the demo directory.

structures should be performed outside the subroutine thake parts of the data
structure which are actually touched inside the subrowireild be reinitialized.

Breadth-First versus Depth-First Search: In the previous section we used depth-first
search for finding augmenting paths. In this section we wilestigate the use of breadth-
first search. We will see that breadth-first search is moextife than depth-first search in
finding augmenting paths.

Before we give the code we briefly argue that this should bedlse. Assume thatis a
free node inA, that the shortest augmenting path starting tonsists ok edges, and that
the outdegree of all nodes iis bounded byl. When breadth-first search fraaris used in
a search for an augmenting path then only nodes in distamsestik + 1 froma are visited
in the search. The number of such nodes is bounded'ty’/2. Observe that we have
fan-out only at the nodes iA since nodes irB have at most outgoing edge. Actually, the
stronger bound (d — 1)k+t1/2-1 holds since each of the nodesAreachable frona must
have one matching edge incident to it and hence there aredonlyt outgoing edges left.
For example fod = 3 andk = 9 the number of nodes visited is bounded by23 = 48.

How will depth-first search do? Well, it might explore a lafgaction of the graph in the
worst case. Even, if there is an augmenting path of lengthibngght explore the entire
graph.
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We turn to the implementation of breadth-first search. &dte any free node irA.
We start a breadth-first search froem We maintain a queu® that contains all nodes
in A reached by the search from which we have not yet explored tihgoimg edges.
Initially, Q contains onlya. A node (in A or B) has been reached by the search iff
marl{v] == numberof augmentationand for a reached nodg pred v] contains the edge
through whichv was reached. When the procedure finds an augmenting pathniteais
the path and returns true, otherwise it returns false.

The procedure starts by puttimgnto the queue and markirag As long as the queue is
not empty, the first node is removed fragh Call the nodey; v is a node inA. We explore
all edges out ob. Lete = (v, w) be any such edge. b has been reached before, we do
nothing. Otherwise we s@redw] to e and markw. If w is free, we augment by the path
fromato w and returrtrue. The path can be found by tracing edges as giveprby If w
is not free, letf = (w, X) be the matching edge incident#q note thatf is the only edge
out ofw. We setpred x] to f, markx, and appenda to Q.

(FF: bfs)=
#include <LEDA/queue.h>

static bool find_aug_path_by_bfs(graph& G, node a,
node_array<bool>& free, node_array<edge>& pred,
node_array<int>& mark)

{ queue<node> (;

Q.append(a); mark[a] = number_of_augmentations;
edge e;

while ( !Q.empty() )
{ node v = Q.pop(); // v is a node in A

forall_adj_edges(e,v)
{ node w = G.target(e); // w is a node in B

if (mark[w] == number_of_augmentations) continue;
// w has not been reached before in this search
pred[w] = e; mark[w] = number_of_augmentations;
if (freelw])
{ // augment path from a to w

free[w] = free[a] = false;

while (w != a)

{ e = pred[w];

w = G.source(e);
G.rev_edge(e);

}

return true;
}
// w is not free
edge f = G.first_adj_edge(w);
node x = G.target(f);
pred[x] = f; mark[x] = number_of_augmentations;
Q.append (%) ;
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}

return false;

}

The matching algorithm is as we already know it. We use eitineadth-first or depth-
first search for finding augmenting paths. The choice is madihd variableusebfs. In
both methods we declare all nodes unreached (by increasimdperof_augmentations
whenever an augmenting path has been found.

(-FF_matching=
(FF: dfs)
(FF: bfs)

list<edge> MAX_CARD_BIPARTITE_MATCHING_FF (graph& G,
const list<node>& A, const list<node>& B,
node_array<bool>& NC,
bool use_heuristic, bool use_bfs)
{ node v; edge e;
node_array<bool> free(G,true);
node_array<int> mark(G,-1);
node_array<edge> pred(G) ;
number_of_augmentations = 0;

// check that all edges are directed from A to B
forall(v,B) assert(G.outdeg(v) == 0);

if (use_heuristic) (MCB: greedy heuristic

forall(v,A)
{ if ( 'free[v] ) continue;
if (use_bfs)
{ if (find_aug_path_by_bfs(G,v,free,pred,mark) )
number_of _augmentations++ ;
}
else
{ edge f£;
forall_adj_edges(f,v)
{ if (find_aug_path_by_dfs(G,f,free,mark))
{ free[v] = false;
number_of_augmentations++ ;
break;
}
}
}
}

(MCB: prepare result and node cover and restore orientations
}

Table 7.5 shows the running time of the procedure above aorarbipartite graphs. The
table shows that breadth-first search is almost always gugerdepth-first search (as we
already argued above). It also shows that breadth-firstkaamot helped at all by the
greedy heuristic. We explain this observation. The grealyriktic considers augmenting
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n m k dfs- dfs+ bfs- bfs+
10000 15000 1 0.26 0.26 0.28 0.27
10000 15000 10 0.25 0.24 0.26 0.25

10000 15000 100 024 023 024 0.25

10000 15000 1000 024 023 024 025

10000 15000 10000 023 023 025 0.24

10000 25000 1 846 356 289 2091

10000 25000 10 544 311 234 233

10000 25000 100 534 311 254 253

10000 25000 1000 204 219 192 192

10000 25000 10000 031 029 029 0.28

10000 35000 1 538 228 251 252

10000 35000 10 7.62 255 275 276

10000 35000 100 22.78 224 237 237

10000 35000 1000 17.91 221 2.09 2.09

10000 35000 10000 215 112 092 0.93

Table 7.5 Depth-first versus breadth-first search. The table showsutivéng time of

MAX _CARD_BIPARTITE_.MATCHING_FF. Either no heuristic (indicated by a minus sign) or
the greedy heuristic (indicated by a plus sign) is used todimahitial matching. To complete the
matching, a search for an augmenting path is started froim feae node inA that was not
matched by the heuristic. Either breadth-first or depth-$iearch is used to find an augmenting
path. The programs were run on random bipartite group grajthsx nodes on each side and
edges (generated bgndombigraph(G, n, n, m, A, B, k)). The nodes on either side are divided
into k groups and the nodes in theh group are connected to nodes in groupsl andi + 1 on
the other side. The generator is described in detail in &2ati6.7. You may perform your own
experiments by calling mcHfs_vs_bfs in the demo directory.

paths of length one. It finds an augmenting path of length gn@specting all the edges
incident to a node. Breadth-first search does exactly the samen an augmenting path of
length one exists.

7.6.5 The Algorithm of Hopcroft and Karp

In this and the next section we give algorithms whose worst canning time i€ (,/nm).
The first such algorithm is due to Hopcroft and Karp [HK73].eytsuggested organiz-

ing the execution into phases, restricting augmentatishtotest augmenting paths, and

augmenting a maximal number of node disjoint augmentingit each phase. Observe
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that Lemma 15 guarantees the existence of many short aug@aths when the current
matching is still far from optimality.

The overall structure of the program is the same as for ourique algorithms. The
differences are that we maintain some additional data tstreig, in particular a list of the
free nodes inA, and that the search for augmenting paths is organizedetiftly.

(_.HK_matching=

(HK: bfs)
(HK: dfs)

list<edge> MAX_CARD_BIPARTITE_MATCHING_HK(graph& G,
const list<node>& A, const list<node>& B,
node_array<bool>& NC, bool use_heuristic)
{ node v;
edge e;
node_array<bool> free(G,true);

//check that all edges are directed from A to B
forall(v,B) assert(G.outdeg(v) == 0);

if (use_heuristic) { (MCB: greedy heuristic >

node_list free_in_A;
forall(v,A) if (free[v]) free_in_A.append(v);

(HK: data structures

while ( (there is an augmenting path)
{ (find a maximal set and augmént

(MCB: prepare result and node cover and restore orientatijons

We now give the details of how the Hopcroft and Karp algoritbgarches for augmenting
paths.

The length (= number of edges) of the shortest augmentirggaat be found by breadth-
first search. The search starts from all free nodeé.inWe give a variant of breadth-
first search which does a bit more. It constructs a so-cédigered network In a layered
network the nodes of a graph are partitioned ilatgers according to their distance with
respect to the starting layer, i.e., a nadéelongs to layek if there is a path from the
starting layer tov consisting ofk edges and there is no path with fewer edges. For any
edge in a layered network the distance of the target node risoat one more than the
distance of the source node. Only edges that connect ditféagers can be contained
in shortest augmenting paths and hence we mark thesfulin the program below; the
mark is an integephasenumberin which we count the number of phases exectietihe
construction of the layered network starts by putting atefnodes inA into the zeroth
layer, then proceeds by standard breadth-first search tapsl @s soon as the first layer is
completed that contains free node®BinWe achieve the latter goal by stopping to put nodes
into the queue as soon as the first free nodB mas been removed from the queue.

21 Observe that we are reusing the marking technique intratlincsection 7.6.4. Incrementinghasecounterwill
unmark all edges.
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The program returnue if there is an augmenting path and retufalseotherwise.

(HK: data structures=

edge_array<int> useful(G,0);
node_array<int> dist (G);
node_array<int> reached(G,0);
phase_number = 1;

and

(HK: bfs)=

#include <LEDA/b_queue.h>
#include <LEDA/node_list.h>

static int phase_number;

static bool bfs(graph& G, const node_list& free_in_A,
const node_array<bool>& free, edge_array<int>& useful,
node_array<int>& dist, node_array<int>& reached)

list<node> (;
node v,w;
edge e;
forall(v,free_in_A)
{ Q.append(v);
dist[v] = 0; reached[v]
}
bool augmenting_path_found
while (!Q.empty())
{ v =0Q.popQ);
int dv = dist[v];
forall_adj_edges(e,v)
{ w = target(e);
if (reached[w] != phase_number )
{ dist[w] = dv + 1; reached[w] = phase_number;
if (freel[w]) augmenting path_found = true;
if ('augmenting_path_found) Q.append(w);
}
if (dist[w] == dv + 1) useful[e] = phase_number;
}
}

return augmenting_path_found;

phase_number;

false;

}

With this procedure we can refine the test for the existen@naiugmenting path in the
main loop.

(there is an augmenting pats

bfs(G,free_in_A,free,useful,dist,reached)

The layered graph contains all augmenting paths of shoeagth. We determine a
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maximal setP of augmenting paths. Distinct paths i will be node disjoint andP
is maximal in the sense that no augmenting path can be add@without violating
the disjointness property. We findl by a variant of depth-first search. The procedure
findaugpath(G, f, freg pred, usefu) attempts to find a path in the layered network starting
with the edgef, ending in a free vertex iB, and being node-disjoint from all previously
constructed paths. In the main loop we will call this proaedior all edges out of free
nodes inA. The call returns the last edge on the path if it succeeds etadnsnil other-
wise. It also records, for each node, the first edge througbhwthe node was reached in a
nodearray<edge pred

The details ofindaugpath(G, f,...) are simple. Letw be the endpoint of . We set
predw] to f and then distinguish cases.ufis a free node (it is necessarily Bithen), we
return f. If w is not a free node, we scan through all edges (w, z) out of w. If e does
not belong to the layered network or we have already triedtstruct a path out of, we
ignoree. Otherwise, we recurse. The recursive call either retaihsr a proper edge. In
the latter case we know that a new augmenting path has beed & forward the edge to
the enclosing call.

(HK: dfs)=
static edge find_aug_path(graph& G, edge f, const node_array<bool>& free,
node_array<edge>& pred, const edge_array<int>& useful)
{ node w = G.target(£f);

pred[w] = £f;
if (freel[w]) return f;
edge e;

forall_adj_edges(e,w)

{ node z = G.target(e);
if ( pred[z] !'= nil || useful[e] !'= phase_number ) continue;
edge g = find_aug_path(G,e,free,pred,useful);
if ( g ) return g;

}

return nil;

In the main loop we calfindaugpathfor all edges out of free nodes i that belong
to the layered network and where the target node of the edg@adiabeen reached by a
previous search and collect the (terminal edges of the)sgatimd in a listEL. We then
augment all paths. Letbe an arbitrary edge iBL. We trace the path ending @by means
of thepred-array and for each path reverse all edges on the path. Weletmtipe phase by
incrementingophasenumber

(find a maximal set and augmeést

node_array<edge> pred(G,nil);
list<edge> EL;

forall(v,free_in_A)
{ forall_adj_edges(e,v)
if (pred[G.target(e)] == nil && useful[e] == phase_number)
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{ edge f = find_aug_path(G,e,free,pred,useful);
if ( £ ) { EL.append(f); break; }
}
}
while (!EL.empty())
{ edge e = EL.pop();
free[G.target(e)] = false;
node z;
while (e)
{ G.rev_edge(e);
z = G.target(e);
e = pred[z];
}
free[z] = false;
free_in_A.del(z);
}

// prepare for next phase
phase_number++;

We close our discussion of the Hopcroft—Karp matching atlyor with a word on run-
ning time. Each phase of the algorithm takes tidwgn) for the breadth-first and depth-first
search and the augmentation and hence the total runninggi@éDm) whereD is the
number of phases. It can be shown (see for example [HK73] MQA3, section 8.2]
or [Meh84, 1V.9.2]) that the number of phases@g,/n). On many graphs the number
of phases is much smaller. In particular, Motwani [Mot94% lshiown that the number of
phases i€ (logn) for random graphs.

7.6.6 The Algorithm of Alt, Blum, Mehlhorn, and Paul

We discuss a variant of the Hopcroft—Karp algorithm due tp Blum, Mehlhorn, and Paul
[ABMP91]. It uses ideas first propagated for flow algorithm©B9, GT88] to integrate
the breadth-first and depth-first search used in the Hopéfafp algorithm. The resulting
algorithm is usually faster.

As above, we direct all edges in the current matching fl®ro A and all other edges
from A to B. In this directed graph every path is an alternating path.e&ch node € V
we maintain a distance labklyerfv]. Nodes inB will occupy even layers, and all free
nodes inB will be in layer zero. Nodes i will occupy odd layers, and all free nodes in
A will be in two adjacent layerg andL + 2, for someL. Observe that this layering is
“opposite” to the layering used in the Hopcroft and Karp aitpon. Now free nodes iB
are in the bottom layer (= layer zero) and free nodeA iare in the two topmost layers (=
layersL andL + 2). Initially, we put all nodes iB into layer zero, all nodes iA into layer
one, direct all edges from to B, and sel. to one.

(ABMP: initialization)=

node_array<bool> free(G,true);
node_array<int> layer(G);

if (use_heuristic) {(MCB: greedy heuristig
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list<node> free_in_A;

forall(v,B) layer[v] = 0;
forall(v,A)
{ layer[v] = 1;

if (freel[v]) free_in_A.append(v);

}
int L = 1;

In freeinLA we collect all free nodes i. We maintain the invariant that the free nodes in
level L precede the free nodes in leuel 2. In this wayL is always the layer of the first
node infreein A.

We maintain the “layered graph invariant” that no edge reaatownwards by two or
more layers, i.e.,

for all edgese = (v, w): layeffv] < layeqw] + 1.

It follows thatlayerf{v] is a lower bound on the length of an alternating path stgitin and
ending in a free node iB. Call an edgee = (v, w) eligible, if layefv] = layefw] + 1,
and letce(v) be a function which returns an eligible edge starting,iif there is one, and
nil otherwise. We caltethe current edge function. Its implementation will be dissed at
the end of the section.

We search for augmenting paths as follows: starting fromea frodev in layer L we
construct a patip of eligible edges. Letv be the last node of. There are three cases to
distinguish:

Case 1 (breakthrough): w is a free node in layer zero:
Then p is an augmenting path with respect to the current matching. awgment the
current matching by reversing all edgesmpénd terminate the search.

Case2 (advance): w is not a free node in layer zero and/w) exists:
We extendp by addingce(w).

Case 3 (retreat): w is not a free node in layer zero andw) = nil:
We increaséayerf w] by two and remove the last edge from If there is no last edge in
p, i.e., w is equal to the free node from which we started the search for an augment-
ing path, we terminate the search and adtb the end offreeinA. Observe that this
maintains the invariant that the nodes on lalkeprecede the nodes on layer+ 2 in
freein A

The following program chunk realizes this strategy. Theesdgf the path are stored in a
stackp of edges andv is the last node of the path. In the case of a breakthreugd w

are declared matched and all edgepaire reversed. In the case of an advance we push the
current edge ofv onto p and setw to the target node of the edge. In the case of a retreat we
increase the layer ab by two and pop the last edge fromand setw to the source node of
the edge popped. If there is no edge to be popped we termhesearch and add to the

rear end ofreein A.
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(search for an augmenting path frorjey
node w = v;
while (true)
{ if ( freel[w] && layer([w] == 0 )
{ // breakthrough
free[w] = free[v] = false;
while ( !'p.empty() )
{ e =p.pop0;
(breakthrough: current edge functipn
G.rev_edge(e);
}

break;
}
else
{ if ( (e = ce(w,G,layer,cur_edge)) )
{ // advance
p-push(e);
w = G.target(e);
}
else
{ // retreat
layer[w] += 2;
(relabel: current edge functign
if (p.empty())
{ free_in_A.append(w);
break;

}
w = G.source(p.pop());

After a breakthrough or a retreat, which leaves us with antgmpath, we start the next
search for an augmenting path. If there are no more free rind@gerL, we increasé. by
two and repeat. In the program below this increase @ implicit; L is simply the layer
of the first node irfreein A. In this way we proceed untll exceedd. maxwhereLmaxis
a parameter of the algorithm or until the number of free naglasnaller tharfL wheres
is a parameter (which we set rather arbitrarily to 50 in oyslementation). The parameter
Lmaxcan either be set by the user or is settgn wherey is a parameter (which we
set rather arbitrarily to .Q in our implementation). Onck exceedd.maxor the number
of free nodes inA has fallen belowsL we determine the remaining augmenting paths by
breadth-first search as in the Ford and Fulkerson algorithm.

(-AABMP-matching=
static int number_of_augmentations;
(FF: bfs) // for the basic algorithm

edge ce(const node v, const graph& G,
const node_array<int>& layer, node_array<edge>& cur_edge)
{ (implementation of current edge functjoi
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list<edge> MAX_CARD_BIPARTITE_MATCHING_ABMP (graph& G,
const list<node>& A, const list<node>& B,
node_array<bool>& NC,
bool use_heuristic, int Lmax)

{ node v; edge e;

//check that all edges are directed from A to B
forall(v,B) assert(G.outdeg(v) == 0);

(ABMP: initialization)

node_array<edge> cur_edge(G,nil); // current edge iterator
if (Lmax == -1) Lmax = (int) (0.1*sqrt(G.number_of_nodes()));
b_stack<edge> p(G.number_of_nodes());

while ( L <= Lmax && free_in_A.size() > 50 * L)
{ node v = free_in_A.pop();
L = layer[v];

(search for an augmenting path from v
}

(complete by basic algorithm
(MCB: prepare result and node cover and restore orientations

where

(complete by basic algorithy=

node_array<int> mark(G,-1);

node_array<edge> pred(G);

number_of_augmentations = 0;

forall(v,free_in_A)

{ if ( find_aug_path_by_bfs(G,v,free,pred,mark) )
number_of _augmentations++;

}
We establish correctness.

Lemma17 At all times during the execution of the algorithm, the faliog invariants hold:

(11) For all edges(v, w): layer[w] > layeqv] — 1.

(12) layerv] is even iffv € B.

(I3) Let p=[ey,€1,...,8_1] withg = (vi, vi;1). Then p is a path in the current graph
with layefvi] = L —iforalli, 0 <i < I, anduvgis a free node in A.

(14) Allfree nodes € A areinlayers L or L+ 2.

(I5) The set M of edges that are directed from B to A forms a matdhi@y furthermore
fredv] is true iffv is free with respectto M.

Proof We use induction on the number of executions of the loop. whriants hold
initially. For the induction step we address the invariantsirn.
Only relabeling a node or reversing the direction of an edgg imvalidate (11). When
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a nodev is relabeled there are no eligible edges out @nd hencdayefw] > layefv]
for all (v, w) € E. Since nodes irA live on odd layers and nodes Bilive on even layers
we even havéayeqjw] > layefv] for all (v, w) € E. Hence increasinfpayeqv] by two
preserves (I11) for all edges, w) € E. For edgesw, v) € E the invariant also stays true.
Reversing the edges of the patlin the case of a breakthrough maintains (11) as well, since
all edges inp are eligible. Altogether, we have shown that (11) is maimea.

Since layer labels are always increased by two, (12) remaires

The pathp always starts at a free node Ain layer L and is only extended by eligible
edges.

When a node is relabeled, it must be on the gatfihus no free node in laydr + 2 can
be relabeled by (13). Wheh is increased by two, there is no free nadim layerL. Thus,
(14) is preserved.

In the case of a breakthrough,is an alternating path from a free nodec A to a free
nodev € B by (I3) and the induction hypothesis, i.e., an augmentirt path respect to
the current matching. Thus (15) is preserved in the case oféakithrough. O

The correctness of our algorithm is now established. Nexthasv that it is a derivative of
the Hopcroft—Karp algorithm.

Lemma 18 The algorithm always increases the matching along a shoatggmenting path.

Proof Any augmenting patip found has length.. (14) and (I5) imply that all free nodes
in Aare inlayerd or L + 2, and those oB are in layer zero. Now the claim follows from
(12). O

Lemma 19 Let M* be a matching of maximum cardinality in G and M the matching-co
puted by our algorithm whercomplete by basic algorithyris reached. ThenM*| —
IM| < max(yLmax n/Lmax. Furthermore,{complete by basic algorithntakes time
O(max(yLmax n/Lmax - m).

Proof When(complete by basic algorithnis reached then eithdér > Lmaxand there is
no augmenting path with respect to the current matcMngf length less thabmaxor the
number of free nodes iA is smaller thary L which in turn is smaller thagLmax In the
latter case we have established the claimed bounidvbn — |[M|. In the former case we
observe thaM* @ M must containM*| — | M| node-disjoint augmenting paths with respect
to M. The total length of these paths is at mosind each path has length at lebstax
Thus(|M*| — [M]) - Lmax< n.

In (complete by basic algorithnwe need timeO(m) for each node imA which is still
free. By the previous paragraph there are at most(piamax n/Lmax such nodes when
the chunk is reached. O

The previous lemma suggests our choicéwfax In order to balance the contribution
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of the two choices we should setaxto ® (,/n). Unfortunately, the theoretical analysis is
not strong enough to suggest the “correct” factor of prapodlity.

Lemma 20 The total number of increases of layer labels and the totaumhber of calls to
the eligible edge function ce is@- Lmay.

Proof (14) implies that the maximum layer of a node during an exieoubf the algorithm
is Lmax+ 2. Thus any node is relabeled at mdstnax+ 2)/2 times.

Each time the functionereturns an eligible edge, w), we extend the current pathby
this edge. Either it still belongs to the path whetecomes augmenting for the next time,
or layefw] is increased by two whefv, w) is deleted fromp. Thus the number of calls
to the functionceis bounded by the total number of increases of layer labels fble total
length of all augmenting paths. Since the length of an augmgpath is at mostmax
because of (14), and since there are at nmosf them, the bound follows from the bound
for the number of relabels. O

Lemma 20 implies that the total time spent outsidemplete by basic algorithyris
O(n - Lmax plus the time spent in calls to the current edge function. & show how
to implement the current edge function efficiently. We maiimtfor each node an edge
curedgév] out of v such that all edges precedingredgév] in v’s adjacency list are not
eligible; whencuredgduv] is nil all edges inv's adjacency list may be eligible. Recall that
an edgdv, w) is eligible if the layer ofw is one less than the layer ofind that no edge goes
down more than one layer. Thus relabelingannot maké&v, w) eligible and reversing an
edge in an augmentation cannot make the edge eligible (be@diledges in the augmenting
path go from lower layers to higher layers after the augntemta Only relabelingy can
make an edge out af eligible. With these observations it is easy to maintainitivariant
that all edges precedirmiredgdv] in v's adjacency list are not eligible:

Whenw is relabeled we setur.edggw] to nil.

When we search for a current edge we start searching at trentwalue ofcur edgégv]
(at the first edge out af if the current value igil) until an eligible edge is found.

When an edge = (v, w) is reversed andis the current value afuredgg¢v] we advance
curedgégv] to the successor edge of

(relabel: current edge functigee

cur_edge[w] = nil;

(implementation of current edge functjen

edge e = cur_edge(v];

if (e == nil ) e = G.first_adj_edge(v);

while (e && layer[G.target(e)] != layer[v] - 1) e = G.adj_succ(e);
cur_edgel[v] = e;

return e;
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(breakthrough: current edge functipe

if (e == cur_edge[G.source(e)])
cur_edge[G.source(e)] = G.adj_succ(e);

In this way the time spent in calts(v) between relabelings af is O(number of callst
outdedv)). Since each node is relabeled at mastaxtimes and since the total number of
calls toceis O(n - Lmax we conclude that the total time spent in calls to the currdgee
function isO(m - Lmay.

We summarize in:

Theorem 3 A maximum cardinality matching in a bipartite graph with ndes and m edges
can be computed in time @Q/nm).

Proof This follows from the discussion above and the chdioeax= ® (,/n). O

7.6.7 An Experimental Comparison

We compare the algorithniaF, HK, andABMP experimentally on bipartite graphs of the
form shown in Figure 7.22. We call these grajfiiiygartite group graphs They were sug-
gested by [CGM97].

The following program generates bipartite group graphbk métnodes inA andnbnodes
in B. We divide both sides intk + 1 groups numbered O ta Foralli,0<i <k —1, the
i-th group on sideX contains nodes- Kxto (i + 1) - Kx — 1 whereKx = |nx/k]. The final
group contains nodds- Kxto n — 1; it is empty ifk dividesnx

We generate the edges in two phases. In the first phase weatgthes | m/naj edges
for each node in groups 0 to— 1 of A. For a node in thé-group the destination of these
edges are random nodes in groiips 1 modk andi + 1 modk of B. In the second phase
we addm — d - k - Karandom edges.

(randombigraph.¢=
void random_bigraph(graph& G, int na, int nb, int m,
list<node>& A, list<node>& B, int k)
{ G.clear();
if (na<0 || nb<O0||lm<O0)
error_handler(1,"random_bigraph: one of na, nb, or m < 0");

node* AV = new nodel[nal;

node* BV = new node[nb];

A.clear();

B.clear();

int a, b;

for(a = 0; a < na; a++) A.append(AV[a] G.new_node());

for(b = 0; b < nb; b++) B.append(BV[b] G.new_node());
if (na==0 || nb==0 || m==0) return;

if ( k < 1) error_handler(1,"random_bigraph: k < 1");
int d = m/na;

if (k > na) k = na; if (k > nb) k = nb;
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] i+1

A B

Figure7.22 A bipartite graph witm nodes on each side. On each side the nodes are divided into

k groups of sizen/k each (this assumes thatlividesn). Each node imA has degred = m/n
and the edges out of a hode in graupf A go to random nodes in groups+ 1 andi — 1 of B.

int Ka = na/k; // group size in A
int Kb = nb/k; // group size in B
node v;

int i;

a=0;

forall(v,A)

{ int 1 = a/Ka; // group of v
if ( 1 == k) break;
int basel = (1 == 0 ? (k-1)*Kb : (1-1)*Kb);
int base2 = (1 == k-1 ? 0 : (1+1)*Kb);
for(i = 0; i < d; i++)
{b=(rand_int(0,1) == 07 basel : base2 );
G.new_edge(v,BV[b + rand_int(0,Kb-1)]);
}
at+;
}
int r = m - ax*d;
while (r--) G.new_edge(AV[rand_int(O,na-1)], BV[rand_int(0,nb-1)]);

delete[] AV;
delete[] BV;
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n m k FF- FF+ HK- HK+ AB- AB+ Check

4 8 1 499 438 563 524 3.46 3.4 0.28
4 8 100 345 247 383 354 245 245 0.24
4 8 10000 111 1.04 376 351 216 216 0.22
4 12 1 155.7 50.02 8.37 7.95 4.91 4.95 0.36
4 12 100 69.07 44.09 5.94 5.78 3.19 3.1 0.26
4 12 10000 1.36 128 779 721 234 233 0.2599
4 16 1 4275 21.34 9.71 9.16 4.95 5.33 0.43
4 16 100 48.75 4159 699 6,57 3.02 3.37 0.29
4 16 10000 1.56 1.43 125 12.15 2.17 2.2 0.27
8 16 1 1198 1134 11.79 11.16 8.96 8.95 0.63
8 16 100 815 6.76 879 833 6.28 6.13 0.45
8 16 10000 233 215 7.83 729 542 544 0.46
8 24 1 6116 1886 19.49 1856 12.28 12.35 0.77
8 24 100 349.8 2214 13.14 12.69 8.33 8.36 0.54
8 24 10000 538 467 1547 1453 625 6.29 0.51
8 32 1 1533 60.37 20.89 19.6 1526 15.34 0.9099
8 32 100 2471 2082 139 1322 973 9.76 0.6001
8 32 10000 1358 1246 26.38 2596 6.75 6.71 0.5601

Table 7.6 The running times of the bipartite matching algorithRis, HK, andABMPon

random bipartite group graphs with- 10* nodes on each sidm - 10* edges anét groups
(generated byandombigraph(G, n, n, m, A, B, k)). The plus sign indicates the use of the
greedy heuristic and the minus sign indicates that the #ifigorstarted with the empty matching.
The last column shows the time required to check the redtitaises breadth-first search. You
may perform your own experiments by calling metatchingtime in the demo directory.

Table 7.6 shows the outcome of our experimeB. does very badly for some of the
parameters and very well for others. It is always helped leyhéuristic and frequently
helped considerably. It shows the highest fluctuations ofing time.HK andABMP are
more stable and\BMP is the fastest for most settings of the parameté#& is always
helped by the heuristic. F&dBMPthe effect of the heuristic is very small. If it is noticeable
at all, it is negative. We have therefore chosen ABMP withHbaristic turned off as our
default implementation. The time required for checkingrimult is negligible in all cases.
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Exercises for 7.6

1  We described three methods to implement the principle bf paying for what is ac-
tually touched but gave the details of only two of them. Exelthe third alternative.
Rewrite MAX_BIPARTITE_.CARD_MATCHING _FFB such that it uses @odeslist in-
stead ofreachedandreachedstack

2 In our implementations of matching algorithms we exglcieverse the direction of
matching edges bryevedge Explore the possibility of making the reversal only implic
itly. Use anodearray<edge matchingedgesuch thatatchingedgégv] is nil if v is free
and is the matching edge incidentt@therwise.

3 Rewrite the ABMP-implementation such that it uses dep#idiearch instead of breadth-
first search incomplete by basic algorithmCompare the running times.

4 Develop a strategy for choosing the paramkteaxin the ABMP-algorithm (the authors
have no good solution to this exercise).

5  Construct graphs where our maximum cardinality bipantiggching algorithms assume
their worst case running time. Please inform the authorsiamur solution (as they can
only partially solve this exercise).

7.7 Maximum Cardinality Matchingsin General Graphs

A matching Min a graphG is a subset of the edges no two of which share an endpoint, see
Figure 7.23. The cardinalityM | of a matchingM is the number of edges M.

A nodev is calledmatchedwith respect to a matchini if there is an edge itM incident
to v and it is calledree or unmatchedtherwise. An edge is called matching it € M.
A matching is callegerfectif all nodes ofG are matched and is calledaximunif it has
maximum cardinality among all matchings.

The structure of this section is as follows. In Section 7weldiscuss the functionality
of our matching algorithms, in Section 7.7.2 we derive thealbed blossom shrinking
algorithm for maximum matchings, and in Section 7.7.3 wegim implementation of it.

7.7.1 Functionality
The function

list<edge> MAX_CARD MATCHING(const graph& G, int heur = 0)

returns a maximum matching i6. The underlying algorithm is the so-called blossom
shrinking algorithm of Edmonds [Edm65b, Edm65a]. The woeste running time of the
algorithm isO(nma(m, n)) ([Gab76]), the actual running time is usually much better T
ble 7.7 contains some experimental data.

With heur= 1, the greedy heuristic is used to construct an initial matetwhich is then
extended to a maximum matching by the blossom shrinkingitlhgo. As Table 7.7 shows,
the influence of the greedy heuristic on the running time ialbnit sometimes helps, it
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Figure 7.23 A maximum matching and a proof of optimality: The edges ofrtiaching are
shown in bold. The node labels prove the optimality of theamiay. Observe that every edge is
either incident to a node labeled 1 or connects two nodestkdabeled 2 or connects two
nodes that are labeled 3. There are two nodes labeled 1 rtbdes labeled 2, and three nodes
labeled 3. Thus no matching can have more than|3/2] + |3/2] = 4 edges. The matching
shown has four edges and is hence optimal. You may genenaitarsigures with the
xlman-demo gwmc_matching.

sometimes harms, and it never causes a dramatic change.o$thef checking optimality
is negligible in all cases.

In the remainder of this section we discuss the check of agtiyn A labelingl of the
nodes ofG with non-negative integers is said ¢over G(or to be a cover fo6) if every
edge ofG (which is not a self-loop) is either incident to a node ladeleor connects two
nodes labeled with the samgfor some > 2. Thecapacityof | is defined as

capl) = ny+ Y [ni/2],
i>2
wheren; is the number of nodes labeledObserve that there may be nodes that are labeled
zero. The capacity of a coveriffgs an upper bound on the cardinality of any matching.

Lemma21Ifl covers G and M is any matching thén | < cap().

Proof Sincel covers every edge @ and hence every edge M, each edge iM is either
incident to a node labeled one or connects two nodes labddsomei > 2. There can
be at mosh; edges of the former kind and at mast /2] edges of the second kind for any
i,i > 2. Thus|M| < cap(). O

22 |n hipartite graphs only the labels zero and one are needein@des labeled one form a node cover in the sense
of Section 7.6.1.
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n m MCM MCM+ Check

10000 10000 0.287 0.223 0.024

20000 20000 0.905 0.717 0.074

40000 40000 2.178 1.758 0.184

80000 80000 4.857 3.934 0.413

10000 15000 1.049 1.03 0.027

20000 30000 3.799 3.862 0.102

40000 60000 11.45 11.9 0.262

80000 120000 30.51 33.57 0.583

10000 20000 1.247 1.304 0.04199

20000 40000 4.876 5.357 0.136

40000 80000 14.2 15.3 0.343

80000 160000 38.42 43.81 0.789

10000 25000 1.322 1.347 0.05099

20000 50000 4.761 4,782 0.169

40000 100000 13.95 14.22 0.422

80000 200000 35.2 37.3 0.959

Table 7.7 Running times of the general matching algorithm: The tabtens the running time

of the maximum cardinality matching algorithm without (MGQM&ind with the greedy heuristic
(MCM+) and the time to check the result for random graphs wittodes anan edges

(generated byandomgraph(G, n, m)). In all cases the time for checking the result is negligible
compared to the time for computing the maximum matching.alcheof the four blocks we used
n=2 .10%fori =0, 1, 2, 3 and a fixed relationship betwaeandm (m/n =1, 3/2, 2, 52).
The time to compute the maximum matching seems approxiyngteétiple if n andm are
doubled. Each entry is the average of ten runs. Except onettyesparse instancesi(~ n) it

does not pay to use the greedy heuristic.

We will see in the next section that there is always a covesingse capacity is equal to
the size of the maximum matching. The function

list<edge> MAX_CARD MATCHING(const graph& G, node_array<int>& 0SC,
int heur = 0)

returns a maximum matching and a labelingdSC(OSCstands for odd set cover, a name
to be explained in the next section) with:

e OSCcoversG and
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e |M|=cap0SQ.

Thus OSCproves the optimality oM. Figure 7.23 shows an example. The additional
running time for computing the proof of optimality is neghtg.
The function

void CHECK MAX_CARD MATCHING (const graph& G, const list<edge>& M,
const node_array<int>& 0SC)

checks whethe©SCis a node labeling that coves and whose capacity is equal to the
cardinality of M. The function aborts if this is not the case. It runs in lingae.

The implementation of the checker is trivial. We determioedachi the numbenmn; of
nodes with labell and then comput& =n; + >, _,[ni/2]. We assert thabis equal to the
size of the matching. -

We also check whether all edges are covered by the nodengbelivery edge must
either be incident to a node labeled one or connect two nedetdd for somei > 2.

(MCM: checkef=
static bool False(string s)
{ cerr << "CHECK_MAX_CARD_MATCHING: " << s << "\n";
return false;
}
bool CHECK_MAX_CARD_MATCHING(const graph& G, const list<edge>& M,
const node_array<int>& 0SC)
{ int n = Max(2,G.number_of_nodes());

int K = 1;
array<int> count(n);
int 1i;

for (i = 0; i < n; i++) count[i] = O;
node v; edge e;
forall_nodes(v,G)
{ if (0sC[v]l <0 || 0SC[v] >=n )
return False('"negative label or label larger than n - 1");
count [0SC[v]]++;
if (0SC[v] > K) K = 0SC[v];
}

int S = count[1];
for (i = 2; 1 <= K; i++) S += count[il/2;
if ( S !'= M.length() )
return False("0SC does not prove optimality");

forall_edges(e,G)
{ node v = G.source(e); node w = G.target(e);
if (v==w || 0SC[v] ==1 || 0SC[w] == 1 ||
( 0SC[v] == 0SC[w] && 0SC[v] >= 2) ) continue;
return False("0SC is not a cover");
}

return true;
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7.7.2 The Blossom Shrinking Algorithm

We derive theblossom shrinkinglgorithm of Edmonds [Edm65b, Edm65a] for maximum
cardinality matching in non-bipartite graphs. In its onigi form the running time of the
algorithm isO(n%). Gabow [Gab76] and Lawler [Law76] improved the running titoe
0O(n®) and Gabow [Gab76] showed how to use the partition data siriof Section 5.5 to
obtain a running time o®(nma(m, n)). Tarjan [Tar83] gave a very readable presentation of
Edmond’s algorithm and Gabow’s improvement. Our presantand our implementation

is based on [Law76] and [Tar83].

The algorithm follows the general paradigm for matchingalhms: repeated augmen-
tation by augmenting paths until a maximum matching is olgdi We assume familiarity
with the paradigm, which can, for example, be obtained bylireaSection 7.6.2. The
natural way to search for an augmenting path starting in & nad to grow a so-called
alternating treerooted atv.

The root of an alternating tree is a free node, the nodes otevdts are reached by odd
length alternating paths (and hence their incoming tree éxg non-matching edge) and the
nodes on even levels are reached by even length alternatihg and hence their incoming
tree edge is a matching edge). The root is even. All leaves @tarnating tree are even
and odd nodes have exactly one child (hamely their matejr€&ig.24 shows an alternating
tree. A node on an even level is called@rennode and a node on an odd level is called
anoddnode. In the implementation an even node is labeled EVENddmode is labeled
ODD, and every node belonging to no alternating tree cattietabel UNLABELED. This
suggests calling a nodigbeledif it belongs to some alternating tree and callingritabeled
otherwise.

We start the algorithm by making every free node the root aofvéat alternating tree
(consisting only of the free node itself) and by labelind@e nodes even. We will maintain
the following invariants:

e For each free node there is an alternating tree rooted atebanbde.

e All nodes belonging to one of the alternating trees are EbENVEN or ODD. Nodes
on even levels are labeled EVEN and nodes on odd levels aekethDD.

¢ All nodes belonging to no alternating tree are unlabeleafeled UNLABELED).

e Allunlabeled nodes are matched and if a node is unlabeledithenate is also
unlabeled.

An alternating tree is extended by exploring an efigar } incident to an even node It
is a matter of implementation strategy which alternatieg fis extended and which edge is
chosen to extend it. There are four cases to be distinguish@day be unlabeledy may
be odd.w may be even and in a different tree, anagnay be even and in the same tree. The
first three cases occur also in the bipartite case.

Case 1, w isunlabeled: We makew the child ofv and the mate ofv the child ofw,
see Figure 7.25. In this way; becomes an odd node, its mate becomes an even node, and
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v

E O E 0] E

Figure7.24 An alternating tree: It is rooted at a free node, nodes on edeld (= odd nodes)
are reached by odd length alternating paths, and nodes arlexeds (= even nodes) are reached
by even length alternating paths.

E 0] E @) E

Figure7.25 Growing an alternating tree: Exploration of the edgew) turnsw and its mate
into labeled nodesy becomes an odd node, and its mate becomes an even node.

both nodes become labeled. Observe that the growth actiortaires the invariant that a
matched node and its mate are either both labeled or botheielh

Case 2, w isan odd node: We have discovered another odd length alternating paih to
and do nothing.

Case 3, w isan even node in a different tree: We have discovered an augmenting path
consisting of the edggv, w} and the tree paths fromandw to their respective roots, see
Figure 7.26. We augment the matching by the augmenting pattualabel all nodes in
both trees. This makes all nodes in both trees matched (réwtithe root of an alternating
tree is the only node in the tree that is unmatched) and destrath trees. Observe that the
remaining alternating trees, i.e., the ones whose rootstélréree, are not affected by the
augmentation. They are still augmenting trees with resjoettte increased matching.

The three cases above also occur for bipartite graphs. Ththfand last case is new.

Case 4, w is an even node in the same tree as v: We have discovered a so-called
blossomsee Figure 7.27. Ldi be the lowest common ancestorwéndw, i.e.,v andw
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Figure 7.26 Discovery of an augmenting path:andw are even nodes in distinct trees. The
edge{v, w} and the tree paths fromandw to their respective roots form an augmenting path.

Figure 7.27 Discovery of a blossomy andw are even nodes in the same tree. The riode
their lowest common ancestor. The blossom consists of thefed w} and the tree paths froim
to v andw, respectively. Thaetemof the blossom consists of the tree pattbtdarhe nodéb is the
base of the blossom. The blossom consists of seven edges afwhich are matching. The
even length alternating path tofollows the tree path to, uses the edgfy, w} and then
proceeds down the tree to

are both descendants bfand there is no proper descendanbafith the same property.
Since only even nodes can have more than one chilid,an even node. The blossom
consists of the edgy, w} and the tree paths froimto v andw, respectively. Thatemof
the blossom consists of the tree patibtandb is called thebaseof the blossom. The stem
is an even length alternating path ending in a matching edigee stem has length zero
thenb is free. The blossom is an odd length cycle of length+21 containingk matching
edges for somk, k > 1. All nodes in the blossom (except for the base) are reaetmbhn
even and odd length alternating path from the root of the ffee an even node the even
length path is simply the tree path toand for an odd noda, say lying on the tree path
frombto w, the even length path is the tree path timllowed by the edgév, w}, followed
by the path down the tree from to u. For the odd length paths, the situation is reversed.

The action to take is tghrink the blossomTo shrink a blossom means to collapse all
nodes of the blossom into the base of the blossom. This resrailvedges from the graph
which connect two nodes in the blossom and replaces any{&dgée whereu belongs to
the blossom and does not belong to the blossom by the eflgez}, see Figure 7.28. The
nodeb is free after the shrinking iff it was free before the shrimki

Lemma 22 Let G be obtained from G by shrinking a blossom with base b.’IE@tains
an augmenting path then so does G.
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Figure 7.28 Shrinking a blossom: All nodes of the blossom are collapatathe base of the
blossom. After the shrinkindy stands for all the nodes enclosed by the dashed line.

Proof Supposes’ contains an augmenting pagh If p avoidsb then p is an augmenting
path inG and we are done. So let us assume thhés onp. We breakp atb into two
piecesp; and p, and assume w.l.0.g thgk uses a non-matching edgencident tob (in
G’). The pathp; is either empty (ifb is free) or uses the matching edge incidenbto
The edgee = {b, z} in G’ is induced by an edggu, z} in G whereu is some node of the
blossom. An augmenting path (& is obtained by first using, then using the even length
alternating path fronb to u in the blossom, and then using (with its first edge replaced
by {u, z}). O

We can now summarize the blossom shrinking algorithm. Weygidternating trees from
the free nodes. Whenever a blossom is encountered it islshwihenever an augmenting
path is discovered (this will in general happen after sdwamankings occurred), Lemma 22
is used to lift the augmenting path to the original graph. ifeching is augmented by the
augmenting path, the two trees involved are destroyedpdigin both trees are unlabeled,
and the search for augmenting paths continues. The algoté@hminates when no alternat-
ing tree can be extended anymore. At this point the matclsimgaiximum. Of course, this
requires proof.

In order to show correctness we need the concept ofldrset coverlt refines the notion
of a covering introduced in Section 7.7.1.

For a subseN of an odd number of vertices @& we define the set of edges covered by
N and the capacity ol as follows. If|N| = 1 thenN covers all edges incident to the node
in N and the capacity o is equal to one. IfN| = 2k 4+ 1 for somek > 1 thenN covers
all edges which have both endpointshNinand the capacity dN is k.

An odd-set cover OSCof G is a family { Ny, ..., N, } of odd cardinality subsets of
such that each edge Gfis covered by at least one of the set©8C The capacitg(0SQ
of OSCis the sum of the capacities of the setO8C

Lemma23Let OSC be an odd-set cover in a graph G. Then the cardindlayg matching
in G is at most ¢0SO.

Proof Let M be any matching and letbe any edge itM. Thene must be covered by some

23 An odd-set cover gives rise to an integer labeling of the sedefollows: nodes that are contained in no set of the
cover are labeled zero, nodes that are contained in a singtet are labeled one, and nodes that are contained in
an odd set of cardinality larger than one are labélgxt somei > 1. Distincti’s are used for distinct sets.



120 Graph Algorithms

set inOSC Moreover, the number of edgeshih covered by any particular set@dSCis at
most the capacity of the set. O

We are now ready for the correctness proof of the blossomlghg algorithm. We will
show that if the blossom shrinking algorithm does not find @graenting path with respect
to a matchingM then there is an odd-set cover whose capacity is equal tazbe@tM,
thus proving the optimality oM.

Let G© = G be our graph and le¥ be a matching irG. Suppose that the blossom
shrinking algorithm does not discover an augmenting patte Blossom shrinking algo-
rithm constructs a sequen@&®, G, G@, ..., G™ of graphs where forall, 0 < i < h,
G¥ is obtained fronG~Y by shrinking a blossom. Each nodef everyG") stands for a
set of nodes 06. In G every node represents itself, and a nodie G either stands for
the same set as iIB'~? or, if v is equal to the base node of the shrunken blossom, stands
for all nodes represented by the node&df? collapsed into it.

Lemma 24 For every i and every nodeof G1:
e v stands for an odd set of nodes in G,

e if vis odd or unlabeled then stands for the singleton set consistingafself,

e if v stands foraset B &k + 1 nodes in G for some k 1 then the number of edges in
M connecting nodes in B is equal to k.

Proof The claim is certainly true for equal to zero. When a blossom is shrunk an odd
number of nodes is collapsed into a single node. By indudtigrothesis each collapsed
node represents an odd number of nodeG oThe sum of an odd number of odd numbers
is odd.

The result of a shrinking operation is an even node. Thus oddumlabeled nodes
represent only themselves.

Consider a shrinking operation that collapses21l nodes into one. Out of these nodes,
r + 1 were even before the shrinking (namely the basad every even node on the two
tree paths belonging to the blossom) andlere odd. Every odd node represents a single
node ofG and every even node stands for an odd set of nodé&s @uppose that thieth
odd node represents a $&tof 2k; + 1 nodes inG.

After the shrinking operation stands for the odd nodes and the union of tigg's. Thus
B consists of

r+ Y @i+h=20+ Y k)+1
l<i<r+1 l<i<r+1

nodes and hende=r + ) ,_;_, ., ki. The number of edges i running between nodes
of Bj isk;, and the number of edges bf belonging to the blossom is We conclude that
k edges ofM connect nodes iB. O

Consider now the grapB™. In G™ we have an alternating tree rooted at each free node
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and the tree growing process has come to a halt. Thus thenetda@ an edge connecting
two even nodes (because this would imply the existence loée#n augmenting path or a
blossom) and there cannot be an edge connecting an evenmadeunlabeled node (as
this would allow us to grow one of the alternating trees). §buery edge either connects
two nodes contained in the same blossom, or is incident taddmode, or connects two
unlabeled nodes. Every unlabeled node is matched to anelathhode (since a matched
node and its mate are either both unlabeled or both matchetihence the number of
unlabeled nodes is even. We construct an odd-set €08€whose capacity is equal id.
OSCconsists of:

e all odd nodes (interpreted as singleton sets),

o for each even node that stands for a set of cardinality at {eeee: the set represented
by the node,

e no further set if there is no unlabeled node, a singleton@egisting of an arbitrary
unlabeled node if there are exactly two unlabeled nodesaaingleton set consisting
of an arbitrary unlabeled node and a set consisting of thairérmg unlabeled nodes if
there are more than two unlabeled nodes.

Lemma 25 The capacity of the odd-set cover OSC is equal to the carithrai M.

Proof The number of edges ikl that still existinG™, i.e., have not been shrunken into a
blossom in the course of the algorithm, is equal to the nurabedd nodes plus half of the
number of unlabeled nodes. For each even nodeG™, representing a sd of 2r + 1
nodes ofG, the number of edges il connecting nodes iB is equal tar by Lemma 24.
This concludes the proof. O

Theorem 4 The blossom shrinking algorithm is correct.

Proof The algorithm terminates when it does not find an augmentath.pWhen this
happens, there is, by Lemma 25, an odd-set cover whose tajsaeijual to the size dfl.
ThusM is optimal. O

7.7.3 The Implementation
The goal of this section is to implement the blossom shriglélgorithm. Our implemen-
tation refines the implementation described in [Tar83] anslrilar to the implementation
given in [KP98]. The refinement does not change the worstreaseng time, butimproves
the best case running time fraf(n?) to O(m). The observed behavior on random graphs
with m = O(n) seems to be much better th@in?), see Table 7.7.

The overall structure of our implementation is given belémvthe main loop we iterate
over all nodes 06. Letwy, ..., v, be an arbitrary ordering of the nodes®f Whenv = v;
is considered, every free nodgwith j > i is the root of a trivial alternating tree, and the
collection of alternating trees rooted at free nodgsvith j < i is stable A collection7T
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of alternating trees is stable if every edge w} incident to an even nodein 7 connects
u to an odd nodev in 7. In other words, every eddel, w} connecting a node in 7 to a

node outsidg™ hasu odd, and every edge connecting two nodes containgdhias at least
one odd endpoint. It follows from our tree growing rules tthet trees iril” will not change
in the future.

Whenv = v; is considered and is already matched we do nothing. dfis still un-
matched we grow the alternating tr€awith root v until either an augmenting path is found
or the growth comes to an end. We usealelist Q to store all even nodes i which
have unexplored incident edges. We organ@@s a queue and hence grow the tree in
breadth-first manner.

The growth process comes to an end wigehecomes empty. We claim th@tu {T } is
stable wherQ becomes empty. Consider any edgew} with u an even node iff. Then
w is odd, since otherwise the growth ®fwould not have come to an end. Moreover,
belongs to atree iff U{T}, since trees outsidg U {T } are rooted at free nodes, j > i,
and consist only of a root and roots are even. Thugn be added to our stable collection
of alternating trees (this requires no action in the impletaton) and the next free node
can be considered.

When an augmenting path is found by exploring an edgev} with u an even node in
T andw an even node in a tree different from w must be a free node; with j > i.
Observe, thatv cannot belong td (sinceu andw are in distinct trees) and that cannot
belong to a tree ify” (sinceT is stable). Thusw must belong to a tree rooted at some
j > i, and hence must be equal to somej > i (since the trees rooted at these nodes are
trivial). When the matching is augmented by the augmentatf fromv to w, all nodes in
T U w become matched and unlabeled. In order to be able to unléipeldes inT U w in
time proportional to the size df we collect all nodes i in a list of nodes (which we call
T). We also set the variableeakthrougho true whenever an augmenting path is found in
order to guarantee that we proceed to the next node in thelown

(-mcmatching=
enum LABEL {0DD, EVEN, UNLABELED};
(MCM: helpers

list<edge> MAX_CARD_MATCHING(const graph& G,
node_array<int>& 0SC, int heur)

{

(MCM: data structures

(MCM: heuristic$

node v; edge e;

forall_nodes(v,G)

{ if ( matelv] !'= nil ) continue;
node_list Q; Q.append(v);
list<node> T; T.append(v);
bool breakthrough = false;

while (!breakthrough && !Q.empty()) // grow tree rooted at v
{
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node v = Q.pop();
(explore edges out of the even nogle v

}

list<edge> M;

(MCM: compute M

(general checking: compute O$C

return M;

The Main Data Structures: We next discuss the main data structures used in the pro-
gram. We use aodearray<node mateto keep track of the current matching and we use a
nodepartition baseto keep track of the blossoms.

(MCM: data structures=

node_array<node> mate(G,nil);
node_partition base(G); // now base(v) = v for all nodes v

If two nodesv andw are matched thematdv] = w andmatdw] = v and if a nodev is
free themrmatdv] = nil. At the beginning, all nodes are free.

The node partition (see Section 6seestablishes the relationship between the current
graphG’ and the original grapts; recall that the current graph is obtained from the original
graph by a sequence of shrinkings of blossoms, that a nodiéiggapartitions the nodes
of a graph into disjoint sets called blocks, and that for aenacbasedv) is the canonical
representative of the block containingThe relationship betweed andG’ is as follows:

e For any node of G: if basdv) = v thenv is a node ofG’ and ifbasgv) # v thenv
was collapsed intbas€v). Thus{basdv) ; v € V} is the set of nodes d¥'.

e Anedge{v, w} represents the edgbasdv), bas€w)} of G’.

Every node is labeled as either EVEN, ODD, or UNLABELED. A edd labeled UN-
LABELED if it does not belong to any alternating tree and ilabeled EVEN or ODD
otherwise. A node is labeled when it is added to an altergatee. It retains its label when
it is collapsed into another node. At the beginning all ncalesfree and hence the root of
an alternating tree. Thus all nodes are EVEN at the beginriiog an odd node we use
predv] to store its parent node in the alternating tree. The prégkvia set when a node is
added to an alternating tree; it is not changed when the modidlapsed into another node.

(MCM: data structures+=

node_array<int> label(G,EVEN);
node_array<node> pred(G,nil);

Figure 7.29 shows an example.
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Figure7.29 Snapshot of the data structure: The node labels are indibgtéhe labels “E” and
“O”. All nodes enclosed by the dashed line form a blossom adth a block of the partition
base The canonical element of this blocklis

Exploring an Edge: Having defined most of the data structures we can give théslefa
exploring edges. Assume thais an even node and let= {v, w} be an edge incident to
v. Recall thake stands for the edggbasdv), bas€w)} in the current graph.

We do nothing ifeis a self-loop or itbas€w) is ODD. If bas€w) is UNLABELED (this
is equivalent tav being unlabeled) we grow the alternating tree containiagd ifbasgw)
is EVEN we have either discovered an augmenting path or stfos

(explore edges out of the even noglev
forall_inout_edges(e,v)
{ node w = G.opposite(v,e);
if ( base(v) == base(w) || label[base(w)] == 0DD )
continue; // do nothing
if ( label[w] == UNLABELED )
{ (grow treg }
else // base(w) is EVEN
{ (augment or shrink blossgni

GrowingtheTree: Let us first give the details of growing a tree. We lalpseds odd, make
v the parent ofw, label the mate ofv as even, add the mate afto Q, and addw and the
mate ofwto T.

(grow tree=
label[w] = 0DD; T.append(w) ;
pred[w] = v;
label[mate[w]] = EVEN; T.append(mate[w]) ;

Q.append (mate[w]);

Discovery of a Blossom or an Augmenting Path: The nodebasdw) is even. We have ei-
ther found an augmenting path or a blossom. We have foundgmenting path ibasdv)
andbase&w) belong to distinct trees and we have discovered a blossdrayftielong to the
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same tree. We distinguish the two cases by tracing both &t fin lock-step fashion until
we either encounter a node that lies on both paths or reabirbots*.

We discover a node lying on both paths as follows. We keep ateostruewhich we
increment in every execution ghugment or shrink blossom Since there are at most
augmentations and at masshrinkings between two augmentations the maximal value of
the counter is bounded by. It would therefore be unsafe to use tyipéfor the counter,
but typedoubleis safe.

We use the counter as follows. As we trace the two tree pathsetgathhy] to strue
for all even nodesv on the first path angathghwj to struefor all even nodesiw on the
second path. The two paths meetgéithThw] or pathghv] is equal tostruefor some even
hw on the second path or some everon the first path. The first node for which this is true
is the base of the blossom. Recall that the base of a blossalwaygs even.

The cost of tracing the paths is proportional to the size ektlossom found, if a blossom
is discovered, and is proportional to the length of the auging path found otherwise.
Also observe that we define the arrgyethlandpath2outside the loop that searches for
augmenting paths. Thus the cost for their initializatioises only once.

(MCM: data structures+=

double strue = 0;
node_array<double> pathl(G,0);
node_array<double> path2(G,0);

(augment or shrink blossgm

node hv = base(v);
node hw = base(w);

strue++;
pathi[hv] = path2[hw] = strue;

while ((pathi[hw] != strue && path2[hv] != strue) &&
(mate[hv] != nil || mate[hw] != nil) )
{ if (matel[hv] != nil)
{ hv = base(pred[mate[hv]]);
pathi[hv] = strue;
}

if (mate[hw] != nil)
{ hw = base(pred[mate[hw]]);
path2[hw] = strue;
}
}

if (pathl[hw] == strue || path2[hv] == strue)
{ (shrink blossom }

else
{ (augment path }

24 An alternative strategy is as follows: we have found an auding path ifw is the root of a tree outsidE U {T}.

We could, for each node, keep a bit to record this fact. Treradtive simplifies the distinction between blossom
shrinking and augmentations. However, it does not simpiig/code overall, as all the information gathered in
the program chunkaugment or shrink blossgnis needed in later steps of the algorithm.
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Figure7.30 The bridge of a blossom: The edge w} closes a blossom with babe For the
odd nodes on the tree path frdmo v we setsourcebridgeto v andtargetbridgeto w and for
the odd nodes on the tree path fréno w we setsourcebridgeto w andtargetbridgeto v.

Shrinking a Blossom: Let us see how to shrink a blossom. The baséthe blossorfP is
eitherhvor hw. It is hwif hwalso lies on the first path and it otherwise. We shrink the
blossom by shrinking the two paths that form the blossom.

The call shrinkpath(b, v, w, ...) collapses the path from to b into b and the call
shrinkpath(b, w, v, ...) collapses the path frorw to b into b. Both calls also have the
other end of the edge that closes the blossom as an argument.

(shrink blossorne=
node b = (pathil[hw] == strue) ? hw : hv; // Base

shrink_path(b,v,w,base,mate,pred,source_bridge,target_bridge,Q);
shrink_path(b,w,v,base,mate,pred,source_bridge,target_bridge,Q);

Before we can give the details of the procedsineink pathwe need to introduce two more
node labels. When an ede, w} closes a blossom, all odd nodes in the blossom also get
an even length alternating path to the root of their alténgatee. This path goes through
the edge that closes the blossom. We call this edgdbtiakge of the blossom. The odd
nodes on the tree path fromto b use the bridge in the direction fromto w and the odd
nodes on the tree path from to b use the bridge in the direction from to v. We use

the node arraysourcebridgeandtargetbridgeto record for each odd node shrunken into a
blossom the source node and the target node of its bridge \(imved as a directed edge).

(MCM: data structures+=

node_array<node> source_bridge(G,nil);
node_array<node> target_bridge(G,nil);

The details of collapsing the tree path franto b into b are now simple. For each node
x on the path we performnionblockgx, b) to union the blocks containing andb, for
each odd node we ssburcebridgeto v andtargetbridgeto w, and we add all odd nodes
to Q (because the edges out of the odd nodes now emanate fromeaheneudeb), see
Figure 7.30.

25 With the alternative case distinction between blossomm&hng and augmentation we would have to compute
andhw at this point.
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There is one subtle point. After a union operation the cazarélement of the newly
formed block is unspecified (it may be any element of the tegublock). It is impor-
tant, however, thal stays the canonical element of the block containing it. Véedfore
explicitly makeb the canonical element byasemakerep(b).

(MCM: helpers=

static void shrink_path(node b, node v, node w,
node_partition& base, node_array<node>& mate,
node_array<node>& pred, node_array<node>& source_bridge,
node_array<node>& target_bridge, node_list& Q)
{ node x = base(v);
while (x != b)
{

base.union_blocks(x,b);
x = mate[x];

base.union_blocks(x,b);
base.make_rep(b);

Q.append(x);
source_bridge[x] = v; target_bridgelx] = w;

x = base(pred[x]);

Augmentation: We treat the discovery of an augmenting path. The nodesdw belong
to distinct alternating trees with rodts andhw, respectively. In facty is a root itself. The
augmenting path consists of the edge v} plus the even length alternating path freno
its roothv.

For a nodev let p(v) be the even length alternating path fremo its root (if it exists).
The pathp(v) can be defined inductively as follows:

If vis aroot thermp(v) is the trivial path consisting solely of

If vis EVEN, p(v) goes through the mate ofto the predecessor of the mate and then
follows p(pred matgv]]).

If vis ODD, p(v) consists of the alternating path franto sourcebridgg v] concatenated
with p(targetbridggv]).

Lemma 26 The above characterization of(y) is correct.

Proof The claim is certainly true whemnis a root. So assume otherwise and consider the
time whenp(v) is discovered in the course of the algorithm. For an even tioidds the
time whenv is labeled EVEN and for an odd node this is the case when itrhes@art of

a blossom. In either case the characterization is correct. O

How can we find the alternating path fromto sourcebridgdv] whenv is odd? The
problem is that thered-pointers are directed towards the roots of alternatingsteand hence
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Figure 7.31 Tracing augmenting paths: The node labels are indicateteblabels “E” and “O”.
The predecessor pointer of the odd nodes are shown. Whenidige be, f } was explored we
setsourcebridged] to e, targetbridggd] to f, sourcebridgdg] to f, andtargetbridge g] to e,
and when the bridgéc, d} was explored we saburcebridgd a] to c, targetbridgea] to d,
sourcebridgeb] to d, andtargetbridgeb] to c.

The even length alternating path frdimo its rootr consists of the reversal of the path from

d = sourcebridggb] to b followed by the even length alternating path frara- targetbridgeb]
tor. The former path consists of the reversal of the alterngiatf frome = sourcebridged]

to d followed by the alternating path frorh = targetbridge/d] to b.

there is no direct way to walk from to sourcebridgdv]. We walk fromsourcebridggv]
to v instead and then take the reversal of the resulting pathpa@tiefromsourcebridgg v]
to v is the prefix ofp(sourcebridggv]) ending inv, see Figure 7.31.

We cast this reasoning into a program by defining a procdihapath(P, X, vy, ...) that
takes two nodes andy, such thay lies onp(x) and such that the prefix @f(x) ending iny
has even length (the program would be slightly less elegahbut the second assumption),
and appends the prefix gix) ending iny to the listP. Find pathdistinguishes three cases:

If x is equal toy then the path consists of the single node

If x # y andx is EVEN the path consists of, matgx], followed by the path from
predmatgx]] to y.

If x # y andx is ODD, letP1andP2 be the paths frontargetbridgg x] to y and from
sourcebridgg x] to matgx], respectively. Then path consistsxfollowed by the reversal
of P2followed byPL

(MCM: helpers+=

static void find_path(list<node>& P, node x, node y,
node_array<int>& label, node_array<node>& pred,
node_array<node>& mate,
node_array<node>& source_bridge,
node_array<node>& target_bridge)

{if (x==y)

{
P.append(x);
return;
}
if ( label[x] == EVEN )
{
P.append(x);
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P.append(mate[x]) ;
find_path(P,pred[mate[x]],y,label,pred,mate,

source_bridge,target_bridge);
return;

}
else // x is 0ODD

{
P.append(x);

list<node> P2;

find_path(P2,source_bridge[x] ,mate[x],label,pred,mate,
source_bridge,target_bridge) ;

P2.reverse_items();

P.conc(P2);

find_path(P,target_bridge[x],y,label,pred,mate,
source_bridge,target_bridge);

return;

Givenfind path, it is trivial to construct the augmenting path. We condttbe path from
vtohvin P and appenav to the front of the path. We augment the current matching by th
path by walking along the path and changimgteaccordingly.

It remains to prepare for the next search for an augmentitig gdl nodes inT U {w}
are now matched. We unlabel all nodesTitu {w} and split the blocks dbasecontaining
nodes ofT . No action is required for the other alternating trees.

Finally, we setbreakthrougho true and break from the forall-inout-edges loop. Setting
breakthrougho true makes sure that we also leave the grow tree loop. The nerrastil
therefore be to grow an alternating tree from the next freteno

(augment patf=
list<node> P;
find_path(P,v,hv,label,pred,mate,source_bridge,target_bridge);
P.push(w) ;
while(! P.empty())
{ node a = P.pop(Q);
node b = P.pop(Q);
mate[a] b;
mate[b] a;
}
T.append (w) ;
forall(v,T) label[v] = UNLABELED;
base.split(T);
breakthrough = true;
break;

Computing the Node Labeling OSC We compute the node labelifgSCas described
in the paragraph preceding Lemma 25. We initial28Gv] to —1 for all nodesv. This
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will allow us to recognize nodes without a prog@6Clabel later. We then determine the
number of unlabeled nodes (= nodes lab&ldl ABELEDand select an arbitrary unlabeled
node. If there are unlabeled nodes, the selected unlabetilis labeled one and all other
unlabeled nodes are either labeled zero (if there are gxagcilunlabeled nodes) or two (if
there are more than two unlabeled nodes). We thel g¢etthe smallest unused label larger
than one.

Next we determine the number of sets of cardinality at |dastet and assign distinct
labels to their representatives. We do so by iterating olleraales. Every node with
basd€v) # v indicates a set of cardinality at least three. If its basdilisunlabeled, we
label it.

Finally, we label all other nodes. Nodes belonging to a setasflinality at least two
inherit the label of the base, and nodes that belong to setardfnality one (they satisfy
base(v) == v && 0SC[base(v)] == -1) are labeled one iff they are ODD and are la-
beled zero if they are EVEN.

(general checking: compute OSE
forall_nodes(v,G) 0SC[v] = -1;

int number_of_unlabeled = O;
node arb_u_node;

forall_nodes(v,G)
if ( label[v] == UNLABELED )
{ number_of_unlabeled++;
arb_u_node = v;

}

if ( number_of_unlabeled > 0 )
{ 0SC[arb_u_node] = 1;
int L = ( number_of_unlabeled == 2 ? 0 : 2 );
forall_nodes(v,G)
if ( label[v] == UNLABELED && v != arb_u_node ) 0SC[v] = L;
}

int K = ( number_of_unlabeled <= 2 ? 2 : 3);
forall_nodes(v,G)

if ( base(v) != v && 0SC[base(v)] == -1 ) 0SC[base(v)] = K++;
forall_nodes(v,G)
{ if ( base(v) == v && 0SC[v] == -1 )
{ if ( label[v] == EVEN ) 0SC[v] = 0;
if ( label[v] == ODD ) 0SC[v] = 1;

}
if ( base(v) !'= v ) 0SC[v] = 0SC[base(v)];
}

Computing the List of Matching Edges: The list M of matching edges is readily con-
structed. We iterate over all edges. Whenever an edge isietexed whose endpoints are
matched with each other, the edge is added to the matchingls&¢/éunmate” the endpoints
in order to avoid adding parallel edgesih
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(MCM: compute M=
forall_edges(e,G)
{ node v = source(e);
node w = target(e);
if (v '=w && matel[v] == w )
{ M.append(e) ;
mate[v] v;
mate [w] Ww;
+
}

Heuristics: If heur = 1, the greedy heuristic is used to compute an initial matghifve
iterate over all edges. If both endpoints of an edge are wiredt we match the endpoints
and declare both endpoints unlabeled. Recall that matcheesthat do not belong to an
alternating tree are UNLABELED.

(MCM: heuristic$=
switch (heur) {
case 0: break;

case 1: { edge e;
forall_edges(e,G)
{ node v = G.source(e); node w = G.target(e);

if ( v '= w && matel[v] == nil && mate[w] == nil)
{ mate[v] = w; label[v] = UNLABELED;
matel[w] = v; labell[w] = UNLABELED;
}
}
break;

}

Summary: We summarize and complete the running time analysis. Tharitigh com-
putes a maximum matching in phases. In each phase an ailbgrtvaeT from a free node
is grown to find an augmenting path. If the search for an augimgpath is successful, the
matching is increased and all nodes in the alternating teeardabeled, and if the search is
unsuccessful, the tree will stay around and will never b&édolaat again.

The running time of a phase ©((nt + mr)a(ny, mr)), wherent is the number of
nodes included intd’, my is the number of edges having at least one endpoiiit,iand
a(n, my) is the cost ofmr operations on a node partition ofnodes. This can be seen
as follows. In a phase zero or more blossoms are shrunkensé&dreh for a blossom (if
successful) has cost proportional to the size of the blosaahshrinking a blossom of size
2k + 1 removes R nodes from the graph. Therefore the total size of all blossshmunk
in a phase i9D(n7). In each phase each edge is explored at most twice (once friom e
endpoint). Each exploration of an edge and each removal afda mvolves a constant
number of operations on the node partitlmase We conclude that the total cost of a phase
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is O((nt + mp)a(n, my)) = O((n + m)a(n, m)) = O(ma(n, M)), sincent < n < mand
mr < m.

There are at mogt phases and hence the total running timeigme(n, m)) in the
worst case. One may hope that is significantly smaller than andmy is significantly
smaller thamm for many phases. The running times reported in Section 8holv that the
hope is justified in the case of random graphs. There are ngtaaresults concerning
the average case behavior of general matching algorithms.

In an earlier implementation of the blossom shrinking alfpon we did not collect the
nodes of the alternating tree grown into aEeRather, we iterated over all nodes at the be-
ginning of a phase and labeled all free nodes EVEN and allmeatoodes UNLABELED.
With this implementation the running time §(n?). The implementation discussed in this
section is significantly faster. It is superior for two reasoFirstly, the cost of a phase is
proportional to the size of the alternating tree grown inghase and hence may be sublin-
ear, and secondly, an alternating tree that does not leabtes&through is not destroyed,
but kept till the end of the execution.

Exercises for 7.7

1  Compare the running time of the general matching algordhiohthe bipartite matching
algorithm on bipartite graphs.

2 Exhibit a family of graphs where the running time of our nhéitg algorithm is®2 (nm).
Write a program to generate such graphs and provide it as Bn LE

7.8 Maximum Weight Bipartite Matching and the Assignment Problem

Throughout this sectio® = (AU B, E) denotes a bipartite graph and E — IR denotes
acost functioron the edges o6. We also sayveightinstead of cost. Anatching Mis a
subset ofE such that no two edges M share an endpoint. Thmost of a matching Ms

the sum of the cost of its edges, i.e.,

c(M) = > c).
eeM
A nodev is calledmatchedwith respect to a matching if there is an edge itM incident
to v and it is calledree or unmatchedtherwise. An edge is calledmatchingif e € M.
For a matched node the unique nodev connected ta by a matching edge is called the
mateof v. A matching is callegberfector anassignmenif all nodes ofG are matched.
A matching is called:

e amaximum weight matchingits cost is at least as large as the cost of any other
matching,

e amaximum weight assignmehit is a heaviest perfect matching,
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Figure 7.32 Maximum weight assignment and maximum weight matching. Ma&hing on the
left is a maximum weight perfect matching and the matchingherright is a maximum weight
matching; the edges in the matchings are shown in bold in¢edhs. A potential function that
proves the optimality of the matching is also given in boteesa The potential of each node and
the cost of each edge is shown. For every edge the cost of ¢feeitbounded by the sum of the
potentials of its endpoints. In an assignment every nodgcigént to exactly one edge of the
assignment and hence the total cost of the assignment islbdlny the total potential. In the
graph on the left the two quantities are equal and hence #igrasent is optimal. In the graph
on the right the potential function has the additional propthat all potentials are non-negative
and that all free nodes have potential zero. This implies (g8nma 27) that the cost of any
matching is bounded by the total potential. The two quastiéire equal in the graph on the right
and hence the matching is a maximum weight matching. Thenddesmo gwmwb_matching
allows the reader to experiment with weighted matchingsparite graphs.

e aminimum weight assignmeifiit is a lightest perfect matching,

e amaximum weight maximum cardinality matchifi is a heaviest matching among
the matchings of maximum cardinality.

Figure 7.32 shows a a maximum weight assignment and a maximeight matching.
Clearly, a maximum or minimum weight assignment exists il amly if G contains a
perfect matching.

In the next section we give the functionality of our algomith and derive checkers of
optimality. Sections 7.8.2 and 7.8.3 discuss an algoritormfaximum weight matchings
and its implementation. In Sections 7.8.4 and 7.8.6 we myaalif algorithms to compute
assignments and maximum weight matchings of maximum calitin Finally, in Sec-
tion 7.8.5 we show how to reduce the shortest path problehetassignment problem.

7.8.1 Functionality

All functions in this section are function templates thatrkvéor an arbitrary number type
NT. We use the convention that names of function templatesréptgalgorithms end with
_T. In order to use the templates one must inclytd&DA/templategmwhmatchingt>.
LEDA also contains pre-compiled instantiations for the bemtypesnt anddouble The
function names for the instantiated versions @&ithout the suffix T. In order to use the
instantiated versions one must includeEDA/graphalgh>. Section 7.1 discusses the re-
lationship between templates and instantiated versionmie detail.
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The function

list<edge> MAX WEIGHT BIPARTITE MATCHING T (graph& G,
const edge_array<NT>& c, node_array<NT>& pot)

returns a matching of maximal cost; the graplis required to be bipartite. The worst case
running time of the algorithm i®(n- (m+nlogn)), the average case running time is much
better. The function computes a proof of optimality in thenfcof the potential function
pot. We discuss potential functions later in the section.
If a bipartitionV = AU B is known and all edges are directed frawto B, the function
list<edge> MAX WEIGHT BIPARTITE MATCHING T(graph& G,

const list<node>& A, const list<node>& B,
const edge array<NT>& c, node_array<NT>& pot)

can be used. IA and B have different sizes then it is advisable thais the smaller set; in
general, this leads to smaller running time.
The functions
list<edge> MAX WEIGHT ASSIGNMENT T(graph& G,
const edge_array<NT>& c, node_array<NT>& pot);

list<edge> MIN WEIGHT_ASSIGNMENT.T (graph& G,
const edge_array<NT>& c, node_array<NT>& pot);

return a maximum and minimum weight assignment, respdgtiBnth functions require
that G is bipartite. IfG does not contain a perfect matching the empty set of edges is
returned.

All functions above are also available in the form whérandB are given as additional
arguments and also without the argumpot

The function

list<edge> MWMCB_MATCHING.T (graph& G,

const list<node>& A, const list<node>& B,
const edge_array<NT>& c, node_array<NT>& pot);

returns a maximum weight matching among the matchings ofimam cardinality. The
potential functiorpot proves the optimality of the matching, see Section 7.8.6.

Potential Functions. We have mentioned the concept gbatential functiorseveral times
already. Itis time to define it. A function : V — IR is called a potential function. For an
edgee = (v, w) we call

ce =n(v) +m(w) —ce

thereduced cosbf e with respect tar. An edge is calledight iff its reduced cost is zero
and the tight subgraph consists of all tight edges. For aetlibsf the nodes we use(U)

to denote) _, , w(v). The following four properties of potential functions willay a role:

(1) Non-negativity of reduced coste) > O foralle € E.
(2) Tightness of matched edg&se) = 0 fore e M.
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(3) Non-negativity of node potentials,(v) > Oforallv € V.
(4) Tightness of free nodes,(v) = 0 for all v that are free with respect td.

The importance of potential functions stems from the follaplemma.

Lemma 27 Let M be any matching, let be any potential function, and let F be the set of
nodes that are free with respectto M.

If all reduced costs are non-negative theivb < 7 (V) — z(F). If, in addition, M is an
assignment or all node potentials are non-negative thiévc< 7 (V).

If all reduced costs are non-negative and all matched edges heduced cost zero then
c(M) = 7 (V) — n(F). If, in addition, M is an assignment or all free nodes have ptitt
zero then ¢M) = 7 (V).

Proof If all reduced costs are non-negative thggs) < 7 (v) + 7 (w) for every edgee =
(v, w). Thus

c(M) = Z c(e)

ecM

< D W +rw)

e=(v,w)eM

= Y x@) = (V) —=n(F),
veV;v is matched

where the next to last equality follows from the fact thétis a matching and hence every
matched node contributes exactly once to the sum on the ddcmnand no free node
contributes, and the last equality follows from the fact the matched nodes are precisely
the nodes that are not free. This establishes the first clagnthe third claim we observe
that the inequality above becomes an equality if all maggleidges have reduced cost zero.

The second and fourth claim follow from the first and thirditlarespectively, and the
additional observation that(F) > 0 if node potentials are non-negative and thét) = 0
if M is an assignment or if the potential of all free nodes is zero. O

We call a potential functiorieasibleif it satisfies (1),non-negativdf it satisfies (3),
andtight if it satisfies (1), (2), and (4). A tight non-negative pofahfunction proves
the optimality of a maximum weight matching and a tight paitdrfunction proves the
optimality of a maximum weight assignment. Our algorithetsirn proofs of optimality in
the form of tight potential functions.

The optimality conditions (1) to (4) are the basis for chesla optimality. The function
CHECK.MWBM _T takes a cost functioq, a list of edgedvl, and a potential functiopot,
and checks thatl is a matching and that the properties (1) to (4) above arsfigati

(mwhmatching.t+=

bool False(const string s)
{ cerr << "CHECK_MWBM_T: " << s << "\n" << flush; return false;}

template <class NT>
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bool CHECK_MWBM_T(const graph& G, const edge_array<NT>& c,
const list<edge>& M, const node_array<NT>& pot)
{ node v; edge e;
// M is a matching
node_array<int> deg_in_M(G,0);
forall(e,M)
{ deg_in_M[G.source(e)]++;
deg_in_M[G.target (e)]++;
}
forall_nodes(v,G)
if ( deg_in_M[v] > 1) return False("M is not a matching");
// node potentials are non-negative
forall_nodes(v,G)
if ( pot[v] < 0) return False('"negative node potential");;
// edges have non-negative reduced cost
forall_edges(e,G)
{ node v = G.source(e); node w = G.target(e);
if ( cle]l > potlv]l + potl[wl)
return False("negative reduced cost");

}

// edges in M have reduced cost equal to zero
forall(e,M)
{ node v = G.source(e); node w = G.target(e);
if ( cle]l !'= pot[v] + pot[w] )
return False("non-tight matching edge");

}

// free nodes have potential equal to zero
forall_nodes(v,G)
if ( deg_in_M[v] == 0 && pot[v] != 0 )
return False("free node with non-zero potential);
return true;

The analogous functions

bool CHECK MIN_WEIGHT_ASSIGNMENT.T(G,c,M,pot);
bool CHECK MAX_WEIGHT_ASSIGNMENT.T(G,c,M,pot);

check minimum and maximum weight assignments, respegtivdle do not give their
implementations here. It is a good exercise to provide th@émentations.

Potential Functions and Linear Programming Duality: We relate Lemma 27 to linear
programming duality. Readers unfamiliar with linear progming may skip this material,
although there is no harm in reading it anyway.

The maximum matching problem can be formulated as an infeggram. We associate

a variablex(e) with every edgee, constrain it to the values 0 and 1, and consider the integer

program

max) _ c(e)x(e)

ecE



7.8 Maximum Weight Bipartite Matching and the Assignmerutifem 137

subject to

Ze;eis incident tov X(€©) = 1 forallv e V
x(e) € {0,1} foralleeE.

Let M be the set of edgeswith x(e) = 1. The first constraint states that for each node
v at most one of the incident edges belong$Api.e., it guarantees thadl is a matching.
The objective function states that we are looking for a matgbf maximal weight. It was
shown by Edmonds [Edm65b, Edm65a] that the integrality waimgsx(e) € {0, 1} may

be replaced by the linear constraint®) > 0 without changing the probleth Assume that
the integrality constraint(e) € {0, 1} has been replaced bye) > 0. We now consider the
dual linear program. The dual has one variable for each nodere constraint for each
edge. We use (v) for the variable corresponding to nodend obtain

minZn(v)

veV

subject to

ce) < a(w)+n(w) foralle=(v,w)eE
a(v) > O forallv e V.

Linear programming duality states that the objective valieny feasible solution of the
primal problem (= a matching) is no larger than the objectaieie of any feasible solution
of the dual problem (= a potential function satisfying (1Hd8)) and that the value of the
optimal solutions are equal. Complementary slacknessas\pi addition that the reduced
cost of an edge in the matching must be zero and that the ndeetj@b of a free node must
be zero. In fact, the proof of Lemma 27 is simply an adaptiothefstandard proofs of
weak linear programming duality and complementary slaskie matchings.

26 \We sketch a proof of this fact. We first observe that the nayatieity constraintsc(e) > 0 together with the
matching constrainty " ¢ is incident to, X(€) < 1 guarantee & x(e) < 1. It therefore suffices to prove that the
linear program has an optimal integral solution. The opitisotution to the linear program is given by a basic
feasible solution, i.e., by the solution to a systBm= 1 whereB is a square submatrix of the constraint matrix
and 1 is a vector of ones. Thus= B~11. It therefore suffices to prove thBt'1 is integral. By Cramer’s rule,
each entry oB~1 is the quotient of the determinant of a submatrix8oéind the determinant . It therefore
suffices to prove that the determinant®fs in {—1, 0, +1}. We prove more generally that the determinant of
any square submatrix of the constraint matrix has detemhina, O, or+1, i.e., that the constraint matrix is a
so-calledtotally unimodularmatrix. LetB be any square submatrix. We need to compute the determih&nt o
Each entry oB is either zero or one, each columnBfcorresponds to an edge Gf each row ofB corresponds
to a node ofG, and each column contains at most two ones, one for each iedfe long asB contains a row
or column with at most one one, we expand the determinangalaa row or column. Each such reduction step
reduces the dimension by one and yields a faetby 0, or+1. When no further reduction step applies, we have
either reduced the dimension to zero and are done or reaanettia B in which every row and column contains
at least two ones. We will show th&tis singular. Since a column contains at most two ones, weladadhat
every column contains exactly two ones. Sifgés square and since every row contains at least two ones we
conclude that every row contains exactly two ones. In otled in the graph defined [ every node has
degree two and thus the graph consists of a set of cycles. dyatthhas even length sin€is bipartite (this is
where we use the fact th@t is bipartite). Letvq, vo, ..., vox be any one of the cycles and consider the following
linear combination formed by the rows corresponding toghesdes. Rows corresponding to nodes with odd
index are multiplied by+-1 and rows corresponding to nodes with even index are mieltifly —1. This linear
combination yields the zero vector since, in each columresponding to an edge of the cycle, one contribution
is +1 and the other contribution is1; this argument relies on the fact that the cycle has evagthei\itogether
we have now shown that the determinanBois either—1, 0, or+1.
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Arithmetic Demand: Special care should be taken when using the template fursotigh

a number typdNT that can incur rounding error, e.g., the tyg@uble Section 7.2 contains
a general discussion of this issue. The template functiom®mly guaranteed to perform
correctly if all arithmetic performed is without roundinger. This is the case if all numer-
ical values in the input are integers (albeit stored as a mumwitypeNT) and if none of the
intermediate results exceeds the maximal integer repiasierby the number type 12— 1

in the case oflouble$. All intermediate results are sums and differences oftinpiues, in
particular, the algorithms do not use divisions and muttgiions.

The algorithms have the following arithmetic demands. Cdie the maximal absolute
value of any edge cost. If all weights are integral then &drimediate values are bounded by
3C in the case of maximum weight matchings and b{Z4n the case of the other matching
algorithms. We will prove these bounds when we discuss tharidhms. For the sequel let
f = 3in the case of the maximum weight matchings and let 4n in the other cases.

The pre-instantiations for number tyjpe: issue a warning i€ is larger tharMAXINT/ f.

The pre-instantiations for number tydeublecompute the optimal matching for a mod-
ified weight functioncl, where for every edge

clle] = sign(c[e]) LIcl€]l - SI/S
andSis the largest power of two such that
S<2%/(f.C).

The weight of the optimal matching for the modified weightdtian and the weight of the
optimal matching for the original weight function differ lay mostn - f - C . 2752,

The weight modification can also be performed explicitly aveladvise you to do so.
The functions

bool MWBM_SCALE WEIGHTS(const graph& G, edge_array<double>& c);
bool MWA_SCALE_WEIGHTS( const graph& G, edge_array<double>& c);

replacec[e] by c1[e] for every edgee, wherecl[e] was defined above anfl = 3 for the
first function andf = 4n for the second function. The first scaling function is ap piate
for the maximum weight matching algorithm and the secondtion is appropriate for all
other matching algorithms. The functions retfatseif the scaling changed some weight,
and returrtrue otherwise.

7.8.2 Maximum Weight Bipartite Matching: An Algorithm
We describe an algorithm for maximum weight bipartite matgh The algorithm works
iteratively. It starts with the empty matching and the graphnned byB and the empty
subset of A and then adds the nodes &one by one. After each addition of a node it
computes a new maximum weight matching and a new tight ngative potential function.
Letay, ..., a, be an enumeration of the elementsAnlet Ai = {a, ..., &}, letG; be
the subgraph spanned My = A U B, let M; be a maximum weight matching i@;, and
letn; : Vi = IR-o be a non-negative potential function that is tight with essgggo M;. Our
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algorithm will constructV; andr; fori = 0, 1, ...,n. We assume that all matching edges
are directed fronB to A and all non-matching edges are directed frArno B.

Mo andmg are trivial; Mg is the empty matching aney assigns zero to all nodes B.
Let us also construd¥l; andw;. Let e be the heaviest edge incidentdg If e does not
exist or has negative weight théy is empty andr; assigns zero to all nodes\A. If e has
non-negative weight thekll; consists ok andx; assigng(e) to a; and zero to all nodes in
B.

Assume now that we knowl;_, andx;_; for somei,i > 1. We show how to construct
M; andr;. An alternative interpretation of the construction will gigen at the end of the
section.

We start the construction dfl; and=; by extendingri_; to a feasible non-negative
potential functionT; for V;; this can be done by setting () to any value that makes the
reduced cost of all edges incidentdpnon-negative. LeM = M;_; andz = 7; and
observe thaM andrn satisfy the optimality conditions (1), (2), and (3), andttha= a; is
the only free node which violates (4). We now modifymaintaining (1), (2), and (3), and
(4) for all free nodes different frora) until there is an alternating path of tight edges from
a either to a node’ in A having potential zeroa( = @’ is possible) or to a free node B.
We setM; = M @ p andr; = &. This re-establishes all four optimality conditions.

The potential functionr is modified in phases. In each phase (except the last) we de-
creaser (V;) and we leaver (Vi) unchanged in the last phase.

We now describe a phase. In each phase we determine tRecdetodes that are reach-
able froma = g by tight edges and then distinguish three cases.

R containsa nodein A of potential zero: Letv be a node inrAN R with 7z (v) = 0 and
let p be a path of tight edges fromto v. We augmentM by p, see Figure 7.33, and
observe that is tight with respect tVl @ p. It is conceivable that = a andp is a path
of length zero.

R containsafreenodein B: Let w be a free node ilB N R and letp be a path of tight
edges froma to w. We augment by p, see Figure 7.34, and observe thats tight
with respect taMl & p.

Neither of theabove: We define a valué = min(a, 8). Leta be the minimal valuer (v)
for any nodev € RN A and letg be the minimal valu&(e) of any edgee leaving R.
Thena > 0 sinceR contains no node i with potential zero an@ > 0 since only
non-tight edges can leaw, see Figure 7.35. We decrease the potential of all nodes in
RN A by g, we increase the potential of all nodesRm B by §, and recomput®. We
continue in this fashion until one of the first two cases oscur

The correctness of the method follows from the following tea
Lemma 28 In the first two casesry is tight with respect to Mb p. In the third case, the

update ofr preserves feasibility and non-negativity. The total ptitérdecreases by.
Moreover, all edges in M stay tight and & the only free node whose potential can be
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Figure 7.33 The edges of a matchirlg are shown in bold. The potential of each node is shown
inside the node and the casand the reduced costof each edge is shown age) /T(e). The
pathai, bg, ap consists of tight edges and can be used for augmentation.eShiing matching
has the same cardinality as the current matching.
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a by

Figure 7.34 The edges of a matchirg are shown in bold. The potential of each node is shown
inside the node and the casand the reduced costof each edge is shown age) /T(e). The
pathay, bg, ag, by consists of tight edges and can be used for augmentatioreEhking

matching has cardinality one larger than the current magchi

positive after the potential update. After the update themither a node in R A whose
potential is zero (if = «) or R grows (if§ = B).

Proof In cases 1 and 2 we augment along a path of tight edges. Hepezlga inM @ p
is tight. Also, in case 1 we expose a nodeAiithat has potential zero. Thuasis tight with
respect taM & p.

We turn to the third case. We start with a feasible potentiatfion in which all edges in
M are tight and in which all free nodes exceptéhave potential zer@; may or may not
have potential zero. The sBtcontains one more node ithan inB since every node iR
excepta is matched and since for every matched edge either both erndpo no endpoint
is in R. Thus a potential update decreases the total potenti&l by

Let e be any edge. We show that the reduced cost sthlys non-negative. The reduced
cost ofe decreases only if one endpoint liesR1n A and the other endpoint lies iR\ R.
Thene is non-matching (since matching edges always have both endpoint inR) and
hence the reduced cost®before the potential update is at le@st

All edges inM stay tight since for any edge i either both endpoints belong ® or
neither endpoint does.

No free node inB can get a positive potential since there is no free nodR in B;
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RNA RN B

Figure7.35 Ris the set of nodes reachable framby tight edges. The se&n RandB N R
are indicated as large ovals. The number of nodesinR is one larger than the number of
nodes inB N R, since each node iIAN R\ g is matched to a node iB N R and vice versag is
the minimum reduced cost of any edge leavR¢any such edge has its source noddisince
all edges out oB are inM and hence tight) and is the minimum potential of any node in
AN R, ands = min(x, B). We reduce the potential of all nodesAn R by § and increase the
potential of all nodes ilB N R by §.

otherwise we would be in case 2. The potential of node& does not increase and hence
a can stay the only node with positive potential. O

At this point we have arrived at a first version of our algarith

M = the empty matching;

pot(b) = Oforallbin B;

forall ae A

{ set pot(a) to some value that makes the reduced cost of all edges iricidem
non-negative;
while (true)
{ determine the seR of nodes reachable fromby tight edges.

if R contains a node i\ with potential zero or a free node B
{ augment by a path of tight edges franto this node;

break;
}

computex, 8, ands and adjust the potentials;
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We leave it to the reader to implement the basic version oalferithm.

Let us take a closer look at the inner loop of this algorithingrbws a setR until R
contains either a free node B or a node inA with potential zero. LeRg be the seR in
thek-th iteration of the loop fok = 1, 2, ...,K + 1, letdk be the value oé determined in
thek-th iteration, letAy = §1 + ... + 8, and letA = Ak be the sum of al§’s. Then the
total change of potential of the nodesR\ R¢_1 IS8k + k1 +... = A—(S1+...+8k_1).

Also 6k = Bk < ak for k < K sinceé; = «; implies that case 1 occurs in the next
iteration and hence = K. Finally, 6k = ax implies thatRx,1 = Rk. We relate the
growth of R to a shortest-path computation with souage

Lemma?29 Letw be any node and let (w) be the shortest-path distancewffrom g with
respect to the reduced costs defineddhy Thenw is added to R after a total potential
change ofu(w).

Proof Let w be any node and consider a shortest gafrom & to w. Letes, e, ... be
the edges om that are not tight initially in the order in which they occur p. The source
node ofe; belongs toR;. The reduced cost @ is decreased b#; in the first phase, by,
in the second phase, and becomes zero at the end of someshate(l — 1)-th, i.e., the
original reduced cost of; was equal t&; + ... + §_1. In phasd the source node ab
belongs toR and the next potential updates reduce the cosp 66 zero. In this wayw is
added toR after a total potential change pf{w). O

Lemma30Letr = 7; and for any nodev let i (w) be the shortest-path distancewfrom
g with respect to the reduced costs definedtbyLet minA= min{u (@) + 7(@) ; a € A}
and let minB= min{uw(b) ;b € Bandbisfre¢. ThenA = min(minA minB) and the
total potential change for any nodeis equal tomax0, A — . (v)).

If A = minA, let z be the node that defines minA amtl £ minB, let z be the node that
defines minB (if minA= minB, define z by either half-sentence). In either case le¢ p b
path of lengthu (z) from g to z. Then all edges of p are tight after the change of potkntia

Proof Consider an arbitrary node e A. Itis added toR when the total potential change
is equal tou(a). Subsequent potential changes decredsg and hence the total potential
change cannot be more thaiga) + 7z (a) (since node potentials always stay non-negative).

Consider a free node € B. It is added toR when the total potential change is equal to
w(b). Thus the total potential change cannot be more thén).

We stop changing the potentials once a nodé\in R reaches potential zero or a free
node inB is added taR. Thus the total potential changeis equal to mitiminA minB).

A nodev participates in potential changes after it has been add®&l t6hus the total
change of potential of is equal to mag0, A — 1 (v)).

Let p be as defined in the statement of the lemma and let(v, w) be any edge op.
Thenu(v) + €(e) = u(w) sincep is a shortest path. Alsp(v), u(w) < A sincepis a
shortest path to the node that defireswWe show thae is tight after the potential change.
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If eis matching and henaee B andw € A andc(e) = 0, we haveu(v) = u(w). Thus
(v) is increased byA — u(v) andx(w) is decreased by the same amount. Tagsays
tight.

If eis non-matching and heneee A andw € B, we haveu(v) + t(e) = u(w). Thus
7 (w) is increased by — p(w) = A — u(v) — €(e) andx (v) is decreased by — 1 (v).
The reduced cost @ is therefore reduced Ig(e) and hence becomes tight. O

Lemmas 29 and 30 allow us to refine our basic algorithm.

M = the empty matching;
pot(b) = O forallbin B;

forall ae A
{ setpot(a) to some value that makes the reduced cost of all edges iricidem
non-negative;

for any nodev let dist(v) be the shortest-path distancevdfrom a and let

minA= min{dist(v) + pot(v) ; v € A};
bestnodein A = a node inA that definesninA

minB= min{dist(v) ; v € B and freg;
bestnodein B = a node inB that definesninB;

Delta = min(minA minB);

forall v € A: pot(v) = pot(v) — max(0, Delta— dist(v));
forall v € B: pot(v) = pot(v) + max0, Delta— dist(v));

augment by the alternating path of tight edges frarm bestnodein A, if Delta =
minA and froma to bestnodein_B, otherwise;

}

The description above suggests that it is necessary to derdisv] for all nodesv in
each execution of the inner loop. This is not true. It is ordgessary to compuieltaand
the node defining it and to compudéstv] for all nodesv with disfv] < Delta. Given this
information all potentials can be updated correctly ancatingmentation can be made.

How can we comput®elta without computingdisfv] for all nodesv? We exploit the
fact that Dijkstra’s algorithm computes dist-values inrgesing order. Letg, v1, ... with
vo = a be the order in which the nodes are reached by the shortdst@aputation. Then
disfvo] < disfvy] < ... We observe:

QI
min{disfvi] + pofvi]; i < kandv; € A} < dis{uvy]
then somey; withi < k andv; € A definesminA This follows from the fact that all
node potentials are non-negative.

(2) minBis the dist-value of the first free node Bithat is reached by the shortest-path
computation. If naj with j < kis a free node iB thendist{vx] < minB.
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(3) If
min{disfv;] + poffv;]; i < kandv; € A} < dis{v]

and nov; with j < kis a free node irB thenDelta = minA This follows from (1) and
).
4 If
min{disfv;] + poffv;]; i < kandv; € A} > dis{v]

andug is a free node irB thenDelta = minB. This follows from (1) and (2).
(5) Letk be minimal such that either (3) or (4) holds. THeelta < disfv;] forall j > k
and the potentials of all nodes with j > k are not changed.

We will use items (3) and (4) as the stopping criteria for thertest-path computation in
our implementation. Item (5) implies that only nodes that @ached by the shortest-path
computation can be affected by the potential change.

7.8.3 Maximum Weight Bipartite Matching: An Implementation
After all this preparatory work we are ready for the implemation.

We start by declaring the data structures required by tharitihgn, then use one of three
heuristics to initialize the potential function and the afang, then calaugmenga, . . .) for
each node inA that is left unmatched by the heuristic, and finally resttw ¢graph and
prepare the list of edges comprising the matching.

The data structures used by the algorithm are two booleagsato keep track of the free
nodes and the nodes fand the data structures needed for the shortest-path catignst
(arrayspredanddist, and a node priority queueQ).

We describe three heuristics. The simplest heuristicédalhive in the program below)
sets the potential of all nodes B equal to zero, the potential of all nodesAnequal to
the maximal cost of all edges, and sets the matching to theéyematching. The other
heuristics are described later in the section.

(mwhmatching.t+=
(mwh.matching: helpers
static int which_heuristic = 2;

template <class NT>
list<edge> MAX_WEIGHT_BIPARTITE_MATCHING_T(graph& G,
const list<node>& A, const list<node>& B,
const edge_array<NT>& c, node_array<NT>& pot)
{ node a,b,v; edge e;
list<edge> result;
forall_nodes(v,G) pot[v] = 0;

if (G.number_of_edges() == 0 ) return result;

// check that all edges are directed from A to B
forall(b,B) assert(G.outdeg(b) == 0);

node_array<bool> free(G,true);
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node_array<edge> pred(G,nil);
node_array<NT> dist(G,0);
node_pq<NT> PQ(G);

switch (which_heuristic)
{ case 0: { // naive heuristic

NT C = 0;

forall_edges(e,G) if (c[e]l > C) C = clel;
forall(a,A) potl[al = C;

break;

}

case 1: { // simple heuristic
(simple heuristig
break;
}
default: { // refined heuristic
mwbm_heuristic( G, A, c, pot, free);
break;
}
}

forall(a,A)
if (freelal) augment(G,a,c,pot,free,pred,dist,PQ);

forall(b,B)
{ forall_out_edges(e,b) result.append(e); }

forall(e,result) G.rev_edge(e);

return result;

We give the details chugmentG, a, .. .). It is a variant of Dijkstra’s algorithm.

(mwh.matching: helpers=
(procedure augmentath to)

template <class NT>
inline void augment(graph& G, node a, const edge_array<NT>& c,
node_array<NT>& pot, node_array<bool>& free,
node_array<edge>& pred, node_array<NT>& dist,
node_pq<NT>& PQ)
{ (augment: initializatioh
while ( true )
{ (select from PQ the node b with minimal distancé db
(distinguish three casgs
}
(augment: potential update and reinitialization
}

We compute shortest paths startinggin The priority queud?Q contains nodes iB (we

will explain shortly why nodes irA are not put into the queue) together with their tentative
distance froma, minAcontains the minimum value ¢j.(v) + 7 (v) ; v € A} that we have
seen so far, antbestnodein A contains a node realizingninA We use an arragist to
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record distances and an argagdto record predecessor edges in the shortest-path tree; this
is as in Section 7.5.

Initially, the distance of is zero,minAis equal to the potential i, bestnodein A is
equal toa, andPQ contains all neighbors da (recall that we store only nodes Biin the
priority queue).

We do not defind®>Q within augmentor do we initializepred within augment This is
absolutely vital for efficiency. We assume thH@) is empty andoredv] = nil for all v
whenaugmenis called. Withinaugmentwve collect, in stackRAandRB, all nodesv (in A
andB, respectively) that are addedR® or for whichpredv] is set. At the end chugment
we use these stacks to reg) andpred In this way augmentations can have sublinear
running time.

(augment: initializatioh=
dist[a]l = 0;

node best_node_in_A
NT minA
NT Delta;

stack<node> RA; RA.push(a);
stack<node> RB;

a;
potlal;

node al = a; edge e;
(relax all edges out of g1

where

(relax all edges out of 9=

forall_adj_edges(e,al)
{ node b = G.target(e);
NT db = dist[al]l + (potl[all + pot[b] - clel);
if ( pred[b]l == nil )
{ dist[b] = db; pred[b] = e; RB.push(b);
PQ.insert(b,db);
}
else
if ( db < dist[b] )
{ dist[b] = db; pred[b]
PQ.decrease_p(b,db);
}
}

]
o

For each edge = (al, b) we computadb asdisffal] plus the reduced cost & If b is
reached for the first time, we add it RQ and toRB, and if w has been reached before but
dbis smaller than the current distance valudpive update the distance value accordingly.
We will reuse the program chunk above below and hence haweiated it for an arbitrary
nodeal in A. In the main loop we remove the node with smallest distarma Q. Letb

be this node and letb be its distancel is a node inB.
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(select from PQ the node b with minimal distancé=b

node b;

NT db;

if (PQ.empty()) b = nil;

else { b = PQ.del_min(); db = dist[b]; }

We distinguish three cases according to the discussioreariti of Section 7.8.2.

If b does not exist, i.ePQ is empty, ordb > minA we augment by a path to node
bestnodein A. Deltais equal taminA

If b exists,db < minA andb is free, we augment by a pathloDeltais equal tadb.

If b exists,db < minA andb is matched, we continue the shortest-path computation.

(distinguish three casg=
if ( b == nil || db >= minA )
{ Delta = minA;
(augmentation by path to best node in A
}

else
{ if ( free[b] )
{ Delta = db;
(augmentation by path to)b

else
{ (continue shortest-path computatjoi

Augmentation to the best node Ais done byaugmenpathto(bestnodein A, .. .), which
simply reverses the direction of all edges on the path feotn bestnodeinA. The path
is given by thepred-array. We also declar@ matched andbestnodein A unmatched. It is
important that we do the latter actions in this order, siaceay be the best node if, in
which case we do not want to change the current matching.

(augmentation by path to best node iygA
augment_path_to(G,best_node_in_A,pred);

free[a] = false; free[best_node_in_A] = true; // order is important
break;

where

(procedure augmentath to)=

inline void augment_path_to(graph& G, node v,
const node_array<edge>& pred)

{ edge e = predl[v];

while (e)

{ G.rev_edge(e);

e = pred[G.target(e)]; // not source (!!!)

}

}
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Augmentation by a path tois equally simple. We augment and declandb matched.

(augmentation by path to)&

augment_path_to(G,b,pred);
free[a] = free[b] = false;
break;

We come to the case where the shortest-path computationbie tmntinued. Theb is
matched. Lee be the matching edge incidentticand consider the matel of b. The mate
has the same distance valuebeend its predecessor edgeeis

If db+ poflal] is smaller tharminAwe updateminAandbestnodein A.

We also relax the edges outaf. This may put more nodes B into PQ. Observe that
only nodes inB are put intdPQ.

(continue shortest-path computatjen
e = G.first_adj_edge(b);
node al = G.target(e);
pred[al] = e; RA.push(al);
dist[al] = db;
if (db + pot[al] < minA)

{ best_node_in_A = al;
minA = db + pot[all;
}

(relax all edges out of g1

This completes the description of the main loop.

We break from the main loop as soon as an augmenting path bagdaend. At this point
RAU RB contains all nodes that have been reached in the shortdstpaputation and
Delta contains the value required for the potential updates. &oh @odey in RAU RBwe
resetpredv] to nil, removev from the priority queue (only nodes B can be in the queue),
and update its potential. The potential change is (@eR2elta — disfv]). It is a decrease
for the nodes iPA and an increase for the nodesBn For the nodes outsidRAU RB the
potential does not change (by item (5) of the discussioneaétid of Section 7.8.2).

(augment: potential update and reinitializatica

while (!'RA.empty() )
{ node a = RA.pop();
pred[al] = nil;
NT pot_change = Delta - dist[al;
if (pot_change <= 0 ) continue;
pot[al = pot[al - pot_change;
}
while (!RB.empty() )
{ node b = RB.pop();
pred[b] = nil;
if (PQ.member(b)) PQ.del(b);
NT pot_change = Delta - dist[b];
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if (pot_change <= 0 ) continue;
pot[b]l = pot[b]l + pot_change;
}

We come to the heuristics.

The simple heuristic sefsofa] to the largest non-negative cost of any edge incideat to
for everya € A. This will make the heaviest edge incidentttight (since the potential of
all nodes inB is initially zero). The edge is added to the matching iff itglpoint in B is
free.

(simple heuristig=
forall(a,A)
{ edge e_max = nil; NT C_max = O;
forall_adj_edges(e,a)
if (cl[e]l] > C_max) { e_max = e; C_max = clel; }
potlal = C_max;
if ( e_max !'= nil && free[b = G.target(e_max)] )
{ G.rev_edge(e_max);
free[a]l] = free[b] = false;
}
}

The refined heuristic augments along paths of length oneengit three. When it is
called, the potential of all nodes B is zero. It considers the nodes Ain turn. For each
nodea € A it determines the two incident edges with largest non-riegaeéduced cost.
Call themebande2 respectively, and their reduced costaxandmax2 respectively. 12
does not exist, themax2= 0, and ifebdoes not exist, themax= 0.

We then distinguish cases.dbdoes not exist, we sgbtf a] to zero. Ifebexists, letb be
the target okh If bis free, we adebto the matching, recore2as the second best edge of
a, and sepot a] to max2andpotfb] to max- max2 This makesbtight, and it make®2
tight if it leads to a free node iB. Finally, if b is not free we sgboffa] to maxand consider
the second best edge, sayincident to the mate df. If e exists and the target &fis free,
we use the path of length three for augmentation.

(mwh.matching: helperst=
template <class NT>
void mwbm_heuristic(graph& G, const list<node>& A,
const edge_array<NT>& c, node_array<NT>& pot,
node_array<bool>& free)

node a, b; edge e, e2, eb;

node_array<edge> sec_edge(G,nil);

forall( a, A )

{ NT max2 = 0; NT max = O; eb = e2 = nil;
// compute edges with largest and second largest slack
forall_adj_edges( e, a )
{ NT we = c[e] - potl[target(e)];
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if ( we >= max2 )

{

}
X
if (
{b

if( we >= max )

{ max2 = max; e2
max = we; eb

}

else

{ max2 = we; e2

}

non
o
- o

]
o

eb )
= target(eb);

if ( freelb] )

{

}

// match eb and change pot[] to make slack of e2 zero
sec_edge[al = e2;

pot[a]l = max2;

pot[b]l = max-max2;

G.rev_edge(eb);

free[a]l] = free[b] = false;

else

{

}
}

// try to augment matching along

// path of length 3 given by sec_edgel]

pot[a]l = max;

e2 = G.first_adj_edge(b);

e = sec_edge[target(e2)];

if( e && G.outdeg(target(e)) == 0 )

{ freel[al = free[G.target(e)] = false;
G.rev_edge(e); G.rev_edge(e2); G.rev_edge(eb);

}

else pot[al] = 0;

}
}

The worst case running time of our matching algorithm tsnes the worst case running
time of the shortest-path computation. The worst case ngntime of the shortest-path
computation depends on the implementation of the prioniguee. Priority queues are dis-
cussed in Section 5.4. With either the Fibonacci heap or #irtng heap implementation
we obtain a worst case running time ©f{n(m + nlogn)) and with the redistributive heap
implementation we obtain a worst case running tim®agh(m + nlog C)) whereC is the
largest edge weight (edge weights are assumed to be infegtiaé latter time bound). The
implementation given has worst case running tid@(m + nlogn)). The average case
running time seems to be much better as Table 7.8 shows.

Arithmetic Demand: How large are the numbers that are handled by the programe&bov
Let us assume that all edge weights are integers whose &bsalue is bounded b§.
We observe first that all node potentials are non-negattegérs less than or equal@
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This is clear for the nodes iA since their potential is initialized to a value less thanaurad

to C and is only decreased afterwards. For the node iinfollows from the observation
that the potential of any matched node is at nfogsince the reduced cost of a matched
edge is zero) and that the potential of free nodeB ia zero.

The fact that node potentials are boundedbiynplies that the reduced cost of any edge
is bounded by €. Thus the largest number handled in any of the shortestepatiputations
is at most 2 mig A|, |BJ) - C. This bound holds since matched edges have reduced cost zero
and hence no simple path can contain more thar(jijn|B|) edges of non-zero reduced
cost.

We will next establish a much better bound. The quantiigAis always bounded by
C, since it is initialized to the potential of a node &and is only decreased afterwards.
The shortest-path computation stops as soon as a distanedamyer thaminAis selected
from the queue. Thus only distance values less tharf (and hence less thal) can lead
to the insertion of additional distance values into the guétle conclude that the maximal
value ever put into the queue is bounded®yplus the maximal reduced cost of any edge
and is hence bounded b3 We summarize.

Lemma 31 If all edge weights are integers whose absolute value is Bediby C then the
largest number handled by the maximum weight bipartite hiagcalgorithm is bounded
by 3C.

Experimental Data: Table 7.8 contains some running times. We used random leart
graphs withn nodes on each side andedges, and three different kinds of edge weights:

e Uniform edge weights, i.e., all edge weights equal to one.
e Random edge weights in [1000].
e Large random edge weights in [100Q®MO05].

In all cases we also solved the corresponding unweightedhimag problem.

The instances with random edge weights are by far the simdiewed by the instances
with large random edge weights, followed by the uniform amstes. We expected that
random edge weights from a large range lead to simple prableroause heavy edges are
much more favorable than light edges. We were surprisedddliat the uniform problems
are the hardest and have no explanation for it.

The density of the problem has a big influence on running tiFra. very sparse prob-
lems fn = 2n) the weighted matching algorithm is faster than the unweigiimatching
algorithm. This is due to the use of the potential function.

Consider the graph shown in Figure 7.36. It consists of a ected grapiH which has
a perfect matching and additional nod®s ay, ..., ax. Eacha; is connected to a node
on the B-side ofH. In the figure, alla; are connected to the same nodeBinbut this is
not essential. Assume that the perfect matchindfditas already been constructed and
that the nodesy, ay, ..., ak are considered in turn. In the unweighted matching algarith



152 Graph Algorithms

C n m No Simple Refined Check Unweighted

U 20000 40000 0.995 0.997 0.994 0.186 2.633
U 20000 60000 611 60.41 58.43  0.213 3.679
U 20000 80000 116.2  114.2 109.9 0.239 6.248
U 40000 80000 2.139  2.153 2.144 0.39 6.791
U 40000 120000 212.2  210.3 204.3 0.4539 9.61
U 40000 160000 410 402.8 387.8 0.5081 9.217
R 20000 40000 0.84 0.849 0.8467 0.1836 2.73
R 20000 60000 1.399  1.401 1.391 0.2189 3.811
R 20000 80000 2.635 2.509 2.578 0.2402 6.32
R 40000 80000 1.812 1.82 1.817 0.3922 7.056
R 40000 120000 3.001 2.941 2973 0.4621 9.855
R 40000 160000 5.667 5.364 5512 0.5168 9.532
L 20000 40000 1.293 1.31 1.307 0.1838 2.811
L 20000 60000 20.84  20.89 20.65 0.2305 3.922
L 20000 80000 41.6  40.69 41.05 0.2529 6.726
L 40000 80000 2.815 2.816 2.816 0.4213 7.222
L 40000 120000 57.06 56.9 54.67 0.4834 9.98
L 40000 160000 116.5 113.9 103.1 0.5283 9.595

Table 7.8 The running times of three versions of the weighted bipgartiatching algorithm. The
first three columns contain the running times of the algarittbove with the three different
heuristics, the fourth column shows the time to verify theuteand the last column shows the
time required to solve the unweighted problem WX CARDBIPARTITE. The graphs were
generated byandombigraph(G, n, n, m, A, B) and three kinds of edge weights were used:
uniform edge weights (denoted U), i.e., all edge weightsevget to one, random edge weights
(denoted R) in [1. 1000] and random edge weights (denoted L) in [100Q0005]. Each
number is the average of ten runs. The function mmditchingtime in the demo directory
allows readers to perform their own experiments.

every search for an augmenting path will expléten its entirety. Not so in the weighted
matching algorithm. After the search fromg, a; will have potential equal to zero (since it
is free) and hence the nodehconnected to it will have potential equal to one. Sihktés
assumed to be connected, every nodélin B will have potential equal to one. Consider
next a search for an augmenting path startirg dat> 2. The nodey, is given potential one
(since one is the largest cost of an edge incider Yoand hence all edges out af have
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a

a

Figure7.36 H has a perfect matching and eaghl < i < k is connected to some node on the
B-side of H. After the search for an augmenting path framall nodes inB will have potential
one. The searches froay, i > 2, take constant time.

reduced cost one. When the first neighbopeois removed from the queue (with distance
value one), the conditiodv >= minA holds and hence the search for an augmenting path
terminates. In this way, the fact that cannot be matched is detected in ti@€l). We
conclude that node potentials help tremendously in the pl@of Figure 7.36. Of course,
this example is very special and hence we need to generaézzgument.

Our algorithm considers the nodesAnin turn. LetA_; = {as, ..., a_1}. After having
considered the nodes iy _1, it has computed a maximal matchil_; in the subgraph
Gi_1 spanned byA;_; U B and a potential functiotr;_1 which proves the optimality of
Mi_;. Observe now that a node Biwhich can be reached from a free nodedimust have
potential one (since free nodes have potential zero ancertaea neighbors have potential
one, and hence the neighbors of the neighbors have poteet@|. . .).

Consider now the search for an augmenting path fapnWe claim that it will not enter
the subgraptH of G;_; consisting of all nodes that can be reached from a free node in
Ai_1. This is most easily seen for what we called the basic versfahe algorithm in
Section 7.8.2. We observe first that the n@gléds given potential one (since one is the
largest cost of an edge incident &) and hence an edge;, b) will have reduced cost
equal to zero or equal to one depending on whether the patefth is zero or one. The
edges connecting; to nodes inH will have reduced cost equal to one. The search will
first explore all nodes that can be reached by tight edgedréeanode inB is reached, the
matching will be increased. If no free nodelncan be reached, a potential change will be
made. The change reduces the potentiad;db zero and hence no further search will be
performed. We conclude thét is never entered.
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For random edge weights the weighted matching algorithrastef than the unweighted
matching algorithm on the corresponding unweighted prable

Alternative I nterpretation: We close this section with an alternative interpretationuf
algorithm. The alternative interpretation may be skipped.

We consider only the construction & from M;_; andzxj_;. For any alternating path
starting ina = a; let d(p) be the total cost of the edges mthat belong toM minus the
total cost of the edges that do not belonduoi.e.,

dp) = Y c@e—) ce.
ecpnM p\M
Consider the matchiniyl ® p obtained by augmentinlyl by p. It has cost(M) — d(p)
and henceM @ p is “better” thanM iff d(p) is negative. This observation suggests the
following definition. We call a pathp improving with respect tdV if d(p) is negative. The
observation also suggests the following algorithm for firgdan improving path.

We orient all matching edges fro to A and all non-matching edges froi to B.
We assign weight(e) to any matching edge and assign weigtltie) to any non-matching
edge and search for a path of negative cost startirg Ihthere is no such path them is
also a maximum cost matching @ . If there is such a path then lptbe the most negative
such path, i.e., the one with the most negatiyp), and obtainV; by augmentingV by p.
A simple way to findp is to solve a single-source shortest-path problem withceoair

The previous paragraph leaves many questions unanswetgdis\Wl also a maximum
cost matching inG; if no path of negative cost exists, why i4 @& p a maximum cost
matching inG; if p is a most negative path, and why can there be no negatives@ycle

In answering these questions the potential functiog 7j_; comes handy. Recall that
the first action in the construction ®; is to extendr to a potential function o U B by
settingr (a) to any value that makes the reduced cost of every edge @hoh-negative.
Consider any alternating pathwith respect tdV starting ina. Let p = [ey, ..., &] with
e = (vj_1, vj). Thenyg is equal taa, vy, vo, ... are nodes im\, vy, v3, ... are nodes iB,
e, €3, ... are edges notiM andey, &4, ... are edges iM, and ifk is odd, theny is a free

node inB. We have
dp= > clep— Y. ce).

j:j even j:j odd
Sincer is tight with respect tM, we havec(ej) = m(vj_1) + 7 (vj) for all evenj. Thus
dp) = Y @i)+7@))— Y ce)
j;j even j;j odd
= —m@+ Y (rj_1)+7@)) —c€)) + (—D*r (v
j:j odd

= —m@+ Y T+ (-Dirw) = —7w@+ Y Te) + (=D r(w)
j:j odd j
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= —m@+ ) (e + (v
j

This derivation deserves explanation. The first equalitpamts to rearranging the sum.
For example, ik = 4 then

—c(€1) + (7w (v1) + m(v2)) — c(€3) + (T (v3) + 7 (va)) =
—m(a) + (7w (vo) — c(ey) + m(vy)) + (w(v2) — c(€3) + m(v3)) + 7 (va)
and ifk = 3 then

—c(ey) + (7w (vy) + 7 (v2)) — C(&3) =
—m(a) + (7w (vo) — c(€1) + 7 (v1)) + (7 (v2) — C(€3) + 7w (v3)) — 7 (V3).

The second equality follows from(e) = 7 (v) + w(w) — c(e) for any edgee = (v, w),
the third equality follows from the fact tha{e) = 0 for anye € M, and the last equality
follows from the fact thatr (vk) = O if k is odd (since in this casg is a free node irB).

The derivation above is extremely powerful. It tells us ttéap) is equal to the cost of
p with respect to the reduced co&plus the potential of the target node pfminus the
potential of the source node gf The source node g is equal toa and hence the latter
contribution is independent ai. In other words, searching for a path that minimidép)
amounts to searching for a path that minimizég) + = (vk). For fixedvy this amounts to
searching for the patlp from a to vk that minimizesc(p). This problem is easily solved
by Dijkstra’s algorithm. For any node € V; let i (v) be the minimum cost of a path from
a to v with respect to the cost functian The iterative step fronM = M;_; to M; is then
performed as follows:

Computeu (v) for all v by Dijkstra’s algorithm.

Let v be the node that minimizes= —x(a) + u(v) + 7 (v) and letp be a path frona
to v that realizegi(v).

If d < 0, augmentM by p.
This completes our alternative derivation of the algorithm

The first algorithm for the assignment problem was given biaikK[Kuh55]. In the early
60’s, Jewell [Jew58], Iri [Iri60] and Busacker and Gowen [&} observed that the assign-
ment problem can be solved by a sequence of shortest-pathutations in general graphs.
In the early 70’s Tomizawa [Tom71] and Edmonds and Karp [Ekh®wed that the use of
node-potentials restricts the shortest-path computatiomon-negative edge costs. Recent
surveys of algorithms for the assignment problem can bedauan article by Galil [Gal86]
and the book by Ahuja, Magnanti, and Orlin [AMO93]. In his s’ thesis Markus
Paul [Pau89] extended the algorithms to the maximum weigitthing problem; he also
implemented the algorithm for LEDA. His implementation aiyg searched for augmenting
paths from all nodes i\. Uli Finkler [Fin97] observed, in his PhD-thesis, that staingial
improvements (not asymptotically but on average) can baiodd by considering the nodes
in A one by one. The implementation given here follows his sutjges
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7.8.4 The Assignment Problem

The assignment problem asks for a perfect matching of maximuminimum weight. A
simple modification of the algorithm of the preceding satsolves the maximum weight
assignment problem.

We only need to change the way we search for augmenting petbsnsist that every
augmentation increases the size of the matching and hencentieue our search for an
augmenting path until a free nodehis found. When no free node B is ever found, we
return false to indicate that the graph has no perfect magchi

We obtain:

(procedure augment for max weight assignneent
#include <LEDA/stack.h>

template <class NT>
bool max_weight_assignment_augment (graph& G,
node a, const edge_array<NT>& c,
node_array<NT>& pot, node_array<bool>& free,
node_array<edge>& pred, node_array<NT>& dist,
node_pq<NT>& PQ)
{ (augment: initializatiof
while ( true )
{ node b; NT db;
if (PQ.empty()) { return false; }
else { b = PQ.del_min(); db = dist[b]; }
if ( free[b] )
{ Delta = db;
(augmentation by path to)b
}
else
{{continue shortest-path computatjoi
}

(augment: potential update and reinitialization

return true;

}

The minimum weight assignment problem is easily reducedhénrhaximum weight
assignment problem. We only have to change the sign of atjil®i

(mwh.matching.}+=
template <class NT>
list<edge> MIN_WEIGHT _ASSIGNMENT_T(graph& G,
const list<node>& A, const list<node>& B,
const edge_array<NT>& c, node_array<NT>& pot)
{ edge_array<NT> w(G);
edge e;
forall_edges(e,G) wle]l = - c[el;
list<edge> M = MAX_WEIGHT_ASSIGNMENT_T(G,A,B,w,pot);
node v;
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forall_nodes(v,G) pot[v] = -pot[v];
return M;

}

The worst case running time of the maximum and minimum weagktgnment algorithms
is the same as for the maximum weight bipartite matchingratga, namelyO(n(m +
nlogn)).

Arithmetic Demand: How large are the numbers that are handled by the assignigent a
rithms? We assume that all edge weights are integers wheséuéd value is bounded by
C. Letk = |A| = |B].

We will first derive a bound on the node potentials. bdbie any node and consider a
changé’ of 7 (v). After a change ofr (v) there is an undirected paghof tight edges from
a nodeb € B that was just matched to. Letp = [b = v, v1,...,vs = v], where
s < 2k. We claim thatr(vi) € [—iC..iC] for all i after the potential update. This is
true fori = 0, sinceb was just matched and hence has potential equal to zerd. Fdd
the claim follows from the fact that the edge, vi_1} has reduced cost equal to zero and
costin -C..C]. We conclude thatr(a) € [-(2k — 1)C.. (2k — 1)C] for a € A and
m(b) € [-(2k — 2)C .. (2k — 2)C] for b € B after a potential change. These bounds also
hold before the first change af(v) since the potential of nodes B is initialized to zero
and since the potential of nodes#Anis initialized such that there is a tight edge incident to
the node.

The reduced cost of any edge is therefore bounde@ by (2k — 1)C + (2k — 2)C <
(4k — 2)C.

When we search for an augmenting path from a free modeA we start a shortest-path
computation froma. The computation stops when the first free nod8iis encountered.
Let p be an augmenting path fromto a free node irB. The maximal number handled
in the shortest-path calculation is the costpofwith respect to the reduced cost function)
plus the maximal reduced cost of any edge. The cogtisfthe difference between the old
and the new potential & and is therefore bounded bk@. We conclude that the absolute
value of all integers handled by the algorithm is boundedk®.8

We summarize.

Lemma 32 If all edge weights are integers whose absolute value is dedby C then the
absolute value of all numbers handled by the maximum andwaimi weight assignment
algorithm is bounded bgkC = 4nC, where k= |A| = |B| and n= 2k.

7.8.5 Shortest Paths via Assignment

Our algorithms for the maximum weight matching problem dredassignment problem use
an algorithm for the shortest-path problem (for non-negegidge weights) as a subroutine.
We show in this section that any algorithm for the assignmeoiblem can be used to solve

27 \We will derive a bound on the initial value af(v) later in the section.
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n m D A BF A BF A

5000 50000 0.76 251 251 1859 0.67 2.01

Table 7.9 A comparison of the running time of the shortest path viagassent algorithm
(denoted A) with the shortest-path algorithms of Sectidn ZTolumns three and four contain a
comparison with Dijkstra’s algorithm (D) and columns fivedagix and seven and eight contain a
comparison with the Bellman—Ford algorithm (BF). We usedloan graphs with non-negative
edge weights for the first comparison, random graphs withrar edge weights but no negative
cycle for the second comparison, and graphs generat&F6¥EN for the third comparison.

The program shortegtath via_assignmentime in the demo directory allows readers to perform
their own experiments.

the shortest-path problem with arbitrary edge weights.sWill give us an alternative to
the algorithms in Section 7.5. The alternative is of consiile theoretical interest and
has led to the asymptotically most efficient shortest-plgbrighm for arbitrary edge costs,
see [AMO93, sections 12.4 and 12.7]. We wrote this sectidimtbout whether it also leads
to efficient programs. At least in our implementation it doeg see Table 7.9.

Let G = (V, E) be a directed graph. We construct a bipartite netwfk= (V' U
V", E’); see Figure 7.37 for an illustratio®’ contains two copies of each node®f one
in V' and one invV”. For each node € V we usev’ to denote the copy iV’ andv” to
denote the copy ivV”. For each edgév, w) there is an edgé&’, w”} of the same cost in
E’. In addition, for each node € V we have an edggy’, v”} of cost zero inE’. Clearly,
the set{{v’, vV'}ive V} is an assignment of cost zero. It is a minimum cost matching if
G has no negative cycle.

Lemma 33 G’ contains a perfect matching of negative cost iff G containsgative cycle.

Proof LetC = [ep, €1, ..., &_1] With & = (vj, viy11) andvk = vg be a simple cycle of
negative cost irG. We construct a perfect matching of the same co€¥inlt consists of
the edgegv;, vi’+1} fori, 0 <i < k, and the edge&’, v”} for all nodesv that do not lie
onC.

For the reverse direction consider any perfect matctihgf negative cost irG’. We
show thatM corresponds to a set of cycles@and that one of these cycles has negative
cost. Consider any eddeg, vi'} € M with vg # v1; there must be at least one such edge
sinceM has negative cost. The nodemust also be matched. Lef be its mate. Contin-
uing in this fashion we construct a sequence of edggsv}, {vy, v3}, ..., {v_5, v} in
M. We stop as soon as we encounter a ngdsuch that, appeared previously in the se-
quence. We must haug = vg sincevx = v; for somej, j > 0, implies that two matching
edges are incident tgf/. We conclude thatip, v1, ..., vk] is a simple cycle irG. ThusM
induces a set of simple cycles @ and the total cost of these cycles is equal to the cost of
M. Hence, one of the cycles must have negative cost. O
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Figure 7.37 A directed graph and the derived bipartite graph. All dasdgks in the graph on
the right have cost zero. The dashed edges define a perfegtingof cost zero. The solid
edges together with the lowest dashed edge define a perfezhingof negative cost. It
corresponds to the negative cycle in the graph on the left.

Assume now thaG contains no negative cycle, Ikt be a minimum weight assignment
in G’ and letr’ be a potential function that proves the optimalityMf We show thatr’
can be used to transform the cost functimto a non-negative cost functiol has cost
zer?®and hence_, ., 7'(v) + n'(v") = 0. Alsor’(v') + n’(v”) < O forallv € V and
hence

') =—-a'(") forallv e V.
We define a potential functiom on'V by
() =x'(w") forallv e V.
Consider any edge= (v, w) in G and letc(e) = 7 (v) + c(e) — 7w (w) be its reduced cost.
We have:
te) = m7(w)+cEe —naw) = 7'@)+cE —x'wWw)
= —7'(v)+ce—-n'(w") = 0,

where the inequality follows from the fact thate) > =’'(v") + #'(w”) for all edgese =
{v, w}.

We conclude that is a non-negative cost function dd. The shortest-path problem
with respect tcC can be solved by Dijkstra’s algorithm. Also, jif(v) and(v) are the

shortest-path distances frao v with respect ta andc, respectively, then

n@) = —m(s) + ) + 7 (v),

28 |t is possible that one of the edges, v”) is not contained ifM. How?
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see Section 7.5.10.
The discussion above leads to the following program.

(shortestpath via_assignmentje=

template <class NT>

bool shortest_path_via_assignment(const graph& G, node s,
const edge_array<NT>& c,
node_array<NT>& dist,
node_array<edge>& pred)

{ node v,w; edge e;

GRAPH<NT,NT> G1;

list<node> A,B;

node_array<node> left_copy(G), right_copy(G);

forall_nodes(v,G)

{ A.append(left_copy[vl = Gl.new_node());
B.append(right_copy[v] = Gl.new_node());
Gl.new_edge(left_copyl[v],right_copyl[v],0);

}

forall_edges(e,G)

{ v = G.source(e); w = G.target(e);
G1l.new_edge(left_copyl[v] ,right_copyl[w]l,clel);

}

list<edge> M =

MIN_WEIGHT_ASSIGNMENT_T(G1,A,B,Gl.edge_data(),Gl.node_data());

NT sum = O;

forall_nodes(v,G1l) sum += Gi[v];

if (sum < 0) return false;

node_array<NT> pot(G);

forall_nodes(v,G) pot[v] = Gl[right_copyl[vl];

edge_array<NT> red_cost(G);

forall_edges(e,G)
red_cost[e] = pot[G.source(e)] + c[e] - pot[G.target(e)];

DIJKSTRA_T(G,s,red_cost,dist,pred);

forall_nodes(v,G) dist[v] += pot[v] - pot[s];

return true;

7.8.6 Maximum Weighted Matchings of Maximum Cardinality

We show how to compute a matching of maximum weight among thieimmgs of maxi-
mum cardinality®. Let L be a real number and consider the weight functipulefined by
addingL to the weight of every edge, i.e.,

cL(e) =c(e) + L foreverye e E.

It is intuitively clear that larger values af favor matchings of larger cardinality. We make
this precise.

29 For graphs that have a perfect matching this is the same kisitpfor a maximal weight perfect matching.
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We observe first that, (M) = c¢(M) + L|M| for any matchingM. Thus, for two match-
ingsM andN of the same cardinality the relative weight of the matchitgss not change.
Let C be the largest absolute value of any edge weight ankl letmin(|A|, |B|). Then
|c(M)| < kC for any matchingM (since a matching consists of at m&stdges) and hence
[c(N) — c(M)| < 2kC for any two matchingsvi and N. We conclude thatM| < |N|
impliesc. (M) < c_(N) for L > 2kC. Thus in order to find a maximum weight matching
of maximum cardinality we only have to find a maximum weighttchéang with respect to
the cost functiort, whereL = 2kC + 1.

(mwhmatching.t+=

template <class NT>
list<edge> MWMCB_MATCHING_T(graph& G,
const list<node>& A, const list<node>& B,
const edge_array<NT>& c, node_array<NT>& pot)

{ NT C = 0;

edge e;

forall_edges(e,G)

{ if (cl[e]l > C) C = c[el;

if (-cl[el > C) C = -clel;

}

int k = Max(A.size(),B.size());

C =1 + 2xkx*C;

edge_array<NT> c_L(G);

forall_edges(e,G) c_L[e]l = cl[e]l + C;

list<edge> M = MAX_WEIGHT_BIPARTITE_MATCHING_T(G,A,B,c_L,pot);
#ifndef LEDA_CHECKING_0OFF

if ( !'CHECK_MWBM_T(G,c_L,M,pot) )

error_handler (0, "check in MWMCB_MATCHING_T failed");

#endif

return M;

}

Be aware that the computed potential function proves opitiynaith respect to the cost
functionc, whereL = 1 4+ 2kC. The function has an arithmetic demand similar to the
programs for the assignment problem. Recall that the maximaight matching algorithm
deals with numbers up toBBwhen all edges costs are boundedijn absolute value. We
haveD = C + 1 + 2kC and hence the numbers handled by the algorithm may be as large
as 3+ (6k + 3)C. SinceC > 1 andk > 1 we have 3+ (6k + 3)C < 4nC.

Exercises for 7.8

1  Write a checker for the maximum weight assignment problem.

2  Write a checker for the maximum weight assignment problentakes only a matching
M as input. Hint: Direct all edges in the matching frdBnto A, give each edge in
the matching cost(e) and each edge outside the matching ceste). Show that the
matching is optimal iff the resulting graph has no negativee:

3 Formulate Lemma 27 for the minimum weight assignment moldnd write a checker
for it.
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N

Implement the basic version of the weighted bipartite imatgalgorithm.

5  Extend the functioshortesipathviaassignmensuch that it can also deal with graphs
with negative cycles.

6  Show that the following strategy computes a maximum weightching among the
matchings of maximum cardinality: when searching for augting path froma = a;
choose the shortest path to a free nod8i(if there is one) and choose the path to the
best node iMA otherwise.

7  Write a program that computes a minimum weight matchingragjitbe matchings of
maximal cardinality.

8  Write a program that computes a maximum weight matchinguafinalityk, wherek is

a parameter of the algorithm. You may assume that the gragnisected.

7.9 Weighted Matchingsin General Graphs

A matching Min a graphG is a subset of the edges no two of which share an endpoint, see
Figure 7.38. The cardinalityM| of a matchingM is the number of edges M. If wis a
weight function on the edges &f then the weightv (M) of a matchingM is the sum of the
weights of its edges, i.e.,
w(M) = "w(e).
esM

A nodev is calledmatchedwith respect to a matchini if there is an edge itM incident
tov and it is calledree or unmatchedtherwise. An edge is called matching ie € M. A
matching is called amaximum weight matchirifjits weight is at least as large as the weight
of any other matching. Figure 7.38 shows an example.

The function

list<edge> MAX_WEIGHT MATCHING(const graph& G, const edge_array<int>& w)

returns a maximum weight matching @ with respect to the weight functiom. Ob-
serve that the algorithm is only available for integer wésghirhe underlying algorithm is
the so-called blossom shrinking algorithm of Edmonds[E8m@&Edm65a]. Its worst case
running time isO(n®) ([Law76]). The implementation is due to Thomas Ziegler &g
There are algorithms with better performance, both thatlyigGMG86, Gal86] and prac-
tically [AC93]. At present the function cannot be asked tune a proof of optimality.

7.10 Maximum Flow

Let G = (V, E) be a directed graph, letandt be distinct vertices irG and letcap :
E — IR, be a non-negative function on the edgessofFor an edge, we callcap(e)
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Figure 7.38 A maximum weight matching: The edges of the matching are stiowold and the
edge weights are indicated. We used the xIman-demangwmatching to generate this figure.

thecapacityof e. An (s, t)-flow or simplyflowis a functionf : E — IR, satisfying the
capacity constraints and the flow conservation constraints

D 0 < f(e) <cap(e forevery edge € E
2 > f(e) = > f(e) foreverynode € V\{s,t}
e;sourcée)=v e;targete)=v

The capacity constraints state that the flow across any edgeuinded by the capacity of
the edge, and the flow conservation constraints state thavéry nodev different froms
andt, the total flow out of the node is equal to the total flow into tiogle.

We calls andt the source and the sink of the flow problem, respectivelyyvemdseV +
to denoteV\{s, t}. For a node, we call

exceso)= » f@- > f(
etargete)=v e;sourcee)=v
theexces®f v. Flow conservation states that all nodes excepsfndt have zero excess.
Thevalueof a flow f, denoted f|, is the excess of the sink, i.e.,
| f| = excesg).

A flow is calledmaximumif its value is at least as large as the value of any other flow.
Figure 7.39 shows an example.
In Section 7.10.1 we define the functionality of max flow altfons and derive a checker,
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100/91

100/81

Figure7.39 A maximum( s, t)-flow: For every edge its capacitycap(e) and the flowf (e)
across it are shown asp(e)/f (). The value of the flow is equal 171. A saturated cut is
indicated by the dashed line. It proves the maximality offtbe. The xIman-demo
gw_maxflow visualizes maximum flows.

in Section 7.10.2 we discuss the generic preflow push algoriin Section 7.10.3 we give
a first implementation of the preflow push algorithm, in Sarci.10.4 we describe several
heuristic improvements, and in Section 7.10.5 we discussatithmetic demand of the
algorithm and the danger of using the network flow algorithitina number type that may
incur rounding error.

7.10.1 Functionality
The function

NT MAX FLOW_T(const graph& G, node s, node t
const edge_array<NT>& cap, edge_array<NT>& f)

computes a maximum flow in the network(G, s, t, cap) and returns the value of the flow.

The function can be used with an arbitrary number tifde There are pre-instantiated

versions for the number typésst anddouble The function name of the pre-instantiated
versions is MAXFLOW, i.e., without the suffixT. In order to use the pre-instantiated
versions one must includdEDA/maxflowh>, and in order to use the template version,
one must includeLEDA/templategmaxflowt>.

Special care should be taken when using the template fumetith a number typeNT
that can incur rounding error, e.g., the tygmuble Section 7.2 contains a general discussion
of this issue and Section 7.10.5 gives an example of what cawgng in the computation
of a maximum flow. The template function is only guaranteegdgdorm correctly if all
arithmetic performed is without rounding error. This is tteese if all numerical values in
the input are integers (albeit stored as a number of Wpeand if none of the intermediate
results exceeds the maximal integer representable by tidentype (22 — 1 in the case
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of double$. All intermediate results are sums and differences oftimalues, in particular,
the algorithms do not use divisions and multiplications.

The algorithm has the following arithmetic demand. Cdte the maximal absolute value
of any edge capacity. If all capacities are integral theiindéirmediate values are bounded
by d - C, whered is the outdegree of the source.

The pre-instantiation for number typ# issues a warning i€ is larger tharMAXINT/d.

The pre-instantiation for number tygi@ublecomputes the optimal matching for a mod-
ified capacity functiortapl, where for every edge

caple] = signcafe])|cade]| - S|/S

andSis the largest power of two such th&t< 253/(d - C). The value of the maximum
flow for the modified capacity function and the value of the imaxm flow for the original
capacity function differ by at mosh-d - C - 2752,

The weight modification can also be performed explicitly aveladvise you to do so.
The function

bool MAX FLOW_SCALE_CAPS(const graph& G, node s, edge_array<double>& cap)

replacesage] by caple] for every edgee, wherecaple] is as defined above. The function
returnsfalseif the scaling changed some weight, and returans otherwise.

In the remainder of this section we discuss a check of opifiynahd derive the famous
max-flow-min-cut theorem of Ford and Fulkerson [FF63]. Wedha technical lemma that
generalizes the notion of excess to a set of nodes.

Lemma34Let SC V andlet T= V\S. Then

Y excesan= > fe - Y f(.

ueS ecEN(T xS) ecEN(SxT)

Proof We have
> exces@) = ) ( PERICEEEY f(e)) ,
ueS ueS \etargete)=u e;sourcée)=u

by definition of excess. We now observe that each exdgeE N (T x S) contributesf (e)
to this sum, each edge € E N (S x T) contributes— f (e) to this sum, and each edge
ec EN(Sx S contributesf (e) — f(e) to this sum. O

We draw a quick consequence. An application v8ta- V and hencd = ¢ yields
excesss) + excesd) = 0,

i.e., excess) = —|f|. This agrees with the intuition that the flow arriving tamust
originate at.
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Figure 7.40 The residual networks ;: The left part shows an edge= (v, w) with capacity 3
and flow 1. It gives rise to two edges in the residual netwodwshon the right. The edge, w)
has residual capacity 2 and the edge v) has residual capacity 1.

An (s, t)-cut or simplycutis a setS of nodes withs € Sandt ¢ S. Thecapacityof a
cut is the total capacity of the edges leaving the cut, i.e.,

capS = Y  cape.
ecEN(SxT)
A cut Sis calledsaturatedif f(e) = cap(e) forallee EN(Sx T) and f (e) = 0O for all
ecEN(T x 9.
The next lemma relates flows and cuts: the capacity of(any-cut is an upper bound
for the value of anys, t)-flow. Conversely, the value of arg, t)-flow is a lower bound for
the capacity of anys, t)-cut.

Lemma35 Let f be anys, t)-flow and let S be angs, t)-cut. Then

|f] < cap9).
If S is saturated thenf | = cap(S).
Proof We have
|f| = —excesgs) = — ) excesfl)
ues
= > feO- Y fEe = > cape
ecEN(SxT) ecEN(TxYS) ecEN(SxT)

= capS).

For a saturated cut, the inequality is an equality. O

A saturated cut proves the maximality 6f A saturated cut is easily extracted from a
maximum flow by means of the so-called residual network.

Theresidual network G with respect to a flowf has the same node set @s Every
edge ofG; is induced by an edge @ and has a so-calle@sidual capacity Let e be an
arbitrary edge of. If f(e) < cap(e) thene s also an edge d&+. Its residual capacity
isr(e) = caple) — f(e). If f(e) > 0thene™ is an edge of5;. Its residual capacity is
r(€®V) = f(e). Figure 7.40 shows an example.
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Figure 7.41 A path in the residual network and the resulting change of:fla\graph and an
(s, t)-flow is shown at the top. The corresponding residual netigskiown in the middle. A
pathp from stot in the residual network is shown in bold. The flow obtainedhfro
augmentation by is shown at the bottom.

Theorem 5 Let f be an(s, t)-flow, let G; be the residual network with respect to f, and
let S be the set of nodes that are reachable from s in G

a) Ift € Sthen f is not maximum.
b) Ift ¢ S then S is a saturated cut and f is maximum.

Proof a) Let p be any simple path fromtot in G; and lets be the minimum residual
capacity of any edge gb. Thens > 0. We construct a flowf” of value| f| + §. Let (see
Figure 7.41)

f(e)+6 ifeisinp
f'lep={ f(e)—-6 ife®isinp
f(e) if neithere nor €™ belongs top.
Thenf’isaflowand f'| =|f|+ 3.
b) There is no edgév, w) in G with v € Sandw € T. Hence,f (e) = cap(e) for any

ewithee EN(Sx T)and f(e) = 0 foranyewithe e EN(T x 9), i.e., the cutSis
saturated. Thu$ is maximal. O

The function
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bool CHECK MAX FLOW.T(const graph& G, node s, node t
const edge_array<NT>& cap, const edge_array<NT>& f)

checks whetherf is a maximum(s, t)-flow. It returnsfalseif this is not the case. The
implementation is easy.

We check the capacity condition for each edge and computexbess of all nodes.
All nodes buts andt must have excess equal to zero. We then use breadth-firshgear
compute the set of nodes reachable from the residual graph; must not be reachable.

(maxflow_check=

bool False_MF(string s)
{ cerr <<"\n\nCHECK_MAX_FLOW: " << s << "\n";
return false;

}

template <class NT>
bool CHECK_MAX_FLOW_T(const graph& G, node s, node t,
const edge_array<NT>& cap, const edge_array<NT>& f)
{ node v; edge e;
forall_edges(e,G)
if ( £fle]l < 0 && f[e]l > caplel] )
return False_MF("illegal flow value");

node_array<NT> excess(G,0);
forall_edges(e,G)
{ node v = G.source(e); node w = G.target(e);

excess[v] -= flel; excess[w] += f[el;

}

forall_nodes(v,G)

{if (v==s5 || v==1t || excess[v]l] == 0 ) continue;
return False_MF("node with non-zero excess");

}

node_array<bool> reached(G,false);
queue<node> Q;

Q.append(s); reached[s] = true;
while ( !Q.empty() )
{ node v = Q.popQ);
forall_out_edges(e,v)
{ node w = G.target(e);
if ( f[e]l < caple]l && !'reached[w] )
{ reached[w] = true; Q.append(w); }
}
forall_in_edges(e,v)
{ node w = G.source(e);
if ( f[el > O && 'reached[w] )
{ reached[w] = true; Q.append(w); }
}
}
if ( reached[t] ) return False MF("t is reachable in G_f");
return true;

}
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push frdgmv to w ush fromw to v

A\ 4
@ 3/2 )@ @ 3/0 >@
G G

Figure7.42 A push: The top left shows an edge= (v, w) in G with capacity three and flow
one. This gives rise to two edges in the residual network shmwthe right. A push of one unit
of flow across increases the flow acrosdy one and a push acrog$’ decreases the flow
across by one.

7.10.2 Algorithms
The maximum flow problem is a widely studied problem and nwuasralgorithms have
been proposed for it [FF63, EK72, Din70, Kar74, AO89, Golgd,88, CH95, CHM96,
GR97].

Ourimplementations are based on the preflow-push methodldb@rg and Tarjan [GT88].
It manipulates a preflow that gradually evolves into a flowtdled computational studies
of the preflow-push method can be found in [CG97, AKMO97] an8éction 7.10.4.

A preflow fis a functionf : E — IR>o with

(1) O0< f(e) <cape) foreveryedge < E and
2 exces&) > 0 for every nodey € V*

i.e., the flow conservation constraint is replaced by thekeeaonstraint that no node in
V+ has negative excess. We call a nede V' activeif its excess is positive. The residual
networkG ; with respect to a preflow is defined as in the case of a flow.

The basic operation to manipulate a preflow ipush Let v be an active node, let
e = (v, w) be aresidual edge out of and lets < min(exces&), r (e)). A push ofs across
echangesf as follows: it increase$ (e) by § if eis an edge of3, and it decreasef(e)
by § if eis the reversal of an edge &f, see Figure 7.42.

A push of § acrosse increaseexceséw) by § and decreasesxces&) by §. A push
is calledsaturatingif § = r(e) and is callechon-saturatingotherwise. A saturating push
acroseremoves from the residual network and either kind of push ad@&o the residual
network (if it is not already there).

The question is now which pushes to perform? Goldberg arjdmauggested to put the
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nodes ofG (and hencé&s ;) onto layers witht on the bottom-most layer and to perform only
pushes with transport excess to a lower layer. Wed(s¢ to denote the (number of the)
layer containingy. We call an edge = (v, w) € G+ eligibleif d(w) < d(v).

Let us summarize: a push across an edge (v, w) € G can be performed ib is
active anck s eligible. It movess < min(exces&), r (€)) units of flow fromv to w. If eis
also an edge o6 then f (e) is increased by, and ife is the reversal of an edge &f then
f (e) is decreased b§.

What are we going to do whenis active but there is no eligible edge outu In this
situationw is relabeledby increasingd(v) by one.

We are now ready for the generic preflow-push algorithm.

[* initialization */
set f (e) = cap(e) for all edges witlsourcée) = s;
set f (e) = O for all other edges;
setd(s) = nandd(v) = O for all other nodes;
/* main loop */
while there is an active node
{ letv be any active node;
if thereis an eligible edge= (v, w) in Gy
{ pushé acrosse for somes < min(exces&),r(e)); }
else
{ relabelv; }

We will show that the algorithm terminates with a maximum fi@fit terminates). Call
an edgee = (v, w) € G steepf d(w) < d(v) — 1, i.e., if it reaches down by two or more
levels.

Lemma 36 The algorithm maintains a preflow and does not generate stelges. The
nodes s and t stay on levels 0 and n, respectively.

Proof The algorithm clearly maintains a preflow.

After the initialization, each edge 1@ ¢ either connects two nodes on level zero or con-
nects a node on level zero to a node on levellhus, there are no steep edges (there are
not even any eligible edges). A relabeling of a neddoes not create a steep edge since
a node is only relabeled if there are no eligible edges out. ofAi push across an edge
e= (v, w) € G; may add the edgéw, v) to G;. However, this edge is not even eligible.

Only active nodes are relabeled and only nodes different §andt can be active. Thus,

s andt stay on layers and O, respectively. O

The preceding lemma has an interesting interpretationceStimere are no steep edges,
any path fromv tot must have length (= number of edges) at les) and any path from
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v to s must have length at leadtv) — n. Thus,d(v) is a lower bound on the distance from
vtot andd(v) — nis a lower bound on the distance franto s.

The next lemma shows that active nodes can always iiadhe residual network (since
they must be able to send their excess bac) tdt has the important consequence ttat
labels are bounded byn2- 1.

Lemma 37 If v is active then there is a path fromto s in G;. No distance label ever
reache<£n.

Proof Let She the set of nodes that are reachable fiomG; and letT = V\S. Then

D excesan= Y fE@- > f(@,

uesS ecEN(TxYS) ecEN(SxT)
by Lemma 34. Please convince yourself that this lemma hoidgréflows and not only for
flows.

There is no edgév, w) € Gf withv € Sandw ¢ S. Thus, f(e) = 0 for every
ec EN(T x §). We conclude)_,_sexcest) < 0.

Sinces is the only node whose excess may be negative and sites&) > 0 we must
haves € S.

Assume that a node is moved to level 8. Since only active nodes are relabeled this
implies the existence of a path (and hence simple pat@)sirirom a node on level2to s
(which is on leveh). Such a path must contain a steep edge, a contradictiomtonae 36.

O

Theorem 6 When the algorithm terminates, it terminates with a maxinfiom

Proof When the algorithm terminates, there are no active nodesiande the algorithm
terminates with a flow. Call if .

In G¢ there can be no path fromito t since any such path must contain a steep edge
(sincesis on leveln, t is on level 0). Thusf is a maximum flow by Theorem 5. O

There is no guarantee that the generic preflow-push algortdrminates, as it may
choose to perform arbitrarily small pushes. However, itisly easy to bound the num-
ber of relabels and the number of saturating pushes.

Lemma 38 There are at mos2n? relabels and at most nm saturating pushes.

Proof No distance label ever reacheast?y Lemma 37 and hence each node is relabeled at
most 2 times. The total number of relabels is therefore at madt 2

A saturating push across an edge- (v, w) € Gt removes from G;. We claim that
v has to be relabeled at least twice before the next push aerasd hence there can be
at mostn saturating pushes across any edge. To see the claim, olikatvenly a push
acros™' can again ad@ to G;. Since pushes occur only across eligible edgesjust
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be relabeled at least twice after the saturating push aerasd before the next push across
€'®v. Similarly, it takes two relabels af beforee becomes eligible again. O

It is more difficult to bound the number of non-saturatinghes It depends heavily
on which active node is selected for pushing, which edgelécted for pushing, and how
much flow is pushed across the selected edge. In fact, withothter assumptions, the
number of non-saturating pushes is unbounded since we no@getio send only miniscule
portions of flow. We make two assumptions for the remaindé¢hefection:

Maximality: Every push moves the maximal possible amount, i.e., when iigushed
across an eligible edge= (v, w) out of an active node, the amount pushed is

8 = min(exces®), r (e)).

This rule guarantees that every non-saturating push mahkestirce of the push inactive.

Persistence When an active nodeis selected, pushes outwfire performed until eithar
becomes inactive (because of a non-saturating push edtoofuntil there are no eligible
edges out ob anymore. In the latter caseis relabeled.

We study three rules for the selection of active nodes.

Arbitrary: An arbitrary active node is selected. Goldberg and Tarja Ishown that the
number of non-saturating pushes@n’m) when the Arbitrary-rule is used. We will
give their proof below.

FIFO: The active nodes are kept in a queue and the first node in theegaealways
selected. When a node is relabeled or activated the nodedidait the rear of the
queue. The number of non-saturating pushe3(is®) when the FIFO-rule is used. This
bound is due to Goldberg.

Highest-Level An active node on the highest level, i.e., with maximal dislue, is se-
lected. Observe that when a maximal level active node ibeddd it will be the unique
maximal active node after the relabel. Thus, this rule guaes that, when a node is
selected, pushes out of the node will be performed until ttleerbecomes inactive. The
number of non-saturating pushesdgn?,/m) when the highest-level-rule is used. This
bound is due to Cheriyan and Maheshwari [CM89]. The prooémgitselow is due to
Cheriyan and Mehlhorn [CM99].

L emma39 When the Arbitrary-rule is used, the number of non-satagatiushes is @?m).

Proof The proof makes use of a potential function argument. Cengftk potential func-

tion
® = Z d(v).

v;v IS active
We will show:
(1) ® = 0always, andb = O initially.
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(2) A non-saturating push decreasedy at least one.
(3) Arelabeling increase® by one.
(4) A saturating push increasdsby at most 2.

Suppose that we have shown (1) to (4). By (3) and (4) and Len8heStotal increase of
@ is at mosn? + nm2n = n?(1+ 2m). By (1), the total decrease can be no larger than this.
Thus, the number of non-saturating pushes can be atmidst- 2m) by (3).

It remains to show (1) to (4). (1) is obvious. For (2) we obseiivat a non-saturating
push deactivates a node. It may or may not activate a node kvl below. In either case,
® decreases by at least one. For (3) we observe that a relgloélirincreasesl(v) by one,
and for (4) we observe that a saturating push may activatedeaed that all distance labels
are bounded byr2 O

We turn to the FIFO-rule. Recall that it keeps the active sddea queue and always
selects the head of the queue. Relabeled and activated apelesided to the rear of the
queue.

It is convenient to split the execution into phases. The filgtse starts at the beginning
of the execution and a phase ends when all nodes that weve attihe beginning of the
phase have been selected from the queue. In this way eaclisselected at most once in
each phase and hence the number of non-saturating pushesdsta times the number of
phases.

L emma 40 When the FIFO-rule is used, the number of non-saturatingnpsss Qn3).

Proof By the discussion preceding the lemma it suffices to showthigahumber of phases
is O(n?).
We use a potential function argument. Consider

® = max{d(v) ; v is active}.

We show:

(1) @ > 0always, andb = 0 initially.
(2) A phase containing no relabel operation decredsby at least one.
(3) A phase containing a relabel operation increabdxy at most one.

Suppose that we have shown (1) to (3). By (3) and Lemma 38pthkincrease is bounded
by 2n?. By (1), the total decrease can be no larger. Thus the nunfipbiases containing no
relabel operation is bounded bp?2by (3). The total number of phases is therefore bounded
by 4n?.

It remains to show (1) to (3). (1) is obvious. For (2) we obsdhat if a phase contains
no relabel operation then all nodes selected in the phas@dgafttheir excess and push it
to a lower layer. Thusp decreases by at least one (it can decrease by more than ane if a
active node on leveh + 1 pushes its excess backgp For (3), we observe that pushes
move excess to a lower layer and that a relabeling of a nodesttxe node to one higher
level. O
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We turn to the highest-level selection rule. Recall thatiiteggs selects an active node
with maximal distance label.

Lemma 41 When the Highest-Level-rule is used, the number of noraatig pushes is
O(n?/m).

Proof We use a potential function argument. lket= ,/m; this choice ofK will become
clear at the end of the proof. For a nogddet

d'(v) = [{w; d(w) < d(v)}|/K

and consider

o= > d.
v;v is active
We split the execution into phases. We define a phase to ¢afsil pushes between two
consecutive changes of

d* = max{d(v) ; v is active}

and call a phasexpensivdf it contains more tharK non-saturating pushes, aatieap
otherwise.
We show:

(1) The number of phases is at mosf4

(2) The number of non-saturating pushes in cheap phases is atinfés.

(3) @ > 0 always, andb < n?/K initially.

(4) Arelabeling or a saturating push increadeby at mosin/K.

(5) A non-saturating push does not incredse

(6) An expensive phase containitigg > K non-saturating pushes decreageby at least

Q.

Suppose that we have shown (1) to (6). (4) and (5) imply treatdhtal increase ob is at
most(2n? + mn)n/K and hence the total decrease can be at most this numbenlkis
by (3). The number of non-saturating pushes in expensivegshis therefore bounded by
(2n®+n?+mr?)/K. Together with (2) we conclude that the total number of natxsting
pushes is at most

(2n® +n? + mr?)/K + 4n’K.

Observing thah = O(m) and that the choic& = ./m balances the contributions from
expensive and cheap phases, we obtain a bou@{iof,/m).

It remains to prove (1) to (6). For (1) we observe tdat= 0 initially, d* > 0 always,
and that only a relabel can increade Thus,d* is increased at mosn2 times, decreased
no more than this, and hence changed at mo$tites. (2) follows immediately from (1)
and the definition of a cheap phase. (3) is obvious. (4) fdlfnem the observation that
d’(v) < n/K for all v and at all times. For (5) observe that a non-saturating pasisa an
edge(v, u) deactivatew, activatesu (if it is not already active), and thai(u) < d’(v).
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For (6) consider an expensive phase contaiffng K non-saturating pushes. By defi-
nition of a phased* is constant during a phase, and hencé&ation-saturating pushes must
be out of nodes at level*. The phase is finished either because le\ddecomes empty or
because a node is moved from ledélto leveld* + 1. In either case, we conclude that level
d* containsQ > K nodes at all times during the phase. Thus, each non-saigtish in
the phase decreasésby at least one (sina#'(u) < d’(v) — 1 for a push fromv tou). [

7.10.3 A First Implementation

We describe a first implementation of the generic preflowhpalgorithm. The implemen-
tation is straightforward. We initialize a preflow, refinetfiow into a flow, check that the
computed flow is maximal, and return the value of the flow.

We want to execute the program with different rules for geacfrom the set of active
nodes and therefore give the function two template parasiatee number typBI T and the
implementation of the séi of active nodes.

We want to count the number of pushes, the number of relahats,the number of
inspections of edges and therefore introduce appropratmpeters.

(maxflow_basig=

template<class NT, class SET>

NT MAX_FLOW_BASIC_T(const graph& G, node s, node t,
const edge_array<NT>& cap, edge_array<NT>& flow,
SET& U,
int& num_pushes, int& num_edge_inspections,
int& num_relabels)

{ if (s == t) error_handler(1,"MAXFLOW: source == sink");

(MF_BASIC: initialization
(MF_BASIC: main loojp

#ifndef LEDA_CHECKING_OFF
assert (CHECK_MAX_FLOW_T(G,s,t,cap,flow));
#endif

return excess[t];

}

Initialization and Data Structures: We use the following data structures and variables:
for each edge we store the flow acrossin flow{€] and for each node we store the level
of v and the excess afin disfv] andexcesp], respectively. We store the active nodes in
u.

We initialize the flow and the excess to zero, we put all nodes fors on level zero,
we puts on leveln, we saturate all edges outgfand initializeU with all nodes of positive
excess. Thus



176 Graph Algorithms

(MF_BASIC: initialization=
(initialize flow and excess and saturate edges ouj of s
(MF_BASIC: initialize dist and Y
(MF_BASIC: initialize counters

where

(initialize flow and excess and saturate edges ouj=sf s

flow.init (G,0);
if (G.outdeg(s) == 0) return O;

int n = G.number_of_nodes(); int max_level = 2*n - 1;
int m = G.number_of_edges();

node_array<NT> excess(G,0);
// saturate all edges leaving s

edge e;

forall_out_edges(e,s)

{ NT ¢ = caple];
if (¢ == 0) continue;
node v = target(e);
flow[e] = c;
excess[s] -= c;
excess[v] += c;

}

(MF_BASIC: initialize dist and Y=

node_array<int> dist(G,0); dist[s] = n;
node v;
forall_nodes(v,G)

if ( excess[v] > 0 ) U.insert(v,dist[v]);

(MF_BASIC: initialize countens=

num_relabels = num_pushes = num_edge_inspections = 0;

Implementations of the Set of Active Nodes: The implementation off must support the
following operations:

node Udel( ); delete a node frortd and return it (returmil if U is empty).

U.insertnodew, int d); insert a node with dist-valued. This version is to be used in the
initialization phase and when a node is reinserted into¢hefsactive nodes after a relabel.

U.insertQnodev, int d); insert a nodey with dist-valued. This version is to be used
when a node gets activated by a push into it.

bool U.empty ); return true ifU is empty.
U.clear( ); remove all elements frortd.
Construction and Destruction.
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We give three implementations:

The FIFO implementatiorkeeps the nodes id in a queue. Insertions add to the end of
the queue, and deletions remove from the front of the queue.

(FIFO implementation of SBEE
#include <LEDA/list.h>
class fifo_set{
list<node> L;
public:
fifo_set ) {}
node del() { if (!L.empty()) return L.pop(); else return nil; }

void insert(node v, int d) { L.append(v); }
void insertO(node v, int d) { L.append(v); }

bool empty() { return L.empty(); }
void clear() { L.clear(); }

“fifo_set () {}
};

The MFIFO (modified FIFO) implementatiokeeps the nodes i in a linear list and
always selects the first node from the list. Nodes that anseeied after a relabel operation
are added to the front of the linear list, and nodes that geteied by a push into them are
added to the rear of the list. In this way the same node isteelemtil all excess is removed
from the node. The MFIFO implementation guarantee©an®) bound on the number of
non-saturating pushes, see the exercises.

(MFIFO implementation of SBE
#include <LEDA/list.h>
class mfifo_set{
list<node> L;
public:
mfifo_set(){}
node del() { if ( !'L.empty() ) return L.pop(); else return nil; }

void insert(node v, int d) { L.push(v); }
void insertO(node v, int d){ L.append(v); }

bool empty() { return L.empty(); }
void clear() { L.clear(); }

“mfifo_set () {}
};

Thehighest-level implementatiaf U maintains an array of linear lists with index range
[0.. maxlevel, wheremaxlevelis an argument of the constructor. The Wgtd] contains all
nodesv that were inserted binsert(v, d) or insertQv, d). The implementation maintains
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a variablemaxsuch thatA[d] is empty ford > max In insertOwe exploit the fact that it
always inserts below the maximal level.

(Highest level implementation of SEE

#include <LEDA/list.h>
#include <LEDA/array.h>

class hl_set{

int max, max_lev;
array<list<node> > A;

public:
hl_set(int max_level) :A(max_level+1)
{ max = -1; max_lev = max_level;}
node del()

{ while (max >= 0 && A[max].empty()) max-—-;
if (max >= 0) return A[max].pop(); else return nil;

}

void insert(node v, int d)
{ A[d] .push(v);
if (d > max) max = d;
}
void insertO(node v, int d) { A[d].append(v); }

bool empty()
{ while (max >= 0 && A[max].empty()) max—-;
return ( max < 0 );

}
“hl_set(){}

void clear()
{ for (int i = 0; i <= max_lev; i++) A[i].clear();
max = -1;
}
};

TheMain Loop: In the main loop we select a noddrom U. We callv the currentnode.
If v does not exist, we break from the main loop, and i$ equal tot, we continue to the
next iteration of the main loop. So assume otherwise. Weotpush the excess ofto its
neighbors in the residual graph. We inspect first the reseliges that correspond to edges
out ofv in G and then the residual edges that correspond to edges intG.

If v remains active after saturating all residual edges out ofdtrelabeb and reinsert it
intoU.

(MF_BASIC: main loojp=

for(;;)
{
node v = U.del();
if (v nil) break;

if (v == t) continue;
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NT ev = excess[v]; // excess of v
int dv = dist[v]; // level of v
edge e;

(MF_BASIC: push across edges out ¢f v

if (ev > 0)

{ (MF_BASIC: push across edges into ¥

excess[v] = ev;

if (ev > 0)

{ dist[v]++;
num_relabels++;
U.insert(v,dist[v]);

}

}

179

Pushing Excess Out of a Node: Let v be a node with positive excess. We want to push
flow out of v along eligible edges. An edgee G is either also an edge @& (and then
flonfe] < cafe]) or the reversal of an edge & (and therflow[e”®’] > 0). We therefore

iterate over all edges out ofand all edges into.

For each edge out of v we push magexcesp], cage] — flowfe]). If a push decreases

the excess of to zero we break from the loop.

(MF_BASIC: push across edges out p&v

for (e = G.first_adj_edge(v); e; e = G.adj_succ(e))

{ num_edge_inspections++;

NT& fe = flowl[e];

NT rc = caplel - fe;
if (rc == 0) continue;
node w = target(e);
int dw = dist[w];

if ( dw < dv ) // equivalent to ( dw
{ num_pushes++;

NT& ew = excess[w];

if (ew == 0) U.insertO(w,dw);

if (ev <= rc)

{ ew += ev; fe += ev;

ev = 0; // stop: excess[v] exhausted

break;

}

else

{ ew += rc; fe += rc;
ev -= rc;

}

}
}

The code for the edges intois symmetric.
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(MF_BASIC: push across edges inte=v

for (e = G.first_in_edge(v); e; e = G.in_succ(e))
{ num_edge_inspections++;
NT& fe = flowlel;

if (fe == 0) continue;
node w = source(e);
int dw = dist[w];

if ( dw < dv ) // equivalent to ( dw == dv - 1 )
{ num_pushes++;

NT& ew = excess[w];

if (ew == 0) U.insertO(w,dw);

if (ev <= fe)

{ fe -= ev; ew += ev;
ev = 0; // stop: excess[v] exhausted
break;

}

else

{ ew += fe; ev -= fe;
fe = 0;

}

}

}

Our first implementation is now complete. Let us see how ifqgrers. We investigate the
worst case complexity first and then give experimental data.

Worst Case Running Time: The running time of our implementation, not counting the
time spent in the implementation of, is proportional to the number of edge inspections.
We bound the number of edge inspections first and then tuhrettirhe spent in the imple-
mentation olU.

Consider an arbitrary iteration of the main loop andddbe the node selected in the
iteration. In the iteration we inspect all edges incidenbfaand either perform a push
across an edge incident toor relabelv. Thus the number of inspections of an edgs
bounded by the number of relabels of the endpoints gius the number of pushes out of
the endpoints oé. No node is relabeled more than imes and hence the total number of
edge inspections due to relabel€ignm). If P denotes the total number of pushes then the
number of edge inspections due to pushe3({deg - P), whereded is the maximal degree
of any node. The number of pushesdgn®) with the FIFO or MFIFO implementation for
the set of active nodes and@(n?,/m) with the highest-level implementation.

We turn to the time spent in maintaining the set of active sodeor the FIFO and
MFIFO implementation each operation bntakes constant time, and for the highest-level
implementation each operation dhtakes constant time plus the number of decreases of
max The number of decreases mwifaxis bounded by the total increase mfaxand max
is only increased by relabel operations. A relabel increasexby one. We conclude the
total change ofmaxis bounded byO(n?) by Lemma 38. The time spent in maintaining the
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set of active nodes is therefo@(n?) plus the number of operations d¢h The number of
operations otJ is certainly bounded by the number of edge inspections.

We summarize in:

Theorem 7 The worst case running time of our implementation i® deg’) with the
FIFO- or MFIFO-rule and is Qn?,/m- ded’) with the highest-level-rule, where deg the
maximum degree of any node.

Theded'-factor in the running time is easily removed by means of thealedcurrent
edge data structureWe used it already in Section 7.6. We found that the impraeaseris
theoretical and does not show positively in the observedingntimes for all graphs where
the average degree is bounded by 20. We therefore did natdadhe current edge data
structure in our implementations.

We maintain for each node a current out-edgeur outedggv] and a current in-edge
curinedgdv] with the property that:

e no edge precedinguroutedgdv] in the list of edges out of is eligible and
e no edge precedingurinedgguv] in the list of edges intw is eligible.

When we push excess out ofwe start searching for eligible edgescatoutedgg¢v] and
curinedggv], respectively. When we relabelwe resetur.outedggv] andcurinedggv]
to the first edge out of and intov, respectively.

The implementation is correct since the only way a nondeléggedgee = (v, w) can
become eligible is through a relabelingof

The current edge implementation has the property that fpnadev and between con-
secutive relabels of the time spent in searching for eligible edges incident is pro-
portional to the degree af plus the number of pushes performed. The total time spent in
searching for eligible edges is therefore bounde®iggm) plus the number of pushes.

Theorem 8 The worst case running time of our implementation with theetu edge data
structure is Qn®) with the FIFO- or MFIFO-rule and is @n?,/m) with the highest-level-
rule.

Four Generators: We describe four generators for max flow problems.

The first generator produces a graph withodes and 2 + m edges. It first produces a
random graph witln nodes anan edges and makesandt the first and the last node &,
respectively. It then adds edgeés v) and(v, t) for all nodesv. The capacities are random
numbers between 2 and 11 for all edges leagiagd between 1 and 10 for all other edges.

(-maxflow_gen.¢+=

void max_flow_gen_rand(GRAPH<int,int>& G, node& s, node& t, int n, int m)
{ G.clear();
random_graph(G,n,m) ;

s = G.first_node(); t = G.last_node();
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node v; edge e;
forall_nodes(v,G) { G.new_edge(s,v); G.new_edge(v,t); }
forall_edges(e,G)

G[e]l] = ( G.source(e) !'= s ? rand_int(1,10) : rand_int(2,11) );

The next two generators are due to Cherkassky and Goldb&§1[C For each integek,
k > 1, they generate the networks shown in Figure 7.43.

(-maxflow_gen.¢+=

void max_flow_gen_CG1(GRAPH<int,int>& G, node& s, node& t, int n)
{ G.clear();
if (n < 1)
error_handler(1,"max_flow_gen_CGl: n must be at least one");
array<node> V(2%*n);
int i;
for(i = 0; i < 2*%n; i++) V[i] = G.new_node();
s = V[0]; t = V[2*n - 1];
node v = V[n];
for (i = 0; i < n; i++)
{ G.new_edge(V[i],V[i + 1], n - i);
G.new_edge(V[i],v, 1);
}
G.new_edge(V[n - 1],V[2*n - 1], 1);
G.new_edge(V[n - 11,V[nl, 1);
for (i =n; i <= 2%n - 2 ; i++ ) G.new_edge(V[il,V[i + 1],n);
}
void max_flow_gen_CG2(GRAPH<int,int>& G, node& s, node& t, int n)
{ G.clear();
if (n < 1)
error_handler(1,"max_flow_gen_CG2: n must be at least one");
array<node> V(2%n);
int 1i;
for(i = 0; i < 2*n; i++) V[i] = G.new_node();
s = V[0]; t = V[2*n-1];
for (i = 0; i < n; i++ ) G.new_edge(V[i],V[2%n - 1 - i], 1);
for (1 = 0; i <= n - 1; i++ ) G.new_edge(V[i],V[i + 1], 2#n);
for (i = n; i <= 2%n - 2; i++ ) G.new_edge(V[i],V[i + 1], n);

Observe the order in which we generate the edges out ofintlde edge from to 2n—1—i
precedes the edge to node- 1.

The fourth generator was suggested by Ahuja, Magnanti, atid @MO93]. The gen-
erated network is also shown in Figure 7.43.
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Figure 7.43 The generatormaxflonngenCG1, maxflomgenCG2 andmaxflonwgenAOM
generate the graphs shown. All three generators take thengéem as an input.

(-maxflow_gen.¢+=

void max_flow_gen_ AMO(GRAPH<int,int>& G, node& s, node& t, int n)
{ G.clear();
if (n < 1)
error_handler(1,"max_flow_gen_AMO: n must be at least one");
array<node> V(n);

s = G.new_node();
int 1i;
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for(i = 0; i < n; i++) V[i] = G.new_node();
t = G.last_node();
for (i =n-2; i>0; i—- )
{ G.new_edge(s,V[i], 10000);
G.new_edge(V[i],V[i + 1], 1);
}
}

Running Times: Table 7.10 shows the behavior of our first implementatiomefdreflow-
push method with three different selection rules and for ftifierent kinds of graphs. For
each of the four generators above we ran the case$00 andn = 1000. For the random
graph generator we usea = 3n. The number of pushes, the number of edge inspections,
the number of relabels, and the running time quadruples oe than quadruples whenis
doubled.

In the next section we will describe several optimizatiorsol will lead to a dramatic
improvement of observed running time. None of them imprdtesworst case behavior,
however.

7.10.4 Optimizations

What is the best case running time of our implementation? rlihaing time is2(n?) if

2 (n) nodes need to be lifted above levelThis is usually the case. The best case behavior
of the other parts of the algorithm @(m) and hence the cost of relabeling dominates the
best case running time. In this section we will describe dJeeuristics that frequently
reduce the time spent in relabeling nodes and as a sidg-edfiece the time spent in all
other operations. The heuristics will turn the preflow-palgorithm into a highly effective
algorithm for solving flow problems.

Consider the example shown in Figure 7.44. We have nodea 6-tb,s = 0,t = n—1,
and edgesi,i + 1) foralli, 0 <i < n— 1. All edges have capacity two, except for edge
(n — 2, n — 1) which has capacity one.

Let us see what the preflow-push method does. In the iniitidin phase we saturate the
edge(0, 1), puts on leveln, and all other nodes on level 0. Node 1 has positive excess.
We lift node 1 to level 1 and push its excess to node 2. We liften® to level 1 and push
its excess to node 3. Continuing in this way the excess isqulighnoden — 2. Only one
unit can be forwarded tband one unit remains on node— 2. At this point the value of
the maximum flow has been determined. There is one unit of fiaarti and this is the
maximum possible. However, the algorithm does not knowftdsyet and it will take the
algorithm a long time to discover it. We lift nodge— 2 to level 2 and push the unit back to
noden — 3. Continuing in this way we lift nodes— 2,n— 3, ..., 2 to level 2 and push the
excess back to node 1. Then we lift node 1 to level 2 and thezt \vand ... . Continuing
in this way, we will invest (n?) relabels (and pushes) until nodes hte 1 end up at level
n+ 1. At this point we can push the excess back &md the algorithm terminates.
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Generator Rule Pushes Inspections Relabels  Time
rand FIFO 1.764e+05 2.467e+06 2.34e+05 1.42
6.831e+05 9.833e+06  9.28e+05  5.88
HL 1.775e+05 2.672e+06 2.34e+05 1.47
7.442e+05  1.073e+07 9.28e+05 6.04
MFIFO 2.262e+05 2.566e+06 2.34e+05 1.28
8.524e+05  1.018e+07 9.28e+05 5.25
CGl FIFO 1.761e+05 9.63e+05 2.281e+05 0.81
6.835e+05 4.121e+06 8.92e+05 3.94
HL 1.875e+05 6.009e+06 1.885e+05  2.75
7.5e+05  4.486e+07 7.52e+05 20.47
MFIFO 1.682e+05 8.629e+05 2.207e+05 0.68
6.713e+05 3.608e+06 8.801e+05 3.08
CG2 FIFO 2.864e+06 1.367e+07 2.751le+06 12.12
1.149e+07  5.479e+07 1.1e+07 50.97
HL 1.695e+06 1.226e+07 2.752e+06 11.33
6.764e+06  4.902e+07 1.1e+07 43.17
MFIFO 2.864e+06  1.367e+07 2.751e+06 11.02
1.149e+07  5.479e+07 1.1e+07 45.14
AMO FIFO 500 4.498e+06 1.5e+06 3.27
1000 1.8e+07 6e+06 13.13
HL 500 4.498e+06 1.5e+06 3.79
1000 1.8e+07 6e+06 15.25
MFIFO 500 4.498e+06 1.5e+06 2.74
1000 1.8e+07 6e+06 11.13

Table 7.10 The basic implementation of the preflow-push algorithm. Wawsits behavior for
four different kinds of graphs and three different selettioles. For each generator we ran the
casesh = 500 andn = 1000. For the random graph generator we used 3n. The program
max flow_basictime in the demo directory allows readers to make their owpeerents.

We describe five optimizations. The first optimization isdzhen the observation that
nodes on layen and above can be treated more simply than nodes below hevéhe
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Figure 7.44 A network with nodes 0, ...n — 1 and edged,i + 1) foralli,0<i <n—1. All
edges have capacity two except for edge- 2, n — 1) which has capacity one.

second and third optimizations increase distance labets amgressively, the fourth opti-
mization splits the execution into two phases (where a mawirpreflow is computed in
the first phase and the remaining excess is pushed bacitthe second phase), and the
fifth optimization recognizes nodes that have no chancerefdaling their flow tot. The
combined effect of the five heuristics is to reduce the rugtime dramatically for many
instances of the max flow problem, see Table 7.16 on page 204.

Large Distance Labels: We call a nodev highif d(v) > n andlow otherwise and show
that high nodes can be treated simpler than low nodes.

What distinguishes high nodes from low nodes? There canrtieva path of residual
edges from a high node toas any such path would necessarily contain a steep edge. All
excess of active high nodes must therefore flow back tdhe situation is different for
active low nodes. Some of their excess can be pushednal some of their excess must
flow back tos.

How can we exploit the difference? All excess of active higldes must flow back to
S. The excess reaches the active high nodes through edgek with f(e) > 0. This
suggests that it can be sent back through such edges.

We therefore define

Ei ={€*;ec Eandf(e) > 0}

and use only edges i} when pushing out of high active nodes. We relabel a high ectiv
node when there are no eligible edge&ihout of it.

[* initialization */
set f (e) = cap(e) for all edges witlsourcée) = s;
set f (e) = O for all other edges;
setd(s) = nandd(v) = O for all other nodes;
/* main loop */
while there is an active node
{ letv be any active node;
if d(v) < nandthereis an eligible edge= (v, w) € E¢ or
d(v) > nand there is an eligible edge= (v, w) € E}
{ pushé acrosse for § = min(exces&), r (e)); }
else
{ relabelv; }
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We need to show that the modified algorithm is correct. We &iltegocorrectness proof
of the basic preflow-push algorithm. The modified algorithimynoreate steep edges. We
show that no steep edge can end below level 1 and that every steep edge belongs to
E+ \ E}; this modifies Lemma 36.

Lemma 42 Any residual edge e= (v, w) that becomes steep in the modified algorithm
satisfies e E¢ \ E} and d(w) > n— 1.

Proof A steep edge = (v, w) can only be created by a relabelingwofA nodev is only
relabeled when there is no eligible edge w) € E}. Thus only edges ifEs \ E} can
become steep.

A nodewv with d(v) < nis only relabeled when there is no eligible edge out of it. §hu
a relabeling ofv that creates a steep edge- (v, w) can only occur whed(v) > n. The
edgee was not steep before the relabelinguadnd hence (w) > n— 1. O

We next show that every active node can readh G%; this modifies Lemma 37. The
proof carries over almost literally.

Lemma 43 If v is active then there is a path fromto s in G;. No distance label ever
reachen.

Proof Let Sbe the set of nodes that are reachable froim Gt and letT = V\S. Then

D excesan= Y fE@- > f(),
uesS ecEN(T xYS) ecEN(SxT)
by Lemma 34.

There is no edgév, w) € G} withv € Sandw ¢ S Thus, f(e) = 0 for every
ec EN(T x S). We concludée),_sexcest) < 0.

Sinces is the only node whose excess may be negative and sktasé&) > 0 we must
haves € S.

Assume that a node is moved to level 8. Since only active nodes are relabeled this
implies the existence of a path (and hence simple pat@)ifrom a node on level2to s
(which is on leveh). Such a path must contain a steep edge, a contradictiomtonzae42.

O

Theorem 9 When the modified algorithm terminates it terminates witreaimum flow. All
bounds on the number of relabels and the number of pushesgbothe basic algorithm
hold also true for the modified algorithm.

Proof When the algorithm terminates there are no active nodes endehthe algorithm
terminates with a flow. Call if .

Assume that there is a pafhin G; fromstot. Write p = p1 © p2 wherep, ends in a
node with level at least and p, contains no node with level or more. Themp, starts with
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a node on leveh — 1 and contains no steep edges. Both claims follow from Lemia 4
However,p, contains at most— 1 nodes (since it cannot contaand hence must contain
a steep edge.

Thus there is no path fromtot in G and hencef is optimal by Theorem 5. O

The changes in the program are minor. We push across the edgebv only whenv
lives on a layer less tham

(MF_LH: main loop=

for(;;)

{
node v = U.del();
if (v == nil) break;
if (v == t) continue;
NT ev = excess[v]; // excess of v
int dv = dist[v]; // level of v
edge e;

if ( dist[vl < n )

{ (MF_BASIC: push across edges out df ¥
if (ev>0)

{ (MF_BASIC: push across edges intp ¥

excess[v] = ev;

if (ev > 0)

{ dist[v]++;
num_relabels++;
U.insert(v,dist[v]);

}

}

The procedure MAXFLOW_LH_T results from MAXFLOW_BASIC_T by replacing the
main loop. Table 7.11 shows the effect of distinguishingueein low and high nodes. The
effect is small and significant savings are only observedfeitCG2-generator.

The Local Relabeling Heuristic: Thelocal relabeling heuristi@pplies whenever a node
is relabeled. It increases the dist-valueydbd

14+ min{d(w); (v, w) € Gt} .

Observe thav is active whenever it is relabeled and that an active nodeahbesast one
outgoing edge i ;. The expression above is therefore well defined. Wihexrrelabeled,
none of the outgoing edges is eligible and hedte) > d(v) for all (v, w) € G¢. Thus,
the local relabeling heuristic increasd@) by at least one. It may increase it by more than
one.

The correctness of the heuristic follows from the followadtgrnative description: when
a node is relabeled, continue to relabel it until there islayibde edge out of it.

The local relabeling heuristic is easily incorporated iotw implementation. We main-
tain a variabledmin which we initialize to MAXINT before we scan the edges irexid
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Generator Rule Pushes Inspections Relabels  Time

rand FIFO 1.728e+05 2.426e+06 2.27e+05 1.51

1.726e+05 2.422e+06 2.269e+05 1.54

HL 1.811e+05 2.654e+06 2.27e+05 1.6

1.81e+05 2.649e+06 2.269e+05 1.64

MFIFO 2.164e+05 2.513e+06 2.27e+05 1.36

2.16e+05 2.508e+06 2.268e+05 14

CG1 FIFO 1.761e+05 9.63e+05 2.281e+05 0.85

1.761e+05 9.63e+05 2.281e+05 0.9

HL 1.875e+05 6.009e+06 1.885e+05 2.83

1.875e+05 6.009e+06 1.885e+05 2.88

MFIFO 1.682e+05 8.629e+05 2.207e+05 0.73

1.682e+05 8.629e+05 2.207e+05 0.89

CG2 FIFO 2.864e+06 1.367e+07 2.751e+06 12.82

2.54e+06 1.221e+07 2.544e+06 11.98

HL 1.695e+06 1.226e+07 2.752e+06 11.31

1.57e+06 1.12e+07 2.627e+06 11.24

MFIFO 2.864e+06  1.367e+07 2.751e+06 11.6

2.54e+06 1.221e+07 2.544e+06 10.87

Table 7.11 Effect of low-high distinction. We show the behavior forekrdifferent kinds of
graphs and three different selection rules. For each gemexva ran the case = 500. For the
random graph generator we usad= 3n. For each case we give the running time of

MAX _FLOW_BASIC_T (first line) and of MAX_FLOW_LH_T (second line). Use the program
max flow_lh_time in the demo directory to perform your own experiments.

to the current active node. Lete = (v, w) be a residual edge. H is eligible, i.e.,
d(w) < d(v), we push across, and ifeis not eligible, i.ed(w) > d(v), we setdminto
min(dmin d(w)). If v is still active after scanning all residual edges incident,twe can
setd(v) to 1+ dmin

We obtain

(push across edges out g&v

for (e = G.first_adj_edge(v); e; e = G.adj_succ(e))
{ num_edge_inspections++;
NT& fe = flowl[e];
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NT rc = caple] - fe;
if (rc == 0) continue;
node w = target(e);
int dw = dist[w];
if ( dw < dv ) // equivalent to ( dw == dv - 1 )
{ num_pushes++;
NT& ew = excess[w];
if (ew == 0) U.insertO(w,dw);
if (ev <= rc)
{ ew += ev; fe += ev;

ev = 0; // stop: excess[v] exhausted
break;

}

else

{ ew += rc; fe += rc;
ev -= rc;

}

}
else { if ( dw < dmin ) dmin = dw; }
}

The code for the edges intois symmetric.

(push across edges into=

for (e = G.first_in_edge(v); e; e = G.in_succ(e))
{ num_edge_inspections++;
NT& fe = flowl[e];
if (fe == 0) continue;
node w = source(e);
int dw = dist[w];
if ( dw < dv ) // equivalent to ( dw == dv - 1 )
{ num_pushes++;
NT& ew = excess[w];
if (ew == 0) U.insertO(w,dw);
if (ev <= fe)

{ fe = ev; ew += ev;
ev = 0; // stop: excess[v] exhausted
break;

}

else

{ ew += fe; ev -= fe;
fe = 0;

}

}
else { if ( dw < dmin ) dmin = dw; }
}

The main loop turns into

Graph Algorithms
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(MF_LRH: main loop=
for(;;)
{
node v = U.del();
if (v == nil) break;
if (v == t) continue;

NT ev excess[v]; // excess of v

int dv = = dist[v]; // level of v

int dmin = MAXINT; // for local relabeling heuristic
edge e;

if (dv < n)

{ (push across edges out of &
if (ev>0)
{ (push across edges intd \*

excess[v] = ev;

if (ev > 0)

{ dist[v] = 1 + dmin;
num_relabels++;
U.insert(v,dist[v]);

}

}

The procedure MAXFLOW_LRH_T results from MAXFLOW_BASIC_T by replacing the
main loop. Table 7.12 shows the combined effect of the loglaleling heuristic and the
low-high distinction.

The Global Relabeling Heuristic: Theglobal relabeling heuristimipdates the dist-values
of all nodes. It sets

uw,t) if there is a path from tot in G

n+ w*(v,s) ifthereis a path fromy tosin G} but no
path fromv tot in Gy

2n—1 otherwise

dv) =

Hereu (v, t) andu*(v, s) denote the lengths (= number of edges) of the shortest patims f
vtotin Gt and fromv to sin G*, respectively. The reader should convince himself that
the global relabeling heuristic does not generate any stdges.

The global relabeling heuristic can be implemented by breéicst search and requires
time O(m). It should therefore not be applied too frequently. We wilply it everyh - m
edge inspections for some suitable constanh this way2 (m) time is spent between ap-
plications of the global relabel heuristic and hence thestvoase running time is increased
by at most a constant factor. The best case can improve sigmily.

In our example from the beginning of the section, the globkbeling heuristic is highly
effective. Assume that it is applied after the edage- 2, n — 1) is saturated. It will put node
i onleveln+i foralli,1<i <n— 2, and the excess on node- 2 will flow back tosin
a series oh pushes. In this way the running time decreases ffom?) to O(n).
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Generator Rule Pushes Inspections Relabels  Time
rand FIFO 1.878e+05 2.554e+06 2.349e+05 1.51

1.945e+05 1.949e+06 1.498e+05 1.25
HL 1.915e+05 2.768e+06 2.349e+05 1.6
1.915e+05 2.04e+06 1.36e+05 1.27
MFIFO 2.332e+05  2.644e+06 2.348e+05 1.39
2.332e+05 1.986e+06 1.457e+05 1.17
CGl FIFO 1.761e+05 9.63e+05 2.281e+05 0.85
2.234e+05 7.007e+05 1.403e+05 0.68
HL 1.875e+05 6.009e+06 1.885e+05 2.8
1.875e+05 5.726e+06 9.438e+04  2.67
MFIFO 1.682e+05 8.629e+05 2.207e+05 0.71
1.682e+05 5.482e+05 1.16e+05 0.52
CG2 FIFO 2.54e+06  1.221e+07 2.544e+06 11.35
2.216e+06  9.529e+06 1.82e+06 9.19
HL 1.57e+06 1.12e+07 2.627e+06 10.35
1.57e+06 7.51e+06 1.377e+06 7.41
MFIFO 2.54e+06  1.221e+07 2.544e+06 10.35
2.54e+06  9.996e+06 1.796e+06 8.99

Table 7.12 Effect of low-high distinction and local relabeling hetids We show the behavior
for three different kinds of graphs and three different siide rules. For each generator we ran
the casen = 500. For the random graph generator we used 3n. For each case we give the
running time of MAX_FLOW_LH_T (first line) and of MAX_FLOW_LRH_T (second line). The
local relabeling heuristic results in a considerable sguirall cases. Use maftow_Irh_time in
the demo directory to perform your own experiments.

We turn to the implementation.

We define two functionsomputedistt andcomputeadiststhat compute the distanceto
ands, respectively. Both functions need access to the residaphgand hence have param-
etersG, flow, andcap We also provide them with the nodend the nods, respectively.
The functions store the computed distancedist It is assumed thalisfv] > n for all
nodesv prior to a call ofcomputeadistt and thatdisfv] = 2« n — 1 for all nodesv that
cannot reaclt in G prior to a call ofcomputedists; the latter function also assumes that
nodes that can rea¢hn G+ have a distance value less than
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The calls insert all active nodes with their new distancelaintoU. It is assumed that
U is empty prior to a call otomputadistt and thatU contains all active nodes that can
reacht in G; prior to a call ofcomputedists.

The functions are realized by breadth-first search and heseg a queu®. We provide
it as a parameter. It is assumed that the queue is empty pracall of both functions.
Both functions leav&) empty when they terminate.

The functioncomputeadistt also computes for eadh 0 < d < n, the number of nodes
v with disfv] = d and stores the number toun{d]; this count will be needed in the
so-called gap heuristic to be described later.

The details of both functions are fairly simple. ¢domputalistt we perform a “back-
ward” breadth-first search startingtatWhenever a new node is reached, say from node
v, we sedisw] to 1+ disfv], we insertw into U if it is active, we increaseounf{disfw]],
and we addv to the rear ofQ. Since we are computing distanced tands, respectively,
all edges are considered in their reverse direction.

(maxflow. dist sty +=

template<class NT, class SET>

void compute_dist_t(const graph& G, node t, const edge_array<NT>& flow,
const edge_array<NT>& cap,
const node_array<NT>& excess, node_array<int>& dist,
SET& U, b_queue<node>& , array<int>& count)

int n = G.number_of_nodes();
Q.append(t);
dist[t] = 0;

count.init (0);
count[0] = 1;

while ( !Q.empty() )
{ node v = Q.popQ);
int d = dist[v] + 1;
edge e;
for(e = G.first_adj_edge(v); e; e = G.adj_succ(e))
{ if ( flowle]l == 0 ) continue;
node u = target(e);
int& du = dist[ul;
if ( du >=n )
{ du = d;
Q.append(u); count[d]++;
if ( excess[u]l > 0 ) U.insert(u,d);
}
}
for(e = G.first_in_edge(v); e; e = G.in_succ(e))
{ if ( caple] == flowl[e]l ) continue;
node u = source(e);
int& du = dist[ul;
if (du >=n)
{ du = d;
Q.append(u) ; count[d]++;
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if (excess[u] > 0) U.insert(u,d);
}
}
}
}

The “backward” breadth-first search frosnis simpler because it only needs to consider
edges inG}.

(maxflow_dist.st)+=

template<class NT, class SET>

void compute_dist_s(const graph& G, node s, const edge_array<NT>& flow,
const node_array<NT>& excess, node_array<int>& dist,
SET& U, b_queue<node>& Q)

int n = G.number_of_nodes();
int max_level = 2%n - 1;
Q.append(s);
dist[s] = n;
while ( !Q.empty() )
{ node v = Q.pop(Q);
int d = distl[v] + 1;
edge e;
for(e = G.first_adj_edge(v); e; e = G.adj_succ(e))
{ if ( flowle]l == 0 ) continue;
node u = target(e);
int& du = dist[ul;
if ( du == max_level )
{du =4d;
if (excess[u] > 0) U.insert(u,d);
Q.append(u) ;
}
}
}

Before we describe the required changes to the initiabngthase and the main loop we
describe one further optimization.

Two-Phase Approach: We partition the execution into two phases. The first phasks en
when there is no active node at a level beloanymore. At this point of the execution the
algorithm has determined a maximum preflow, i.e., a prefloiciwmaximizesexcesH].
This follows from the observation that there can be no paf8 irfrom an active node tb

at the end of phase one.

In the first phase we push only out of nodes with level befoand in the second phase
we push only out of nodes with level at least Phase two ends when there are no active
nodes anymore.

For the first phase we initializéisfv] with the distance fromv tot (if v can reach in
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G where f is the flow obtained by saturating all edges ouspénd we initializedisfv]
with n otherwise.

(MF_GRH: initialize dist and U for first phases

node_array<int> dist(G);
dist.init(G,n);

compute_dist_t(G,t,flow,cap,excess,dist,U,Q,count);

The other initializations are as before:

(MF_GRH: initialization)=
(initialize flow and excess and saturate edges ouj of s

(MF_GRH: additional data structures
(MF_GRH: initialize dist and U for first phase
(MF_GRH: initialize counters

(MF_GRH: initialize counters=

num_relabels = num_pushes = num_edge_inspections = 0;
num_global_relabels = 0;

We need some additional data structures: the global disteaiculations need a queue and
we need to know which phase we are in. We also need to intrdtle@raycount coun{d]

is to contain the number of nodes at ledefor 0 < d < n. It will be required by the gap
heuristic to be explained below.

(MF_GRH: additional data structures=

b_queue<node> Q(n);
int phase_number = 1;
array<int> count(n);

The main loop has the same structure as before.

(MF_GRH: main loop=

for(;;)

{
(MF_GRH: extract v from queye
NT ev = excess[v]; // excess of v
int dv = = dist[v]; // level of v
int dmin = MAXINT;
edge e;

if ( dist[v] < n )

{ (push across edges out of &
if (ev>0)

{ (push across edges intd
excess[v] = ev;

if (ev > 0)
{ (MF_GRH: update distance label(s)}
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We still need to describe how nodes are selected from theeqaredi how distance labels
are updated.

Let v be the node selected from the §ebf active nodes. Ib does not exist and we are
in the second phase, we break from the main loop: dibes not exist and we are in the
first phase, we start the second phase. if equal tat, we ignorev. In all other cases, we
proceed and attempt to push outwof

How do we start the second phase? We need to initialize thendis labels and also the
set of active nodes for the second phase. We first computesthaf sodes that can still
reacht (none of them is active) and collect its complement in aSsédone of the nodes in
Scan reach. We then compute the distance labels for all nodeS by computing their
distances tg in G7.

(MF_GRH: extract v from queyes
node v = U.del();
if (v == nil)
{
if ( phase_number == 2 ) break; // done

dist.init(G,n);
compute_dist_t(G,t,flow,cap,excess,dist,U,Q,count);

node u;
forall_nodes(u,G)
{ if (dist[u] == n)

{ S.append(u);

dist[u]l = max_level;

}
}
phase_number = 2;
compute_dist_s(G,s,flow,excess,dist,U,Q);
continue;

}

if (v == t) continue;

The setS needs to be declared.

(MF_GRH: additional data structures-=
list<node> S;

It remains to describe how we update distance labels. Weiomed already that the
global relabeling heuristic has a cost@tm) and that we want to apply it evehy- m edge
inspections for some constamt

We therefore introduce two integer variablesit_heur andheuristig initialize heuristic
to h - m, incrementimit_heur by heuristicwhenever the global relabel heuristic is applied,
and apply the global relabel heuristic whenever the numbeidge inspections exceeds
limit.heur. Thus
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(MF_GRH: update distance label(s

if (num_edge_inspections <= limit_heur)
{ (MF_GRH: update the distance label of ¥
else
{ limit_heur += heuristic;
num_global_relabels++;
(MF_GRH: global relabel
}

and

(MF_GRH: additional data structures-=
int heuristic = (int) (h*m);
int limit_heur = heuristic;
In order to update the distance labehofve incrementiminand then distinguish cases.

If we are in phase one arininis at leash, we setdisv] to n and do not insert into the

set of active nodes (sinaecannot reachin Gt anymore). In all other cases, we siétffv]

todminand inserw into U.

(MF_GRH: update the distance label of=
dmin++; num_relabels++;
if ( phase_number == 1 && dmin >= n) dist[v] = n;
else { dist[v] = dmin;
U.insert (v,dmin);

}

A global relabel operation cleat$ and then distinguishes cases. In phase two the dis-
tance tos is recomputed for all nodes i recall that the nodes i \ Scan reach in G¢
and hence are irrelevant for phase two.

In phase one we compute the distance foto t in G+ for all nodesv. For nodes that
cannot reach we set the distance label to If no active node can readchphase one ends.
We setSto all nodes that cannot reathnd then proceed as described above for phase two.

(MF_GRH: global relabel=
U.clear();

if (phase_number == 1)

{ dist.init(G,n);
compute_dist_t(G,t,flow,cap,excess,dist,U,Q,count);
if ( U.empty() )

{ node u;
forall_nodes(u,G)
{ if (dist[u] == n)
{ S.append(u);
dist[u] = max_level;
}
}

phase_number = 2;
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compute_dist_s(G,s,flow,excess,dist,U,Q);
}
}
else
{ node u;
forall(u,S) dist[u]l = max_level;
compute_dist_s(G,s,flow,excess,dist,U,Q);

}

The function MAXFLOW_GRH.T incorporates the distinction between low and high nodes,
the local and the global relabel heuristic, and the distimdbetween phases one and two.

(maxflown.GRH)=

template<class NT, class SET>
NT MAX_FLOW_GRH_T(const graph& G, node s, node t,
const edge_array<NT>& cap, edge_array<NT>& flow,
SET& U, int& num_pushes, int& num_edge_inspections,
int& num_relabels, int& num_global_relabels, float h)
{ if (s == t) error_handler(1,"MAXFLOW: source == sink");

(MF_GRH: initialization)
(MF_GRH: main loop

#ifndef LEDA_CHECKING_OFF
assert (CHECK_MAX_FLOW_T(G,s,t,cap,flow));
#endif

return excess[t];

}

Table 7.13 shows that the combined effect of the global e¢laburistic and the two-
phase approach is dramatic. The running times decreasklecatsly for all generators and
for all three selection rules.

The Gap Heuristic: We come to our last optimization.

Consider a relabeling of a nodein phase one and latv be the layer ofv before the
relabeling. If the layedv becomes empty by the relabeling of thenv cannot reach
anymore inG; after the relabeling, since any edge crossing the now eraggr lwould be
steep.

If v cannot reach in G then no node reachable fromin G; can reach. We may
therefore mover and all nodes reachable fromto layern whenever the old layer of
becomes empty by the relabelingwfThis is called theyap heuristic

We realize the heuristic as follows. For eathO < d < n we keep a count of the
number of nodes in layed. For this purpose we use the arreguntintroduced in the
previous section.

The arraycountis recomputed itomputedistt and is updated whenever a node is rela-
beled. When a node is moved from a layedv to a layerdmin, we decrementoun{dyvj
and incrementoun{dmir] (if dvor dminis smaller tham).

Whencoun{dy] is decremented to zero we moveand all nodes reachable fromin G+
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Rule Pushes Inspections Relabels GR Time
rand FIFO 7.377e+05 7.354e+06 5.794e+05 — 4.8
6978 5.181e+04 4119 2 0.06
HL 7.254e+05  7.749e+06 5.32e+05 — 4.82
5.412e+04  5.264e+05 4.2e+04 21 0.43
MFIFO 8.907e+05  7.498e+06 5.631e+05 — 4.5
8048 5.171e+04 3918 2 0.06
CGl FIFO 8.908e+05 2.789e+06 5.58le+05 —  2.87
5.02e+05 5.05e+05 994 6 0.91
HL 7.5e+05 4.373e+07 3.763e+05 — 20.92
5.015e+05 5.045e+05 988 12 1.22
MFIFO 6.713e+05  2.352e+06 4.619e+05 — 23
5.02e+05 5.05e+05 994 6 0.91
CG2 FIFO 8.851e+06  3.807e+07 7.277e+06 — 37.29
9.793e+05  9.939e+05 4710 9 1.76
HL 6.265e+06 3.002e+07 5.504e+06 — 29.81
1.928e+04 5.53e+04 6518 1 0.17
MFIFO 1.019e+07  4.012e+07 7.16e+06 — 36.53
5.033e+05 5.085e+05 1992 9 0.98

Table 7.13 Effect of low-high distinction, the local relabeling hestic, the global relabeling
heuristic, and the two-phase approach. We show the behavithree different kinds of graphs
and three different selection rules. For each generatoawéhe case = 1000. For the random
graph generator we used= 3n. For each case we give the running time of

MAX _FLOW_LRH_T (first line) and of MAX FLOW_GRH_T (second line). The savings are
dramatic in all cases. The column GR shows the number of tiheeglobal relabeling heuristic
was applied. The parameternof MAX _FLOW_GRH.T was set to 5. Use maftow_grh_time in
the demo directory to perform your own experiments.

to layern. We find these nodes by a breadth-first search starting e reuse the queue
Q, which we introduced for the distance calculations, forlibeadth-first search.

(MF_GAP: update the distance label df=

num_relabels++;
if (phase_number == 1)

{ if ( ——count[dv] == 0 || dmin >=n - 1)
{ // v cannot reach t anymore
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{move all vertices reachable from v to levél n
}

else
{ dist[v] = ++dmin; count[dmin]++;
U.insert(v,dmin);
}
}

else // phase_number ==
{ dist[v] = ++dmin;
U.insert(v,dmin);

}

Let us see the details of the breadth-first search. The yémis the highest layer con-
taining a node reachable from If this layer is less than, we start the breadth-first search
from v. We visit all nodes that are reachable frorm G; and that live on a layer less than
n. We move all such nodes to layer We count the number of nodes moved by the gap
heuristic innumgaps

(move all vertices reachable from v to levéEn
dist[v] = n;
if ( dmin < n )
{ Q.append(v);
node w,z;
while ( !Q.empty() )
{ edge e;
w = Q.pop(); num_gaps++;
forall_out_edges(e,w)
{ if ( flow[e]l < caplel && dist[z = G.target(e)] < n)
{ Q.append(z);
count[dist[z]]--; dist[z] = n;
}
}
forall_in_edges(e,w)
{ if ( flow[e]l > O && dist[z = G.source(e)] < n)
{ Q.append(z);
count[dist[z]]--; dist[z] = n;
}
}
}
}

The main loop has the same structure as before and only ongel&required. When
the gap heuristic moves a node to lapgt does not remove it from the set of active nodes
(which it should because the node should stay inactivenilldeginning of phase two). We
remedy the situation as follows. Whenever a node on Ievislremoved from the set of
active nodes in phase one we ignore the node and continue teeit iteration.
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(MF_GAP: main loop=

for(;;)
{
(MF_GRH: extract v from queye
if (dist[v] == n && phase_number == 1) continue;
NT ev = excess[v]; // excess of v
int dv @ = dist[v]; // level of v
int dmin = MAXINT;
edge e;

if ( dist[v] < n ) { (push across edges out df ¥
if ( ev > 0 ) { (push across edges intd
excess[v] = ev;

if (ev > 0) { (MF_GAP: update distance label(s)}
}

(MF_GAP: update distance label(s¥
if (num_edge_inspections <= limit_heur)
{ (MF_GAP: update the distance label of
else
{ limit_heur += heuristic;
num_global_relabels++;
(MF_GRH: global relabel
}

Finally, we give the function MAXFLOW_GAP_T a further parametatumgaps in which
we count the number of nodes that are moved by the gap heuristi

(maxflow.GAP) =

template<class NT, class SET>

NT MAX_FLOW_GAP_T(const graph& G, node s, node t,
const edge_array<NT>& cap, edge_array<NT>& flow,
SET& U, int& num_pushes, int& num_edge_inspections,
int& num_relabels, int& num_global_relabels,
int& num_gaps, float h)

{ if (s == t) error_handler(1,"MAXFLOW: source == sink");

(MF_GRH: initialization)
num_gaps = 0;
(MF_GAP: main loop

#ifndef LEDA_CHECKING_OFF
assert (CHECK_MAX_FLOW_T(G,s,t,cap,flow));
#endif

return excess[t];

}

Table 7.14 shows the combined effect of all heuristics.
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Gen Rule Pushes Inspections Relabels GR Gaps Time
rand FIFO 1.394e+04 1.036e+05 8154 2 — 0.18
1.39e+04  1.036e+05 8142 2 2 017
HL 1.911e+05 1.929e+06 1.444e+05 38 — 159

2.536e+04  1.959e+05 1.258e+04 3 934 0.27

MFIFO 1.589e+04  1.033e+05 7674 2 — 0.15
1.589e+04  1.033e+05 7672 2 11  0.15

CG1 FIFO 2.002e+06 2.008e+06 1988 12 — 449
2.002e+06  2.008e+06 1988 12 0 4.05

HL 2.003e+06  2.009e+06 1975 25 — 541
2.003e+06  2.009e+06 1975 25 0 567

MFIFO  2.004e+06 2.01e+06 1988 12 — 364
2.004e+06 2.01e+06 1988 12 0 4.08

CG2 FIFO 3.951e+06 3.971e+06 6846 18 — 885
3.982e+06  3.992e+06 3983 18 2015 7.88

HL 3.852e+04 1.106e+05 1.302e+04 1 — 0.36
1.599e+04  4.396e+04 4002 0 3995 0.28

MFIFO 2.079e+06  2.098e+06 6684 18 — 393
2.001e+06  2.012e+06 3983 18 2017 4.27

Table 7.14 Effect of low-high distinction, the local relabeling hestic, the global relabeling
heuristic, the two-phase approach, and the gap heuristicshdtw the behavior for three
different kinds of graphs and three different selectioesulFor each generator we ran the case
n = 2000. For the random graph generator we used 3n. For each case we give the running
time of MAX_FLOW_GRH_T (first line) and of MAX FLOW_GAP_T (second line). The effect
of the gap heuristic is small. The column GR shows the numbgiobal relabels and the
column Gaps shows the number of nodes moved by the gap heudse maxflow_gaptime in
the demo directory to perform your own experiments.

Choice of H: How often should the heuristics be applied? Table 7.15 shiba/&ehavior
for different values oh. The choice oh does not have a big influence on running time. We
have choseh = 5 as the default value df.

Summary and Implementation History: Table 7.16 summarizes our experiments. It
shows the running times of our different implementationddar different kinds of graphs,
three selection rules, and two different graph sires: (1000 anch = 2000). The heuristics
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Gen Rule h Pushes Inspections Relabels GR Gaps Time
rand FF 05 9988  6.362e+04 4850 3 9 014
2.5 1.18e+04  8.356e+04 6562 2 4 0.14

4.5 1.6e+04  1.236e+05 9753 2 7 019

6.5 1.989e+04 1.636e+05 1.287e+04 2 9 0.22

HL 0.5 1.425e+04  8.442e+04 5506 16 1333 0.36

25 1.967e+04 1.403e+05 9113 5 280 0.26

45 2.563e+04 1.998e+05 1.28e+04 4 811 0.28

6.5 2.347e+04  1.812e+05 1.18e+04 2 1279 0.25
MF 0.5 1.112e+04 5.376e+04 3592 10 17 0.2
25 1.328e+04  7.814e+04 5729 3 0 0.15
45 1.476e+04 9.33e+04 6992 2 0 0.15
6.5 1.956e+04  1.333e+05 9943 2 0 0.18
CG1 FF 0.5 1.992e+06 1.998e+06 1970 30 0 4.23
25 1.996e+06 2.002e+06 1985 15 0 411
45 2e+06  2.006e+06 1990 10 0 4.06
6.5 2.004e+06 2.01e+06 1993 7 0 4.05

HL 0.5 2.003e+06 2.009e+06 1750 250 0 8.6
2.5 2.003e+06 2.009e+06 1950 50 0 5.67
45 2.003e+06 2.009e+06 1973 27 0 533
6.5 2.003e+06 2.009e+06 1981 19 0 521

MF 0.5 2.004e+06 2.01e+06 1874 126 0 5.08
2.5 2.004e+06 2.01e+06 1975 25 0 419
4.5 2.004e+06 2.01e+06 1986 14 0 411
6.5 2.004e+06 2.01e+06 1991 9 0 4.06

Table 7.15 Effect of the choice oh. We show the behavior for two different kinds of graphs and
three different selection rules. For each generator wehracasan = 2000. For the random

graph generator we used = 3n. For each case we give the running time of

MAX _FLOW_GAP_T for different values oh. FF stands for FIFO and MF stands for MFIFO.

lead to dramatic savings in all cases, the global relabdimgistic being the main source



204 Graph Algorithms

Gen Rule BASIC HL LRH GRH GAP LEDA

rand FF 5.84 6.02 4.75 0.07 0.07 —

33.32 33.88 26.63 0.16 0.17 —

HL 6.12 6.3 4.97 0.41 0.11 0.07
27.03 27.61 22.22 1.14 0.22 0.16
MF 5.36 5.51 4.57 0.06 0.07 —

26.35 27.16 23.65 0.19 0.16 —

CG1 FF 3.46  3.62 2.87 0.9 1.01 —

15.44 16.08 12.63 3.64 4.07 —

HL 20.43 20.61 20.51 1.19 1.33 0.8
1928 1915 193.7 4.87 5.34 3.28
MF 3.01 3.16 2.3 0.89 1.01 —
12.22 12091 9.52 3.65 412 —

CG2 FF 50.06 47.12 37.58 1.76 1.96 —

239 2224 177.1 7.18 8 —

HL 4295 415 30.1 0.17 0.14 0.08002

1739 167.9 120.5 0.3599 0.28  0.1802

MF 4534 42.73 37.6 0.94 1.07 —

198.2 186.8 165.7 411 4.55 —

AMO FF 12.61 13.25 117 0.06 0.06 —
55.74 58.31 5.01 0.1399 0.1301 —

HL 15.14 15.8 1.49 0.13 0.13 0.07001

62.15 65.3 6.99 0.26 0.26  0.1399

MF 10.97 11.65 0.04999 0.06 0.06 —

46.74 49.48 0.1099 0.1301 0.1399 —

Table 7.16 The effect of the different heuristics. We show the behafdofour different kinds

of graphs and three selection rules. For each generatormtbgacasea = 1000 anch = 2000.
The last column stands for the default implementation in REDuses one further optimiziation
which we have not explained in the text.

of improvement. You may use the program nfloww_summarytime in the demo directory
to perform your own experiments.
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Gen Rule GRH GAP LEDA

rand FF 0.16 0.41 1.16 0.15 0.42 1.05 — — —

HL 1.47 4.67 18.81 0.23 0.57 1.38 0.16 0.45 1.09

MF  0.17 0.36 1.06 0.14 0.37 0.92 — — —

CGl1 FF 3.6 16.06 69.3 3.62 16.97 71.29 — — —

HL 4.27 204 775 46 2054 8099 2.64 1213 48.52

MF 355 1597 6845 3.66 16.5 70.23 — — —

CG2 FF 6.8 29.12 1253 7.04 295 127.6 — — —

HL 0.33 0.65 136 0.26 0.52 1.05 0.15 03 0.63

MF 3.86 15.96 68.42 3.9 16.14 70.07 — — —

AMO FF 0.12 0.22 0.48 0.11 0.24 0.49 — — —

HL 025 0.48 099 024 048 099 0.12 024 0.52

MF 0.11 0.24 05 011 0.24 0.48 — — —

Table 7.17 The asymptotic behavior of our implementations. We shovwbtteavior for four
different kinds of graphs and three selection rules. Fohegmnerator we ran the cases

n = 5000- 2 fori = 0, 1, and 2. For the random graph generator we used3n. FF stands
for FIFO and MF stands for MFIFO. You may use the program ffiew_largetime in the demo
directory to perform your own experiments. The program rflaw_time in the demo directory
times the default implementation.

The FIFO and MFIFO selection rule are superiour to the Hle-ruh three of our four
generators, although never by a large margin. However,@geherator CG2 both rules do
very badly compared to the HL-rule. Figure 7.17 shows théawore clearly. For genera-
tors rand and AMO the running time seems to grow linearly (aybe slightly more) for all
three selection rules, for generator CG1 the running tireexsao grow quadratically for all
three selection rules, and for generator CG2 the running §eems to grow quadratically
for the FIFO and the MFIFO-rule and seems to grow linearhtherHL-rule.

We have chosen the HL-rule as the default selection rule iomoax flow algorithm.
This is also what other researchers recommend [CG97, AKNIO97

The worst case running time of our max flow algorithn@éndeg n?,/m), wheremdeg
is the maximal degree of any node. This can be improve® @?,/m) with the current
edge data structure. Theoretically more efficient algorgfare known. Goldberg and Tar-
jan [GT88] have shown that the so-called dynamic tree dadatstre can be used to improve
the running time of the preflow-push method@gnmlogn). In [CH95, CHM96] this was
further improved ta (nm4+-n? logn). The dynamic tree data structure is available in LEDA.
Monika Humble [Hum96] has implemented the preflow-push @flgm with the dynamic
tree data structure. The observed running time was not sspe Recently, Goldberg and
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Rao [GR97] improved the running time ©(min(n?3, m/2mlog(n?/m)logV), whereU

is the largest capacity of any edge (the capacities musttbgral for their algorithm). It
remains to be seen whether the improved bound also lead##o bleserved running times.
A first experimental evaluation can be found in [HST98].

The first implementation of the preflow-push algorithm ford&was done by Cheriyan
and Naher in 1989. It used the FIFO selection rule, therdistin between low and high
nodes, and the local and global relabeling heuristic. 8thf@her refined the implementa-
tion over the years and added the highest-level selectien for the book we added the
two-phase approach, the gap heuristic, and the possibflithoosing the selection rule.

7.10.5 Network Flow and Floating Point Arithmetic

The preflow-push algorithm computes the maximum flow iteedyi (and so do all other
maximum flow algorithms). It starts with a preflow which it drally transforms into a
flow. The flow across any single edge is changed by pushessatm®msdge. These pushes
may be in forward and backward direction, i.e., the flow asras edge is changed by
additions and subtractions: the final flow across an edgeusieos flow portions and these
flow portions may be positive and negative.

What happens when the algorithm is executed with an aritierviich may incur round-
ing error, e.g., floating point arithmetic? Then there maycaecellation in forming this
sum. As a consequence the correctness of the algorithm @ngel guaranteed. The algo-
rithm may not terminate or compute a functiénwhich is not a flow (because it violates
one of the constraints) or is a flow but not a maximal flow. Fegurd5 shows an example
of the disastrous effect that rounding error may have.

The preflow-push algorithm uses only additions and subtmasto manipulate flow and
determines the flow to be sent across an edge as the maximura a¥ailable excess and
the residual capacity of the edge. This implies that all fl@ues are integral when the
capacities are integral. Also the maximum excess of any rodeunded byD, whereD
is the sum of the capacities of the edges ow.of

If the number typeadoubleis used and all edge capacities are integral, there will be no
overflow as long a® < 2%, If the number typeloubleis used and the edge capacities are
not integral, we replace the edge capacities by

caple] = signcage])||cade]l - S|/S,

where S is the largest power of two such th&t< 253/D, and apply the results of Sec-
tion 7.2. They guarantee that there is no rounding errorérctimputation of the maximum
flow with respect tacapland that the value of the maximum flows with respeatdapand
capl, respectively, differ by at mosh - D - 2752, The bound follows from the fact that the
value of the maximum flow is equal to the capacity of a minimurt) that the capacity of
a minimum cut is the sum of at mostedge capacities and that the choicesafuarantees
that for each edge the difference between the orginal cpaed the modified capacity is
at mostD - 2752,

The paragraph above bounds the absolute error in the valthe dfow resulting from
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0.27

<s> 0.32 g @

0.71

Figure 7.45 The effect of rounding error on the preflow-push algorithrhe Eapacities of the
edges are as shown. The preflow-push algorithm starts byatiatyall edges out af. This will
create an excess ofZ¥ + 0.32+4 0.71 = 1.3 in v. In the course of the execution, the algorithm
will determine that none of this excess can be forwardedatod hence the excess will be
shipped back ts by sending ®7, 032, and 071, respectively, across the three edges). The
final excess in is 1.3 —0.27—-0.32—-0.71= 0.

Assume now that all calculations are carried out floating point system with a mantissa of two
decimal places and rounding by cut-offhen the excess in after saturating all edges out f

will still be 1.3 as there is no cancellation in the summation. However, wiheflow is pushed
back tos the first subtraction.B & 0.29 yields 11 as the last digit of @9 is dropped when the
two summands are aligned for the subtraction; le@enotes floating point subtraction. The
effect of this is thab ends up with an excess ofd®, but no outgoing edge across which to push
flow. This may put the algorithm into an infinite loop.

scaling. It does not bound the relative error. Observe timgtiotient betweeb and the
maximum flow may be arbitrarily large. Althaus and Mehlho#i[98] have shown that a
slightly more elaborate scaling scheme can be used to bbwenelkative error. The idea is
as follows. One modifies the edge capacities as describag @mol computes a maximum
flow f with respect to them. Then

Ival( fopy) — val(f)] <m-D .27

where fopt is @ maximum flow with respect to the original edge capacit@@se now dis-
tinguishes cases. - D - 2752 « val(f), the relative error in the value of the flow is
small. Otherwise, leB = val(f) + m- D - 2752 and observe thatal( fopt) < B and hence
any capacity which is larger tha® may be decreased # without changing the maximum
flow. Next they recomput® andS and repeat. After a smaller number of iterations the
relative error will be small.

Exercises for 7.10

1 LetG = (V, E) be a directed graph, lep: E — IR>o be a non-negative capacity
function, and letd : V — IR be a function with) " _,,d(v) = 0. A nodev with
d(v) > Ois called asupply nodea nodev with d(v) < 0 is called ademand nodeand
d is called a demand function. A flow is a functionf : E — IRx¢ satisfying the
capacity constraints and the supply-demand constrekussé) = d(v) forall v € V.
Design an algorithm that decides whether a flow exists amw, iEomputes a flow. Hint:
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Add two verticess andt, an edge(s, v) with capacityd(v) for every supply node, an
edge(v, t) with capacity—d(v) for every demand node, and compute a maxinggm)-
flow.

2 The problem is as above but a lower bouin@) on the flow across any edgsis also
specified, i.e., for each edge two valubge) andub(e) with 0 < Ib(e) < ub(e)are
specified and the flow across any edge must lie between the &owlethe upper bound.
Hint: For any edge = (v, w) introduce two additional vertice® andbe, replacee by
the edgesv, ag), (ae, be), and(be, w), giveas demand-Ib(e), give be supplylb(e), and
give (ae, be) capacityub(e) — Ib(e). Solve the problem above.

3 Show that the number of non-saturating pushe(is®) when the MFIFO-rule is used.
Hint: Reuse the proof for the FIFO-rule.

4 Study alternative implementations of the highest-leus: Insert(v, d) andinsertQv, d)

may addv to the front or the rear of the-th list.

Incorporate the current edge data structure into our imefgations.

Experiment with the global relabel heuristic but withdu two-phase approach.

o Ol

7.11  Minimum Cost Flows

The minimum cost maximum flow problem generalizes the marirflow problem of the
preceding section.

Let G = (V, E) be a directed graph. For each edge E letIcap(e) anducape) be
lower and upper bounds for the flow acresgve assume G< Icap(e) < ucape)) and let
coste) be the cost of shipping one unit of flow acrassand for each node let supply(v)
be the supply or demand at node We talk about a supply upplyv) > 0 and we talk
about a demand Bupplyv) < 0. We assume that the supplies and demands balance, i.e.,

> supplyv) = 0.

veV
Aflow f is a function on the edges satisfying the capacity congtraimd the mass balance
conditions, i.e.,

Icap(e) < f(e) < ucape)
for every edges and
supplyv) = Z fe) — Z f (e)
e, sourcee)=v e, target(e)=v
for every nodev.
For every edge, coste) is the cost of sending one unit of flow across the edge. The tota
cost of a flowf is therefore given by

cost(f) =) f(e) - coste).

ecE

A minimum cost flovis a flow of minimum cost. The function
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bool MIN COST_FLOW(graph& G, const edge_array<int>& lcap,
const edge_array<int>& ucap,
const edge_array<int>& cost,
const node_array<int>& supply,
edge array<int>& flow)

returngrueif a flow exists and returnialseotherwise. If a flow exists, it returns a minimum
cost flow inflow. Observe that capacities and costs must be integers. Tigthig is based
on capacity scaling and successive shortest-path conpuiaf. [EK72] and [AMO93])
and has running tim®(mlogU (m + nlogn)), wheren is the number of nodes @&, mis
the number of edges @, andU is the largest absolute value of any capacity.

There is also a variant of this function where the lower boonall flows is assumed to
be zero.

bool MIN_COST_FLOW(graph& G, const edge_array<int>& cap,
const edge_array<int>& cost,
const node_array<int>& supply,
edge_array<int>& flow);

The function

int MIN_COST_MAX FLOW(graph& G, node s, node t,
const edge_array<int>& cap,
const edge_array<int>& cost,
edge_array<int>& flow)

computes a minimum cost maximal flow, i.e., it computes a makflow froms andt and
among these flows a flow of minimum cost. The value of the floveismed.
The xIman-demo gwnin_costflow illustrates minimum cost flows.

Exercises for 7.11

1  Consider an edge = (u, v) with ¢ = Icap(e) > 0. Change the problem as follows:
decreasé&ap(e) anducape) by c, decreassupplyu) by ¢, and increassupplyv) by c.
Show that a solution to the modified problem yields a solutibtne original problem.

2  Allow negative lower bounds. Describe a transformatiat tets rid of negative lower
bounds.

3 Assume thalcap(e) = O for all e. Introduce auxiliary nodes andt and edgess, v)
with capacityc = supplyv) for all nodesv with supplyv) > 0 and edgesu, t) with
capacityc = —supplyu) for all nodesu with supplyu) < 0. Show that there is a
flow satisfying the capacity constraints and the bass balanostraints in the original
network iff there is a flow frons to t in the modified network that saturates all edges out
of s (and hence all edges int. Based on this insight derive a necessary and sufficient
condition for the existence of a flow satisfying the capaciystraints and the mass
balance constraints.

4  Let f be a flow satisfying the capacity constraints and the massbalconstraints and
let Gt be the residual network with respect fo If e = (v, w) is an edge inG with
f(e) < ucape) then there is an edge, w) in G+ with capacityucape) — f(e) and
costcoste) and ife = (v, w) is an edge irG with f(e) > Icap(e) then there is an edge
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(w, v) in Gt with capacityf (e) —Icap(e) and cost-cosie). Show thatf is a minimum
cost flow iff there is no negative cycle @&+ .
5 Derive a checker for minimum cost flows based on the pregdatims.

Figure7.46 A minimum cutC in a graph. The nodes i@ are shown as circles and the nodes
outsideC are shown as squares. The value of the cut is 47. You may dernenar own figures
with the xIman-demo gumin_cut.

7.12  Minimum Cutsin Undirected Graphs

Let G = (V, E) be an undirected graph (self-loops and parallel edges lareeaad) and let
w : E — R,o be anon-negativaveight function on the edges @. A cutC of G is any
subset otV with @ # C # V. The weight of a cut is the total weight of the edges crossing
the cut, i.e.,

w@ = Y  we.

ecE;|enC|=1
A minimum cuis a cut of minimum weight. Figure 7.46 shows an example. Tinetfon

int MIN_CUT(const graph& G,const edge_array<int>& weight,
list<node>& C, bool use_heuristic = true)
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5000 10000 15000 20000

NOH WH NOH WH NOH WH NOH  WH

1000 9.22 352 1711 1711 27.86 29.36 38.88 39.46

2000 29.58 126 54.32 276 8214 33.77 1176 98.68

3000 62.51 3.71 107.2 3.64 1456 8.76 191.1 85.17

4000 91.66 551 157 4.84 2057 498 2795 899

5000 1442 1562 2135 11.8 273.8 11.7 378.6 18.22

Table 7.18 Running times of the minimum cut algorithms. We used randeoaplgs withn
nodes anan edges and random edge weights. The rows are indexeadaby the columns are
indexed bym. For each combination af andm we ran the algorithm without (NOH) and with
the heuristic (WH). The use of the heuristic is the default.

takes a graplc and aweightfunction on the edges and computes a minimum cut. The
value of the cut is returned and the nodes in the cut are assip©. The running time of
the algorithm isO(nm + n?logn). The algorithm is due to [N192, SW97]. The algorithm
can be asked to use a heuristic. In some cases the heurigtiovies the running time
dramatically; it never seems to harm, see Table 7.18. Thaakso a version of the function
where the cu€ is the return value of the function.

list<node> MIN_CUT (const graph& G, const edge array<int>& weight)
The function

int CUT_VALUE(const graph& G,const edge_array<int>& weight,
const list<node>& C)

returns the value of the c@.

We use a particularly simple and nevertheless efficient coinalgorithm due to Nag-
amochi and Ibaraki [N192] and later refined by Stoer and Wad8&/97]. The algo-
rithm runs in timeO(nm + n?logn). Alternative minimum cut algorithms can be found
in [PR90, HO92, KS96]. The papers [CGH7, JRT97] contain experimental comparisons
of minimum cut algorithms.

We need the notion of ast cut. For a pair{s, t} of distinct vertices ofG a cutC is
called ans-t cut if C contains exactly one afandt.

The algorithm works in phases. In each phase it determinesrapverticess andt
and a minimuns-t cut C. If there is a minimum cut ofs separating andt thenC is a
minimum cut ofG. If not then any minimum cut o6 hass andt on the same side and
therefore the graph obtained fraghby combining sandt has the same minimum cut &s
So a phase determines vertiseandt and a minimuns-t cutC and then combinesandt
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into one node. Aften — 1 phases the graph is shrunk to a single node and one of thegphas
must have determined a minimum cut®f

(mincut=
(combine s andt

int MIN_CUT(const graph& GO, const edge_array<int>& weight,
list<node>& C, bool use_heuristic)
{ node v; edge e;

forall_edges(e,GO)
if ( weight[e] < 0 )
error_handler(1,"MIN_CUT: no negative weights");

(initialization)
while ( G.number_of_nodes() >= 2 ) { (aphasé }

return best_value;

}

We call our input grapl@0 and our current Grap®. Every node ofG represents a set of
nodes ofGO. This set is stored in a linear list pointed to 8yv] and hence we use the type
GRAPKlist<node x, int> for G. Every edgee = {v, w} of G represents a set of edges of
GO, namely{{x, y}; x € G[v] andy € G[w]}. The total weight of these edges is stored in
Gle].

It is easy to initializeG. We simply makeG a copy of GO (except for self-loops) and
initialize G[v] to the appropriate singleton set for every vertesf G.

(initialization)=
typedef list<node>* nodelist_ptr;
GRAPH<nodelist_ptr, int> G;
G.make_undirected();
node_array<node> partner (GO) ;

forall_nodes(v,GO)
{ partner[v] = G.new_node(new list<node>);
G[partner[v]]->append(v);

}
forall_edges(e, GO)
if ( source(e) != target(e) )

G.new_edge (partner[source(e)], partner[target(e)],weight[e]);

We also fix a particular node of G and introduce variables to store the currently best cut.

(initialization)+=

node a = G.first_node();
int best_value = MAXINT;
int cut_weight = MAXINT;

We now come to the heart of the matter, a phase. A phase inétich sefA to the singleton
set{a} and then successively merges all other nodeS @fto A. In each stage the node
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v € A which maximizes
w(v, A) = > w(e)
e e={v,y} fOor someyea

is merged intoA. Lets andt be the last two vertices added #in a phase. The cut
computed by the phase is the cut consisting of rtasldy; in the graphG0this corresponds
to the cutG[t].

Lemma44 Let s and t be the last two nodes merged into A during a phasen {this a
minimum s-t cut.

Proof Let C’ be anys-t cut. We show thaiv(C’) > w({t}). Letwv, ..., vy be the orderin
which the nodes are added£o Thenv; = a, vh—1 = S, andv, = t.

Call a vertexv = v critical if i > 2 andv; andv;_1 belong to different sides &&’. Note
thatt is critical. Letk be the number of critical nodes and igtio,..., ix be the indices of
the critical nodes. Thel = n. For integeii useA; to denote the sdtvy, ..., v;}. Then

w({th) = w(vy, A1)
and
k
w(C) =Y wvi, Aj—1\ A1),
j=1

since any edge counted on the right side is also counted ofefthand edge costs are
non-negative. We now show for all integérd < | <k, that

U)('Uil , Ai|7l) = Z U)(Uij s Aijfl\ Aij,lfl)-

j=1
Forl = 1 we have equality. So assuiing 2. We have

w(vh s Ai|—l) = LU(Uil s Ai|,1—1) + LU(Uil s Ai|—l \ Ai|,1—1)
< wi_y, A -1) +wi, Aj—1 \ A _—1)

A

1-1
> wip, A\ A D)+ w, A\ A1)
j=1

[
= Zw(vij,Aij—l\Aij,l—l)-
j=1
Here the first inequality follows from the fact thaf , is added toA;_,_; and notv;, and
the second inequality uses the induction hypothesis. O

(a phasé=
(determine s and t and the value of the cut V:t,t

bool new_best_cut = false;
if ( cut_weight < best_value )
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{ C=x(G[tD);
best_value = cut_weight;
new_best_cut = true;

}

combine_s_and_t(G,s,t);
(heuristig

How can we determine the order in which the vertices are ndeig® A? This can be
done in a manner akin to Prim’s minimum spanning tree algovitWe keep the vertices
v, v € A, in a priority queue ordered according #qv, A). In each stage we select the
node, sayu, with maximalw(u, A) and add it toA. This increases (v, A) by w({v, u})

for any vertexv ¢ A andv # u. Since LEDA priority queues select minimal values we
store—w(v, A) in the queue. The node added lasitis the vertex. The valuecutweight

isw(t, A).

(determine s and t and the value of the cut V&t t
node t = a;
node s;
node_array<bool> in_PQ(G,false);
node_pq<int> PQ(G);
forall_nodes(v,G)
if (v !'= a)
{ PQ.insert(v,0);
in_PQ[v] = true;
}
forall_adj_edges(e,a)
PQ.decrease_inf (G.opposite(a,e),PQ.prio(G.opposite(a,e)) - Glel);
while (!'PQ.empty())
{s=t;
cut_weight = -PQ.prio(PQ.find_min());
t = PQ.del_min();
in_PQ[t] = false;
forall_adj_edges(e,t)
{ if (in_PQ[v = G.opposite(t,e)])
PQ.decrease_p(v,PQ.prio(v) - G[el);
}
}

It remains to combine andt. We do so by deletingfrom G and moving all edges incident
tot tos. More precisely, we need to do three things:

e AddGJt]to G[s] (G[s] — cond*(G[t]))).

e Increase5[{s, v}] by G[{t, v}] for all verticesv with {t, v} € E andv # s.

e Deletet and all its incident edges fro@ (G.delLnod«t)).

The second step raises two difficulties: the eigier} might not exist and there is no
simple way to go from the edgd, v} to the edgds, v}. We overcome these problems by
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first recording the edgés, v} in sedgguv] for every neighbow of s. We then go through
the neighbore of t: if v is connected t@ then we simply increasg[{s, v}] by G[{t, v}],
if v is not connected te and different froms then we add a new edds, v} with weight
G[{t, v}].

We formulate the piece of code to combimandt as a procedure because we want to
reuse it in the heuristic.

(combine s and &
static void combine_s_and_t (GRAPH<list<node>*,int>& G, node s, node t)
{ G[s]->conc(*(G[t]));

node_array<edge> s_edge(G,nil);
edge e;
forall_adj_edges(e,s) s_edgelG.opposite(s,e)] = e;
forall_adj_edges(e,t)
{ node v = G.opposite(t,e);
if ( v == s) continue;
if (s_edgel[v] == nil) G.new_edge(s,v,G[e]);
else G[s_edgel[v]] += G[el;

G.del_node(t);

This completes the description of the algorithm. The rugnime of our algorithm is
clearly at mosh times the running time of a phase. A phase takes e + nlogn) to
merge all nodes into the sét( the argument is the same as for Prim’s algorithm) and time
O(n) to record the cut computed and to mesggandt. The total running time is therefore
O(nm+ n?logn).

We next discuss a heuristic improvement. Clearly, any edgese weight is at least
bestvaluecannot cross a minimum cut whose value is smaller temtvalue We therefore
might as well shrink any such edge.

Which edges might have weight at least as largbestvalue? If bestvaluedecreased
in the current phase, then all edge<®ére candidates, andhiestvaluestayed unchanged
in the current phase, then all edges incident toe candidates, because their weight may
have increased .

(heuristig=
if ( use_heuristic )
{ bool one_more_round = true;
while ( one_more_round )
{ one_more_round = false;
forall_adj_edges(e,s)
{ node t = G.opposite(s,e);
if ( G[e]l >= best_value )
{ combine_s_and_t(G,s,t); one_more_round = true; break; }
}
}

if ( new_best_cut )
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{ bool one_more_round = true;
while ( one_more_round )
{ one_more_round = false;
forall_edges(e,G)
{ node s = G.source(e);
node t = G.target(e);
if ( G[e] >= best_value )
{ combine_s_and_t(G,s,t); one_more_round = true; break; }
}
}
}
}

Table 7.18 shows that the heuristic can lead to dramaticawgments in running time.
We will now argue that is does increase the asymptotic runtime. If the phase did not
decreaséestvalue the running time of the heuristic 8((1+ k)n), wherek is the number
of edges shrunken by the heuristic. If the phase decrdassttlalue the running time of
the heuristic i90((1 + k)m), wherek is the number of edges shrunken by the heuristic. In
either case the asymptotic running time of our proceduret$ntreased, since a phase has
costQ(m + nlogn).

We considered an alternative implementation of the hecris¥/e kept the edges @&
in a priority queue according to negative weight and at theé @freach phase selected all
edges from the queue which had weight at least as largeestvalue The alternative
implementation was slower than the simple implementatestdbed above.
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